JP2008292161A - Nuclear heat using compact cogeneration device - Google Patents

Nuclear heat using compact cogeneration device Download PDF

Info

Publication number
JP2008292161A
JP2008292161A JP2007134877A JP2007134877A JP2008292161A JP 2008292161 A JP2008292161 A JP 2008292161A JP 2007134877 A JP2007134877 A JP 2007134877A JP 2007134877 A JP2007134877 A JP 2007134877A JP 2008292161 A JP2008292161 A JP 2008292161A
Authority
JP
Japan
Prior art keywords
heat
pressure vessel
compressor
heat exchanger
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007134877A
Other languages
Japanese (ja)
Other versions
JP4962956B2 (en
Inventor
Hiroyuki Sato
博之 佐藤
Xinglong Yan
ヤン ジンロン
Tetsuo Nishihara
哲夫 西原
Kazuhiko Kunitomi
一彦 国富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Agency filed Critical Japan Atomic Energy Agency
Priority to JP2007134877A priority Critical patent/JP4962956B2/en
Publication of JP2008292161A publication Critical patent/JP2008292161A/en
Application granted granted Critical
Publication of JP4962956B2 publication Critical patent/JP4962956B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem wherein a size, a material amount and a manufacturing cost of the whole system increase, and further a problem wherein a pressure loss increases in the system, by lengthening and enlarging a connection pipe and by adopting a plurality of pressure containers, because the pressure containers are required to be manufactured and installed respectively in an IHX and a gas turbine system, by installing the IHX vertically, and because the pipe is required to be laid around to connect fellow devices. <P>SOLUTION: The size and the facility material amount of the whole system are remarkably reduced and the manufacturing cost thereof is remarkably reduced, by integrating the devices constituting the system and by simplifying system constitution. A heat efficiency is enhanced also by simplifying the system constitution to reduce a heat loss and the pressure loss. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、核熱を利用した、発電、産業用熱製造、水素製造、純水製造、地域熱利用、海水淡水化等の熱利用を行うコジェネレーション装置又はシステムに関するものである。   The present invention relates to a cogeneration apparatus or system that uses heat such as power generation, industrial heat production, hydrogen production, pure water production, district heat utilization, seawater desalination and the like using nuclear heat.

高温ガス炉コジェネレーションシステム(熱電併給システム)は、原子炉、熱利用系へ熱を供給する中間熱交換器(IHX)、発電に用いられるガスタービン、圧縮機及び発電機からなるガスタービンシステム、及び前置冷却器から構成される。従来、米国のINL、仏国のFramatome社が垂直設置型IHXの設置を提案している(非特許文献1及び2)。
“Next Generation Nuclear Plant Project Preliminary Project Management Plan”, INL/EXT-05-00952 rev.1, US DOE Idaho National Laboratory, March 2006 “The Framatome ANP Indirect-Cycle Very High Temperature Reactor” Proc. of International Congress on Advances in Nuclear Power ICAPP’04, Pittsburgh, PA USA, June 13-17, 2004
High-temperature gas reactor cogeneration system (cogeneration system) is a reactor, an intermediate heat exchanger (IHX) for supplying heat to the heat utilization system, a gas turbine used for power generation, a gas turbine system consisting of a compressor and a generator, And a precooler. Conventionally, INL in the United States and Framatome in France have proposed the installation of a vertically installed IHX (Non-patent Documents 1 and 2).
“Next Generation Nuclear Plant Project Preliminary Project Management Plan”, INL / EXT-05-00952 rev.1, US DOE Idaho National Laboratory, March 2006 “The Framatome ANP Indirect-Cycle Very High Temperature Reactor” Proc. Of International Congress on Advances in Nuclear Power ICAPP'04, Pittsburgh, PA USA, June 13-17, 2004

しかし、IHXを垂直に設置することによりIHXとガスタービンシステムそれぞれに圧力容器を製作、設置する必要がある。又、機器どうしの接続のために配管を引き回す必要があり、システム全体のサイズ、物量及び制作費の増大が課題である。更に、接続配管の長大化と複数の圧力容器の採用により系統の圧力損失が増大し、システム熱効率の低下が課題である。   However, it is necessary to manufacture and install a pressure vessel in each of the IHX and the gas turbine system by installing the IHX vertically. In addition, it is necessary to route piping for connecting devices, and increasing the size, quantity, and production cost of the entire system is a problem. Furthermore, the length of the connecting pipe and the use of a plurality of pressure vessels increase the pressure loss of the system, and the system heat efficiency is a problem.

