JP2008292335A - Chilled structure evaluating method and device for cast part - Google Patents

Chilled structure evaluating method and device for cast part Download PDF

Info

Publication number
JP2008292335A
JP2008292335A JP2007138710A JP2007138710A JP2008292335A JP 2008292335 A JP2008292335 A JP 2008292335A JP 2007138710 A JP2007138710 A JP 2007138710A JP 2007138710 A JP2007138710 A JP 2007138710A JP 2008292335 A JP2008292335 A JP 2008292335A
Authority
JP
Japan
Prior art keywords
cast part
chilled structure
cast
casting
chilled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007138710A
Other languages
Japanese (ja)
Other versions
JP4073472B1 (en
Inventor
Hideto Takasugi
英登 高杉
Haruyuki Kuno
治行 久野
Yasutsugu Matsukawa
安次 松川
Hiroaki Kohama
博明 小濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAISEI ENGINEER KK
JFE Pipe Fitting Mfg Co Ltd
Original Assignee
KAISEI ENGINEER KK
JFE Pipe Fitting Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAISEI ENGINEER KK, JFE Pipe Fitting Mfg Co Ltd filed Critical KAISEI ENGINEER KK
Priority to JP2007138710A priority Critical patent/JP4073472B1/en
Application granted granted Critical
Publication of JP4073472B1 publication Critical patent/JP4073472B1/en
Publication of JP2008292335A publication Critical patent/JP2008292335A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a chilled structure evaluating method and device for a cast part, simply and accurately measuring the presence/absence of a chilled structure of the cast part. <P>SOLUTION: This chilled structure evaluating device 100 for the cast part includes: an electromagnetic induction sensor 10; a sensor holding means 20; an alternating current power supply 30; a detecting circuit 40; a recording part 50; a display part 60; and a storage part 70, wherein the electromagnetic induction sensor 10 includes an exciting coil and an induction coil, which are coaxially formed integral, in inspecting on whether or not chilled structure exists in the cast part, an alternating current is applied to the exciting coil to form a magnetic field, and a change in the magnetic field formed by the exciting coil of the cast part 1 is detected by the induction coil, and between the amplitude and the phase of the induced electromotive force generated in the induction coil, for example, a change amount of at least one of them is measured to detect the presence/absence of chilled structure. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電磁誘導センサを用いて、鋳物部品のチル化組織(チル組織)の有無を簡便かつ正確に測定できる鋳物部品のチル化組織評価方法及び装置に関する。   The present invention relates to a method and an apparatus for evaluating a chilled structure of a cast part that can easily and accurately measure the presence or absence of a chilled structure (chill structure) of a cast part using an electromagnetic induction sensor.

ガス配管用、鉄筋用継手等の鋳物部品は自動車、船舶、建設機械等の構造用部品と同じく鋳鉄で作られている。鋳鉄は、内部の黒鉛の形状から大きくねずみ鋳鉄と球状黒鉛鋳鉄の2つに分けられる。前者は内部に片状黒鉛を多数含み、これが内部切り欠きとして作用し、一般に低強度で強度にばらつきを示す信頼性の低い材料である。しかし、鋳造性はよく、バランスのとれた工業的性質を持つため、広く鋳物部品として使用されている一般向け材料である。これに対して、後者は片状黒鉛を球状化したものであり、高強度かつ高靭性を示す。近年では鋳物部品の軽量化、コンパクト化に伴い、球状黒鉛鋳鉄部品の薄肉化が要求されている。   Cast parts such as gas pipes and reinforcing steel joints are made of cast iron, as are structural parts such as automobiles, ships and construction machinery. Cast iron is roughly divided into two types, gray cast iron and spheroidal graphite cast iron, based on the shape of graphite inside. The former contains a large number of flake graphite inside, which acts as an internal notch, and is generally a low-reliability material with low strength and varying strength. However, since it has good castability and balanced industrial properties, it is a general-purpose material widely used as a casting part. On the other hand, the latter is obtained by spheroidizing flake graphite and exhibits high strength and high toughness. In recent years, it has been required to reduce the thickness of spheroidal graphite cast iron parts as the weight and size of cast parts have been reduced.

鋳鉄のマトリックス組織は、完全なパーライト基地から完全なフェライト基地があり、これら基地の比率は製造条件により異なる。フェライト基地は、延性に優れ、鋳鉄材料の靭性を向上させるが、強度を低下させるという性質がある。一方、パーライト基地は硬く、鋳鉄材料の強度を上昇させるが、靭性を低下させる性質がある。そのため、鋳鉄中のフェライト基地とパーライト基地の面積比率は鋳鉄の機械的な性質を決める重要なパラメータである。また、鋳鉄には、さらに製造過程で急冷される箇所に大きなセメンタイトFeC組織が発生する場合がある。このセメンタイト組織は、鋳鉄組織の中で最も硬くて脆くて割れやすい性質がある。したがって、鉄筋用継手のように強度の高い鋳物部品は、薄肉であるため、チル化組織が発生しやすく、チル化組織があれば不良品として扱われる。 The matrix structure of cast iron ranges from a complete pearlite base to a complete ferrite base, and the ratio of these bases varies depending on manufacturing conditions. The ferrite matrix has excellent ductility and improves the toughness of the cast iron material, but has the property of reducing the strength. On the other hand, pearlite base is hard and increases the strength of cast iron material, but has the property of decreasing toughness. Therefore, the area ratio of ferrite base and pearlite base in cast iron is an important parameter that determines the mechanical properties of cast iron. Further, in cast iron, a large cementite Fe 3 C structure may be generated at a location that is further rapidly cooled in the production process. This cementite structure is the hardest, brittle and easy to break in the cast iron structure. Therefore, cast parts with high strength, such as joints for reinforcing bars, are thin, so that a chilled structure is likely to occur, and if there is a chilled structure, it is treated as a defective product.

鋳物部品においてチル化組織が発生する原因について、鋳鉄溶湯の凝固過程は、初晶凝固で始まり、共晶凝固で完了するが、チル化組織の発生状況は、主として共晶凝固時に決定される。この共晶凝固には、黒鉛共晶凝固(安定系凝固)とセメンタイト共晶凝固(準安定系凝固)の二つのタイプがあって、後者の凝固によって晶出する金属組織をチル化組織と言う。   Regarding the cause of the occurrence of the chilled structure in the cast part, the solidification process of the cast iron melt starts with primary crystal solidification and is completed with eutectic solidification, but the generation state of the chilled structure is mainly determined at the time of eutectic solidification. There are two types of eutectic solidification: graphite eutectic solidification (stable solidification) and cementite eutectic solidification (metastable solidification). The metal structure that crystallizes by the latter solidification is called a chilled structure. .

例えば、鉄筋用継手の場合は、薄肉であるため、特に端部にチル化組織が発生しやすい。その現象について、種々の考え方があるが、ここでチル臨界冷却速度(Rc)を用いて説明する。   For example, in the case of a reinforcing steel joint, since it is thin, a chilled structure is likely to occur particularly at the end. There are various ways of thinking about this phenomenon. Here, the chill critical cooling rate (Rc) will be described.

Rcとは、その冷却速度を境にして黒鉛共晶凝固(正常組織)とセメンタイト共晶凝固(チル化組織)に分かれる境界条件である。   Rc is a boundary condition that is divided into graphite eutectic solidification (normal structure) and cementite eutectic solidification (chilled structure) at the cooling rate.

この場合、各元素のチル化傾向への影響の程度は、その含有率に対するRcの変化として評価される。例えば、C量=3.4%、Si量=1.12%の鋳鉄溶湯AのRcA=123.2℃/minであるのに対して、C量=3.29%、Si量=2.04%の鋳鉄溶湯BのRcB=160.6℃/minと大きくなっている。Rcが大きくなることは、チルが発生しにくくなることであって、この値の変化は、Siによるチル防止効果を数値的に表すものである。これら2種類の鋳鉄溶湯を用いて薄肉鋳物を鋳造する場合の、チルの発生状況について、図8に模式的に示した。   In this case, the degree of influence of each element on the chilling tendency is evaluated as a change in Rc with respect to its content. For example, RcA of cast iron melt A with C content = 3.4% and Si content = 1.12% = 123.2 ° C./min, whereas RcB of cast iron melt B with C content = 2.29% and Si content = 2.04% = 160.6 Increased to ℃ / min. An increase in Rc means that chill is less likely to occur, and this change in value numerically represents the chill prevention effect by Si. FIG. 8 schematically shows the chill generation state when a thin casting is cast using these two types of cast iron melts.

図8において、鋳物端面から中央までの冷却速度分布の一例を示しているが、冷却速度は鋳物端面で最大(この例では170℃/min)となり、鋳物中央に向かうにつれて小さくなっている。鋳物Aの場合、すべての位置で、冷却速度がRcA(123.2℃/min)を上回っているので、全面チル化組織となる。一方、鋳物Bの場合、端面からa点までの範囲における冷却速度は、RcB(160.6℃/min)を上回っているのでチル化組織となるが、それより中央側では、RcBより小さくなるので、正常組織となる。   FIG. 8 shows an example of the cooling rate distribution from the casting end surface to the center, but the cooling rate is maximum at the casting end surface (170 ° C./min in this example), and decreases toward the casting center. In the case of casting A, since the cooling rate exceeds RcA (123.2 ° C./min) at all positions, the entire surface is a chilled structure. On the other hand, in the case of the casting B, the cooling rate in the range from the end surface to the point a exceeds RcB (160.6 ° C./min), so that it becomes a chilled structure, but at the center side, it becomes smaller than RcB. It becomes a normal tissue.

このように、Rcの値が小さくなる程、チル化組織が発生しやすく、まず鋳物Bの場合のように端面に発生したチル化組織は、Rcが小さくなるにつれて中央に向かってチル化領域を広げていき、やがて鋳物Aのように全面チル化組織となる。   Thus, as the value of Rc decreases, a chilled structure is more likely to be generated. First, the chilled structure generated on the end surface as in the case of casting B has a chilled region toward the center as Rc decreases. As the casting A expands, the entire surface becomes a chilled structure.

以上のことから、鉄筋用継手のような薄肉鋳物部品等に対して、チル化組織の有無を判定する場合は、端部付近のチル化組織を判定すればよいことになる。端部が正常組織であれば、中央にチル化組織が発生しているとは考えられない。逆に、中央にチル化組織が無いことを確認するだけでは、端面にチルが無いことの証明にはならないので、全体的なチルの有無の判定位置とするには問題がある。   From the above, when determining the presence or absence of a chilled structure for a thin cast part or the like such as a reinforcing steel joint, the chilled structure near the end may be determined. If the end is a normal tissue, it is not considered that a chilled tissue is generated in the center. Conversely, just confirming that there is no chilled structure in the center does not prove that there is no chill at the end face, so there is a problem in determining the overall chill presence or absence.

即ち、鉄筋用継手のような継手部材に対して、製造工程の管理を厳密にすると同時に、材質や欠陥存否の検査が重要である。そのため、継手部材等の鋳物部品のチル化組織を評価する簡便かつ信頼性のある方法が必要となる。   That is, for joint members such as reinforcing steel joints, it is important to strictly control the manufacturing process and at the same time inspect the material and existence of defects. Therefore, a simple and reliable method for evaluating the chilled structure of a casting part such as a joint member is required.

従来、超音波鋳鉄評価を中心に鋳造欠陥検査および材質評価の技術開発が行われており、引張り強度と関係する黒鉛球状化率の評価は可能となった。   Conventionally, techniques for casting defect inspection and material evaluation have been developed mainly for ultrasonic cast iron evaluation, and it has become possible to evaluate the graphite spheroidization ratio related to tensile strength.

しかしながら、鋳物部品の組織の評価(例えば、チル化組織の有無の評価)については解決されていない。組織の評価、例えばチル化組織の有無に関する非破壊評価手法が確立していない現在、材質や機械特性を調べるためには切出し及び研磨による顕微鏡観察、硬さ試験、引張り試験等を実施しなければならない。   However, evaluation of the structure of cast parts (for example, evaluation of the presence or absence of a chilled structure) has not been solved. Currently, no non-destructive evaluation method has been established for the evaluation of the structure, for example, the presence or absence of a chilled structure. In order to investigate the material and mechanical properties, a microscopic observation by cutting and polishing, a hardness test, a tensile test, etc. must be performed. Don't be.

したがって、超音波を用いた検査技術では、多くの費用と労力を必要とするばかりでなく、鋳物部品の全数検査が原理的に不可能であるという課題がある。一方、鋳物部品のチル化組織の分布が非破壊で容易に把握できれば、鋳物部品の結果を設計に容易に反映させることも可能である。材質評価が簡便に行うことが出来ない現在、鋳物部品製造過程において材質をコントロールあるいは改良することは非常に難しい。簡便な非破壊評価はこれまで難しかった製造過程へのフィードバックを容易にし、製造方法を最適化することが可能である。例えば、さらなる薄肉軽量化といった鋳物部品の高性能化及び信頼性向上につながるものである。   Therefore, the inspection technique using ultrasonic waves not only requires a lot of cost and labor, but also has a problem that it is impossible in principle to inspect all cast parts. On the other hand, if the distribution of the chilled structure of the cast part can be easily grasped in a non-destructive manner, the result of the cast part can be easily reflected in the design. At present, it is very difficult to control or improve the material in the casting part manufacturing process because the material evaluation cannot be performed easily. Simple nondestructive evaluation facilitates feedback to the manufacturing process, which has been difficult until now, and can optimize the manufacturing method. For example, this leads to higher performance and improved reliability of cast parts such as further reduction in thickness and weight.

そのため、近年、磁気を利用した鋳鉄の非破壊評価方法が提案されている(例えば、特許文献1参照)。   Therefore, in recent years, a nondestructive evaluation method for cast iron using magnetism has been proposed (for example, see Patent Document 1).

この鋳鉄の非破壊評価方法は、従来より渦電流法と呼ばれる方法が知られている。この渦電流法は、交流電流を印加したコイルを導電性の被検査体に近づけた際に、誘導起電力により被検査体に生じる渦電流を利用する方法である。被検査体に生じる渦電流の大きさやその分布は、被検査体の欠陥や形状寸法等の諸条件により変化するため、この渦電流の発生状態による磁束の変化分を取り出すことで、被検査体の欠陥の有無や形状変化等を検査することができ、広く利用されている。コイルに印加される交流電流の周波数と、導電性の被検査体に発生する誘導起電力との間には以下の式に示される関係が知られている。   As a nondestructive evaluation method for cast iron, a method called an eddy current method is conventionally known. This eddy current method is a method that uses eddy current generated in a test object by induced electromotive force when a coil to which an alternating current is applied is brought close to a conductive test object. Since the magnitude and distribution of the eddy current generated in the object to be inspected change depending on various conditions such as defects and shape dimensions of the object to be inspected, the inspected object can be obtained by extracting the change in magnetic flux due to the eddy current generation state It can be inspected for the presence or absence of defects, shape change, etc., and is widely used. The relationship shown by the following formula | equation is known between the frequency of the alternating current applied to a coil, and the induced electromotive force which generate | occur | produces in an electroconductive to-be-tested object.

Figure 2008292335
但し、E:起電力、f:周波数、A:定数を示している。故に、一般的に渦電流法では検出感度を向上させるために、コイルの交流電流の周波数を高めて、被検査体に生じる誘導起電力(渦電流)を大きくする方法がとられている。
Figure 2008292335
Here, E: electromotive force, f: frequency, A: constant. Therefore, in general, in order to improve detection sensitivity in the eddy current method, a method is adopted in which the frequency of the alternating current of the coil is increased to increase the induced electromotive force (eddy current) generated in the object to be inspected.

特開2003−262618号公報JP 2003-262618 A

しかし、上述した渦電流法では、被検査体の深い部分の検出に適さないという課題がある。これは表皮効果と呼ばれるもので、以下の式で示される。   However, the above-described eddy current method has a problem that it is not suitable for detection of a deep portion of an inspection object. This is called the skin effect and is expressed by the following equation.

Figure 2008292335
但し、δ:浸透深さ、f:周波数、μ:透磁率、σ:導電率を示している。これは、被検査体に生じる電磁界が表面近くに集中し、深部になると急激に減衰することを表しており、周波数が高いほど減衰が大きいことを示している。そのため、高い周波数を印加する渦電流法では、表面近くの検出感度は高いが、被検査体の深部の検出には適していなかった。
Figure 2008292335
Where δ: penetration depth, f: frequency, μ: magnetic permeability, σ: conductivity. This indicates that the electromagnetic field generated in the object to be inspected is concentrated near the surface and attenuates abruptly as it goes deeper, and the higher the frequency, the greater the attenuation. Therefore, the eddy current method in which a high frequency is applied has a high detection sensitivity near the surface, but is not suitable for detecting a deep portion of the object to be inspected.

また、渦電流法の場合、被検査体の表面状態が検出感度に大きく影響する。そのため、例えば表面に細かな凹凸を有する溶接試料や鋳物試料等の欠陥を検出したい場合には、表面を滑らかにしたり、あるいは酸化膜や塗膜を除去したりといった前処理が必要とされる。さらに、渦電流法では、コイルと試料の表面との距離(リフトオフ)が、検出感度に大きく影響するため、測定できる試料の形状等も制限されるという課題も有している。   In the case of the eddy current method, the surface state of the inspection object greatly affects the detection sensitivity. Therefore, for example, when it is desired to detect a defect such as a welded sample or a cast sample having fine irregularities on the surface, a pretreatment such as smoothing the surface or removing the oxide film or coating film is required. Furthermore, in the eddy current method, since the distance (lift-off) between the coil and the surface of the sample greatly affects the detection sensitivity, there is also a problem that the shape of the sample that can be measured is limited.

現状では、鉄筋用継手のような鋳物部品のチル化組織の有無を判断するために、例えば継手部材の端部、即ちチル化組織が発生しやすい部分を敲いて音でチル化組織の有無を判断する。そのため、不良品の検査が困難で、かつ効率が低い。   At present, in order to determine the presence or absence of a chilled structure of a cast part such as a joint for a reinforcing bar, for example, the end of the joint member, i.e., the part where the chilled structure is likely to occur, is squeezed to determine the presence or absence of the chilled structure to decide. Therefore, inspection of defective products is difficult and efficiency is low.

本発明は、このような問題点を考慮してなされたもので、鋳物部品(被検査体)に前処理を施さずに、鋳物部品の表面だけでなく深部あるいは内部をも検出できる電磁誘導センサを用いて、鋳物部品のチル化組織の有無を正確に測定し、従来の非破壊評価の弱点を解決できる鋳物部品のチル化組織評価方法及び装置を提供することを目的とする。   The present invention has been made in consideration of such problems. An electromagnetic induction sensor that can detect not only the surface of a cast part but also the deep part or the inside thereof without pre-processing the cast part (inspected object). Is used to accurately measure the presence or absence of a chilled structure of a cast part, and to provide a chilled structure evaluation method and apparatus for a cast part that can solve the weaknesses of conventional nondestructive evaluation.

上記の課題を解決するために、本発明に係る鋳物部品のチル化組織評価方法は、鋳物部品のチル化組織の有無を検出するセンサとして、前記鋳物部品に交流磁界を付与する励磁コイルと、該励磁コイルから前記鋳物部品に付与された交流磁界の磁束密度を検出するための誘導コイルとを有する電磁誘導センサを用い、前記鋳物部品により交流磁界の変化により前記誘導コイルに発生した誘導起電力の振幅と位相のうち、少なくても一方の変化量を測定して、前記チル化組織の有無を検出することを特徴とする。   In order to solve the above problems, a chilled structure evaluation method for a cast part according to the present invention includes an exciting coil that applies an alternating magnetic field to the cast part as a sensor that detects the presence or absence of a chilled structure of the cast part, An induction electromotive force generated in the induction coil due to a change in the alternating magnetic field by the casting part using an electromagnetic induction sensor having an induction coil for detecting the magnetic flux density of the alternating magnetic field applied to the casting part from the excitation coil It is characterized in that the presence or absence of the chilled tissue is detected by measuring the amount of change of at least one of the amplitude and the phase.

例えば、前記電磁誘導センサを前記鋳物部品の内部に挿入して、前記鋳物部品の電磁誘導センサ挿入部の全周に対してチル化組織の有無を検出する。また、励磁コイルに印加される電流の周波数fを、10kHz≧f≧0.1kHzにするとともに、励磁コイルの巻数N1と誘導コイルの巻数N2とを1000≧N2≧N1≧50の関係とする。前記鋳物部品がガス配管用、鉄筋用継手部材である。   For example, the electromagnetic induction sensor is inserted into the casting part, and the presence or absence of a chilled structure is detected with respect to the entire circumference of the electromagnetic induction sensor insertion portion of the casting part. Further, the frequency f of the current applied to the exciting coil is set to 10 kHz ≧ f ≧ 0.1 kHz, and the number N1 of the exciting coil and the number N2 of the induction coil are set such that 1000 ≧ N2 ≧ N1 ≧ 50. The casting part is a joint member for gas piping and reinforcing bars.

また、上記の課題を解決するために、本発明に係る鋳物部品のチル化組織評価装置は、鋳物部品のチル化組織の有無を検出するセンサとして、前記鋳物部品に交流磁界を付与する励磁コイルと、該励磁コイルから前記鋳物部品に付与された交流磁界の磁束密度を検出するための誘導コイルとを有する電磁誘導センサと、前記電磁誘導センサを測定対象物としての鋳物部品の表面から所定距離の位置まで接近させ保持するセンサ保持手段と、前記鋳物部品により交流磁界の変化により前記誘導コイルに発生した誘導起電力の振幅と位相のうち、少なくても一方の変化量に基づいて、鋳物部品のチル化組織の有無を判断する判断手段と、前記判定手段により鋳物部品のチル化組織があると判断された場合、その旨を出力する出力手段とを備えることを特徴とする。   Moreover, in order to solve said subject, the chilled structure evaluation apparatus of the cast component which concerns on this invention is an exciting coil which provides an alternating current magnetic field to the said cast component as a sensor which detects the presence or absence of the chilled structure of a cast component. And an induction coil for detecting the magnetic flux density of the alternating magnetic field applied to the casting part from the excitation coil, and a predetermined distance from the surface of the casting part as the measurement object. A sensor holding means for approaching and holding the position of the casting, and a casting component based on the amount of change of at least one of the amplitude and phase of the induced electromotive force generated in the induction coil due to the change of the alternating magnetic field by the casting component. A judging means for judging the presence or absence of a chilled structure, and an output means for outputting that when the judging means judges that there is a chilled structure of a cast part. The features.

例えば、前記電磁誘導センサにおいて、励磁コイルに印加される電流の周波数fを、10kHz≧f≧0.1kHzにするとともに、励磁コイルの巻数N1と誘導コイルの巻数N2とを1000≧N2≧N1≧50の関係とする。   For example, in the electromagnetic induction sensor, the frequency f of the current applied to the excitation coil is set to 10 kHz ≧ f ≧ 0.1 kHz, and the number N1 of the excitation coil and the number N2 of the induction coil are set to 1000 ≧ N2 ≧ N1 ≧. 50 relationships.

また例えば、前記鋳物部品が円筒形である場合において、前記センサ保持手段は、前記継手部材の内部に挿入された前記電磁誘導センサを前記鋳物部品の中心軸上に保持する。   Further, for example, when the casting part is cylindrical, the sensor holding means holds the electromagnetic induction sensor inserted in the joint member on the central axis of the casting part.

また、前記鋳物部品がガス配管用、鉄筋用継手部材であることを特徴とする。   Further, the cast part is a joint member for gas piping and reinforcing bars.

本発明は、鋳物部品により交流磁界の変化により前記誘導コイルに発生した誘導起電力の振幅と位相のうち、少なくても一方の変化量を測定することで、鋳物部品のチル化組織、フェライト相・パーライト相の電磁的性質の差異に基づいて、鋳物部品のチル化組織の有無を正確に測定し、従来は不能とされてきた鋳物部品のチル化組織の有無を非破壊評価により正確にかつ容易に得ることができる。また、電磁誘導センサと鋳物部品が非接触で鋳物部品のチル化組織の有無を測定することができる。   The present invention measures the change amount of at least one of the amplitude and phase of the induced electromotive force generated in the induction coil due to the change of the alternating magnetic field by the cast part, thereby chilling structure of the cast part, ferrite phase・ Accurately measure the presence or absence of a chilled structure in a cast part based on the difference in electromagnetic properties of the pearlite phase, and accurately and non-destructively evaluate the presence or absence of a chilled structure in a cast part that was previously impossible. Can be easily obtained. Further, the presence or absence of a chilled structure of the cast part can be measured without contact between the electromagnetic induction sensor and the cast part.

また、従来のように検査のために鋳物部品(被測定品)の表面を滑らかにしたり、あるいは酸化膜や塗膜を除去したりといった前処理の必要がなく、費用と労力を節約することができる。また、チル化組織が発生しやすい部分を敲いて音でチル化組織の有無を判断する官能検査を廃止し、鋳物部品の全数検査が可能となる。さらに、鋳物部品のチル化組織の分布が非破壊評価により容易に把握できるので、検査結果を設計に容易に反映させることができ、製造方法を最適化することが可能となる。そのため、鋳物部品の軽量化、高性能化につながる効果を有する。   In addition, there is no need for pre-treatment such as smoothing the surface of cast parts (measured products) for inspection or removing oxide films and coatings as in the past, saving costs and labor. it can. In addition, the sensory test for determining the presence or absence of the chilled structure by removing the portion where the chilled structure is likely to occur is abolished, and the total number of cast parts can be inspected. Furthermore, since the distribution of the chilled structure of the cast part can be easily grasped by nondestructive evaluation, the inspection result can be easily reflected in the design, and the manufacturing method can be optimized. Therefore, it has the effect of reducing the weight and performance of cast parts.

以下、図面を参照しながら、本発明の実施の形態の鋳物部品のチル化組織評価装置及びそれを用いた鋳物部品のチル化組織評価方法について説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, a cast part chilled structure evaluation apparatus and a cast part chilled structure evaluation method using the same according to an embodiment of the present invention will be described with reference to the drawings.

図1は、実施の形態としての鋳物部品のチル化組織評価装置の構成を示す図である。図2は、電磁誘導センサ10の構成を示す図である。図3は、鋳物部品1の電磁誘導センサ10を設置する部分の拡大図である。   FIG. 1 is a diagram showing a configuration of a chilled structure evaluation apparatus for cast parts as an embodiment. FIG. 2 is a diagram illustrating a configuration of the electromagnetic induction sensor 10. FIG. 3 is an enlarged view of a portion where the electromagnetic induction sensor 10 of the casting part 1 is installed.

図1に示すように、鋳物部品のチル化組織評価装置100は、電磁誘導センサ10と、センサ保持手段20と、交流電源30と、検出回路40と、記録部50と、表示部60と、記憶部70とから構成されている。   As shown in FIG. 1, the cast part chilled structure evaluation apparatus 100 includes an electromagnetic induction sensor 10, a sensor holding unit 20, an AC power source 30, a detection circuit 40, a recording unit 50, a display unit 60, And a storage unit 70.

電磁誘導センサ10は、筒状の鋳物部品1の端部の所定位置L(例えばL=25mm)まで挿入した状態でセンサ保持手段20により鋳物部品1の表面から所定距離の位置まで接近させ保持されて設置される。この場合、電磁誘導センサ10先端部周辺の磁場を利用して鋳物部品1の電磁誘導センサ挿入部の全周に対して測定を行う。   The electromagnetic induction sensor 10 is held close to a predetermined distance from the surface of the casting part 1 by the sensor holding means 20 while being inserted to a predetermined position L (for example, L = 25 mm) at the end of the cylindrical casting part 1. Installed. In this case, measurement is performed on the entire circumference of the electromagnetic induction sensor insertion portion of the casting part 1 using the magnetic field around the tip of the electromagnetic induction sensor 10.

また、鋳物部品1は、支持手段2で固定されている。また、電磁誘導センサ10には、交流電源30と検出回路40が接続されている。   Further, the cast part 1 is fixed by the support means 2. An AC power supply 30 and a detection circuit 40 are connected to the electromagnetic induction sensor 10.

この例において、鋳物部品1として鉄筋用継手を用いた。上述したように、この鉄筋用継手は、薄肉であるため、特に端部にチル化組織が発生しやすい。例えば、図3中のC部は、チル化組織が発生しやすい部分である。したがって、チル化組織を測定する場合、端部付近のチル化組織を判定すればよい。   In this example, a reinforcing bar joint was used as the cast part 1. As described above, since the reinforcing steel joint is thin, a chilled structure is likely to occur particularly at the end. For example, part C in FIG. 3 is a part where a chilled structure is likely to occur. Therefore, when measuring a chilled structure, a chilled structure near the end may be determined.

電磁誘導センサ10は、交流電流の印加により励磁して磁場を形成する一次側の励磁コイル11と、励磁コイル11の励磁によって電磁誘導して起電力Vを発生させる二次側の誘導コイル12とを備え、励磁コイル11と誘導コイル12とが同軸巻回して一体に構成されている。この場合、励磁コイル11に誘導コイル12を巻き付けて構成する。これらのコイルは、長筒状の物体に絶縁被覆線を巻き付けることにより実現できる。   The electromagnetic induction sensor 10 includes an excitation coil 11 on the primary side that is excited by application of an alternating current to form a magnetic field, and an induction coil 12 on the secondary side that generates an electromotive force V by electromagnetic induction by excitation of the excitation coil 11. The exciting coil 11 and the induction coil 12 are coaxially wound to be integrally formed. In this case, the induction coil 12 is wound around the excitation coil 11. These coils can be realized by winding an insulation-coated wire around a long cylindrical object.

励磁コイル11に印加される交流電流の周波数fは、被検査試料への磁束の浸透深さδに影響すると共に、被検査試料に生じせしめる起電力Eにも影響する。この例の場合、電磁誘導センサ10の周辺部分の鋳物部品1を検査するために、周波数fを低くすると同時に起電力Eを高めて、鋳物部品1の内部組織の微妙な違い等を検出することが可能となる。   The frequency f of the alternating current applied to the exciting coil 11 affects the penetration depth δ of the magnetic flux into the sample to be inspected, and also affects the electromotive force E generated in the sample to be inspected. In the case of this example, in order to inspect the casting part 1 around the electromagnetic induction sensor 10, the frequency f is lowered and the electromotive force E is increased at the same time to detect a subtle difference in the internal structure of the casting part 1 or the like. Is possible.

電磁誘導センサ10において、鋳物部品1の種類、測定範囲等により、励磁コイル11に印加される電流の周波数fを、10kHz≧f≧0.1kHzにするとともに、励磁コイル11の巻数N1と誘導コイル12の巻数N2とを1000≧N2≧N1≧50の関係とすることが望ましい。なお、実験結果により、電流の周波数fは5kHzの場合、最も理想的な検出結果となる(後述図5参照)。また、電流の周波数fが10kHzより高い場合は、測定範囲が小さくなり、測定精度が落ちることが考えられ、0.1kHzより低い場合も測定精度が落ちることが考えられる。   In the electromagnetic induction sensor 10, the frequency f of the current applied to the excitation coil 11 is set to 10 kHz ≧ f ≧ 0.1 kHz depending on the type of casting part 1, the measurement range, and the like, and the number of turns N1 of the excitation coil 11 and the induction coil It is desirable that the 12 turns N2 have a relationship of 1000 ≧ N2 ≧ N1 ≧ 50. According to experimental results, the most ideal detection result is obtained when the current frequency f is 5 kHz (see FIG. 5 described later). Further, when the current frequency f is higher than 10 kHz, the measurement range is reduced, and the measurement accuracy may be lowered. When the current frequency f is lower than 0.1 kHz, the measurement accuracy may be lowered.

なお、上記コイルの形状は、筒状に限定されるものではない。また、コイルの形成方法としては、誘導コイル12を励磁コイル11に直接巻き付けて構成する方法に限定されるものではない。例えば励磁コイル11と誘導コイル12をそれぞれ形成した後に同軸に配置するようにしてもよい。   The shape of the coil is not limited to a cylindrical shape. Further, the method for forming the coil is not limited to the method in which the induction coil 12 is directly wound around the exciting coil 11. For example, you may make it arrange | position coaxially, after forming the exciting coil 11 and the induction coil 12, respectively.

センサ保持手段20は、電磁誘導センサ10を測定対象物としての鋳物部品1の表面から所定距離の位置まで接近させ保持するものである。なお、センサ保持手段20の形状は、限定されるものではない。例えば、センサ保持手段20は、電磁誘導センサ10を保持しながら所定速度で移動できる機構を設けて構成されてもよい。   The sensor holding means 20 is for holding the electromagnetic induction sensor 10 close to a predetermined distance from the surface of the casting part 1 as a measurement object. In addition, the shape of the sensor holding means 20 is not limited. For example, the sensor holding unit 20 may be configured by providing a mechanism that can move at a predetermined speed while holding the electromagnetic induction sensor 10.

交流電源30は、正弦波発振器と、定電流増幅器とを備え、正弦波発振器から出力された角周波数ωの交流電圧は、定電流増幅器で一定電流となり、電磁誘導センサ10の励磁コイル11に供給される。   The AC power supply 30 includes a sine wave oscillator and a constant current amplifier, and the AC voltage of the angular frequency ω output from the sine wave oscillator becomes a constant current by the constant current amplifier and is supplied to the excitation coil 11 of the electromagnetic induction sensor 10. Is done.

検出回路部40は、誘導コイル12の出力する起電力Vが電気信号として入力され、磁場の変化が比較検出される比較回路41と、この比較回路41の出力によって鋳物部品1の組織状態を判定する判定回路42とから構成される。   The detection circuit unit 40 receives the electromotive force V output from the induction coil 12 as an electric signal, and compares the detection circuit 41 to detect a change in the magnetic field. The detection circuit unit 40 determines the structure state of the casting part 1 based on the output of the comparison circuit 41. And a determination circuit 42 that performs the determination.

比較回路41においては、基準試料としての鋳物部品による誘導コイル12の出力、すなわち参照値Vrefと、被検査試料としての鋳物部品1による誘導コイル12の出力測定値Voutとが比較される。そして、参照値Vrefに対する測定値Voutの変化量は、図4に示されるように、位相変化量Δθと振幅変化量ΔHに分けて検出される。この位相変化量Δθは被検査試料としての鋳物部品1の磁気特性、すなわち透磁率に依存する量であり、また振幅変化量ΔHは鋳物部品1の電気特性、すなわち電気伝導率に依存する量である。従って、鋳物部品1の磁気特性と電気特性を区別して検出することで、鋳物部品1の微妙な組織状態の変化をも検出することができる。すなわち、鋳物部品1の内部組織の微妙な違い等をも検出することが可能となる。   In the comparison circuit 41, the output of the induction coil 12 by the casting part as the reference sample, that is, the reference value Vref is compared with the output measurement value Vout of the induction coil 12 by the casting part 1 as the sample to be inspected. Then, the amount of change in the measured value Vout with respect to the reference value Vref is detected separately as a phase change amount Δθ and an amplitude change amount ΔH, as shown in FIG. This phase change amount Δθ is an amount that depends on the magnetic characteristics of the casting part 1 as the specimen to be inspected, that is, the magnetic permeability, and the amplitude change amount ΔH is an amount that depends on the electrical characteristics of the casting part 1, that is, the electric conductivity. is there. Therefore, by distinguishing and detecting the magnetic characteristics and the electrical characteristics of the cast part 1, it is possible to detect subtle changes in the structural state of the cast part 1. That is, it is possible to detect a subtle difference in the internal structure of the cast part 1.

判定回路42においては、比較回路41の出力により、鋳物部品1が定常状態にあるかどうかの判定を行う。位相変化量Δθと振幅変化量ΔHがいずれも零であれば、鋳物部品1は定常状態と判別される。また、判定回路42にあらかじめ、上述の位相変化量Δθと振幅変化量ΔHを、鋳物部品1の状態と関連づけてデータ化しておくと、鋳物部品1の異常がどのような状態なのか、すなわち組成変化や異物あるいはクラック等の状態を具体的に識別して把握することもできる。   In the determination circuit 42, it is determined whether or not the casting part 1 is in a steady state based on the output of the comparison circuit 41. If both the phase change amount Δθ and the amplitude change amount ΔH are zero, the casting part 1 is determined to be in a steady state. Further, if the above-described phase change amount Δθ and amplitude change amount ΔH are converted into data in association with the state of the cast part 1 in advance in the determination circuit 42, what is the state of the abnormality of the cast part 1, that is, the composition It is also possible to specifically identify and grasp the state of change, foreign matter or cracks.

記録部50は、測定状態および測定結果等を記録用紙等の記録媒体に記録するものである。また、表示部60は、測定状態および測定結果等を表示するものである。例えば、電磁誘導センサ10の設置位置を表示したり、測定結果を表示したりする。この表示部60において、測定状態および測定結果等を図形または数字で表示することができる。記憶部70は、電磁誘導センサ10の出力、測定状態および測定結果等を記憶するものであり、必要なときにこれらを読み出すことができる。   The recording unit 50 records a measurement state, a measurement result, and the like on a recording medium such as a recording sheet. The display unit 60 displays a measurement state, a measurement result, and the like. For example, the installation position of the electromagnetic induction sensor 10 is displayed or the measurement result is displayed. On the display unit 60, the measurement state, the measurement result, and the like can be displayed with graphics or numbers. The storage unit 70 stores the output of the electromagnetic induction sensor 10, the measurement state, the measurement result, and the like, and can read them out when necessary.

次に、図面を参照しながら、鋳物部品のチル化組織評価装置100を用いた鋳物部品のチル化組織評価方法について説明する。   Next, a cast part chilled structure evaluation method using the cast part chilled structure evaluation apparatus 100 will be described with reference to the drawings.

鋳物部品にチル化組織があるか否かを検査する場合は、予め基準試料としての鋳物部品を測定する。基準試料としての鋳物部品による誘導コイル12の出力を参照値Vrefとする。これに基づいて、判断用閾値を設定する。   When inspecting whether or not the cast part has a chilled structure, the cast part as a reference sample is measured in advance. The output of the induction coil 12 using a cast part as a reference sample is defined as a reference value Vref. Based on this, a threshold for determination is set.

次に、被検査試料としての鋳物部品1の表面に電磁誘導センサ12を近付け、例えば、鋳物部品1の端部の所定位置Lまでに挿入した状態でセンサ保持手段20により鋳物部品1の表面から所定距離の位置まで接近させ保持されて設置される。   Next, the electromagnetic induction sensor 12 is brought close to the surface of the casting part 1 as the specimen to be inspected, and is inserted from the surface of the casting part 1 by the sensor holding means 20 in a state where it is inserted up to a predetermined position L at the end of the casting part 1, for example. It is installed close to a predetermined distance.

そして、この状態で電磁誘導センサ10の励磁コイル11に交流電流を供給して鋳物部品1に交流磁界を付与すると、電磁誘導センサ10の誘導コイル12に誘導起電力が発生する。このとき、電磁誘導センサ10の誘導コイル12に発生した誘導起電力は鋳物部品1に付与された交流磁界の磁束密度に応じて変化し、交流磁界の磁束密度は鋳物部品1の内部に存在するチル化組織の程度に応じて変化する。   In this state, when an alternating current is supplied to the exciting coil 11 of the electromagnetic induction sensor 10 and an alternating magnetic field is applied to the casting component 1, an induced electromotive force is generated in the induction coil 12 of the electromagnetic induction sensor 10. At this time, the induced electromotive force generated in the induction coil 12 of the electromagnetic induction sensor 10 changes according to the magnetic flux density of the AC magnetic field applied to the casting part 1, and the magnetic flux density of the AC magnetic field exists inside the casting part 1. Varies depending on the degree of chilled tissue.

したがって、電磁誘導センサ10の誘導コイル12に発生した誘導起電力の振幅と位相のうち少なくとも一方の変化量を検出し、検出された変化量を予め設定された閾値(基準試料の測定結果に基づくもの)と比較する。これにより、チル化組織が鋳物部品1の内部に存在するか否かを精度よく検査することができる。測定結果は、必要に応じて記録部50に記録され、表示部60に表示され、または、記憶部70に記憶される。   Therefore, a change amount of at least one of the amplitude and phase of the induced electromotive force generated in the induction coil 12 of the electromagnetic induction sensor 10 is detected, and the detected change amount is set based on a preset threshold value (based on the measurement result of the reference sample). Compared to stuff). Thereby, it can be accurately inspected whether or not the chilled structure exists inside the cast part 1. The measurement result is recorded in the recording unit 50 as necessary, displayed on the display unit 60, or stored in the storage unit 70.

また、チル化組織が鋳物部品1の内部に存在するか否かを検出するセンサとして電磁誘導センサ10を用いたことで、球状黒鉛鋳鉄からなる鋳物部品のチル化組織の存在確立を推定することができる。   Further, by using the electromagnetic induction sensor 10 as a sensor for detecting whether or not a chilled structure is present in the cast part 1, it is estimated that a chilled structure of a cast part made of spheroidal graphite cast iron exists. Can do.

図5は、鋳物部品チル化組織評価装置100により、測定したデータの一例を示す図である。図中の73U、73V、743、744,745は測定に用いられた製品のロット名である。各ロットに5本ずつのサンプルがある。また、図5において、横軸は「LEVEL」すなわち、振幅の変化を表し、縦軸は「FHASE」すなわち、位相の変化を表す。この場合、励磁コイルに印加される電流の周波数fを5kHzとした。   FIG. 5 is a diagram illustrating an example of data measured by the cast part chilled structure evaluation apparatus 100. In the figure, 73U, 73V, 743, 744, and 745 are lot names of products used for measurement. There are 5 samples in each lot. In FIG. 5, the horizontal axis represents “LEVEL”, that is, changes in amplitude, and the vertical axis represents “FHASE”, that is, changes in phase. In this case, the frequency f of the current applied to the exciting coil was 5 kHz.

図5に示すように、電磁誘導センサ10を鋳物部品1に挿入してFHASE信号を読み取り、FHASE信号が50〜200(0.5V〜2.0V)の間にある場合は合格、範囲外(不合格)になった時にパトランプ等で視野的に確認できるようにしておくことで1次選別が容易に行なえるようになった。   As shown in FIG. 5, the electromagnetic induction sensor 10 is inserted into the casting part 1 and the FHASE signal is read. If the FHASE signal is between 50 and 200 (0.5V to 2.0V), it is acceptable and out of range (failed) ), The primary sorting can be easily performed by making it possible to visually check with a patrol lamp or the like.

このように、各々の鋳鉄の化学組成及びフェライト/パーライト率によって、特定の誘導起電力の振幅と位相信号を検出し、設定された閾値(基準試料の測定結果に基づくもの)と比較してチル化組織を評価することができる。また、非破壊被評価対象となる鋳物部品の形状、サイズ(大きさ)、組成、組織等の検査若しくは測定又は評価条件に応じて、適宜これらの電磁誘導センサを設計し、採用することができる。   In this way, the amplitude and phase signal of a specific induced electromotive force is detected by the chemical composition and ferrite / pearlite ratio of each cast iron, and compared with the set threshold value (based on the measurement result of the reference sample). The chemical organization can be evaluated. In addition, these electromagnetic induction sensors can be appropriately designed and adopted according to the inspection or measurement of the shape, size (size), composition, structure, etc. of the casting part to be evaluated for nondestructive evaluation or evaluation conditions. .

上述したように本実施の形態においては、鋳物部品のチル化組織評価装置100は、電磁誘導センサ10と、センサ保持手段20と、交流電源30と、検出回路40と、記録部50と、表示部60と、記憶部70とから構成される。電磁誘導センサ10は励磁コイル11と誘導コイル12を同軸に一体形成したもので、鋳物部品1にチル化組織があるか否かを検査する際に、励磁コイル11に交流電流を印加して磁場を形成させ、誘導コイル12で継手部材1による励磁コイルが形成した磁場の変化を検出し、例えば誘導コイルに発生した誘導起電力の振幅と位相のうち、少なくても一方の変化量を測定して、チル化組織の有無を検出するようになされている。   As described above, in the present embodiment, the cast component chilled structure evaluation apparatus 100 includes the electromagnetic induction sensor 10, the sensor holding means 20, the AC power supply 30, the detection circuit 40, the recording unit 50, and the display. A unit 60 and a storage unit 70 are included. The electromagnetic induction sensor 10 is formed by integrally forming an excitation coil 11 and an induction coil 12 coaxially. When inspecting whether or not the cast part 1 has a chilled structure, an alternating current is applied to the excitation coil 11 to generate a magnetic field. And the change of the magnetic field formed by the exciting coil by the coupling member 1 is detected by the induction coil 12, and for example, at least one of the amplitude and phase of the induced electromotive force generated in the induction coil is measured. Thus, the presence or absence of a chilled tissue is detected.

これにより、従来は不能とされてきた鋳物部品のチル化組織の有無を非破壊評価により正確にかつ容易に得ることができる。   As a result, the presence or absence of a chilled structure of a cast part, which has conventionally been impossible, can be accurately and easily obtained by nondestructive evaluation.

また、電磁誘導センサ10と鋳物部品1が非接触であるため、従来のように検査のために鋳物部品(被測定品)の表面を滑らかにしたり、あるいは酸化膜や塗膜を除去したりといった前処理の必要がなく、費用と労力を節約することができる。また、チル化組織が発生しやすい部分を敲いて音でチル化組織の有無を判断する官能検査を廃止し、鋳物部品の全数検査が可能となる。さらに、鋳物部品のチル化組織の分布が非破壊評価により容易に把握できるので、検査結果を設計に容易に反映させることができ、製造方法を最適化することが可能となる。そのため、鋳物部品の軽量化、高性能化につながる効果を有する。   Further, since the electromagnetic induction sensor 10 and the cast part 1 are not in contact with each other, the surface of the cast part (measured product) is smoothed for inspection as in the past, or the oxide film or coating film is removed. There is no need for pre-treatment, and cost and labor can be saved. In addition, the sensory test for determining the presence or absence of the chilled structure by removing the portion where the chilled structure is likely to occur is abolished, and the total number of cast parts can be inspected. Furthermore, since the distribution of the chilled structure of the cast part can be easily grasped by nondestructive evaluation, the inspection result can be easily reflected in the design, and the manufacturing method can be optimized. Therefore, it has the effect of reducing the weight and performance of cast parts.

また、電磁誘導センサ10を鋳物部品1の端部の所定位置まで挿入した状態でセンサ保持手段20により鋳物部品1の表面から所定距離の位置まで接近させ設置することで、鋳物部品1の電磁誘導センサ1の挿入部の全周に対してチル化組織の有無を検出することができ、即ちチル化組織が発生しやすい部分を一括で測定でき、測定作業の効率を向上することができる。   Further, the electromagnetic induction sensor 10 is inserted up to a predetermined position at the end of the casting part 1 and is placed close to a position at a predetermined distance from the surface of the casting part 1 by the sensor holding means 20, so that the electromagnetic induction of the casting part 1 is performed. The presence or absence of a chilled tissue can be detected with respect to the entire circumference of the insertion portion of the sensor 1, that is, the portion where the chilled tissue is likely to be generated can be measured in a lump, and the efficiency of measurement work can be improved.

また、励磁コイルに印加される電流の周波数fを、10kHz≧f≧0.1kHzにするとともに、励磁コイルの巻数N1と誘導コイルの巻数N2とを1000≧N2≧N1≧50の関係とすることで、より広い範囲でチル化組織の有無を測定することができる。   Further, the frequency f of the current applied to the exciting coil is set to 10 kHz ≧ f ≧ 0.1 kHz, and the number N1 of the exciting coil and the number N2 of the induction coil are set such that 1000 ≧ N2 ≧ N1 ≧ 50. Thus, the presence or absence of a chilled structure can be measured in a wider range.

なお、上述実施の形態において、電磁誘導センサ10は、鋳物部品1の端部の所定位置Lまで挿入した状態でセンサ保持手段20により鋳物部品1の表面から所定距離の位置まで接近させ保持されて設置される場合について説明したが、これに限定されるものではない。例えば、図6、図7に示すように、電磁誘導センサ10を、鋳物部品1Aの外部において鋳物部品1Aの表面から所定距離の位置まで接近させ保持されて設置するようにしてもよい。この場合、測定する際に、鋳物部品1Aを回転させながら測定を行うようにしてもよい。   In the above-described embodiment, the electromagnetic induction sensor 10 is held close to a predetermined distance from the surface of the casting part 1 by the sensor holding means 20 in a state where the electromagnetic induction sensor 10 is inserted to the predetermined position L at the end of the casting part 1. Although the case where it installs was demonstrated, it is not limited to this. For example, as shown in FIGS. 6 and 7, the electromagnetic induction sensor 10 may be installed to be held close to a predetermined distance from the surface of the casting part 1 </ b> A outside the casting part 1 </ b> A. In this case, when measuring, the measurement may be performed while rotating the casting part 1A.

図6は、鋳物部品チル化組織評価装置100を用いた他の測定例を示す図である。図7は、鋳物部品1Aの電磁誘導センサ10を設置する部分のB−B断面図である。図6に示すように、鋳物部品1Aとしてガス配管用継手部材を評価する場合は、電磁誘導センサ10を、鋳物部品1Aの外部において鋳物部品1Aの表面から所定距離の位置まで接近させ保持されて設置するようになされている。この場合、図7に示すように、鋳物部品1Aの電磁誘導センサ10の先端に近い部分に対して測定を行い、そして、鋳物部品1Aまたは電磁誘導センサ10を回転させながら他の部分の測定を行う。このような測定方法は、比較的に大型の鋳物部品に対して適する。   FIG. 6 is a diagram illustrating another measurement example using the cast part chilled structure evaluation apparatus 100. FIG. 7 is a BB cross-sectional view of a portion where the electromagnetic induction sensor 10 of the cast part 1A is installed. As shown in FIG. 6, when evaluating a joint member for gas piping as a casting part 1A, the electromagnetic induction sensor 10 is held close to a predetermined distance from the surface of the casting part 1A outside the casting part 1A. It is designed to be installed. In this case, as shown in FIG. 7, the measurement is performed on the portion of the casting part 1A close to the tip of the electromagnetic induction sensor 10, and the other part is measured while rotating the casting part 1A or the electromagnetic induction sensor 10. Do. Such a measuring method is suitable for relatively large casting parts.

また、上述実施の形態において、予め基準試料としての鋳物部品を用いて基準設定を行うものについて説明したが、これに限定されるものではない。基準試料を用いずに、予め設定した閾値を用いて測定を行うようにしてもよい。   Moreover, in the above-mentioned embodiment, although what performed the reference | standard setting using the casting component as a reference | standard sample previously was demonstrated, it is not limited to this. Measurement may be performed using a preset threshold value without using the reference sample.

また、上述実施の形態において、電磁誘導センサ10は、鋳物部品1の端部の所定位置Lまで挿入した状態でセンサ保持手段20により保持される場合について説明したが、これに限定されるものではない。例えば、鋳物部品の種類によって中央部にチル化組織が発生する場合は、電磁誘導センサを鋳物部品の中に挿入して測定するようにしてもよい。または、電磁誘導センサを鋳物部品の中に挿入して移動しながら測定を行うようにしてもよい。   Further, in the above-described embodiment, the electromagnetic induction sensor 10 has been described as being held by the sensor holding means 20 in a state where the electromagnetic induction sensor 10 is inserted up to the predetermined position L at the end of the casting part 1, but is not limited thereto. Absent. For example, when a chilled structure is generated in the center depending on the type of casting part, an electromagnetic induction sensor may be inserted into the casting part for measurement. Alternatively, the electromagnetic induction sensor may be inserted into the casting part and measured while moving.

また、上述実施の形態において、鋳物部品として鉄筋用継手、ガス配管用継手を用いたが、これに限定されるものではない。鋳物部品全般にもこの発明を適用できる。   Moreover, in the above-described embodiment, the reinforcing steel joint and the gas pipe joint are used as the casting parts, but the present invention is not limited to this. The present invention can be applied to all cast parts.

本発明は、主として、ガス配管用、鉄筋用継手部材等の鋳物部品のチル化組織評価に適用でき、鋳物部品の品質管理の質的レベル向上などに大きな役割を果すことができる。   The present invention can be applied mainly to chilled structure evaluation of casting parts such as gas pipes and reinforcing steel joint members, and can play a major role in improving the quality level of quality control of casting parts.

実施の形態の鋳物部品のチル化組織評価装置の構成を示す図である。It is a figure which shows the structure of the chilled structure evaluation apparatus of the casting components of embodiment. 電磁誘導センサ10の構成を示す図である。1 is a diagram illustrating a configuration of an electromagnetic induction sensor 10. FIG. 鋳物部品1の電磁誘導センサ10を設置する部分の拡大図である。It is an enlarged view of the part which installs the electromagnetic induction sensor 10 of the casting component 1. FIG. 電磁誘導センサ10から出力する電気信号のモデル図である。3 is a model diagram of an electrical signal output from the electromagnetic induction sensor 10. FIG. 鋳物部品チル化組織評価装置100により、測定したデータの一例を示す図である。It is a figure which shows an example of the data measured with the casting component chilled structure evaluation apparatus 100. FIG. 鋳物部品チル化組織評価装置100を用いた他の測定例を示す図である。It is a figure which shows the other example of a measurement using the casting component chilled structure evaluation apparatus. 鋳物部品1Aの電磁誘導センサ10を設置する部分のB−B断面図である。It is BB sectional drawing of the part which installs the electromagnetic induction sensor 10 of 1 A of casting components. チル化組織の発生状況の模式図である。It is a schematic diagram of the generation | occurrence | production state of a chilled structure | tissue.

符号の説明Explanation of symbols

1,1A 鋳物部品
2 支持手段
10 電磁誘導センサ
11 正弦波発振器
12 誘導コイル
20 センサ保持手段
30 交流電源
40 検出回路
41 比較回路
42 判定回路
50 記録部
60 表示部
70 記憶部
100 鋳物部品のチル化組織評価装置
DESCRIPTION OF SYMBOLS 1,1A Casting part 2 Support means 10 Electromagnetic induction sensor 11 Sine wave oscillator 12 Inductive coil 20 Sensor holding means 30 AC power supply 40 Detection circuit 41 Comparison circuit 42 Judgment circuit 50 Recording part 60 Display part 70 Storage part 100 Chilling of casting part Organization evaluation device

Claims (8)

鋳物部品のチル化組織の有無を検出するセンサとして、前記鋳物部品に交流磁界を付与する励磁コイルと、該励磁コイルから前記鋳物部品に付与された交流磁界の磁束密度を検出するための誘導コイルとを有する電磁誘導センサを用い、前記鋳物部品により交流磁界の変化により前記誘導コイルに発生した誘導起電力の振幅と位相のうち、少なくても一方の変化量を測定して、前記チル化組織の有無を検出することを特徴とする鋳物部品のチル化組織評価方法。   As a sensor for detecting the presence or absence of a chilled structure of a cast part, an excitation coil for applying an AC magnetic field to the cast part, and an induction coil for detecting the magnetic flux density of the AC magnetic field applied to the cast part from the excitation coil And measuring the amount of change of at least one of the amplitude and phase of the induced electromotive force generated in the induction coil due to the change of the alternating magnetic field by the casting part, and the chilled structure A method for evaluating a chilled structure of a cast part, characterized by detecting the presence or absence of a casting. 前記電磁誘導センサを前記鋳物部品の内部に挿入して、前記鋳物部品の電磁誘導センサ挿入部の全周に対してチル化組織の有無を検出することを特徴とする請求項1記載の鋳物部品のチル化組織評価方法。   2. The casting part according to claim 1, wherein the electromagnetic induction sensor is inserted into the casting part to detect the presence or absence of a chilled structure with respect to the entire circumference of the electromagnetic induction sensor insertion portion of the casting part. Evaluation method of chilled structure. 励磁コイルに印加される電流の周波数fを、10kHz≧f≧0.1kHzにするとともに、励磁コイルの巻数N1と誘導コイルの巻数N2とを1000≧N2≧N1≧50の関係とすることを特徴とする請求項1または請求項2記載の鋳物部品のチル化組織評価方法。   The frequency f of the current applied to the exciting coil is set to 10 kHz ≧ f ≧ 0.1 kHz, and the number N1 of the exciting coil and the number N2 of the induction coil have a relationship of 1000 ≧ N2 ≧ N1 ≧ 50. The method for evaluating a chilled structure of a cast part according to claim 1 or 2. 前記鋳物部品がガス配管用、鉄筋用継手部材であることを特徴とする請求項1ないし請求項3に記載の鋳物部品のチル化組織評価方法。   The method for evaluating a chilled structure of a cast part according to any one of claims 1 to 3, wherein the cast part is a joint member for a gas pipe and a reinforcing bar. 鋳物部品のチル化組織の有無を検出するセンサとして、前記鋳物部品に交流磁界を付与する励磁コイルと、該励磁コイルから前記鋳物部品に付与された交流磁界の磁束密度を検出するための誘導コイルとを有する電磁誘導センサと、
前記電磁誘導センサを測定対象物としての鋳物部品の表面から所定距離の位置まで接近させ保持するセンサ保持手段と、
前記鋳物部品により交流磁界の変化により前記誘導コイルに発生した誘導起電力の振幅と位相のうち、少なくても一方の変化量に基づいて、鋳物部品のチル化組織の有無を判断する判断手段と、
前記判定手段により鋳物部品のチル化組織があると判断された場合、その旨を出力する出力手段とを備えることを特徴とする鋳物部品のチル化組織評価装置。
As a sensor for detecting the presence or absence of a chilled structure of a cast part, an excitation coil for applying an AC magnetic field to the cast part, and an induction coil for detecting the magnetic flux density of the AC magnetic field applied to the cast part from the excitation coil An electromagnetic induction sensor having
Sensor holding means for holding the electromagnetic induction sensor close to a predetermined distance from the surface of a casting part as a measurement object;
Judging means for judging the presence or absence of a chilled structure of the cast part based on the amount of change of at least one of the amplitude and phase of the induced electromotive force generated in the induction coil due to the change of the alternating magnetic field by the cast part; ,
An apparatus for evaluating a chilled structure of a cast part, comprising: output means for outputting a message to the effect that the determination means determines that there is a chilled structure of a cast part.
前記電磁誘導センサにおいて、励磁コイルに印加される電流の周波数fを、10kHz≧f≧0.1kHzにするとともに、励磁コイルの巻数N1と誘導コイルの巻数N2とを1000≧N2≧N1≧50の関係とすることを特徴とする請求項5記載の鋳物部品のチル化組織評価装置。   In the electromagnetic induction sensor, the frequency f of the current applied to the exciting coil is set to 10 kHz ≧ f ≧ 0.1 kHz, and the number N1 of the exciting coil and the number N2 of the induction coil are set to 1000 ≧ N2 ≧ N1 ≧ 50. 6. The cast part chilled structure evaluation apparatus according to claim 5, wherein the chilled structure evaluation apparatus is a relation. 前記鋳物部品が円筒形である場合において、前記センサ保持手段は、前記鋳物部品の内部に挿入された前記電磁誘導センサを前記鋳物部品の中心軸上に保持することを特徴とする請求項5または請求項6記載の鋳物部品のチル化組織評価装置。   The said holding | maintenance part hold | maintains the said electromagnetic induction sensor inserted in the inside of the said casting component on the center axis | shaft of the said casting component, when the said casting component is cylindrical shape. The cast structure evaluation apparatus for cast parts according to claim 6. 前記鋳物部品がガス配管用、鉄筋用継手部材であることを特徴とする請求項5ないし請求項7に記載の鋳物部品のチル化組織評価装置。   8. The cast part chilled structure evaluation apparatus according to claim 5, wherein the cast part is a joint member for a gas pipe and a reinforcing bar.
JP2007138710A 2007-05-25 2007-05-25 Method and apparatus for evaluating chilled structure of cast parts Expired - Fee Related JP4073472B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007138710A JP4073472B1 (en) 2007-05-25 2007-05-25 Method and apparatus for evaluating chilled structure of cast parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007138710A JP4073472B1 (en) 2007-05-25 2007-05-25 Method and apparatus for evaluating chilled structure of cast parts

Publications (2)

Publication Number Publication Date
JP4073472B1 JP4073472B1 (en) 2008-04-09
JP2008292335A true JP2008292335A (en) 2008-12-04

Family

ID=39356498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007138710A Expired - Fee Related JP4073472B1 (en) 2007-05-25 2007-05-25 Method and apparatus for evaluating chilled structure of cast parts

Country Status (1)

Country Link
JP (1) JP4073472B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107209152A (en) * 2015-02-04 2017-09-26 德州仪器公司 Frequency spectrum material analysis is carried out using multi-frequency inductive sensing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110823997A (en) * 2019-10-29 2020-02-21 万向钱潮股份有限公司 Nondestructive measurement device and method for core ferrite of shaft part

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107209152A (en) * 2015-02-04 2017-09-26 德州仪器公司 Frequency spectrum material analysis is carried out using multi-frequency inductive sensing
CN107209152B (en) * 2015-02-04 2021-02-05 德州仪器公司 Spectral material analysis using multi-frequency inductive sensing

Also Published As

Publication number Publication date
JP4073472B1 (en) 2008-04-09

Similar Documents

Publication Publication Date Title
WO2010024454A1 (en) Magnetic measuring method and device
JP4998821B2 (en) Eddy current inspection method and eddy current inspection apparatus for implementing the eddy current inspection method
Sun et al. A new NDT method based on permanent magnetic field perturbation
CN109521083B (en) Electromagnetic and acoustic composite nondestructive testing device, system and method
JP2009085894A (en) Method and device for detecting weld zone defect
JP2008224494A (en) Eddy current inspection method, steel pipe inspected thereby and eddy current inspection device for executing the eddy current inspection method
Zhao et al. A novel ACFM probe with flexible sensor array for pipe cracks inspection
Ortega-Labra et al. A novel system for non-destructive evaluation of surface stress in pipelines using rotational continuous magnetic Barkhausen noise
WO2008072508A1 (en) Nondestructive test instrument and nondestructive test method
JP4073472B1 (en) Method and apparatus for evaluating chilled structure of cast parts
JP2005292111A (en) Non-destructive inspection system for steel frame material of reinforced concrete
Mandal et al. Use of magnetic Barkhausen noise and magnetic flux leakage signals for analysis of defects in pipeline steel
JP2001318080A (en) Detection coil and inspecting device using the same
JP2005338046A (en) Nondestructive inspection apparatus for metallic conduit
JP2015169644A (en) Method and device for measuring carbonization depth
Brauer et al. Defect detection in conducting materials using eddy current testing techniques
Shleenkov et al. Features and advantages of applying anisotropic magnetoresistive field sensors to testing the full volume of small-and medium-diameter pipes
JP2006010646A (en) Method and apparatus for detecting degradation of inner surface of steel pipe
RU2610350C1 (en) Eddy current testing method
CN108489374B (en) Dual-mode ferromagnetic cladding layer pipeline wall thickness detection method
JP3705327B2 (en) Metal pipe internal damage inspection method
JP5794927B2 (en) Carburizing depth evaluation method and piping life evaluation method
JP2012112868A (en) Internal defective measuring method and internal defective measuring device
CN104391036A (en) Gas storage well wellbore defect detection method
Yu et al. Prediction of Inhomogeneous Stress in Metal Structures: A Hybrid Approach Combining Eddy Current Technique and Finite Element Method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140201

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees