JP2008293100A - Analytic method, analytic system and analytic program for welded body physical quantity - Google Patents

Analytic method, analytic system and analytic program for welded body physical quantity Download PDF

Info

Publication number
JP2008293100A
JP2008293100A JP2007135544A JP2007135544A JP2008293100A JP 2008293100 A JP2008293100 A JP 2008293100A JP 2007135544 A JP2007135544 A JP 2007135544A JP 2007135544 A JP2007135544 A JP 2007135544A JP 2008293100 A JP2008293100 A JP 2008293100A
Authority
JP
Japan
Prior art keywords
welding
welded
analysis
physical quantity
welded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007135544A
Other languages
Japanese (ja)
Other versions
JP4945312B2 (en
Inventor
Shunji Okuma
俊司 大熊
Tadashi Murofushi
正 室伏
Masakazu Jinbo
雅一 神保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007135544A priority Critical patent/JP4945312B2/en
Publication of JP2008293100A publication Critical patent/JP2008293100A/en
Application granted granted Critical
Publication of JP4945312B2 publication Critical patent/JP4945312B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To shorten a time required for the numerical analysis of the physical quantity of a welded body in the case of multi-layer welding. <P>SOLUTION: This method for analyzing welded object physical quantity is provided to calculate the physical quantity such as the residual stress of the welded body 101 when a thermal source is moved several number of times along a weld line 105 of the welded body 101, and multi-layer welded by a plurality of weld paths by numerical analysis such as a differential equation governing a phenomenon. Numerical analysis is operated about an analytic model in which projection welded objects 201 and 301 on which the molded body 101 is projected are arranged corresponding to each weld path so that weld lines 205 and 305 can be continued at the downstream side of the moving coordinate system of the welded lines 105 and 205 on the previous weld paths by using a moving coordinate system moving to the opposite direction at the same speed as that of moving speeds 104, 204 and 304 of thermal sources 102, 202 and 302 on each weld path. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、多層溶接したときの被溶接体の物理量を数値解析によって解く被溶接体物理量の解析方法、解析システムおよび解析プログラムに関する。   The present invention relates to an analysis method, an analysis system, and an analysis program for a welded body physical quantity that solves the physical quantity of the welded body when multilayer welding is performed by numerical analysis.

溶接は、熱源となる溶接棒ないし溶接トーチを、被溶接体の溶接線上を移動させ、高温の溶接金属を被溶接体に付着させていく接合方法である。溶接線上を溶接棒が通過して形成される溶接部を溶接パスといい、溶接を繰り返し実施し、開先内での同一高さの数パスにより層を形成し、複数の層を開先内に積層することにより溶接を完了する。一般に溶接部は多パス、多層となっている。   Welding is a joining method in which a welding rod or welding torch serving as a heat source is moved on the weld line of the welded body, and a high-temperature weld metal is attached to the welded body. A weld formed by passing a welding rod on the weld line is called a welding pass. Repeated welding is performed to form layers by several passes at the same height in the groove. Welding is completed by laminating to. In general, the welded portion has multiple passes and multiple layers.

溶接により配管などの溶接構造物に発生する残留応力は、溶接時の熱による局所的かつ急激な温度変化に伴って発生し、応力腐食割れを引き起こす主要な原因の一つである。そのため、従来から残留応力を低減する溶接方法の研究・開発が行われている(たとえば特許文献1ないし特許文献5参照)。また、残留応力を測定する方法も検討されている(たとえば特許文献6および特許文献7参照)。   Residual stress generated in welded structures such as pipes by welding is generated with local and rapid temperature changes due to heat during welding and is one of the main causes of stress corrosion cracking. Therefore, research and development of a welding method for reducing residual stress has been conventionally performed (for example, see Patent Documents 1 to 5). Further, a method for measuring the residual stress has been studied (see, for example, Patent Document 6 and Patent Document 7).

一方、残留応力を予測・評価する方法も検討されている(たとえば特許文献8および特許文献9参照)。この手法の一つである残留応力解析では、溶接による非定常の入熱を模擬した熱弾塑性解析が必要となる。これは溶接過程を緻密に模擬していく解析であり、多層の溶接を対象とした場合には、複数の溶接パスに亘る解析が必要となるため、大型計算機による計算でも多くの計算時間を要する。このため、計算時間を短縮するための方法も検討されている(たとえば特許文献10および特許文献11参照)。残留応力解析は、伝熱現象を解く伝熱解析および、熱履歴による物性の変化を解く弾塑性解析から構成されるが、伝熱解析と弾塑性解析は必ずしも同時に行う必要はなく、伝熱解析結果の温度履歴を用いて熱弾塑性応力解析を行うことが可能である。   On the other hand, methods for predicting / evaluating residual stress have also been studied (see, for example, Patent Document 8 and Patent Document 9). Residual stress analysis, which is one of these methods, requires thermoelastic-plastic analysis that simulates unsteady heat input by welding. This is an analysis that closely simulates the welding process. When multi-layer welding is used, analysis over multiple welding paths is required, so a large amount of calculation time is required even for calculations using a large computer. . For this reason, methods for reducing the calculation time are also being studied (see, for example, Patent Document 10 and Patent Document 11). Residual stress analysis consists of heat transfer analysis that solves heat transfer phenomena and elastoplastic analysis that solves changes in physical properties due to thermal history. However, heat transfer analysis and elastoplastic analysis do not necessarily need to be performed simultaneously. Thermal elasto-plastic stress analysis can be performed using the resulting temperature history.

溶接残留応力解析において、伝熱解析では非定常伝熱方程式、弾塑性解析ではつり合い方程式で現される支配方程式を時間進行させていく中で、一般的には実際の溶接における溶接棒の進行速度にあわせて入熱部を移動させていく。実際に入熱部を動かす時間進行の解析を行うことで、被溶接体の温度履歴、残留応力、ひずみ、などに代表される解析結果を求めていた。このように溶接線を入熱部を移動させる場合には、温度やひずみ、応力などの変化を高い精度で解析を行うには、溶接棒の移動範囲全体に亘って密な解析格子を準備する必要があり、多大な計算量が必要であった。
特開平10−128534号公報 特開平9−229248号公報 特開平9−1376号公報 特開平5−154683号公報 特開2004−122222号公報 特開2001−221697号公報 特開2000−146716号公報 特開2004−181462号公報 特開2004−330212号公報 特開2004−53366号公報 特開平6−180271号公報 特開2005−83810号公報 M.Gu and J.A.Goldak、"Steady State Formulation for Stress and Distortion of Welds"、ASME PED-Vol.64、Manufacturing Science and Engineering、1993年、p.843-854
In welding residual stress analysis, the progress rate of the welding rod in actual welding is generally used as the governing equation expressed by the unsteady heat transfer equation in the heat transfer analysis and the balance equation in the elastoplastic analysis is progressed over time. Move the heat input part to match. By analyzing the time progress of actually moving the heat input part, analysis results represented by the temperature history, residual stress, strain, etc. of the welded body were obtained. In this way, when moving the welding line through the heat input part, in order to analyze changes in temperature, strain, stress, etc. with high accuracy, a dense analysis grid is prepared over the entire moving range of the welding rod. It was necessary and a large amount of calculation was required.
Japanese Patent Laid-Open No. 10-128534 JP-A-9-229248 JP-A-9-1376 Japanese Patent Laid-Open No. 5-154683 JP 2004-122222 A Japanese Patent Laid-Open No. 2001-221697 JP 2000-146716 A JP 2004-181462 A JP 2004-330212 A JP 2004-53366 A JP-A-6-180271 JP 2005-83810 A M. Gu and JAGoldak, “Steady State Formulation for Stress and Distortion of Welds”, ASME PED-Vol. 64, Manufacturing Science and Engineering, 1993, p. 843-854

残留応力解析において3次元の対象を2次元モデルに置き換えることで計算時間を削減することができるが、事象をより緻密に再現することが可能な3次元モデルを必要とする解析では、その計算時間が膨大である。   In the residual stress analysis, the calculation time can be reduced by replacing the three-dimensional object with the two-dimensional model. However, in the analysis that requires a three-dimensional model capable of reproducing the event more precisely, the calculation time is reduced. Is enormous.