本発明では、従来の課題に対して、システムを構成する機器の一体化及びシステム構成の簡易化により、システム全体のサイズ、設備物量を大幅に削減し、製作コストを大幅に削減することが目的である。又、システム構成の簡易化を行い、熱損失及び圧力損失を低減することにより、システムの熱効率を向上させることが目的である。   In the present invention, the object of the present invention is to greatly reduce the size of the entire system and the amount of equipment and to greatly reduce the production cost by integrating the devices constituting the system and simplifying the system configuration. It is. Another object is to improve the thermal efficiency of the system by simplifying the system configuration and reducing heat loss and pressure loss.

本発明は、具体的には、図1に示されるとおり、高温ガス炉8及びエネルギー変換システム9を備えた核熱利用装置であって、
高温ガス炉が原子炉圧力容器10、炉心11,接続二重配管内管12及び接続二重配管外管13から構成され、
エネルギー変換システムが熱電併給統合ユニット圧力容器20、水平型中間熱交換器21,タービン22,圧縮機23,発電機24,再生熱交換器25及び前置熱交換器26で構成され、
高温の核熱が高温ガス炉の核分裂エネルギーにより作り出され、この熱により暖められた高温の冷却材が、接続二重配管内管12を通りエネルギー変換システムへ供給され、熱交換器21で熱利用された後、タービン22を経て再生熱交換器25、前置冷却器26及び圧縮機23に送られて発電に利用され後、圧縮機23で圧縮された冷却材が再生熱交換器25を経て接続二重配管外管13を通って高温ガス炉へ戻る構造からなる、核熱利用コンパクト型コジェネレーション装置である。
Specifically, as shown in FIG. 1, the present invention is a nuclear heat utilization apparatus including a HTGR 8 and an energy conversion system 9,
The high-temperature gas reactor is composed of a reactor pressure vessel 10, a core 11, a connecting double pipe inner pipe 12, and a connecting double pipe outer pipe 13.
The energy conversion system includes a combined heat and power unit pressure vessel 20, a horizontal intermediate heat exchanger 21, a turbine 22, a compressor 23, a generator 24, a regenerative heat exchanger 25, and a front heat exchanger 26.
High-temperature nuclear heat is generated by the fission energy of the HTGR, and the high-temperature coolant heated by this heat is supplied to the energy conversion system through the inner pipe 12 of the connecting double pipe, and is used by the heat exchanger 21 as heat. After that, the coolant is sent to the regenerative heat exchanger 25, the pre-cooler 26 and the compressor 23 through the turbine 22 and used for power generation, and then the coolant compressed by the compressor 23 passes through the regenerative heat exchanger 25. This is a compact cogeneration system using nuclear heat, and has a structure that returns to the high-temperature gas reactor through the connecting double pipe outer pipe 13.

又、本発明は、具体的には、図2に示されるとおり、 高温ガス炉8及びエネルギー変換システム9を備えた核熱利用装置であって、
前記高温ガス炉が原子炉圧力容器10、炉心11,接続二重配管内管12及び接続二重配管外管13から構成され、
前記エネルギー変換システムが熱電併給統合ユニット圧力容器20、水平型中間熱交換器21,タービン22,低圧圧縮機23a,高圧圧縮機23b、発電機,再生熱交換器25,前置冷却器26及び内部冷却流路28から構成され、
高温の核熱が高温ガス炉の核分裂エネルギーにより作り出され、この熱により暖められた高温の冷却材が、接続二重配管内管12を通りエネルギー変換システムへ供給され、タービン22前に配置された熱交換器21で熱利用された後、そのタービンを経て再生熱交換器25及び前置冷却器26を経て低圧圧縮機2a、内部冷却流路28及び高圧圧縮機23bに送られて発電に利用され後、両圧縮機23a及び23bで圧縮された冷却材が再生熱交換器25を経て接続二重配管外管13を通って高温ガス炉へ戻る構造からなる、核熱利用コンパクト型コジェネレーション装置である。
Further, the present invention is specifically a nuclear heat utilization apparatus including a high temperature gas reactor 8 and an energy conversion system 9 as shown in FIG.
The high-temperature gas reactor is composed of a reactor pressure vessel 10, a core 11, a connection double pipe inner pipe 12, and a connection double pipe outer pipe 13.
The energy conversion system includes a combined heat and power unit pressure vessel 20, a horizontal intermediate heat exchanger 21, a turbine 22, a low pressure compressor 23a, a high pressure compressor 23b, a generator, a regenerative heat exchanger 25, a precooler 26, and an internal A cooling channel 28;
Hot nuclear heat is generated by the fission energy of the HTGR, and the hot coolant heated by this heat is supplied to the energy conversion system through the connecting double pipe inner pipe 12 and arranged in front of the turbine 22. After heat is used in the heat exchanger 21, it is sent to the low-pressure compressor 2a, the internal cooling flow path 28, and the high-pressure compressor 23b through the regenerative heat exchanger 25 and the pre-cooler 26 through the turbine and used for power generation. After that, the nuclear heat-utilized compact cogeneration apparatus has a structure in which the coolant compressed by the compressors 23a and 23b passes through the regenerative heat exchanger 25 and returns to the high-temperature gas furnace through the connecting double pipe outer pipe 13. It is.

更に又、本発明は、具体的には、図3に示されるとおり、高温ガス炉8、エネルギー変換システム9、並びに再生熱交換器及び前置冷却器26を内装した追加圧力容器30を備えた核熱利用装置であって、
高温ガス炉が原子炉圧力容器10、炉心11,接続二重配管内管12及び接続二重配管外管13から構成され、
エネルギー変換システムが熱電併給統合ユニット圧力容器20、水平型中間熱交換器21,タービン22,圧縮機23及び発電機24から構成され、
高温の核熱が高温ガス炉の核分裂エネルギーにより作り出され、この熱により暖められた高温の冷却材が、接続二重配管内管12を通りエネルギー変換システムへ供給され、熱交換器21で熱利用された後、タービン22を経て圧縮機23に送られて発電に利用され後、圧縮機23で圧縮された冷却材29が接続二重配管外管13を経て追加圧力容器30に供給されてから炉心11に戻され、
タービン22から出た冷却材が追加圧力容器30内の再生熱交換器25及び前置冷却器26を経て圧縮機23に供給される、核熱利用コンパクト型コジェネレーション装置である。
Furthermore, the present invention specifically includes a high-temperature gas furnace 8, an energy conversion system 9, and an additional pressure vessel 30 equipped with a regenerative heat exchanger and a precooler 26 as shown in FIG. 3. A nuclear heat utilization device,
The high-temperature gas reactor is composed of a reactor pressure vessel 10, a core 11, a connecting double pipe inner pipe 12, and a connecting double pipe outer pipe 13.
The energy conversion system comprises a combined heat and power unit pressure vessel 20, a horizontal intermediate heat exchanger 21, a turbine 22, a compressor 23, and a generator 24.
High-temperature nuclear heat is generated by the fission energy of the high-temperature gas reactor, and the high-temperature coolant heated by this heat is supplied to the energy conversion system through the connecting double pipe inner pipe 12, and heat is used in the heat exchanger 21. After being sent to the compressor 23 via the turbine 22 and used for power generation, the coolant 29 compressed by the compressor 23 is supplied to the additional pressure vessel 30 via the connecting double pipe outer pipe 13. Returned to the core 11,
This is a compact cogeneration system using nuclear heat in which the coolant discharged from the turbine 22 is supplied to the compressor 23 via the regenerative heat exchanger 25 and the pre-cooler 26 in the additional pressure vessel 30.

本発明では、水平型中間熱交換器(IHX)とガスタービン等の構成機器を共通の熱電併給統合ユニット圧力容器内に配置するコンパクト型コジェネレーションシステムを構成することにより、システム全体のサイズを大幅に削減し、機器間の接続に必要であった配管長及び圧力損失を低減し、製作コストの削減及び熱効率を向上させることを可能とする。   In the present invention, by configuring a compact cogeneration system in which components such as a horizontal intermediate heat exchanger (IHX) and a gas turbine are arranged in a common combined heat and power unit pressure vessel, the size of the entire system is greatly increased. This makes it possible to reduce the pipe length and pressure loss necessary for connection between devices, reduce manufacturing costs, and improve thermal efficiency.

又、本発明では、原子炉圧力容器(RPV)と熱電併給統合ユニット圧力容器の下部を二重管で接続し、内管に原子炉からの高温冷却材、外側に原子炉へ戻る冷却材を流すことで、原子炉から供給される高温の冷却材の放熱による熱損失を低減し、従来のシステム構成からの熱効率の向上を可能とする。   In the present invention, the reactor pressure vessel (RPV) and the lower part of the combined heat and power unit pressure vessel are connected by a double pipe, and the high temperature coolant from the reactor is connected to the inner pipe, and the coolant returning to the reactor is provided outside. By flowing, the heat loss due to heat radiation of the high-temperature coolant supplied from the nuclear reactor is reduced, and the thermal efficiency from the conventional system configuration can be improved.

本発明のコンパクト型ジェネレーションシステムの構成を図1〜3により説明する。図1は本発明のシステム構成の概念を示す系統図である。図2は図1のシステム構成に加え、圧縮機の内部冷却流路を設けたシステムの系統図である。図3は図1に加え再生熱交換器及び前置冷却器を同一圧力容器に内包したシステムの系統図である。   The configuration of the compact generation system of the present invention will be described with reference to FIGS. FIG. 1 is a system diagram showing the concept of the system configuration of the present invention. FIG. 2 is a system diagram of a system provided with an internal cooling flow path of the compressor in addition to the system configuration of FIG. FIG. 3 is a system diagram of a system in which a regenerative heat exchanger and a precooler are included in the same pressure vessel in addition to FIG.

図1のシステムは高温ガス炉8及びエネルギー変換システム9により構成される。高温の核熱は高温ガス炉8の核分裂エネルギーにより作り出され、この熱により暖められた高温の冷却材はエネルギー変換システム9へと供給され、熱利用及び発電に利用される。高温ガス炉8は、原子炉圧力容器(RPV)10、炉心11,接続二重配管内管12,及び接続二重配管外管13から成る二重管構造の接続二重配管により構成される。冷却材は、炉心で燃料の仕様により決定される700〜1000℃程度に加熱される。高温の冷却材は接続二重配管内管12を通り、エネルギー変換システム9へと送られ、熱利用系及びガスタービンシステムに熱を供給した後、接続二重配管外管13を通って高温ガス炉へ戻る。   The system shown in FIG. 1 includes a HTGR 8 and an energy conversion system 9. The high temperature nuclear heat is generated by the fission energy of the high temperature gas reactor 8, and the high temperature coolant heated by this heat is supplied to the energy conversion system 9, and is used for heat utilization and power generation. The high temperature gas reactor 8 is constituted by a double connection pipe having a reactor pressure vessel (RPV) 10, a core 11, a connection double pipe inner pipe 12, and a connection double pipe outer pipe 13. The coolant is heated to about 700 to 1000 ° C. determined by the fuel specifications in the core. The high temperature coolant passes through the connecting double pipe inner pipe 12 and is sent to the energy conversion system 9 to supply heat to the heat utilization system and the gas turbine system. Return to the furnace.

エネルギー変換システム9は、熱電併給統合ユニット圧力容器20、水平型中間熱交換器(IHX)21,タービン22,圧縮機23,発電機24,再生熱交換器25,及び前置熱交換器26で構成される。熱電併給統合ユニット圧力容器20内には、水平型IHX21,タービン22、圧縮機23が内包されている。図1において、発電機24は熱電併給統合ユニット圧力容器20内に内包されているが、応用例として、圧力容器にシャフトを貫通させ圧力容器外に配置するケースも可能である。又、図1では、再生熱交換器25及び前置冷却器26は、熱電併給統合ユニット圧力容器20外に設置しているが、接続配管長削減のため、どちらか若しくは両方を熱電併給統合ユニット圧力容器内に設置することも可能である。   The energy conversion system 9 includes a combined heat and power unit pressure vessel 20, a horizontal intermediate heat exchanger (IHX) 21, a turbine 22, a compressor 23, a generator 24, a regenerative heat exchanger 25, and a front heat exchanger 26. Composed. In the combined heat and power unit pressure vessel 20, a horizontal type IHX 21, a turbine 22, and a compressor 23 are included. In FIG. 1, the generator 24 is included in the combined heat and power unit pressure vessel 20. However, as an application example, a case where a shaft is passed through the pressure vessel and disposed outside the pressure vessel is also possible. In FIG. 1, the regenerative heat exchanger 25 and the pre-cooler 26 are installed outside the combined heat and pressure unit pressure vessel 20, but either or both of them are integrated in the combined heat and power unit to reduce the length of the connection pipe. It can also be installed in a pressure vessel.

高温ガス炉8で温められた高温の冷却材は、接続二重内管12を通りIHX21で熱利用系27へ熱を供給する。IHX21の型式は特に限定しないが、プレートフィン型を採用し更なるコンパクト化を図ることも可能である。IHXの下流にはタービン22を設置し、冷却材の膨張仕事によりタービン軸を回転させ、圧縮機23及び発電機24を駆動する。タービン出口の450〜600℃程度の冷却材は低温側の再生熱交換器25へと流入し、高圧側へ余剰顕熱を伝達する。その後、冷却材は前置冷却器26に流入し、30℃程度まで冷却される。前置冷却器の下流には圧縮機23が設置され、冷却材は圧縮される。圧縮された冷却材は高圧側の再生熱交換器25へ流入し、タービン通過後の低温側冷却材に温められ、接続二重配管外管13を通り、高温ガス炉に戻される。   The high-temperature coolant heated in the high-temperature gas furnace 8 passes through the connecting double inner pipe 12 and supplies heat to the heat utilization system 27 through the IHX 21. The model of the IHX 21 is not particularly limited, but a plate fin type can be adopted to further reduce the size. A turbine 22 is installed downstream of the IHX, the turbine shaft is rotated by expansion work of the coolant, and the compressor 23 and the generator 24 are driven. The coolant having a temperature of about 450 to 600 ° C. at the turbine outlet flows into the regenerative heat exchanger 25 on the low temperature side and transmits excess sensible heat to the high pressure side. Thereafter, the coolant flows into the precooler 26 and is cooled to about 30 ° C. A compressor 23 is installed downstream of the precooler, and the coolant is compressed. The compressed coolant flows into the regeneration heat exchanger 25 on the high pressure side, is warmed by the low temperature side coolant after passing through the turbine, passes through the connecting double pipe outer pipe 13, and is returned to the high temperature gas furnace.

図2は図1の応用例であり、図1のシステムと重複する点はその説明を省略する。図2の図1との相違点は、低圧圧縮機23a、内部冷却流路28及び高圧圧縮機23bを採用している点である。図2では、冷却材はまず低圧圧縮機23aにて圧縮され、内部冷却流路により圧縮仕事による熱が冷却され、高圧圧縮機23bに流入し、再度効率的に圧縮される。圧縮機及び内部冷却流路の数は効率にとって最適な数を設定する。内部冷却流路を熱電併給統合ユニット圧力容器20の内側及び外側のいずれに設置するかはシステムがコンパクト化されるものを採用する。   FIG. 2 is an application example of FIG. 1, and the description of the same points as the system of FIG. 1 is omitted. 2 differs from FIG. 1 in that a low-pressure compressor 23a, an internal cooling flow path 28, and a high-pressure compressor 23b are employed. In FIG. 2, the coolant is first compressed by the low-pressure compressor 23a, the heat due to the compression work is cooled by the internal cooling flow path, flows into the high-pressure compressor 23b, and is efficiently compressed again. The number of compressors and internal cooling channels is set to an optimum number for efficiency. As for whether the internal cooling flow path is installed on the inner side or the outer side of the combined heat and power unit pressure vessel 20, a system whose size is reduced is adopted.

図3は図1のシステムに圧力容器30を追加したシステムの応用例の系統図である。圧力容器30内には再生熱交換器25及び前置冷却器26を内包する。系統構成の説明は図1と重複する場合は省略して説明する。図3に示すように、圧力容器30はRPV10の直近に設置し、第2接続二重管は第2接続二重管内管14及び第2接続二重管外管15により構成される。圧力容器30の追加は再生熱交換器25及び前置冷却器26のコンパクトな設置に寄与するだけでなく、それぞれに圧力容器冷却流路29を設け、圧縮機出口の低温冷却材を導入することにより、低価格な材料を用いて圧力容器を製作することが可能となる。   FIG. 3 is a system diagram of an application example of a system in which a pressure vessel 30 is added to the system of FIG. The pressure vessel 30 contains the regenerative heat exchanger 25 and the precooler 26. The description of the system configuration will be omitted when overlapping with FIG. As shown in FIG. 3, the pressure vessel 30 is installed in the immediate vicinity of the RPV 10, and the second connection double pipe is constituted by a second connection double pipe inner pipe 14 and a second connection double pipe outer pipe 15. The addition of the pressure vessel 30 not only contributes to the compact installation of the regenerative heat exchanger 25 and the pre-cooler 26, but also provides a pressure vessel cooling passage 29 for each, and introduces a low-temperature coolant at the compressor outlet. Thus, it becomes possible to manufacture a pressure vessel using a low-cost material.

本発明のシステム構成の概念を示す系統図である。It is a systematic diagram which shows the concept of the system configuration | structure of this invention. 図1の構成に加え、圧縮機の内部冷却流路を設けたシステム系統図である。FIG. 2 is a system system diagram in which an internal cooling channel of a compressor is provided in addition to the configuration of FIG. 図1に加え再生熱交換器及び前置冷却器を同一圧力容器に内包したシステムの系統図である。FIG. 2 is a system diagram of a system in which a regenerative heat exchanger and a precooler are included in the same pressure vessel in addition to FIG.

符号の説明Explanation of symbols

8: 高温ガス炉
9: エネルギー変換システム
10: 原子炉圧力容器(RPV)
11: 炉心
12: 接続二重配管内管
13: 接続二重配管外管
14: 第2接続二重配管内管
15: 第2接続二重配管外管
20: 熱電併給統合ユニット圧力容器
21: 水平型中間熱交換器(IHX)
22: タービン
23: 圧縮機
23a: 低圧圧縮機
23b: 高圧圧縮機
24: 発電機
25: 再生熱交換器
26: 前置冷却器
27: 熱利用系
28: 内部冷却流路
8: HTGR 9: Energy conversion system 10: Reactor pressure vessel (RPV)
11: Core 12: Connected double pipe inner pipe 13: Connected double pipe outer pipe 14: Second connected double pipe inner pipe 15: Second connected double pipe outer pipe 20: Combined heat and power unit pressure vessel 21: Horizontal Intermediate heat exchanger (IHX)
22: Turbine 23: Compressor 23a: Low pressure compressor 23b: High pressure compressor 24: Generator 25: Regenerative heat exchanger 26: Precooler 27: Heat utilization system 28: Internal cooling flow path

Claims (3)

高温ガス炉及びエネルギー変換システムを備えた核熱利用装置であって、
高温ガス炉が原子炉圧力容器、炉心,接続二重配管内管及び接続二重配管外管から構成され、
エネルギー変換システムが熱電併給統合ユニット圧力容器、水平型中間熱交換器,タービン,圧縮機,発電機,再生熱交換器及び前置熱交換器から構成され、
高温の核熱が高温ガス炉の核分裂エネルギーにより作り出され、この熱により暖められた高温の冷却材が、接続二重配管内管を通りエネルギー変換システムへ供給され、前記タービン前に配置された水平型中間熱交換器で熱利用された後、そのタービンを経て再生熱交換器、前置冷却器及び圧縮機に送られて発電に利用され後、前記圧縮機で圧縮された冷却材が再生熱交換器を経て接続二重配管外管を通って炉心へ戻る構造からなる、核熱利用コンパクト型コジェネレーション装置。
A nuclear heat utilization device equipped with a HTGR and an energy conversion system,
The HTGR consists of a reactor pressure vessel, a core, a connecting double pipe inner pipe, and a connecting double pipe outer pipe.
The energy conversion system consists of a combined heat and power unit pressure vessel, horizontal intermediate heat exchanger, turbine, compressor, generator, regenerative heat exchanger and pre-heat exchanger,
Hot nuclear heat is generated by the fission energy of the HTGR, and the hot coolant heated by this heat is supplied to the energy conversion system through the inner pipe of the connecting double pipe, and placed in front of the turbine. After the heat is used in the intermediate heat exchanger, it is sent to the regenerative heat exchanger, the precooler and the compressor through the turbine and used for power generation, and then the coolant compressed by the compressor is regenerated heat. A compact cogeneration system using nuclear heat that has a structure that returns to the core through the outer pipe of the connecting double pipe through the exchanger.
タービンの後に低圧圧縮機、内部冷却流路及び高圧圧縮機が配置される、請求項1記載の装置。   The apparatus of claim 1, wherein the low pressure compressor, the internal cooling flow path, and the high pressure compressor are disposed after the turbine. 追加圧力容器が設けられ、その圧力容器30内に再生熱交換器及び前置冷却器が配置され、原子炉圧力容器と追加圧力容器との接続が第2接続二重管内管及び第2接続二重管外管により接続され、圧縮機からの低温冷却材が第2接続二重配管外管を経て炉心11に導入される、請求項1記載の装置。   An additional pressure vessel is provided, a regenerative heat exchanger and a precooler are disposed in the pressure vessel 30, and the connection between the reactor pressure vessel and the additional pressure vessel is the second connection double pipe inner tube and the second connection second. The apparatus according to claim 1, wherein the apparatus is connected by a heavy pipe outer pipe, and the low-temperature coolant from the compressor is introduced into the core 11 through the second connection double pipe outer pipe.
JP2007134877A 2007-05-22 2007-05-22 Nuclear heat utilization equipment Active JP4962956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007134877A JP4962956B2 (en) 2007-05-22 2007-05-22 Nuclear heat utilization equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007134877A JP4962956B2 (en) 2007-05-22 2007-05-22 Nuclear heat utilization equipment

Publications (2)

Publication Number Publication Date
JP2008292161A true JP2008292161A (en) 2008-12-04
JP4962956B2 JP4962956B2 (en) 2012-06-27

Family

ID=40167051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007134877A Active JP4962956B2 (en) 2007-05-22 2007-05-22 Nuclear heat utilization equipment

Country Status (1)

Country Link
JP (1) JP4962956B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094196A1 (en) * 2011-12-20 2013-06-27 日本ネイチャーセル株式会社 Compact nuclear power generation system
CN111128415A (en) * 2019-12-31 2020-05-08 中国核动力研究设计院 Heat pipe reactor adopting closed gas Brayton cycle and operation method thereof
CN113202576A (en) * 2021-06-15 2021-08-03 哈尔滨工程大学 Nuclear power propeller type aircraft engine
CN113494358A (en) * 2020-11-17 2021-10-12 哈尔滨工程大学 Nuclear power engine device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5844397A (en) * 1973-06-08 1983-03-15 ブリテイツシユ・ニユ−クリア−・デザイン・アンド・カンストラクシヤン・リミテツド Atomic power plant
JP2001033574A (en) * 1999-07-21 2001-02-09 Japan Atom Energy Res Inst Device provided with gas turbine power generation system of high temperature reactor arranging two dual pipes
JP2006133102A (en) * 2004-11-08 2006-05-25 Japan Atomic Energy Agency High-temperature nuclear reactor system having facing dispersion mechanism for preventing air invasion
JP2007107907A (en) * 2005-10-11 2007-04-26 Mitsubishi Heavy Ind Ltd High-temperature gas-cooled reactor system and intermediate heat exchange system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5844397A (en) * 1973-06-08 1983-03-15 ブリテイツシユ・ニユ−クリア−・デザイン・アンド・カンストラクシヤン・リミテツド Atomic power plant
JP2001033574A (en) * 1999-07-21 2001-02-09 Japan Atom Energy Res Inst Device provided with gas turbine power generation system of high temperature reactor arranging two dual pipes
JP2006133102A (en) * 2004-11-08 2006-05-25 Japan Atomic Energy Agency High-temperature nuclear reactor system having facing dispersion mechanism for preventing air invasion
JP2007107907A (en) * 2005-10-11 2007-04-26 Mitsubishi Heavy Ind Ltd High-temperature gas-cooled reactor system and intermediate heat exchange system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094196A1 (en) * 2011-12-20 2013-06-27 日本ネイチャーセル株式会社 Compact nuclear power generation system
KR20140103273A (en) * 2011-12-20 2014-08-26 니혼네이챠세루 가부시키가이샤 Compact nuclear power generation system
CN104126206A (en) * 2011-12-20 2014-10-29 日本内切塞尔株式会社 Compact nuclear power generation system
JPWO2013094196A1 (en) * 2011-12-20 2015-04-27 日本ネイチャーセル株式会社 Small nuclear power generation system
US9613723B2 (en) 2011-12-20 2017-04-04 Nihon Nature Cell Co., Ltd. Compact nuclear power generation system
KR102121078B1 (en) * 2011-12-20 2020-06-09 니혼네이챠세루 가부시키가이샤 Compact nuclear power generation system
CN111128415A (en) * 2019-12-31 2020-05-08 中国核动力研究设计院 Heat pipe reactor adopting closed gas Brayton cycle and operation method thereof
CN113494358A (en) * 2020-11-17 2021-10-12 哈尔滨工程大学 Nuclear power engine device
CN113494358B (en) * 2020-11-17 2022-07-15 哈尔滨工程大学 Nuclear power engine device
CN113202576A (en) * 2021-06-15 2021-08-03 哈尔滨工程大学 Nuclear power propeller type aircraft engine

Also Published As

Publication number Publication date
JP4962956B2 (en) 2012-06-27

Similar Documents

Publication Publication Date Title
KR100906717B1 (en) Air/Water hybrid passive reactor cavity cooling apparatus and method for core decay heat removal of a High Temperature Gas-Cooled Reactor
JP4724848B2 (en) Combined Brayton cycle power generation system using nuclear heat
KR101454089B1 (en) High-temperature gas-cooled reactor steam generating system and method
Sunden High temperature heat exchangers (HTHE)
Guo et al. Optimal design of supercritical CO2 power cycle for next generation nuclear power conversion systems
CA2761179C (en) Steam generator
EP2383522B1 (en) Thermal integration of a carbon dioxide capture and compression unit with a steam or combined cycle plant
US20220375636A1 (en) Multipurpose small modular fluoride-salt-cooled high-temperature reactor energy system
JP4962956B2 (en) Nuclear heat utilization equipment
Raffray et al. Advanced power core system for the ARIES-AT power plant
JPH08338892A (en) Helium cooling high-temperature gas reactor
CN106287212A (en) A kind of back-heating type gasifier
JPH05203792A (en) Power plant equipment and operation thereof
Golovko et al. Features of adapting gas turbine cycle and heat exchangers for HTGRs
Wang et al. A CATHENA Model of the Canadian SCWR concept for Safety Analysis
CN114017759A (en) Cooling system of high-temperature gas cooled reactor nuclear power station
US20160312701A1 (en) Radiant syngas cooler
Mitenkov et al. High-temperature gas-cooled reactors—energy source for industrial production of hydrogen
US20230058456A1 (en) Power generation system
Hada et al. Design of a steam reforming system to be connected to the HTTR
CN114876595B (en) Thorium-based molten salt reactor supercritical carbon dioxide power generation system and operation method thereof
US20240013937A1 (en) In-core printed circuit heat exchanger
Bae et al. Preliminary study of the supercritical CO2 hybrid cycle for the HTGR application
CN109405032B (en) Nuclear power station waste heat supply system
Zhao et al. Optimized helium-Brayton power conversion for fusion energy systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101228

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120319

R150 Certificate of patent or registration of utility model

Ref document number: 4962956

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250