JP2008292260A - Sample concentration device and sample concentration method - Google Patents

Sample concentration device and sample concentration method Download PDF

Info

Publication number
JP2008292260A
JP2008292260A JP2007137224A JP2007137224A JP2008292260A JP 2008292260 A JP2008292260 A JP 2008292260A JP 2007137224 A JP2007137224 A JP 2007137224A JP 2007137224 A JP2007137224 A JP 2007137224A JP 2008292260 A JP2008292260 A JP 2008292260A
Authority
JP
Japan
Prior art keywords
sample
fluid
injection
flow path
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007137224A
Other languages
Japanese (ja)
Inventor
Hideyori Igata
英資 井形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2007137224A priority Critical patent/JP2008292260A/en
Publication of JP2008292260A publication Critical patent/JP2008292260A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sample concentration device concentrating a sample included in fluid, and pouring the sample quantitatively into a microchannel. <P>SOLUTION: This concentration device for concentrating the fluid including the sample has: two channels for injection for injecting the fluid including the sample; a main channel into which the fluid is poured; a sharing part provided on a connection position between the channels for injection and the main channel; a valve for opening/closing a flow of the fluid passing the sharing part from the channels for injection and flowing into the main channel; and a vibration wave generation means for imparting the vibration wave to the fluid held in a part of the channels for injection and the sharing part by the valve. In the sample concentration device, the sample included in the fluid is concentrated by imparting the vibration wave to the held fluid, and the concentrated sample is poured from the sharing part into the main channel. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、マイクロ流路における微量な試料を含む流体を濃縮する試料濃縮装置および試料濃縮方法に関するものである。   The present invention relates to a sample concentrating device and a sample concentrating method for concentrating a fluid containing a very small amount of sample in a microchannel.

微細構造を有する分析装置は、机上サイズの機器と比べ、感度の向上、試料量の低減、高速分析という利点が挙げられている。また、マイクロ・トータル・アナリシス・システム(μ−TAS)と呼ばれる、微小空間を利用して検体採取から各種工程を経て分析までを行うというコンセプトの発展により、それらに関する技術が注目を集めている。生体試料の分析において、質量分析法、電気泳動法などが用いられるが、それらの技術もマイクロチップ化することができる。   Analyzing apparatuses having a fine structure have advantages such as improved sensitivity, reduced sample amount, and high-speed analysis compared to a desktop-sized instrument. In addition, the development of a concept called micro total analysis system (μ-TAS) that performs a process from specimen collection to analysis through various processes using a micro space has attracted attention. In analysis of a biological sample, mass spectrometry, electrophoresis, or the like is used, and these techniques can also be made into a microchip.

しかし、マイクロ流体デバイスにおける分析は微細な構造を有しているため、従来の大きさのフローインジェクション装置において扱える最小量をも下回る試料量が必要とされることが多い。従来の電気泳動チップにおいては、図3における微量の試料47を注出する際に、デバイス上でマイクロ流路を注入用流路44と本流路45を十字型に交差させるように形成し、共有部46の容積相当の試料量を注出する方法が採られていた(特許文献1参照)。この注出時において、まず注入用流路44方向に電位勾配を付与し、試料47を最低でも共有部46部分まで満たしたうえで、試料の流れを印加電圧を調整して本流路45方向に切り換えることにより一定容積の試料48を注出するという作業が必要となる。   However, since analysis in a microfluidic device has a fine structure, a sample amount that is less than the minimum amount that can be handled in a conventional flow injection apparatus is often required. In the conventional electrophoresis chip, when a small amount of the sample 47 in FIG. 3 is poured out, the micro flow channel is formed on the device so that the injection flow channel 44 and the main flow channel 45 intersect in a cross shape, and is shared. A method of dispensing a sample amount corresponding to the volume of the portion 46 has been adopted (see Patent Document 1). At the time of this dispensing, first, a potential gradient is applied in the direction of the injection flow path 44, and the sample 47 is filled to the shared portion 46 at least, and then the applied voltage is adjusted to the direction of the main flow path 45. By switching, a work of dispensing a constant volume of sample 48 is required.

また、図4に、従来技術の流路共有部において試料を吸着させてから注出する方法を示す。まず、注入用流路52を流れてきた試料54を、共有部55において流路表面に固定化されているプローブに吸着させる。次に、本流路53方向に移送するときには、試料54を脱着させて試料56を注出するという方法もある。この方法は、共有部55において注入用流路52に注入された試料を濃縮させたうえで本流路53方向へと注出していることになる(特許文献2参照)。   FIG. 4 shows a method of dispensing after adsorbing the sample in the flow path sharing part of the prior art. First, the sample 54 that has flowed through the injection flow channel 52 is adsorbed by a probe fixed to the flow channel surface in the shared portion 55. Next, when transferring in the direction of the main flow path 53, there is also a method in which the sample 56 is removed by removing the sample 54. In this method, the sample injected into the injection flow channel 52 is concentrated in the shared portion 55 and then poured out toward the main flow channel 53 (see Patent Document 2).

さらに、メンブレンを用いる従来技術として、図5に示す様に、注入用流路60内でメンブレン63方向へレザーバ57より試料64を移送し続けることにより共有部62において試料64を濃縮させる。そして、流れを本流路61方向に切り換えて、微量試料を注出する方法もある(非特許文献1参照)。   Further, as a conventional technique using a membrane, as shown in FIG. 5, the sample 64 is concentrated in the shared portion 62 by continuing to transfer the sample 64 from the reservoir 57 toward the membrane 63 in the injection channel 60. There is also a method of pouring a small amount of sample by switching the flow in the direction of the main flow path 61 (see Non-Patent Document 1).

また、メンブレンフィルタ、吸着分子などを利用せずに試料を濃縮する従来技術として、図6における、超音波発生源67、68を用いて定在波70を付与し、試料69を流路66内の一定範囲に集めて所望の流路71へ注出する方法が開示されている(特許文献3参照)。
米国特許第5900130号明細書(第2項、図1a、4b) 特開2005−274405号公報(第17項、図1) 特開平9−122480号公報(第7項、図6) Julia Khandurina, Stephen C.Jacobson, Larry C.Waters, Robert S.Foote,and Michael Ramsey,“Microfabricated porous Membrane Structure for Sample Concentration and Electrophoretic Analysis,”Analytical Chemistry,1999,Vol.71,No.9,pp1815−1819,(第1817項、図3)
As a conventional technique for concentrating a sample without using a membrane filter, adsorbed molecules, etc., a standing wave 70 is applied using the ultrasonic wave generation sources 67 and 68 in FIG. A method is disclosed in which these are collected in a certain range and poured into a desired flow path 71 (see Patent Document 3).
US Pat. No. 5,900,130 (Section 2, FIGS. 1a and 4b) Japanese Patent Laying-Open No. 2005-274405 (Section 17, FIG. 1) JP-A-9-122480 (Section 7, FIG. 6) Julia Khandurina, Stephen C .; Jacobson, Larry C .; Waters, Robert S. Foote, and Michael Ramsey, “Microfabricated Porous Membrane Structure for Sample Concentration and Electrophoretic Analysis,” Analytical Chemistry19. 71, no. 9, pp 1815-1819, (paragraph 1817, FIG. 3)

前記十字型流路による微量試料注出方法において、注入用流路44に多量の、最低でも注入口41から共有部46までの試料量を要するが、実際に本流路45方向に注出される試料48は、共有部46の容積で決定された全試料量の一部である。そのため、注出に要するデッドボリュームが多いという課題がある。また、注出試料量がマイクロ流路の共有部の容積に限られるという制限もある。   In the method of dispensing a small amount of sample using the cross-shaped channel, a large amount of sample is required for the injection channel 44 from the injection port 41 to the common part 46 at the minimum, but the sample actually extracted in the direction of the main channel 45 48 is a part of the total sample amount determined by the volume of the shared part 46. Therefore, there is a problem that a lot of dead volume is required for extraction. There is also a limitation that the amount of sample to be dispensed is limited to the volume of the shared part of the microchannel.

また、前記共有部において試料を吸着させる方法おいては、注出される試料量は共有部55における試料54の吸着効率に依存するため、定量性に問題が生じる。
前記メンブレンを用いた方法において、電気浸透流以外の送液方法では、試料が本流路61方向へ流れを切り換える以前に、本流路61方向へ移送されてしまい、定量性に課題が生じる。
Further, in the method of adsorbing the sample in the common part, the amount of sample to be dispensed depends on the adsorption efficiency of the sample 54 in the common part 55, so that there is a problem in quantitativeness.
In the method using the membrane, in the liquid feeding method other than the electroosmotic flow, the sample is transferred in the direction of the main flow path 61 before switching the flow in the direction of the main flow path 61, which causes a problem in quantitativeness.

さらに、前記超音波を用いた注出方法において、試料69の流路71への回収は、定量性を考慮しておらず、試料69の一部が所望の流路内に納まらない可能性もあるという問題がある。さらに、試料69の回収方法は、キャピラリ71を物理的に流路に挿入して試料69をそのキャピラリ71内に収納するため、流路はマイクロ流路ではなくキャピラリを動かすことのできるのに十分な大きさを有するものにしか適用できないという課題がある。   Furthermore, in the extraction method using ultrasonic waves, the collection of the sample 69 into the flow path 71 does not take quantitativeness into account, and there is a possibility that a part of the sample 69 does not fit in the desired flow path. There is a problem that there is. Furthermore, since the sample 71 is physically inserted into the channel and the sample 69 is accommodated in the capillary 71, the sample 69 is sufficiently collected to move the capillary instead of the micro channel. There is a problem that it can be applied only to those having a large size.

本発明は、この様な背景技術に鑑みてなされたものであり、注入用流路内におけるデッドボリュームを低減し、流体に含まれる微量な試料を濃縮させ、該試料を定量的にマイクロ流路に注出することができる試料濃縮装置および試料濃縮方法を提供するものである。   The present invention has been made in view of such background art, and reduces the dead volume in the flow channel for injection, concentrates a small amount of sample contained in the fluid, and quantitatively transfers the sample to the micro flow channel. The present invention provides a sample concentrating device and a sample concentrating method that can be dispensed into a container.

上記の課題を解決する微量試料濃縮装置は、試料を含む流体を濃縮する濃縮装置であって、試料を含む流体を注入する少なくとも2つの注入用流路と、前記流体を注出する本流路と、前記注入用流路と本流路が接続する位置に設けられた共有部と、前記注入用流路から共有部を通過して本流路へ流れる流体の流れを開閉するバルブと、前記バルブにより注入用流路の一部と共有部に保持された流体に振動波を付与する振動波発生手段とを有し、前記保持された流体に振動波を付与することにより流体に含まれる試料を濃縮し、濃縮した試料を共有部から本流路に注出することを特徴とする。   A micro sample concentration device that solves the above problem is a concentration device that concentrates a fluid containing a sample, and includes at least two injection channels for injecting the fluid containing the sample, and a main channel for dispensing the fluid. A shared portion provided at a position where the injection flow path and the main flow path are connected; a valve that opens and closes a flow of fluid that flows from the injection flow path to the main flow path through the common flow section; and injection by the valve And a vibration wave generating means for applying a vibration wave to the fluid held in the shared portion and concentrating the sample contained in the fluid by applying the vibration wave to the held fluid. The concentrated sample is poured into the main channel from the common part.

上記の課題を解決する微量試料濃縮方法は、試料を含む流体を濃縮する濃縮方法であって、試料を含む流体を注入する少なくとも2つの注入用流路と、前記流体を注出する本流路と、前記注入用流路と本流路が接続する位置に設けられた共有部と、前記注入用流路から共有部を通過して本流路へ流れる流体の流れを開閉するバルブと、前記バルブにより注入用流路の一部と共有部に保持された流体に振動波を付与する振動波発生手段とを用いて、前記保持された流体に振動波を付与することにより流体に含まれる試料を濃縮し、濃縮した試料を共有部から本流路に注出することを特徴とする。   A micro sample concentration method that solves the above problem is a concentration method for concentrating a fluid containing a sample, and includes at least two injection channels for injecting a fluid containing a sample, and a main channel for dispensing the fluid. A shared portion provided at a position where the injection flow path and the main flow path are connected; a valve that opens and closes a flow of fluid that flows from the injection flow path to the main flow path through the common flow section; and injection by the valve The sample contained in the fluid is concentrated by applying a vibration wave to the held fluid using a vibration wave generating means for applying a vibration wave to a part of the flow path and the fluid held in the common part. The concentrated sample is poured into the main channel from the common part.

本発明は、流体に含まれる試料を濃縮させ、該試料を定量的にマイクロ流路に注出することができる試料濃縮装置および試料濃縮方法を提供することができる。
本発明の試料濃縮装置および方法においては、マイクロ流路であるる注入用流路内に存在する流体に含まれる試料を共有部に濃縮することにより、バルブで閉じられた空間内の全試料量を効率的に本流路に注出できるという効果を有する。
The present invention can provide a sample concentrating apparatus and a sample concentrating method that can concentrate a sample contained in a fluid and quantitatively dispense the sample into a microchannel.
In the sample concentration apparatus and method of the present invention, the total amount of sample in the space closed by the valve is obtained by concentrating the sample contained in the fluid existing in the injection channel, which is a microchannel, in the common part. Can be efficiently poured into the main channel.

また、注出する試料の容積は共有部の容積のみに制限されないので、注出する試料量の自由度が増加するという効果がある。
また、注入用流路の容積をバルブによって定めることにより、濃縮した試料を定量的に本流路に注出できるという効果を有する。
Further, since the volume of the sample to be dispensed is not limited only to the volume of the shared portion, there is an effect that the degree of freedom of the amount of sample to be dispensed increases.
Further, by determining the volume of the injection channel with a valve, it is possible to quantitatively dispense the concentrated sample into the main channel.

以下、本発明を詳細に説明する。
本発明に係る微量試料濃縮装置は、試料を含む流体を濃縮する濃縮装置であって、試料を含む流体を注入する少なくとも2つの注入用流路と、前記流体を注出する本流路と、前記注入用流路と本流路が接続する位置に設けられた共有部と、前記注入用流路から共有部を通過して本流路へ流れる流体の流れを開閉するバルブと、前記バルブにより注入用流路の一部と共有部に保持された流体に振動波を付与する振動波発生手段とを有し、前記保持された流体に振動波を付与することにより流体に含まれる試料を濃縮し、濃縮した試料を共有部から本流路に注出することを特徴とする。
Hereinafter, the present invention will be described in detail.
A micro sample concentration device according to the present invention is a concentration device for concentrating a fluid containing a sample, and includes at least two injection channels for injecting a fluid containing a sample, a main channel for dispensing the fluid, A common portion provided at a position where the injection flow channel and the main flow channel are connected; a valve that opens and closes the flow of fluid that flows from the injection flow channel to the main flow channel through the common flow channel; A vibration wave generating means for applying a vibration wave to the fluid held in a part of the path and the shared portion, and concentrating a sample contained in the fluid by applying the vibration wave to the held fluid; It is characterized by pouring the prepared sample into the main channel from the common part.

前記振動波発生手段は、超音波帯の振動波を発生する手段であることが好ましいが、これに限定されない。具体的な振動波発生手段としては、超音波発生源と反射板、または2つの超音波発生源からなり、前記共有部に超音波の定在波の節または腹を付与することが好ましい。   The vibration wave generating means is preferably a means for generating an ultrasonic wave vibration wave, but is not limited thereto. As a specific vibration wave generating means, it is preferable that the ultrasonic wave generating source and the reflection plate or two ultrasonic wave generating sources are used, and a node or a belly of an ultrasonic standing wave is applied to the shared part.

前記試料は、細胞、粒子または粒子に吸着した分子であることが好ましく、分子はDNAやたんぱく質を含んだ生体分子であってもよい。
前記流路の断面寸法の幅および深さの少なくとも1つが、0.1μm以上1000μm以下であることが好ましい。
The sample is preferably a cell, a particle, or a molecule adsorbed on the particle, and the molecule may be a biomolecule containing DNA or protein.
It is preferable that at least one of the width and the depth of the cross-sectional dimension of the channel is 0.1 μm or more and 1000 μm or less.

本発明に係る微量試料濃縮方法は、試料を含む流体を濃縮する濃縮方法であって、試料を含む流体を注入する少なくとも2つの注入用流路と、前記流体を注出する本流路と、前記注入用流路と本流路が接続する位置に設けられた共有部と、前記注入用流路から共有部を通過して本流路へ流れる流体の流れを開閉するバルブと、前記バルブにより注入用流路の一部と共有部に保持された流体に振動波を付与する振動波発生手段とを用いて、前記保持された流体に振動波を付与することにより流体に含まれる試料を濃縮し、濃縮した試料を共有部から本流路に注出することを特徴とする。   The micro sample concentration method according to the present invention is a concentration method for concentrating a fluid containing a sample, wherein at least two injection channels for injecting a fluid containing a sample, a main channel for dispensing the fluid, A common portion provided at a position where the injection flow channel and the main flow channel are connected; a valve that opens and closes the flow of fluid that flows from the injection flow channel to the main flow channel through the common flow channel; Using a vibration wave generating means for applying a vibration wave to the fluid held in a part of the path and the shared part, the sample contained in the fluid is concentrated by applying the vibration wave to the held fluid, and concentrated. It is characterized by pouring the prepared sample into the main channel from the common part.

前記試料の注出量が、共有部の容積より小さい、等しいまたは大きいことが好ましい。
本発明は、振動波を用いて流体に含まれる試料を濃縮するが、その原理は振動波発信源より生ずる音響反射波を用いるものである。定在波を構成したさいの節または節からの距離xに存在する粒子が受ける力Fは
It is preferable that the amount of sample dispensed is smaller, equal or larger than the volume of the common part.
In the present invention, a sample contained in a fluid is concentrated using a vibration wave, and the principle is that an acoustic reflection wave generated from a vibration wave transmission source is used. The force F received by a particle existing at a distance x from a node or a node constituting a standing wave is

Figure 2008292260
Figure 2008292260

と表現される。ここで、p0は音圧振幅、Vcは粒子の体積、λは音波波長、kは波数ベクトルであり、φ、β、およびρは、 It is expressed. Where p 0 is the sound pressure amplitude, V c is the volume of the particle, λ is the sound wave wavelength, k is the wave number vector, φ, β, and ρ are

Figure 2008292260
Figure 2008292260

で表され、ρcは粒子の密度、ρwは溶媒の密度、βcは粒子の圧縮率、βwは溶媒の圧縮率である。ここで、φはφ因子と呼ばれ、正の値においては粒子が定在波の節に集積され、負の値においては粒子が定在波の腹に集積される。 Ρ c is the particle density, ρ w is the solvent density, β c is the particle compressibility, and β w is the solvent compressibility. Here, φ is called a φ factor, and in the positive value, the particles are accumulated in the nodes of the standing wave, and in the negative value, the particles are accumulated in the antinodes of the standing wave.

本発明は上記原理を利用して、注入用流路内に存在する試料を注入用流路と本流路で構成される共有部に濃縮させ、その後に本流路に注出する。
図1は本発明の試料濃縮装置の一実施態様を示す概念図である。以下、図1を用いて詳細に説明する。
The present invention uses the above principle to concentrate the sample existing in the injection channel into a common part constituted by the injection channel and the main channel, and then pours it into the main channel.
FIG. 1 is a conceptual diagram showing an embodiment of a sample concentrator of the present invention. Hereinafter, it demonstrates in detail using FIG.

本発明の試料濃縮装置は、試料を含む流体を注入する2つの注入用流路4、5と、前記流体を注出する本流路6と、前記注入用流路4、5と本流路6が接続する位置に設けられた共有部7と、前記注入用流路から共有部7を通過して本流路へ流れる流体の流れを開閉するバルブ10、11、12、13と、前記バルブにより注入用流路の一部と共有部に保持された流体に超音波を付与する超音波発生手段80とを有する。   The sample concentrator of the present invention comprises two injection channels 4 and 5 for injecting a fluid containing a sample, a main channel 6 for dispensing the fluid, and the injection channels 4 and 5 and the main channel 6. A shared portion 7 provided at a connection position, valves 10, 11, 12, and 13 that open and close the flow of fluid that flows from the injection flow path to the main flow path through the shared portion 7, and for injection by the valve Ultrasonic wave generation means 80 for applying ultrasonic waves to the fluid held in a part of the flow path and the shared part is included.

注入用流路4、5、および本流路6はマイクロ流路からなる。本発明において好ましいマイクロ流路の断面寸法としては、幅および深さの少なくともいずれかの断面寸法が0.1μm以上1000μm以下である。幅および深さの両方の断面寸法は異なっても、同じでもよい。注入用流路4と流路6との接触地点から、注入用流路5と本流路6との接触地点までの流路を共有部7とする。また、マイクロ流路の構成が、注入用流路4と本流路6の延長方向に注入用流路5が存在する、すなわち十字型の流路構成となってもかまわない。また、本流路6は濃縮、分析目的だけに用いられる必要はなく、試料注出後のいかなる工程を経るものであってもよい。   The injection channels 4 and 5 and the main channel 6 are micro channels. As a cross-sectional dimension of the microchannel preferable in the present invention, the cross-sectional dimension of at least one of the width and the depth is 0.1 μm or more and 1000 μm or less. The cross-sectional dimensions of both the width and depth may be different or the same. A flow path from a contact point between the injection flow path 4 and the flow path 6 to a contact point between the injection flow path 5 and the main flow path 6 is defined as a shared portion 7. Further, the configuration of the micro flow path may be a cross-shaped flow path structure in which the injection flow path 5 exists in the extending direction of the injection flow path 4 and the main flow path 6. Further, the main channel 6 does not need to be used only for the purpose of concentration and analysis, and may pass through any process after sample extraction.

本発明の試料濃縮装置は、材質はガラス、セラミック、金属、プラスチック、またはそれらのハイブリッドなど特に限定を設ける必要はないが、できる限り超音波を吸収しにくい部材であることが望ましい。   The material of the sample concentrator of the present invention need not be particularly limited, such as glass, ceramic, metal, plastic, or a hybrid thereof, but is preferably a member that hardly absorbs ultrasonic waves as much as possible.

バルブ10、11、12、13は特に形態に制限を設ける必要がないが、ダイヤフラムによって流路を塞ぐ形態などの複数回開閉動作を行うことができる形態が好ましい。バルブ10は注入用流路4が共有部7方向へ曲がる直前に位置し、バルブ11は本流路6におけるレザーバ2の方向への共有部7との境に位置する。バルブ12は注入用流路5において共有部7より離れる方向に曲がった直後に配置され、バルブ13は本流路6におけるレザーバ2の方向と反対側の共有部7との境に配置されている。   The valves 10, 11, 12, and 13 do not need to have any particular restrictions on the form, but a form that can be opened and closed multiple times, such as a form that blocks the flow path with a diaphragm, is preferable. The valve 10 is positioned immediately before the injection flow path 4 bends in the direction of the shared portion 7, and the valve 11 is positioned at the boundary with the shared portion 7 in the direction of the reservoir 2 in the main flow path 6. The valve 12 is disposed immediately after bending in the direction away from the shared portion 7 in the injection flow path 5, and the valve 13 is disposed at the boundary with the shared section 7 on the opposite side of the main flow path 6 from the reservoir 2.

また、注入用流路4におけるレザーバ1よりバルブ10までの距離、および注入用流路5におけるバルブ12よりレザーバ3までの距離は、必要な試料量を低減するために、できる限り短いことが好ましい。   In addition, the distance from reservoir 1 to valve 10 in injection channel 4 and the distance from valve 12 to reservoir 3 in injection channel 5 are preferably as short as possible in order to reduce the amount of sample required. .

前記超音波発生手段80は、超音波発生源8と、反射板または超音波発生源9とからなる。超音波発生源8は少なくとも共有部7の本流路6方向の長さ以上の長さを有し、バルブ10、11、12および13で閉じられた空間全体を覆う幅で超音波を発振することができ、できる限り注入用流路4に近い位置に設置される。図1における注入用流路5にできる限り近い位置に設置された反射板または超音波発生源9は、超音波発生源8と同じ大きさのもう一つの超音波発生源であるか、または超音波発生源8からの音波を反射する反射板でもよく、超音波発生源8と対になって、定在波を構成できればよい。   The ultrasonic wave generation means 80 includes an ultrasonic wave generation source 8 and a reflector or an ultrasonic wave generation source 9. The ultrasonic wave generation source 8 has at least a length of the common part 7 in the direction of the main flow path 6 and oscillates ultrasonic waves with a width that covers the entire space closed by the valves 10, 11, 12, and 13. It is installed at a position as close to the injection channel 4 as possible. The reflector or the ultrasonic wave generation source 9 installed as close as possible to the injection flow path 5 in FIG. 1 is another ultrasonic wave generation source having the same size as the ultrasonic wave generation source 8 or an ultrasonic wave source. A reflection plate that reflects sound waves from the sound wave generation source 8 may be used, and it is only necessary that the standing wave can be configured in combination with the ultrasonic wave generation source 8.

試料溶液15は、ビーズ、細胞またはビーズに固定化された分子などが適切な濃度で溶媒に稀釈されたものが挙げられる。   Examples of the sample solution 15 include a bead, a cell, or a molecule immobilized on the bead, which is diluted in a solvent at an appropriate concentration.

以下、実施例を示し本発明をさらに具体的に説明する。
実施例1
図1を用いて、実施例1を説明する。
Hereinafter, the present invention will be described more specifically with reference to examples.
Example 1
Example 1 will be described with reference to FIG.

まず、バルブ10、12を開放し、レザーバ1から注入用流路4、共有部7、注入用流路5を経て、レザーバ3方向へあらかじめ濃度が調整された試料を含有する試料溶液15を注入する。なお、バルブ11、13は閉じている。このときの、試料溶液の移送方法は、マイクロ流路における毛細管現象を利用する方法、外部ポンプによるレザーバ1への加圧、またはレザーバ3における減圧による圧力流、レザーバ1とレザーバ3間での電気浸透流や誘電泳動など、特に方法を限定する必要はない。試料溶液15の流れがバルブ12を通過した後にバルブ12、バルブ10の順でバルブを閉じる。   First, the valves 10 and 12 are opened, and a sample solution 15 containing a sample whose concentration is adjusted in advance in the direction of the reservoir 3 is injected from the reservoir 1 through the injection channel 4, the shared portion 7, and the injection channel 5. To do. Valves 11 and 13 are closed. At this time, the sample solution is transferred by a method using a capillary phenomenon in a micro flow path, a pressure applied to the reservoir 1 by an external pump, or a pressure flow caused by a decompression in the reservoir 3, and electricity between the reservoir 1 and the reservoir 3. There is no particular limitation on the method such as osmotic flow or dielectrophoresis. After the flow of the sample solution 15 passes through the valve 12, the valve is closed in the order of the valve 12 and the valve 10.

次に、超音波発生源8を作動させて注入流路方向へ音波を発振する。図1における注入用流路5に近い位置に設置された9において、9が反射板であるとすると、超音波発生源8のみの周波数制御によって、共有部7に定在波の節または腹を構成することができる。また、9がもう一つの超音波発生源とすると、超音波発生源8から発振された音波と超音波発生源9から発振された波の重ね合わせにより、共有部7に定在波の節または腹を構成することができる。また、共有部7以外の位置においても、音波の重ね合わせにより節または腹を構築することができ、その場合超音波の節または腹で試料溶液15をトラップしたまま共有部7へと移送させても良い。   Next, the ultrasonic wave generation source 8 is operated to oscillate a sound wave in the direction of the injection channel. If 9 is a reflector in 9 installed near the injection flow path 5 in FIG. 1, a standing wave node or belly is placed on the shared portion 7 by frequency control of only the ultrasonic wave generation source 8. Can be configured. If 9 is another ultrasonic wave generation source, a superposition of a wave of standing waves in the sharing unit 7 by superposition of a sound wave oscillated from the ultrasonic wave generation source 8 and a wave oscillated from the ultrasonic wave generation source 9. The belly can be configured. In addition, a node or an abdomen can be constructed by superimposing sound waves also at a position other than the shared part 7, and in this case, the sample solution 15 is transferred to the shared part 7 while being trapped by the ultrasonic node or the abdomen. Also good.

注入用流路4、5内に超音波の節または腹が一つできる、つまり定在波14に示されるような超音波発生源8と反射板9(または超音波発生源9)の距離を半波長とするように周波数を調節し、節または腹が共有部7に配置されるようにする。節を構成するか腹を構成するかは、濃縮したい試料のφ因子による。このとき、注入用流路4、5内のバルブ10、12、および本流路6内のバルブ11、13で閉じられた空間全体において、試料溶液15は共有部7へ集積する方向16、17へ向かって力が働き、共有部7へと濃縮される。なお、図1においては定在波14が共有部7において節を構成するように図示したが、腹を構成するようにすることもでき、本実施例と同様に試料を濃縮させることが可能である。   One ultrasonic node or antinode is formed in the injection channels 4 and 5, that is, the distance between the ultrasonic wave generation source 8 and the reflector 9 (or the ultrasonic wave generation source 9) as indicated by the standing wave 14 is set. The frequency is adjusted so as to be a half wavelength, and the nodes or antinodes are arranged in the shared portion 7. Whether to form a node or a belly depends on the φ factor of the sample to be concentrated. At this time, in the entire space closed by the valves 10 and 12 in the injection channels 4 and 5 and the valves 11 and 13 in the main channel 6, the sample solution 15 is accumulated in the directions 16 and 17 in which the sample solution 15 is accumulated in the common unit 7. The force works toward the shared part 7. In FIG. 1, the standing wave 14 is illustrated as constituting a node in the shared portion 7, but it may be configured as an abdomen, and the sample can be concentrated as in the present embodiment. is there.

試料溶液15が共有部7へ濃縮されたのち、バルブ11、13を開放して、本流路6に接続するレザーバ2より加圧して試料を本流路6へ注出する。また、加圧による圧力流だけでなく、電気浸透流、誘電泳動などの方法によって、試料は本流路6へ注出されてもよく、特に試料溶液15の移送方法を限定する必要はない。   After the sample solution 15 is concentrated to the common part 7, the valves 11 and 13 are opened, and the sample is poured into the main channel 6 by applying pressure from the reservoir 2 connected to the main channel 6. Further, the sample may be poured out into the main channel 6 by a method such as electroosmotic flow or dielectrophoresis, as well as the pressure flow by pressurization, and the method for transferring the sample solution 15 is not particularly limited.

実施例2
実施例2として、複数の本流路において本発明の応用を、図2を用いて説明する。図2は本発明の試料濃縮装置の他の実施態様を示す概念図である。
Example 2
As Example 2, application of the present invention in a plurality of main channels will be described with reference to FIG. FIG. 2 is a conceptual diagram showing another embodiment of the sample concentrator of the present invention.

注入用流路22は両端においてレザーバ18、21を有し、レザーバ18から共有部25方向へ注入用流路22が曲がる直前にバルブ29、共有部26からレザーバ21方向へ注入用流路19が曲がった直後にバルブ32を設置する。共有部25と本流路23とのそれぞれの境にバルブ30、33を配置し、共有部26と本流路24とのそれぞれの境にバルブ31、34を配置する。   The injection channel 22 has reservoirs 18 and 21 at both ends, and immediately before the injection channel 22 bends from the reservoir 18 toward the shared portion 25, the injection channel 19 extends from the shared portion 26 toward the reservoir 21. Immediately after bending, the valve 32 is installed. Valves 30 and 33 are arranged at the boundary between the shared portion 25 and the main flow path 23, and valves 31 and 34 are arranged at the respective boundaries between the shared portion 26 and the main flow path 24.

共有部25とは、注入用流路22と本流路23が交差した部分の領域を指す。同様に、共有部26は、注入用流路22と本流路24交差した部分の領域を指す。また、本実施例においては、注入用流路は1本の直線で図示されているが、実施例1のように交差せずに、接触しているだけでもかまわない。   The shared portion 25 refers to a region where the injection channel 22 and the main channel 23 intersect. Similarly, the sharing unit 26 indicates a region where the injection channel 22 and the main channel 24 intersect. Further, in the present embodiment, the injection flow path is illustrated by a single straight line, but it may be in contact with each other without crossing as in the first embodiment.

試料溶液36をバルブ29、32を開放して注入用流路22に注入し、試料溶液がバルブ32よりレザーバ21方向へ進行した後、バルブ32、29の順に閉じる。超音波発生源27と反射板あるいは超音波発生源である28の間に共有部25、26に節または腹が存在するような周波数に調整された定在波35を発振する。図2における、本流路が2本の場合、発振された超音波はちょうど1波長に相当する。   The sample solution 36 is injected into the injection flow path 22 by opening the valves 29 and 32, and after the sample solution proceeds from the valve 32 toward the reservoir 21, the valves 32 and 29 are closed in this order. A standing wave 35 is oscillated between the ultrasonic wave generation source 27 and the reflector 28 or the ultrasonic wave generation source 28 so as to have a frequency such that nodes or antinodes exist in the shared portions 25 and 26. When there are two main flow paths in FIG. 2, the oscillated ultrasonic wave corresponds to exactly one wavelength.

超音波による力が発生し、注入用流路内に存在する試料溶液36は注入用流路22の存在位置において矢印37、38、39あるいは40方向への力を受けて共有部25、あるいは共有部26に濃縮される。その後、バルブ30、33を開放して本流路23に試料を注出し、バルブ31、34を開放して本流路24に試料を注出する。本流路23、24方向への試料溶液36の移送は、特に方法を限定する必要はなく、また、注出の時刻を同期させなくともよい。   Ultrasonic force is generated, and the sample solution 36 existing in the injection channel 22 receives the force in the direction of the arrows 37, 38, 39, or 40 at the position where the injection channel 22 is present, or the shared portion 25 or shared. Concentrated in part 26. Thereafter, the valves 30 and 33 are opened to pour the sample into the main flow path 23, and the valves 31 and 34 are opened to pour the sample into the main flow path 24. The method of transferring the sample solution 36 in the direction of the main channels 23 and 24 is not particularly limited, and the dispensing time need not be synchronized.

実施例2は2本の本流路に試料を注出する方法について述べたが、3本以上の本流路においても各本流路を半波長間隔に設置すると、超音波発信源の周波数を調節して各共有部に節または腹を構成し、本発明の試料注出方法を使うことができる。   Example 2 described the method of pouring a sample into two main channels. However, even in three or more main channels, if each main channel is installed at half-wavelength intervals, the frequency of the ultrasonic transmission source is adjusted. A node or an abdomen is formed in each common part, and the sample extraction method of the present invention can be used.

本発明の試料濃縮装置は、流体に含まれる試料を濃縮させ、該試料を定量的にマイクロ流路に注出することができるので、マイクロ流路やキャピラリを用いた、細胞および生体分子を含んだ試料の分離および精製に用いられるためのマイクロフローインジェクションに利用することができる。   The sample concentrator of the present invention can concentrate a sample contained in a fluid and quantitatively pour the sample into a microchannel, so that it contains cells and biomolecules using microchannels and capillaries. It can be used for microflow injection to be used for separation and purification of samples.

本発明の試料濃縮装置の一実施態様を示す概念図である。It is a conceptual diagram which shows one embodiment of the sample concentration apparatus of this invention. 本発明の試料濃縮装置の他の実施態様を示す概念図である。It is a conceptual diagram which shows the other embodiment of the sample concentration apparatus of this invention. 従来技術の十字型流路を用いた試料注出法を示す概念図である。It is a conceptual diagram which shows the sample extraction method using the cross-shaped flow path of a prior art. 従来技術の試料濃縮法を用いた試料注出法を示す概念図である。It is a conceptual diagram which shows the sample extraction method using the sample concentration method of a prior art. 従来技術のフィルターを用いた試料注出法を示す概念図である。It is a conceptual diagram which shows the sample extraction method using the filter of a prior art. 従来技術の超音波を用いた試料濃縮法を示す概念図である。It is a conceptual diagram which shows the sample concentration method using the ultrasonic wave of a prior art.

符号の説明Explanation of symbols

1、2、3 レザーバ
4 注入用流路
5 注入用流路
6 本流路
7 共有部
8 超音波発生源
9 反射板または超音波発生源
10 バルブ
11 バルブ
12 バルブ
13 バルブ
14 定在波
15 試料溶液
18、19、20、21 レザーバ
22 注入用流路
23、24 本流路
25、26 共有部
27 超音波発生源
28 反射板あるいは超音波発生源
29、30、31、32、33、34 バルブ
35 定在波
36 試料溶液
44 注入用流路
45 本流路
46 共有部
47 試料
48 試料
52 注入用流路
53 本流路
54 試料
55 共有部
56 試料
57 レザーバ
60 注入用流路
61 本流路
62 共有部
64 試料
66 流路
67、68 超音波発生源
69 試料
70 定在波
71 流路
80 超音波発生手段
1, 2, 3 Reservoir 4 Injection channel 5 Injection channel 6 Main channel 7 Shared portion 8 Ultrasonic source 9 Reflector or ultrasonic source 10 Valve 11 Valve 12 Valve 13 Valve 14 Standing wave 15 Sample solution 18, 19, 20, 21 Reservoir 22 Injection channel 23, 24 Main channel 25, 26 Shared portion 27 Ultrasonic source 28 Reflector or ultrasonic source 29, 30, 31, 32, 33, 34 Valve 35 Fixed Standing wave 36 Sample solution 44 Injection channel 45 Main channel 46 Shared portion 47 Sample 48 Sample 52 Injection channel 53 Main channel 54 Sample 55 Shared unit 56 Sample 57 Reservoir 60 Injection channel 61 Main channel 62 Shared unit 64 Sample 66 Flow path 67, 68 Ultrasonic wave generation source 69 Sample 70 Standing wave 71 Flow path 80 Ultrasonic wave generation means

Claims (6)

試料を含む流体を濃縮する濃縮装置であって、試料を含む流体を注入する少なくとも2つの注入用流路と、前記流体を注出する本流路と、前記注入用流路と本流路が接続する位置に設けられた共有部と、前記注入用流路から共有部を通過して本流路へ流れる流体の流れを開閉するバルブと、前記バルブにより注入用流路の一部と共有部に保持された流体に振動波を付与する振動波発生手段とを有し、前記保持された流体に振動波を付与することにより流体に含まれる試料を濃縮し、濃縮した試料を共有部から本流路に注出することを特徴とする試料濃縮装置。   A concentration device for concentrating a fluid containing a sample, wherein at least two injection channels for injecting a fluid containing a sample, a main channel for discharging the fluid, and the injection channel and the main channel are connected to each other. A shared portion provided at a position, a valve that opens and closes the flow of fluid that flows from the injection flow path to the main flow path through the shared portion, and a portion of the injection flow path that is held by the shared portion by the valve. Vibration wave generating means for applying a vibration wave to the fluid, and concentrating the sample contained in the fluid by applying the vibration wave to the retained fluid, and pouring the concentrated sample from the common part into the main channel. A sample concentrating device characterized in that it is dispensed. 前記振動波発生手段は、超音波発生源と反射板、または2つの超音波発生源からなり、前記共有部に超音波の定在波の節または腹を付与することを特徴とする請求項1に記載の試料濃縮装置。   2. The vibration wave generating means includes an ultrasonic wave generation source and a reflection plate, or two ultrasonic wave generation sources, and imparts a node or an antinode of an ultrasonic standing wave to the shared part. The sample concentrator described in 1. 前記試料は、細胞、粒子または粒子に吸着した分子であることを特徴とする請求項1または2に記載の試料濃縮装置。   The sample concentration apparatus according to claim 1, wherein the sample is a cell, a particle, or a molecule adsorbed on the particle. 前記流路の断面寸法の幅および深さの少なくとも1つが、0.1μm以上1000μm以下である請求項1乃至3のいずれかの項に記載の試料濃縮装置。   4. The sample concentrator according to claim 1, wherein at least one of a width and a depth of a cross-sectional dimension of the flow path is 0.1 μm or more and 1000 μm or less. 試料を含む流体を濃縮する濃縮方法であって、試料を含む流体を注入する少なくとも2つの注入用流路と、前記流体を注出する本流路と、前記注入用流路と本流路が接続する位置に設けられた共有部と、前記注入用流路から共有部を通過して本流路へ流れる流体の流れを開閉するバルブと、前記バルブにより注入用流路の一部と共有部に保持された流体に振動波を付与する振動波発生手段とを用いて、前記保持された流体に振動波を付与することにより流体に含まれる試料を濃縮し、濃縮した試料を共有部から本流路に注出することを特徴とする試料濃縮方法。   A concentration method for concentrating a fluid containing a sample, wherein at least two injection channels for injecting a fluid containing a sample, a main channel for discharging the fluid, and the injection channel and the main channel are connected to each other. A shared portion provided at a position, a valve that opens and closes the flow of fluid that flows from the injection flow path to the main flow path through the shared portion, and a portion of the injection flow path that is held by the shared portion by the valve. The sample contained in the fluid is concentrated by applying the vibration wave to the retained fluid using the vibration wave generating means for applying the vibration wave to the fluid, and the concentrated sample is poured into the main channel from the common part. A sample concentration method characterized by comprising: 前記試料の導入量が、共有部の容積より小さい、等しいまたは大きいことを特徴とする請求項5に記載の試料濃縮方法。   The sample concentration method according to claim 5, wherein the introduction amount of the sample is smaller than, equal to, or larger than the volume of the common part.
JP2007137224A 2007-05-23 2007-05-23 Sample concentration device and sample concentration method Pending JP2008292260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007137224A JP2008292260A (en) 2007-05-23 2007-05-23 Sample concentration device and sample concentration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007137224A JP2008292260A (en) 2007-05-23 2007-05-23 Sample concentration device and sample concentration method

Publications (1)

Publication Number Publication Date
JP2008292260A true JP2008292260A (en) 2008-12-04

Family

ID=40167143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007137224A Pending JP2008292260A (en) 2007-05-23 2007-05-23 Sample concentration device and sample concentration method

Country Status (1)

Country Link
JP (1) JP2008292260A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012519300A (en) * 2009-03-02 2012-08-23 ディグニティー ヘルス Therapeutic devices and methods of use
JP2018525610A (en) * 2015-06-19 2018-09-06 アイメック・ヴェーゼットウェーImec Vzw Surface functionalization and detection devices
JP2021169085A (en) * 2015-06-25 2021-10-28 サイトノーム/エスティー・エルエルシー Microfluidic device and system using acoustic manipulation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012519300A (en) * 2009-03-02 2012-08-23 ディグニティー ヘルス Therapeutic devices and methods of use
US9463458B2 (en) 2009-03-02 2016-10-11 Dignity Health Diagnostic devices and methods of use
JP2018525610A (en) * 2015-06-19 2018-09-06 アイメック・ヴェーゼットウェーImec Vzw Surface functionalization and detection devices
JP2021169085A (en) * 2015-06-25 2021-10-28 サイトノーム/エスティー・エルエルシー Microfluidic device and system using acoustic manipulation
JP7308885B2 (en) 2015-06-25 2023-07-14 サイトノーム/エスティー・エルエルシー Microfluidic devices and systems using acoustic manipulation

Similar Documents

Publication Publication Date Title
Xi et al. Active droplet sorting in microfluidics: a review
Slouka et al. Microfluidic systems with ion-selective membranes
Lim et al. Lab-on-a-chip: a component view
US10969324B2 (en) Synthesis, post-modification and separation of biologics using acoustically confined substrates
Garg et al. Whole-blood sorting, enrichment and in situ immunolabeling of cellular subsets using acoustic microstreaming
Laurell et al. Chip integrated strategies for acoustic separation and manipulation of cells and particles
US10564147B2 (en) Microfluidic systems for particle trapping and separation using cavity acoustic transducers
Kim et al. Self-sealed vertical polymeric nanoporous-junctions for high-throughput nanofluidic applications
US20160332159A1 (en) Acoustophoretic droplet handling in bulk acoustic wave devices
Evander et al. Acoustophoresis in wet-etched glass chips
US20110137018A1 (en) Magnetic separation system with pre and post processing modules
Fornell et al. Controlled lateral positioning of microparticles inside droplets using acoustophoresis
US20110033922A1 (en) Microchip-based acoustic trapping or capture of cells for forensic analysis and related method thereof
Faridi et al. MicroBubble activated acoustic cell sorting
Xie et al. Exploring bubble oscillation and mass transfer enhancement in acoustic-assisted liquid-liquid extraction with a microfluidic device
Greenwood et al. Sample manipulation in micro total analytical systems
JP2004042012A (en) Separation apparatus, analysis system, separating method, and method of manufacturing the apparatus
Hettiarachchi et al. Recent microfluidic advances in submicron to nanoparticle manipulation and separation
Sudeepthi et al. Coalescence of droplets in a microwell driven by surface acoustic waves
US11179717B2 (en) Disposable pipette tip and methods of use
JP2008292260A (en) Sample concentration device and sample concentration method
EP3479097B1 (en) Devices for concentration of particles
Sabbagh et al. Microvalve-Based Tunability of Electrically Driven Ion Transport through a Microfluidic System with an Ion-Exchange Membrane
Chen et al. A simple electrokinetic protein preconcentrator utilizing nano-interstices
US11213823B2 (en) Microfluidic in situ labelling on stable interfaces