弾塑性解析においては、溶接開始部や終端部ではなく、溶接線の大部分を占める部分にのみ注目する場合が多い。また、残留応力やひずみの変化が大きくなる箇所は主として温度変化の大きい高温部近傍であり、溶接開始部と終端部を除く溶接棒周りの高温部は溶接棒位置に対して固定と考えられる。加えて、溶接開始部と終端部に近い部分以外では、溶接線からの距離と方向が同じである任意の注目点における温度変化は温度ピークの発生時刻がずれるだけである。   In elasto-plastic analysis, attention is often focused only on the portion occupying most of the weld line, not on the welding start and end portions. Further, the portion where the change in residual stress and strain becomes large is mainly in the vicinity of the high temperature portion where the temperature change is large, and the high temperature portion around the welding rod excluding the welding start and end portions is considered to be fixed with respect to the position of the welding rod. In addition, the temperature change at any point of interest having the same distance from the weld line and the direction except for the portion close to the welding start portion and the end portion only shifts the temperature peak generation time.

この点に着目し、移動座標系を適用することによりこの伝熱解析に要する計算時間を削減することが試みられており(たとえば特許文献12参照)、弾塑性解析についても移動座標系を適用した手法が開示されている(たとえば非特許文献1参照)。しかし、これらの移動座標系を採用した方法は、多パスないし多層溶接などの連続して行われる溶接を想定していない。このため、弾塑性解析におけるひずみや残留応力など、ある溶接パスの溶接による影響が、それ以降の溶接パスの解析に引き継がれないため、多パスないし多層溶接などの連続して行われる溶接の解析が困難である。   Focusing on this point, attempts have been made to reduce the calculation time required for this heat transfer analysis by applying a moving coordinate system (see, for example, Patent Document 12), and the moving coordinate system was also applied to elastoplastic analysis. A technique is disclosed (for example, see Non-Patent Document 1). However, methods employing these moving coordinate systems do not assume continuous welding such as multi-pass or multilayer welding. For this reason, the effects of welding in one welding pass, such as strain and residual stress in elasto-plastic analysis, are not carried over to the analysis of subsequent welding passes. Is difficult.

そこで、本発明は、多層溶接時の被溶接体の残留応力などの物理量の数値的な解析に要する計算時間を短縮することを目的とする。   Therefore, an object of the present invention is to shorten the calculation time required for numerical analysis of physical quantities such as residual stress of a welded body during multi-layer welding.

上述の課題を解決するため、被溶接体の溶接線上に沿って熱源を複数回移動させて複数の溶接パスで多層溶接したときの前記被溶接体の物理量を現象を支配する微分方程式および積分方程式のいずれかによって記述された方程式を数値解析によって解く被溶接体物理量の解析方法において、前記溶接パスでの前記熱源の移動速度と同じ速度で反対向きに移動する移動座標系を用いて、前記溶接線が前回の溶接パスでの前記溶接線の前記移動座標系の下流側に連続するようにそれぞれの前記溶接パスに対応して前記被溶接体を投影して並べた解析モデルについて前記数値解析を行うこと、を特徴とする。   In order to solve the above-mentioned problem, a differential equation and an integral equation governing the physical quantity of the welded body when the heat source is moved a plurality of times along the weld line of the welded body and multilayer welding is performed in a plurality of welding passes. In the method of analyzing a physical quantity to be welded that solves the equation described by any of the above by numerical analysis, the welding coordinate system uses a moving coordinate system that moves in the opposite direction at the same speed as the moving speed of the heat source in the welding path. The numerical analysis is performed on the analysis model in which the welding target is projected and arranged corresponding to each welding path so that the line is continuous downstream of the moving coordinate system of the welding line in the previous welding pass. It is characterized by performing.

また、本発明は、被溶接体の溶接線上に沿って熱源を複数回移動させて複数の溶接パスで多層溶接したときの前記被溶接体の物理量を現象を支配する微分方程式および積分方程式のいずれかによって記述された方程式を数値解析によって解く被溶接体物理量の解析システムにおいて、前記溶接パスでの前記熱源の移動速度と同じ速度で反対向きに移動する移動座標系を用いて、前記溶接線が前回の溶接パスでの前記溶接線の前記移動座標系の下流側に連続するようにそれぞれの前記溶接パスに対応して前記被溶接体を投影して並べた解析モデルを生成し記憶する解析モデル記憶装置と、前記被溶接体の物理量を現象を支配する微分方程式および積分方程式のいずれかによって記述された方程式を数値解析によって解くコンピュータプログラムを記憶するプログラム記憶装置と、前記解析モデルに基づいて前記コンピュータプログラムを用いて前記被溶接体の物理量を求める演算装置と、を有することを特徴とする。   Further, the present invention provides either a differential equation or an integral equation that governs the phenomenon of the physical quantity of the welded body when the heat source is moved a plurality of times along the weld line of the welded body and multilayer welding is performed by a plurality of welding passes. In the system for analyzing physical quantities to be welded that solves the equation described by the numerical analysis, the welding line is moved using the moving coordinate system that moves in the opposite direction at the same speed as the moving speed of the heat source in the welding path. An analysis model that generates and stores an analysis model in which the welded body is projected and arranged corresponding to each welding path so as to be continuous downstream of the moving coordinate system of the welding line in the previous welding pass A computer program that solves an equation described by one of a differential equation and an integral equation that governs a physical quantity of the storage device and the physical object of the welded body by numerical analysis A program storage device for storing, and having a arithmetic device for determining the physical quantity of the object to be welded member using the computer program based on the analysis model.

また、本発明は、被溶接体の溶接線上に沿って熱源を複数回移動させて複数の溶接パスで多層溶接したときの前記被溶接体の物理量を現象を支配する微分方程式および積分方程式のいずれかによって記述された方程式を数値解析によって解く被溶接体物理量の解析プログラムにおいて、コンピュータに、前記溶接パスでの前記熱源の移動速度と同じ速度で反対向きに移動する移動座標系を用いて、前記溶接線が前回の溶接パスでの前記溶接線の前記移動座標系の下流側に連続するようにそれぞれの前記溶接パスに対応して前記被溶接体を投影して並べた解析モデルを生成させる機能と、前記被溶接体の物理量を現象を支配する微分方程式および積分方程式のいずれかによって記述された方程式を数値解析によって解く機能と、を実現させることを特徴とする。   Further, the present invention provides either a differential equation or an integral equation that governs the phenomenon of the physical quantity of the welded body when the heat source is moved a plurality of times along the weld line of the welded body and multilayer welding is performed by a plurality of welding passes. In the analysis program of the physical quantity to be welded that solves the equation described by the numerical analysis, the computer uses a moving coordinate system that moves in the opposite direction at the same speed as the moving speed of the heat source in the welding path. A function of generating an analysis model in which the welded body is projected and arranged corresponding to each welding path so that the welding line continues downstream of the moving coordinate system of the welding line in the previous welding pass And a function for solving an equation described by either a differential equation or an integral equation governing the physical quantity of the welded body by a numerical analysis. The features.

本発明によれば、多層溶接時の被溶接体の残留応力などの物理量の数値的な解析に要する計算時間を短縮することができる。   According to the present invention, it is possible to reduce the calculation time required for numerical analysis of physical quantities such as residual stress of the welded body during multi-layer welding.

本発明に係る多層溶接時の残留応力解析の実施の形態を、図面を参照して説明する。なお、同一または類似の構成には同一の符号を付し、重複する説明は省略する。   An embodiment of residual stress analysis during multi-layer welding according to the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same or similar structure, and the overlapping description is abbreviate | omitted.

[第1の実施の形態]
図2は、本発明に係る多層溶接時の残留応力解析の第1の実施の形態における解析対象の多層溶接を示す斜視図である。
[First Embodiment]
FIG. 2 is a perspective view showing multi-layer welding to be analyzed in the first embodiment of residual stress analysis during multi-layer welding according to the present invention.

溶接では、熱源となる溶接棒22ないし溶接トーチを、被溶接体21の溶接線25に沿って移動させ、高温の溶接金属24を被溶接体21に付着させていく。溶接線25上を溶接棒22が通過して形成される溶接部を溶接パスという。多層溶接では、溶接を繰り返し施し、開先内での同一高さの数パスにより層を形成し、複数の層を開先内に積層することにより溶接を完了する。本実施の形態では、このように平板状の被溶接体の溶接部が多パス・多層となった多層直線状溶接を解析対象とし、この解析対象を移動座標系によって取り扱い、弾塑性解析および伝熱解析を行う。   In welding, a welding rod 22 or a welding torch serving as a heat source is moved along a welding line 25 of the welded body 21, and a high-temperature weld metal 24 is attached to the welded body 21. A welded portion formed by passing the welding rod 22 over the weld line 25 is referred to as a welding pass. In multilayer welding, welding is repeatedly performed, layers are formed by several passes of the same height in the groove, and a plurality of layers are stacked in the groove to complete the welding. In the present embodiment, multilayer linear welding in which the welded portion of the flat plate-like workpiece is multi-pass / multi-layered is analyzed, and this analyzed object is handled by a moving coordinate system to perform elasto-plastic analysis and transmission. Perform thermal analysis.

次に、移動座標系による解析方法について説明する。   Next, an analysis method using a moving coordinate system will be described.

図3は、固定座標系における解析モデルを模式的に示す斜視図である。図4は、移動座標系における解析モデルを模式的に示す斜視図である。図3および図4は、いずれも平板状の被溶接体1に、溶接線5に沿った直線状の溶接を施す状態を示すものである。   FIG. 3 is a perspective view schematically showing an analysis model in a fixed coordinate system. FIG. 4 is a perspective view schematically showing an analysis model in the moving coordinate system. FIGS. 3 and 4 both show a state in which linear welding along the welding line 5 is performed on the flat plate-like workpiece 1.

図3に示すような固定座標系における解析モデルでは、たとえば、被溶接体1と同じ形状を解析領域とし、溶接棒2はモデル化を行わず、入熱部7を境界条件としてモデル化する。解析において入熱は、入熱部7に境界条件として与える方法や、被溶接体中の領域を発熱体とみなす方法などによりモデル化される。   In the analysis model in the fixed coordinate system as shown in FIG. 3, for example, the same shape as the welded body 1 is used as the analysis region, the welding rod 2 is not modeled, and the heat input portion 7 is modeled as a boundary condition. In the analysis, heat input is modeled by a method of giving the heat input portion 7 as a boundary condition, a method of regarding a region in the welded body as a heating element, or the like.

固定座標系における解析モデルを用いる溶接残留応力解析において、伝熱解析では非定常伝熱方程式、弾塑性解析ではつり合い方程式で現される支配方程式を時間進行させていく中で、実際の溶接における溶接棒2の進行速度8にあわせて入熱部7を移動させていく。このため、ある時間が経過すると、溶接棒2および入熱部7は、それぞれ符号9、符号10の位置となる。このように、実際に入熱部7を動かす時間進行の解析を行うことで、被溶接体1の温度履歴、残留応力、ひずみなどに代表される解析結果を求める。   In welding residual stress analysis using an analysis model in a fixed coordinate system, the unsteady heat transfer equation in heat transfer analysis and the governing equation expressed by the balance equation in elasto-plastic analysis are progressed over time, so welding in actual welding The heat input part 7 is moved in accordance with the traveling speed 8 of the rod 2. For this reason, when a certain time passes, the welding rod 2 and the heat input part 7 will be in the position of the code | symbol 9 and the code | symbol 10, respectively. In this way, by analyzing the time progress of actually moving the heat input section 7, analysis results represented by the temperature history, residual stress, strain, and the like of the welded body 1 are obtained.

つまり、熱源となる溶接棒2と溶接線5との関係は、溶接線上の溶接始点−終点間における溶接棒2の一定方向の進行運動である。溶接が多層ないし多パスで行われる場合であってもこの関係は同様であり、上記の進行運動を溶接パスの回数繰り返すこととなる。   That is, the relationship between the welding rod 2 serving as a heat source and the welding line 5 is a movement in a certain direction of the welding rod 2 between the welding start point and the end point on the welding line. This relationship is the same even when welding is performed in multiple layers or multiple passes, and the above-described traveling motion is repeated the number of times of the welding passes.

一方、図4に示すような移動座標系における解析モデルでは、熱源となる溶接棒2の進行運動を熱源と共に移動する移動座標系で扱う。熱源と共に移動する移動座標系を考えると、入熱部7は見かけ上止まった状態となり、被溶接体1が溶接方向に沿って、溶接方向と反対方向3に移動することとなる。   On the other hand, in the analysis model in the moving coordinate system as shown in FIG. 4, the moving motion of the welding rod 2 serving as the heat source is handled in the moving coordinate system that moves together with the heat source. Considering a moving coordinate system that moves together with the heat source, the heat input portion 7 is apparently stopped, and the welded body 1 moves in the direction 3 opposite to the welding direction along the welding direction.

図1は、本実施の形態における解析モデルの斜視図である。図5は、本実施の形態における解析手順を示すフローチャートである。   FIG. 1 is a perspective view of an analysis model in the present embodiment. FIG. 5 is a flowchart showing an analysis procedure in the present embodiment.

本実施の形態の残留応力解析は、被溶接体101の溶接線105に沿って複数の溶接パスの溶接を施す場合について解析を行う。   The residual stress analysis according to the present embodiment is performed when a plurality of welding passes are welded along the weld line 105 of the workpiece 101.

残留応力解析では、まず、被解析体の離散化、解析条件、被解析体および溶接金属の物性値を設定し入力、もしくは予めこれらを記述したファイルを読み込む(ステップS1)。   In the residual stress analysis, first, discretization of the object to be analyzed, analysis conditions, physical property values of the object to be analyzed and the weld metal are set and input, or a file in which these are described in advance is read (step S1).

被解析体の離散化において、被溶接体1を1回のパスにおける溶接の終点と次の溶接パスの始点とが数値的に連続となるようにモデル化する。すなわち、被溶接体1および溶接パスが一回以上終了した被溶接体1を投影したものを並べて結合し、数値的に連続として扱うようモデル化する。また、各溶接パスに対応した熱源となる溶接棒102およびこの溶接棒102を投影した投影溶接棒202,302も同様に並べて配置されていると想定する。このモデル化により、熱源と共に移動する移動座標系を用いた解析において、溶接金属が徐々に積層されていく手順が再現されるため、最初の溶接パスから溶接終了に至る溶接の影響を全て反映した解析を行うことができる。   In discretization of the object to be analyzed, the welded body 1 is modeled so that the welding end point in one pass and the start point of the next welding pass are numerically continuous. That is, modeling is performed so that the objects to be welded 1 and the objects to be welded 1 in which the welding pass has been completed one or more times are projected side by side and are treated as numerically continuous. Further, it is assumed that the welding rod 102 serving as a heat source corresponding to each welding path and the projected welding rods 202 and 302 on which the welding rod 102 is projected are also arranged side by side. This modeling reproduces the procedure in which weld metal is gradually laminated in an analysis using a moving coordinate system that moves with the heat source, and therefore reflects all the effects of welding from the first welding pass to the end of welding. Analysis can be performed.

具体的には、第1溶接パスにおける被溶接体101に連続するように、投影被溶接体201がモデル化される。投影被溶接体201とは、溶接パスが一回終了した状態である第2溶接パスにおける被溶接体1を投影したものである。同様に、溶接パスが一回以上終了した被溶接体101を投影したものを並べて結合していき、最終溶接パスにおける被溶接体1を投影した投影被溶接体301まで連続となるようにモデル化する。このモデル化により、被溶接体101の溶接線105は、第2溶接パスにおける溶接線205、および、最終溶接パスにおける溶接線305に連続した直線として現される。   Specifically, the projection welded body 201 is modeled so as to be continuous with the welded body 101 in the first welding pass. The projected welded body 201 is a projection of the welded body 1 in the second welding pass in which the welding pass is completed once. Similarly, projections of welded bodies 101 in which the welding pass has been completed one or more times are arranged side by side, and are modeled so as to continue to the projected welded body 301 on which the welded body 1 is projected in the final welding pass. To do. By this modeling, the weld line 105 of the welded body 101 appears as a straight line continuous to the weld line 205 in the second weld pass and the weld line 305 in the final weld pass.

弾塑性解析では、拘束条件、溶接開始時温度、雰囲気温度などを解析条件として挙げられる。また、弾塑性解析では、被溶接体および溶接金属の密度、弾性定数、応力−ひずみ関係などが物性値として挙げられる。   In elasto-plastic analysis, constraint conditions, welding start temperature, ambient temperature, and the like can be cited as analysis conditions. Further, in the elasto-plastic analysis, the density, elastic constant, stress-strain relationship, etc. of the welded body and the weld metal are listed as physical property values.

伝熱解析では、各溶接パスの入熱量、入熱位置、入熱分布、およびこれらの時間変化、入熱部の移動速度もしくは移動角速度、溶接開始時温度、雰囲気温度、大気への放熱に関する熱伝達率などが解析条件として挙げられる。また、伝熱解析では、被溶接体および溶接金属の密度、熱伝導率、比熱などが物性値として挙げられる。   In heat transfer analysis, the amount of heat input, the heat input position, the heat input distribution of each welding pass, and their changes over time, the moving speed or moving angular speed of the heat input part, the temperature at the start of welding, the ambient temperature, and the heat related to heat radiation to the atmosphere. The transmission rate can be cited as an analysis condition. In heat transfer analysis, the physical properties include the density, thermal conductivity, specific heat, and the like of the welded body and the weld metal.

次に、ステップS1にてモデル化を行った全ての溶接パス入熱部をモデル化する(ステップS2)。   Next, all the welding pass heat input parts modeled in step S1 are modeled (step S2).

各溶接パスに対応した熱源すなわち各入熱部は、溶接の順序に従って以下のように配置される。各溶接パスに対応した熱源は、溶接線105,205,305に沿って、第1溶接パスの入熱部107、第2溶接パスの入熱部207と、最終溶接パスの入熱部307まで配置される。なお、第1溶接パス、第2溶接パスおよび最終溶接パスにおける溶接棒102および投影溶接棒202,302に関してはモデル化を行わない。   The heat sources corresponding to the respective welding passes, that is, the respective heat input portions are arranged as follows according to the welding order. The heat source corresponding to each welding pass is along the welding lines 105, 205, 305 to the heat input part 107 of the first welding pass, the heat input part 207 of the second welding pass, and the heat input part 307 of the final welding pass. Be placed. Note that modeling is not performed for the welding rod 102 and the projection welding rods 202 and 302 in the first welding pass, the second welding pass, and the final welding pass.

図1において、符号106、符号206、符号306は、それぞれ第1溶接パス、第2溶接パスおよび第3溶接パスにおける溶接済みの溶接線を表す。また、符号104、符号204、符号304は、それぞれ、第1溶接パスにおける被溶接体101、および、第2溶接パスならびに最終溶接パスの投影被溶接体201,301に対する、溶接棒102,202,302の相対速度を表す。この解析モデルでは、溶接棒を基準とした移動座標系を用いることで、被溶接体1の各位置において実際の溶接棒2の移動と逆方向の移動となる。   In FIG. 1, reference numerals 106, 206, and 306 represent welded weld lines in the first welding pass, the second welding pass, and the third welding pass, respectively. Reference numerals 104, 204, and 304 denote welding rods 102, 202, and 102 to be welded body 101 in the first welding pass, and projection welded bodies 201 and 301 in the second and final welding passes, respectively. 302 represents the relative velocity. In this analysis model, by using a movement coordinate system with the welding rod as a reference, the movement of the welding rod 2 in the direction opposite to the actual movement of the welding rod 2 is performed at each position of the welded body 1.

次に、溶接開始時の条件を初期条件に設定する(ステップS3)。溶接開始時温度などが初期条件にあたる。   Next, the conditions at the start of welding are set as initial conditions (step S3). The initial temperature is the welding start temperature.

その後、各溶接パスの溶接条件で弾塑性解析および伝熱解析を行う(ステップS4)。計算は各パスそれぞれの溶接条件で順次行われていく。   Thereafter, elastoplastic analysis and heat transfer analysis are performed under the welding conditions of each welding pass (step S4). The calculation is performed sequentially under the welding conditions for each pass.

被溶接体101では第1溶接パスによる溶接の計算が行われ、その下流部では第1溶接パスによる残留応力が計算されている。この状態が投影被溶接体201の解析の入力となっており、投影被溶接体201の入熱部207によって、第1溶接パスの溶接終了状態に加えて第2溶接パスの溶接解析が行われる。したがって、被溶接体201の下流部では第1溶接パスの履歴に加えて第2溶接パスの解析が終了した状態の残留応力が計算されている。同様に繰り返すことにより、最終溶接パスをモデル化している投影被溶接体301の下流側では、全溶接パスによる入熱が加わった後、すなわち全溶接終了状態の残留応力が得られることとなる。   In the welded body 101, calculation of welding by the first welding pass is performed, and the residual stress by the first welding pass is calculated in the downstream portion. This state serves as an input for analysis of the projection welded body 201, and the heat input portion 207 of the projection welded body 201 performs welding analysis of the second welding pass in addition to the welding end state of the first welding pass. . Therefore, in the downstream portion of the welded body 201, in addition to the history of the first welding pass, the residual stress in the state where the analysis of the second welding pass is completed is calculated. By repeating the same, on the downstream side of the projection welded body 301 that models the final welding pass, after the heat input by all the welding passes is applied, that is, the residual stress in the state of completion of all the weldings is obtained.

上述のモデル化により、最終溶接パスの被解析体が溶接を終了すると同時に、被解析体1が全ての溶接パスによる計算を経て、弾塑性解析および伝熱解析を終える。全ての溶接パスを数値的に連続として扱うことで、溶接による計算履歴が以後の溶接パスの弾塑性解析条件および伝熱解析条件としてもれなく引き継がれる。   By the above modeling, the object to be analyzed in the final welding pass finishes welding, and at the same time, the object to be analyzed 1 finishes the elasto-plastic analysis and the heat transfer analysis through calculation by all the welding passes. By treating all the welding passes as numerically continuous, the calculation history by welding is inherited as the elasto-plastic analysis conditions and heat transfer analysis conditions of the subsequent welding passes.

最後に、計算結果を出力して(ステップS5)、解析を終了する。   Finally, the calculation result is output (step S5), and the analysis is terminated.

なお、弾塑性解析および伝熱解析は同時に行ってもよいが、まず伝熱解析を行い、その後、伝熱解析によって得られる温度履歴を用いて弾塑性解析を行ってもよい。   Although the elastoplastic analysis and the heat transfer analysis may be performed simultaneously, the heat transfer analysis may be performed first, and then the elastoplastic analysis may be performed using the temperature history obtained by the heat transfer analysis.

図6は、本実施の形態における解析システムのブロック図である。   FIG. 6 is a block diagram of the analysis system in the present embodiment.

この解析システムは、解析プログラム記憶装置13、計算結果記憶装置14、解析条件・物性・解析モデル記憶装置15、CPU(演算装置)16、メモリ17、入力装置18および表示装置19を備えている。解析プログラム記憶装置13には、上述の解析方法を実現するためのコンピュータプログラムが記憶されている。たとえば入力装置18から入力された解析条件、物性値および解析モデルは解析条件・物性・解析モデル記憶装置15に記憶される。解析モデルは、解析条件・物性・解析モデル記憶装置15に、被溶接体1の形状、各溶接パスでの溶接棒2の移動などを入力して、自動的に生成させてもよい。   The analysis system includes an analysis program storage device 13, a calculation result storage device 14, an analysis condition / physical property / analysis model storage device 15, a CPU (arithmetic unit) 16, a memory 17, an input device 18, and a display device 19. The analysis program storage device 13 stores a computer program for realizing the above analysis method. For example, analysis conditions, physical property values, and analysis models input from the input device 18 are stored in the analysis condition / physical property / analysis model storage device 15. The analysis model may be automatically generated by inputting, into the analysis condition / physical property / analysis model storage device 15, the shape of the welded body 1, the movement of the welding rod 2 in each welding pass, and the like.

解析者が、入力装置18を介して演算装置16に対する解析実行の命令を入力すると、演算装置16は、弾塑性解析プログラムを弾塑性解析記録装置13から、解析条件・物性・解析モデルを解析条件・物性・解析モデル記録装置15から読み込み、弾塑性解析および伝熱解析の計算を開始する。解析終了後、解析結果を計算結果記録装置14に記録して終了する。解析が終了した旨を、表示装置19により解析者に通知しても良い。   When an analyst inputs an analysis execution command to the arithmetic device 16 via the input device 18, the arithmetic device 16 sends an elasto-plastic analysis program from the elasto-plastic analysis recording device 13 to analyze conditions, physical properties, and an analysis model. Reading from the physical property / analysis model recording device 15 and starting calculation of elasto-plastic analysis and heat transfer analysis. After the analysis is completed, the analysis result is recorded in the calculation result recording device 14 and the process ends. The analysis device may notify the analyst that the analysis has been completed.

なお、解析対象となる被溶接体101および投影被溶接体201,301の領域全体を分割し、それぞれ別のCPUで同時かつ独立に計算を行う並列計算方法を用いてもよい。この場合、CPU16を複数個とした共有メモリ型並列計算機や、複数の上述の解析システムをネットワークで互いに結合したPCクラスタ並列計算機のような分散メモリ型並列計算機を用いることができる。   Note that a parallel calculation method may be used in which the entire region of the welded object 101 and the projection welded objects 201 and 301 to be analyzed is divided, and calculation is performed simultaneously and independently by different CPUs. In this case, a distributed memory type parallel computer such as a shared memory type parallel computer having a plurality of CPUs 16 or a PC cluster parallel computer in which a plurality of the above-described analysis systems are coupled to each other via a network can be used.

固定座標系によって溶接線を入熱部が移動するようにモデル化した場合には、温度やひずみ、応力などの変化を高い精度で解析を行うためには、溶接棒の移動範囲全体に渡って密な解析格子を準備する必要があり、多大な計算量が必要となる。一方、本実施の形態のように移動座標系の解析モデルを用いると、入熱部の近傍では溶接途中の高温の状態を表しているが、入熱部の十分下流側では溶接棒が通り過ぎ十分時間が経過して低温となった状態を表しており、溶接後の残留応力やひずみを得ることができる。したがって、入熱部の下流側の溶接棒が通り過ぎ十分時間が経過して低温となった部分のみを密な解析格子として解析を行うことにより、精度の高い解析結果が短時間で得られる。   When the welding line is modeled so that the heat input moves in a fixed coordinate system, it is necessary to analyze the changes in temperature, strain, stress, etc. with high accuracy over the entire moving range of the welding rod. It is necessary to prepare a dense analysis grid, which requires a large amount of calculation. On the other hand, when the analysis model of the moving coordinate system is used as in the present embodiment, a high temperature state during welding is shown in the vicinity of the heat input part, but the welding rod passes sufficiently on the downstream side of the heat input part. It represents a state in which the temperature has been lowered over time, and residual stress and strain after welding can be obtained. Therefore, by analyzing only the portion where the welding rod on the downstream side of the heat input portion passes and becomes low temperature after a sufficient time has passed, a highly accurate analysis result can be obtained in a short time.

このように、本実施の形態の解析方法を用いることにより、多層溶接時の残留応力解析に要する計算時間を短縮することができる。   Thus, by using the analysis method of the present embodiment, the calculation time required for residual stress analysis during multi-layer welding can be shortened.

[第2の実施の形態]
図7は、本発明に係る多層溶接時の残留応力解析の第2の実施の形態における解析モデルの斜視図である。
[Second Embodiment]
FIG. 7 is a perspective view of an analysis model in the second embodiment of the residual stress analysis at the time of multilayer welding according to the present invention.

本実施の形態では、円筒の側面の一部が被溶接体101であり、この被溶接体101の外面に、多層の周方向溶接を施す場合の解析を行う。被溶接体101は回転対称体の一部であるから、被溶接体101を固定した固定座標系では、溶接棒102は回転運動する。そこで、本実施の形態では、座標系として入熱部とともに移動する回転座標系を用いる。被溶接体101の移動は、実際の溶接棒102の回転と逆方向の回転となる。   In the present embodiment, a part of the side surface of the cylinder is the welded body 101, and an analysis is performed in the case where multilayer outer circumferential welding is performed on the outer surface of the welded body 101. Since the welded body 101 is a part of a rotationally symmetric body, the welding rod 102 rotates in a fixed coordinate system in which the welded body 101 is fixed. Therefore, in this embodiment, a rotating coordinate system that moves with the heat input unit is used as the coordinate system. The movement of the welded body 101 is in the direction opposite to the actual rotation of the welding rod 102.

このような被溶接体101であっても、回転座標系を用いることにより第1の実施の形態と同様に残留応力解析を行うことができ、多層溶接時の残留応力解析に要する計算時間を短縮することができる。   Even in such a welded body 101, the residual stress analysis can be performed in the same manner as in the first embodiment by using the rotating coordinate system, and the calculation time required for the residual stress analysis during multi-layer welding is shortened. can do.

[第3の実施の形態]
図8は、本発明に係る多層溶接時の残留応力解析の第3の実施の形態における解析モデルの斜視図である。
[Third Embodiment]
FIG. 8 is a perspective view of an analysis model in the third embodiment of the residual stress analysis at the time of multilayer welding according to the present invention.

本実施の形態では、被溶接体101は扇形であり、この被溶接体101の上面の周方向に、多層の周方向溶接を施す場合の解析を行う。周方向溶接であるから、被溶接体101を固定した固定座標系では、溶接棒102は回転運動する。そこで、本実施の形態では、座標系として入熱部とともに移動する回転座標系を用いる。被溶接体101の移動は、実際の溶接棒102の回転と逆方向の回転となる。   In the present embodiment, the welded body 101 has a sector shape, and an analysis is performed in the case of performing multilayer circumferential welding in the circumferential direction of the upper surface of the welded body 101. Since the welding is in the circumferential direction, the welding rod 102 rotates in a fixed coordinate system in which the workpiece 101 is fixed. Therefore, in this embodiment, a rotating coordinate system that moves with the heat input unit is used as the coordinate system. The movement of the welded body 101 is in the direction opposite to the actual rotation of the welding rod 102.

このような被溶接体101であっても、回転座標系を用いることにより第1の実施の形態と同様に残留応力解析を行うことができ、多層溶接時の残留応力解析に要する計算時間を短縮することができる。   Even in such a welded body 101, the residual stress analysis can be performed in the same manner as in the first embodiment by using the rotating coordinate system, and the calculation time required for the residual stress analysis during multi-layer welding is shortened. can do.

[第4の実施の形態]
図9は、本発明に係る多層溶接時の残留応力解析の第4の実施の形態における被溶接体の斜視図である。
[Fourth Embodiment]
FIG. 9 is a perspective view of an object to be welded in the fourth embodiment of residual stress analysis during multi-layer welding according to the present invention.

本実施の形態の被溶接体1は、円筒状の回転対称体である。この被溶接体1の外面の円周方向の溶接線5に沿って溶接棒2を移動させて、多層の周方向溶接を施す場合の残留応力解析を行う。図9において、符号6は溶接済みの溶接線、符号11は、被溶接体1の溶接棒に対する相対回転方向、符号12は溶接棒2に対する被溶接体1の相対回転速度を示す。   The welded body 1 of the present embodiment is a cylindrical rotationally symmetric body. Residual stress analysis is performed when the welding rod 2 is moved along the circumferential welding line 5 on the outer surface of the welded body 1 to perform multilayer circumferential welding. In FIG. 9, reference numeral 6 represents a welded weld line, reference numeral 11 represents a relative rotational direction of the welded body 1 with respect to the welding rod, and reference numeral 12 represents a relative rotational speed of the welded body 1 with respect to the welding rod 2.

図10は、本実施の形態における解析モデルの斜視図である。   FIG. 10 is a perspective view of the analysis model in the present embodiment.

本実施の形態でも、第2の実施の形態と同様に、各溶接パスにおける被溶接体1を1回のパスにおける溶接の終点と次の溶接パスの始点とが数値的に連続となるように投影する。この際、2回目以降の溶接パスでは、投影された被溶接体1001は、前回までの溶接パスと空間的に重なる場合があるが、これを許容する。つまり、各溶接パスにおける被溶接体1001は、数値的に連続となる投影であるが、各溶接パスは計算上数値的に異なる座標として取り扱う。   Also in the present embodiment, as in the second embodiment, the welding end point 1 of each welding pass and the welding welding end point in one pass and the starting point of the next welding pass are numerically continuous. Project. At this time, in the second and subsequent welding passes, the projected workpiece 1001 may spatially overlap the previous welding pass, but this is allowed. That is, the welded body 1001 in each welding path is a numerically continuous projection, but each welding path is treated as a numerically different coordinate in calculation.

図10において、符号102は1回目の溶接パスにおける溶接棒、符号202は2回目の溶接パスにおける溶接棒を示す。また、符号107は1回目の溶接パスにおける入熱部、符号202は2回目の溶接パスにおける入熱部を示す。符号1005は、投影された未溶接の溶接線、符号1006は、投影された溶接済みの溶接線を示す。被溶接体1の円周方向長さは、溶接棒102が溶接部を通過し、次の溶接棒202が現れるまでの時間と溶接速度から決まる。   10, reference numeral 102 denotes a welding rod in the first welding pass, and reference numeral 202 denotes a welding rod in the second welding pass. Reference numeral 107 denotes a heat input portion in the first welding pass, and reference numeral 202 denotes a heat input portion in the second welding pass. Reference numeral 1005 denotes a projected unwelded weld line, and reference numeral 1006 denotes a projected welded line. The circumferential length of the body 1 to be welded is determined from the time until the welding rod 102 passes through the weld and the next welding rod 202 appears and the welding speed.

被溶接体1を複数回の溶接パスに対応させて投影したものを連続して配置すると実構造物の円周長さ以上となる場合であっても、本実施の形態の解析方法によれば、1回の解析で残留応力が計算できるようにモデル化することができる。よって、多層溶接時の残留応力解析に要する計算時間を短縮することができる。   According to the analysis method of the present embodiment, even if the object 1 to be welded is projected continuously in correspondence with a plurality of welding passes, even if it is more than the circumferential length of the actual structure. It can be modeled so that the residual stress can be calculated in one analysis. Therefore, the calculation time required for the residual stress analysis at the time of multilayer welding can be shortened.

[第5の実施の形態]
図11は、本発明に係る多層溶接時の残留応力解析の第5の実施の形態における被溶接体の斜視図である。
[Fifth Embodiment]
FIG. 11 is a perspective view of an object to be welded in a fifth embodiment of residual stress analysis during multilayer welding according to the present invention.

本実施の形態の被溶接体1は、円板状の回転対称体である。この被溶接体1の上面の円周方向の溶接線5に沿って溶接棒2を移動させて、多層の周方向溶接を施す場合の残留応力解析を行う。   The welded body 1 of the present embodiment is a disk-shaped rotationally symmetric body. Residual stress analysis is performed when the welding rod 2 is moved along the circumferential welding line 5 on the upper surface of the welded body 1 to perform multilayer circumferential welding.

図12は、本実施の形態における解析モデルの斜視図である。   FIG. 12 is a perspective view of the analysis model in the present embodiment.

本実施の形態でも、第3の実施の形態と同様に、各溶接パスにおける被溶接体1を1回のパスにおける溶接の終点と次の溶接パスの始点とが数値的に連続となるように投影する。この際、2回目以降の溶接パスでは、第4の実施の形態と同様に、投影された被溶接体1001は、前回までの溶接パスと空間的に重なる場合があるが、これを許容する。つまり、各溶接パスにおける被溶接体1001は、数値的に連続となる投影であるが、各溶接パスは計算上数値的に異なる座標として取り扱う。   Also in this embodiment, as in the third embodiment, the welding end point of each weld pass 1 in the welding pass and the starting point of the next welding pass are numerically continuous. Project. At this time, in the second and subsequent welding passes, as in the fourth embodiment, the projected welded object 1001 may spatially overlap the previous welding pass, but this is allowed. That is, the welded body 1001 in each welding path is a numerically continuous projection, but each welding path is treated as a numerically different coordinate in calculation.

被溶接体1を複数回の溶接パスに対応させて投影したものを連続して配置すると実構造物の円周長さ以上となる場合であっても、本実施の形態の解析方法によれば、1回の解析で残留応力が計算できるようにモデル化することができる。よって、多層溶接時の残留応力解析に要する計算時間を短縮することができる。   According to the analysis method of the present embodiment, even if the object 1 to be welded is projected continuously in correspondence with a plurality of welding passes, even if it is more than the circumferential length of the actual structure. It can be modeled so that the residual stress can be calculated in one analysis. Therefore, the calculation time required for the residual stress analysis at the time of multilayer welding can be shortened.

[その他の実施の形態]
なお、以上の説明は単なる例示であり、本発明は上述の各実施の形態に限定されず、様々な形態で実施することができる。また、各実施の形態の特徴を組み合わせて実施することもできる。
[Other embodiments]
The above description is merely an example, and the present invention is not limited to the above-described embodiments, and can be implemented in various forms. Moreover, it can also implement combining the characteristic of each embodiment.

本発明に係る多層溶接時の残留応力解析の第1の実施の形態における解析モデルの斜視図である。It is a perspective view of an analysis model in a 1st embodiment of residual stress analysis at the time of multilayer welding concerning the present invention. 本発明に係る多層溶接時の残留応力解析の第1の実施の形態における解析対象の多層溶接を示す斜視図である。It is a perspective view which shows the multilayer welding of the analysis object in 1st Embodiment of the residual stress analysis at the time of the multilayer welding which concerns on this invention. 固定座標系における解析モデルを模式的に示す斜視図である。It is a perspective view which shows typically the analysis model in a fixed coordinate system. 移動座標系における解析モデルを模式的に示す斜視図である。It is a perspective view which shows typically the analysis model in a movement coordinate system. 本発明に係る多層溶接時の残留応力解析の第1の実施の形態における解析手順を示すフローチャートである。It is a flowchart which shows the analysis procedure in 1st Embodiment of the residual stress analysis at the time of the multilayer welding which concerns on this invention. 本発明に係る多層溶接時の残留応力解析の第1の実施の形態における解析システムのブロック図である。It is a block diagram of an analysis system in a 1st embodiment of residual stress analysis at the time of multilayer welding concerning the present invention. 本発明に係る多層溶接時の残留応力解析の第2の実施の形態における解析モデルの斜視図である。It is a perspective view of the analysis model in 2nd Embodiment of the residual stress analysis at the time of the multilayer welding which concerns on this invention. 本発明に係る多層溶接時の残留応力解析の第3の実施の形態における解析モデルの斜視図である。It is a perspective view of the analysis model in 3rd Embodiment of the residual stress analysis at the time of the multilayer welding which concerns on this invention. 本発明に係る多層溶接時の残留応力解析の第4の実施の形態における被溶接体の斜視図である。It is a perspective view of the to-be-welded body in 4th Embodiment of the residual stress analysis at the time of the multilayer welding which concerns on this invention. 本発明に係る多層溶接時の残留応力解析の第4の実施の形態における解析モデルの斜視図である。It is a perspective view of the analysis model in 4th Embodiment of the residual stress analysis at the time of the multilayer welding which concerns on this invention. 本発明に係る多層溶接時の残留応力解析の第5の実施の形態における被溶接体の斜視図である。It is a perspective view of the to-be-welded body in 5th Embodiment of the residual stress analysis at the time of the multilayer welding which concerns on this invention. 本発明に係る多層溶接時の残留応力解析の第5の実施の形態における解析モデルの斜視図である。It is a perspective view of the analysis model in 5th Embodiment of the residual stress analysis at the time of the multilayer welding which concerns on this invention.

符号の説明Explanation of symbols

1,21,101,1001…被溶接体、2,22,102…溶接棒、5,25,105,205,305…溶接線、6…溶接済みの溶接線、7,107,207,307…入熱部、8…進行速度、24…溶接金属、201,301…投影被溶接体、202,302…投影被溶接棒、13…解析プログラム記憶装置、14…計算結果記憶装置、15…解析条件・物性・解析モデル記憶装置、16…CPU、17…メモリ、18…入力装置、19…表示装置 1, 2, 101, 1001 ... welded object, 2, 22, 102 ... welding rod, 5, 25, 105, 205, 305 ... weld line, 6 ... welded weld line, 7, 107, 207, 307 ... Heat input part, 8 ... Progression speed, 24 ... Weld metal, 201, 301 ... Projected body, 202, 302 ... Projected rod, 13 ... Analysis program storage device, 14 ... Calculation result storage device, 15 ... Analysis condition Physical property / analysis model storage device, 16 ... CPU, 17 ... memory, 18 ... input device, 19 ... display device

Claims (6)

被溶接体の溶接線上に沿って熱源を複数回移動させて複数の溶接パスで多層溶接したときの前記被溶接体の物理量を現象を支配する微分方程式および積分方程式のいずれかによって記述された方程式を数値解析によって解く被溶接体物理量の解析方法において、
前記溶接パスでの前記熱源の移動速度と同じ速度で反対向きに移動する移動座標系を用いて、前記溶接線が前回の溶接パスでの前記溶接線の前記移動座標系の下流側に連続するようにそれぞれの前記溶接パスに対応して前記被溶接体を投影して並べた解析モデルについて前記数値解析を行うこと、
を特徴とする被溶接体物理量の解析方法。
An equation described by one of a differential equation and an integral equation governing the physical quantity of the welded body when the heat source is moved a plurality of times along the weld line of the welded body and multilayer welding is performed with a plurality of welding passes. In the analysis method of physical quantities to be welded that solves
Using a moving coordinate system that moves in the opposite direction at the same speed as the moving speed of the heat source in the welding pass, the weld line is continuous downstream of the moving coordinate system of the weld line in the previous welding pass. Performing the numerical analysis on an analysis model in which the welded bodies are projected and arranged corresponding to the welding paths,
A method for analyzing a physical quantity of an object to be welded characterized by the following.
前記物理量は、応力、ひずみおよび温度分布を含むことを特徴とする請求項1に記載の被溶接体物理量の解析方法。   The said physical quantity contains stress, distortion, and temperature distribution, The to-be-welded body physical quantity analysis method of Claim 1 characterized by the above-mentioned. 前記熱源は回転移動をするものであり、前記移動座標系は回転座標系であることを特徴とする請求項1または請求項2に記載の被溶接体物理量の解析方法。   The method for analyzing physical quantities to be welded according to claim 1 or 2, wherein the heat source rotates and the moving coordinate system is a rotating coordinate system. 投影された前記被溶接体が他の前記溶接パスでの前記被溶接体と空間的に重なる場合には、その投影された前記被溶接体を数値的には異なる座標に位置するものとして取り扱うことを特徴とする請求項3に記載の被溶接体物理量の解析方法。   When the projected welded object spatially overlaps with the welded object in another welding pass, the projected welded object is handled as being located at a numerically different coordinate. The method for analyzing physical quantities of a welded body according to claim 3. 被溶接体の溶接線上に沿って熱源を複数回移動させて複数の溶接パスで多層溶接したときの前記被溶接体の物理量を現象を支配する微分方程式および積分方程式のいずれかによって記述された方程式を数値解析によって解く被溶接体物理量の解析システムにおいて、
前記溶接パスでの前記熱源の移動速度と同じ速度で反対向きに移動する移動座標系を用いて、前記溶接線が前回の溶接パスでの前記溶接線の前記移動座標系の下流側に連続するようにそれぞれの前記溶接パスに対応して前記被溶接体を投影して並べた解析モデルを生成し記憶する解析モデル記憶装置と、
前記被溶接体の物理量を現象を支配する微分方程式および積分方程式のいずれかによって記述された方程式を数値解析によって解くコンピュータプログラムを記憶するプログラム記憶装置と、
前記解析モデルに基づいて前記コンピュータプログラムを用いて前記被溶接体の物理量を求める演算装置と、
を有することを特徴とする被溶接体物理量の解析システム。
An equation described by one of a differential equation and an integral equation governing the physical quantity of the welded body when the heat source is moved a plurality of times along the weld line of the welded body and multilayer welding is performed with a plurality of welding passes. In the analysis system of physical quantities to be welded that solves
Using a moving coordinate system that moves in the opposite direction at the same speed as the moving speed of the heat source in the welding pass, the weld line is continuous downstream of the moving coordinate system of the weld line in the previous welding pass. An analysis model storage device that generates and stores an analysis model in which the welded objects are projected and arranged corresponding to each welding path,
A program storage device for storing a computer program for solving an equation described by one of a differential equation and an integral equation governing a physical quantity of the welded body by numerical analysis;
An arithmetic device for obtaining a physical quantity of the welded body using the computer program based on the analysis model;
A system for analyzing a physical quantity of an object to be welded, comprising:
被溶接体の溶接線上に沿って熱源を複数回移動させて複数の溶接パスで多層溶接したときの前記被溶接体の物理量を現象を支配する微分方程式および積分方程式のいずれかによって記述された方程式を数値解析によって解く被溶接体物理量の解析プログラムにおいて、コンピュータに、
前記溶接パスでの前記熱源の移動速度と同じ速度で反対向きに移動する移動座標系を用いて、前記溶接線が前回の溶接パスでの前記溶接線の前記移動座標系の下流側に連続するようにそれぞれの前記溶接パスに対応して前記被溶接体を投影して並べた解析モデルを生成させる機能と、
前記被溶接体の物理量を現象を支配する微分方程式および積分方程式のいずれかによって記述された方程式を数値解析によって解く機能と、
を実現させることを特徴とする被溶接体物理量の解析プログラム。
An equation described by one of a differential equation and an integral equation governing the physical quantity of the welded body when the heat source is moved a plurality of times along the weld line of the welded body and multilayer welding is performed with a plurality of welding passes. In a computer program for analyzing physical quantities of welded objects that solves
Using a moving coordinate system that moves in the opposite direction at the same speed as the moving speed of the heat source in the welding pass, the weld line is continuous downstream of the moving coordinate system of the weld line in the previous welding pass. A function of generating an analysis model in which the welded objects are projected and arranged corresponding to the welding paths,
A function for solving an equation described by one of a differential equation and an integral equation governing a physical quantity of the welded body by a numerical analysis;
A program for analyzing the physical quantity of a welded body characterized by realizing the above.
JP2007135544A 2007-05-22 2007-05-22 Method and system for analyzing physical quantity of welded body Expired - Fee Related JP4945312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007135544A JP4945312B2 (en) 2007-05-22 2007-05-22 Method and system for analyzing physical quantity of welded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007135544A JP4945312B2 (en) 2007-05-22 2007-05-22 Method and system for analyzing physical quantity of welded body

Publications (2)

Publication Number Publication Date
JP2008293100A true JP2008293100A (en) 2008-12-04
JP4945312B2 JP4945312B2 (en) 2012-06-06

Family

ID=40167785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007135544A Expired - Fee Related JP4945312B2 (en) 2007-05-22 2007-05-22 Method and system for analyzing physical quantity of welded body

Country Status (1)

Country Link
JP (1) JP4945312B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004181462A (en) * 2002-11-29 2004-07-02 Mitsubishi Heavy Ind Ltd Welding system and method using residual stress evaluation
JP2005083810A (en) * 2003-09-05 2005-03-31 Toshiba Corp Heat transfer analyzing method, recording medium having heat transfer analyzing program recorded thereon, heat transfer analyzer and residual stress analyzing method
JP2006337233A (en) * 2005-06-03 2006-12-14 Toshiba Corp Method and apparatus for evaluating residual stress and recording medium recording residual stress evaluation program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004181462A (en) * 2002-11-29 2004-07-02 Mitsubishi Heavy Ind Ltd Welding system and method using residual stress evaluation
JP2005083810A (en) * 2003-09-05 2005-03-31 Toshiba Corp Heat transfer analyzing method, recording medium having heat transfer analyzing program recorded thereon, heat transfer analyzer and residual stress analyzing method
JP2006337233A (en) * 2005-06-03 2006-12-14 Toshiba Corp Method and apparatus for evaluating residual stress and recording medium recording residual stress evaluation program

Also Published As

Publication number Publication date
JP4945312B2 (en) 2012-06-06

Similar Documents

Publication Publication Date Title
Fürstenau et al. Generating virtual process maps of SLM using powder-scale SPH simulations
Muransky et al. Validated numerical analysis of residual stresses in Safety Relief Valve (SRV) nozzle mock-ups
Djurdjanovic et al. Dimensional errors of fixtures, locating and measurement datum features in the stream of variation modeling in machining
Moges et al. Hybrid modeling approach for melt-pool prediction in laser powder bed fusion additive manufacturing
Liu Numerical analysis of thermal stress and deformation in multi-layer laser metal deposition process
Dong et al. Effects of repair weld length on residual stress distribution
Pahkamaa et al. Combining variation simulation with welding simulation for prediction of deformation and variation of a final assembly
Feli et al. Finite element simulation of welding sequences effect on residual stresses in multipass butt-welded stainless steel pipes
Lorin et al. Variation simulation of welded assemblies using a thermo-elastic finite element model
Bae et al. Three-dimensional finite element welding residual stress analysis of penetration nozzles: I–sensitivity of analysis variables
Yelamasetti et al. Numerical and experimental residual stress analysis of dissimilar metals of Inconel 718 and AISI 316 developed in GTAW process
Huang et al. Large-scale welding process simulation by GPU parallelized computing
Mathews et al. Temporally continuous thermofluidic–thermomechanical modeling framework for metal additive manufacturing
Lorin et al. A new heat source model for keyhole mode laser welding
Romanin et al. A simplified non-linear numerical method for the assessment of welding induced deformations
Farias et al. Thermo-mechanical analysis of the MIG/MAG multi-pass welding process on AISI 304L stainless steel plates
Jiang et al. Finite element predictions of temperature distributions in a multipass welded piping branch junction
Mai et al. Numerical simulation and experimental verification of residual stress in the welded joints of weldolet–branch pipe dissimilar steels
JP4945312B2 (en) Method and system for analyzing physical quantity of welded body
Pichot et al. Numerical definition of an equivalent GTAW heat source
JP4309213B2 (en) Heat transfer analysis method, heat transfer analysis program, and heat transfer analysis device
Shan et al. Developing a realistic FE analysis method for the welding of a NET single-bead-on-plate test specimen
Stolt et al. Manufacturability assessment in the conceptual design of aircraft engines–building knowledge and balancing trade-offs
JP2009128085A (en) Residual stress analysis method by finite element method
Zhang et al. A scalable framework for process-aware thermal simulation of additive manufacturing processes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091027

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees