JP2008292137A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2008292137A
JP2008292137A JP2008037189A JP2008037189A JP2008292137A JP 2008292137 A JP2008292137 A JP 2008292137A JP 2008037189 A JP2008037189 A JP 2008037189A JP 2008037189 A JP2008037189 A JP 2008037189A JP 2008292137 A JP2008292137 A JP 2008292137A
Authority
JP
Japan
Prior art keywords
impeller
axial direction
wall surface
guide wall
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008037189A
Other languages
Japanese (ja)
Other versions
JP4926090B2 (en
Inventor
Shoji Yamada
彰二 山田
Seiji Nakajima
誠治 中島
Seiji Hirakawa
誠司 平川
Mitsuhiro Shirota
光宏 代田
Kenichi Sakota
健一 迫田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008037189A priority Critical patent/JP4926090B2/en
Publication of JP2008292137A publication Critical patent/JP2008292137A/en
Application granted granted Critical
Publication of JP4926090B2 publication Critical patent/JP4926090B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner suppressing generation of discrete frequency noise while suppressing increase of broadband noise, and improving power efficiency. <P>SOLUTION: The air conditioner 1A includes a cross flow fan 4 constituting an impeller 5, and a ventilation passage 10, and having a scroll part 7A having a guide wall surface 7a guiding an air flow from the back of the impeller 5 to a blowout port 11. In the guide wall surface 7a of the air conditioner 1A, an end part on a blowout port 11 side is formed to be the same height over a whole range in an axial direction of the impeller 5, and a wall surface shape in a vertical cross-section in the axial direction of the impeller 5 is projected to the outside of the ventilation passage 10, and a wall surface shape in a cross-section orthogonal to an air flow direction in which a projection amount to the outside of the ventilation passage 10 is gradually decreased from a center part in the axial direction of the impeller 5 toward both end parts, is constituted of a curved surface which is continuous from the back of the impeller 5 to the vicinity of the end part on the blowout port 11 side and then is connected to the end part of the blowout port 11. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明はクロスフローファンを備えた空気調和機に関するものである。   The present invention relates to an air conditioner equipped with a cross flow fan.

従来の空気調和機は、クロスフローファンの上流に、このクロスフローファンと平行に室内熱交換器が配置され、室内熱交換器の下部には吸込口と吹出口を仕切るケーシング前板が設けられ、ケーシング前板と、室内熱交換器とクロスフローファンの背面に空気を案内するケーシング後板とから空気通路が構成されている。そして、ケーシング後板の底部は、クロスフローファン軸方向の両端部付近の高さが中央部付近の高さに対してステップ状に低くなるように形成されている(例えば、特許文献1参照)。   In a conventional air conditioner, an indoor heat exchanger is arranged in parallel with the cross flow fan upstream of the cross flow fan, and a casing front plate for partitioning the inlet and the outlet is provided at the lower part of the indoor heat exchanger. An air passage is constituted by the casing front plate, the indoor heat exchanger, and the casing rear plate for guiding air to the back of the cross flow fan. And the bottom part of the casing rear plate is formed such that the height in the vicinity of both ends in the crossflow fan axial direction is stepped lower than the height in the vicinity of the center part (see, for example, Patent Document 1). .

吹出口の正面視における底部の両端部の高さが中央部付近からステップ状に低くなるように形成されたので、もともと中央部付近より風量が少なく、静圧の小さかった底部の両端部側で、空気通路の断面積が拡大して静圧が増大される。これにより、吹出口の中央部と両端部とで不均一になっていた風量分布が均一化されて送風性能が向上されていた。   Since the height of both ends of the bottom in the front view of the air outlet is stepped lower from the vicinity of the center, the air volume is originally less than the vicinity of the center and the both ends of the bottom where the static pressure was low The cross-sectional area of the air passage is enlarged and the static pressure is increased. Thereby, the air volume distribution which became non-uniform in the center part and both ends of the blower outlet was equalized, and the ventilation performance was improved.

特開平9−229403号公報JP-A-9-229403

しかしながら、従来の空気調和機の吹出口の正面視において、中央部より高さが低くなるように形成されたケーシング後板の底部の吹出口側の端部から、中央部の高さと同じ高さに突出する壁面が、気流方向に略垂直に設けられている。また、底部から突出する壁面は、気流を遮るようにステップ状に配置されており、底部の両端側を通って吹出口まで到達された気流が底部から突出する壁面とぶつかって乱気流が発生し、広帯域雑音が増大していた。また、吹出口は、吹出口のクロスフローファン側の空気通路の断面形状に対してステップ状に変化して面積が小さくなっているので、吹出口から吹き出される気流は、吹出口のクロスフローファン側の空気通路に比べて急激に動圧が上げられて増速される。動圧を急激に上昇させるように静圧を再変換するため、エネルギーのロスが増大し、従来の空気調和機自体の電力効率が低下していた。   However, in the front view of the air outlet of the conventional air conditioner, the same height as the height of the central portion from the end on the air outlet side of the bottom of the casing rear plate formed so as to be lower than the central portion. The wall surface protruding in the direction is provided substantially perpendicular to the airflow direction. In addition, the wall surface protruding from the bottom portion is arranged in a step shape so as to block the air flow, and the turbulent airflow is generated when the air flow reaching the outlet through both ends of the bottom portion collides with the wall surface protruding from the bottom portion, Broadband noise was increasing. In addition, since the area of the air outlet is changed in a step shape with respect to the cross-sectional shape of the air passage on the cross flow fan side of the air outlet, the airflow blown out from the air outlet is the cross flow of the air outlet. As compared with the air passage on the fan side, the dynamic pressure is rapidly increased and the speed is increased. Since the static pressure is reconverted so as to increase the dynamic pressure rapidly, energy loss is increased, and the power efficiency of the conventional air conditioner itself is reduced.

また、この種のクロスフローファンを備えた空気調和機においては、クロスフローファンの回転数Nと、クロスフローファンの外周に配設されている羽根枚数Zとの積NZに相当する基本周波数を有する離散周波数雑音がしばしば発生して問題となっている。
この離散周波数雑音は、クロスフローファンの軸方向に垂直な断面における風量変動や圧力変動が、クロスフローファンの軸方向に関してそろっている程大きくなる。即ち、離散周波数雑音は、クロスフローファンを貫流する気流において、クロスフローファンの軸方向に垂直な断面の風量変動や圧力変動が発生する位置やタイミング(同時性)が、クロスフローファンの軸方向に関して均一である(強い)程大きくなる。
In an air conditioner equipped with this type of crossflow fan, a fundamental frequency corresponding to the product NZ of the rotational speed N of the crossflow fan and the number of blades Z disposed on the outer periphery of the crossflow fan is set. Discrete frequency noise is often generated and is a problem.
The discrete frequency noise increases as the air volume fluctuations and pressure fluctuations in the cross section perpendicular to the axial direction of the crossflow fan become uniform in the axial direction of the crossflow fan. In other words, discrete frequency noise is caused by the position and timing (simultaneity) of the airflow fluctuation and pressure fluctuation in the cross section perpendicular to the axial direction of the crossflow fan in the airflow flowing through the crossflow fan. It becomes larger as it is uniform (stronger).

上述したように、従来の空気調和機では、ケーシング後板の底部は、吹出口の正面視において両端部付近の高さが中央部付近の高さからステップ状に低くなるように形成されている。このような場合、風量変動や圧力変動が発生する同時性が、ステップ状に高さが変位したケーシング後板の底部の中央部と両端部側との境界を含むクロスフローファンの軸方向に垂直な断面のクロスフローファンの軸方向の両側で均一でないため、離散周波数雑音が低減される。しかしながら、クロスフローファンを貫流する気流の風量変動や圧力変動が発生する同時性は、上述の境界を含むクロスフローファンの軸方向に垂直な断面でのみ変化し、その他の空気通路を流れる気流の風量変動や圧力変動の同時性は、クロスフローファンの軸方向に関して均一に保たれているので、離散周波数雑音の低減量は小さいものであった。   As described above, in the conventional air conditioner, the bottom portion of the casing rear plate is formed such that the height in the vicinity of both ends is lowered stepwise from the height in the vicinity of the central portion in the front view of the outlet. . In such a case, the simultaneity of the occurrence of air volume fluctuations and pressure fluctuations is perpendicular to the axial direction of the crossflow fan including the boundary between the center part of the bottom part of the casing rear plate whose height has been displaced stepwise and both side parts. Discrete frequency noise is reduced because it is not uniform on both sides in the axial direction of a cross-flow fan with a simple cross section. However, the simultaneity of the flow rate fluctuation and pressure fluctuation of the airflow flowing through the crossflow fan changes only in the cross section perpendicular to the axial direction of the crossflow fan including the above-mentioned boundary, and the airflow flowing through the other air passages Since the simultaneity of the air volume fluctuation and the pressure fluctuation is kept uniform in the axial direction of the cross flow fan, the amount of reduction of the discrete frequency noise is small.

この発明は、上記の問題を解決するためになされたものであり、広帯域雑音の増大を抑制するとともに離散周波数雑音の発生を大幅に抑制し、さらに電力効率を向上することが可能な空気調和機を得ることを目的とする。   The present invention has been made to solve the above-described problem, and is an air conditioner capable of suppressing the increase of wideband noise, greatly suppressing the generation of discrete frequency noise, and further improving the power efficiency. The purpose is to obtain.

この発明による空気調和機は、羽根車、及び通風路を構成し、羽根車の背後から吹出口へと気流を案内する案内壁面を有するスクロール部を有するクロスフローファンを備え、案内壁面は、吹出口側の端部が、羽根車の軸方向の全域に亘って同じ高さに形成され、羽根車の軸方向に垂直な断面における壁面形状を通風路の外側に凸状とし、かつ通風路の外側への突出量が羽根車の軸方向の中央部から両端部に向かって漸次減少する気流方向に直交する断面における壁面形状を、羽根車の背後から吹出口側の端部近傍まで連続し、その後羽根車の軸方向における通風路の外側への突出量の差を気流方向の吹出口側に向かって漸次縮小し、羽根車の軸方向の全域に亘って同じ高さに形成された吹出口側の端部に連結する曲面で構成されている。   An air conditioner according to the present invention includes an impeller and a cross flow fan having a scroll portion having a guide wall surface that guides an air flow from the back of the impeller to a blowout port. The end on the outlet side is formed at the same height over the entire area in the axial direction of the impeller, has a wall surface shape in a cross section perpendicular to the axial direction of the impeller, and protrudes outside the ventilation path. The wall shape in the cross section perpendicular to the airflow direction in which the amount of outward protrusion gradually decreases from the central part in the axial direction of the impeller toward both ends, continues from the rear of the impeller to the vicinity of the end on the outlet side, Thereafter, the difference in the amount of protrusion to the outside of the ventilation path in the axial direction of the impeller is gradually reduced toward the outlet in the airflow direction, and the outlet formed at the same height over the entire area in the axial direction of the impeller It is comprised by the curved surface connected to the edge part of the side.

この発明によれば、羽根車を貫流する気流において、静圧及び動圧が軸方向に関して連続して変化するので離散周波数雑音の発生を抑制する効果が最大限に発揮される。また、羽根車を貫流した気流は、通風路内をスムーズに流れて吹出口側に到達されるので、乱気流が発生されることがなく、広帯域雑音の増大を抑制できるとともに、電力効率を向上させることができる。   According to the present invention, since the static pressure and the dynamic pressure continuously change in the axial direction in the airflow flowing through the impeller, the effect of suppressing the generation of discrete frequency noise is maximized. In addition, since the airflow flowing through the impeller flows smoothly through the ventilation path and reaches the outlet, turbulence is not generated, and an increase in broadband noise can be suppressed and power efficiency is improved. be able to.

以下、この発明を実施するための最良の形態について、図面を参照して説明する。
実施の形態1.
図1はこの発明の実施の形態1に係る空気調和機の室内機の側断面図、図2はこの発明の実施の形態1に係る空気調和機のスクロール部の斜視図である。図3はこの発明の実施の形態1に係る空気調和機の吹出口での気流の風量及び向きを表す図、図4は比較例の空気調和機の吹出口での気流の風量及び向きを表す図、図5はこの発明の実施の形態1に係る空気調和機における最大壁面間距離δ/スクロール部長さLと消費電力との関係を示す図である。
The best mode for carrying out the present invention will be described below with reference to the drawings.
Embodiment 1 FIG.
1 is a side sectional view of an indoor unit of an air conditioner according to Embodiment 1 of the present invention, and FIG. 2 is a perspective view of a scroll portion of the air conditioner according to Embodiment 1 of the present invention. FIG. 3 is a diagram showing the air volume and direction of the airflow at the air outlet of the air conditioner according to Embodiment 1 of the present invention, and FIG. 4 shows the air volume and direction of the air stream at the air outlet of the comparative example. 5 and 5 are diagrams showing the relationship between the maximum wall surface distance δ / scroll portion length L and power consumption in the air conditioner according to Embodiment 1 of the present invention.

図1において、空気調和機1Aは、室内の空気を取り込む吸込口2aを有する意匠パネル2、羽根車5とディフューザ6とからなり、吸込口2aと吹出口11との間に形成された通風路10に対して吸込口2aから取り込んだ空気を吹出口11まで案内するクロスフローファン4、羽根車5の上流側に配設された熱交換器3、及び側壁板9を有している。   In FIG. 1, an air conditioner 1 </ b> A includes a design panel 2 having an inlet 2 a that takes in indoor air, an impeller 5, and a diffuser 6, and a ventilation path formed between the inlet 2 a and the outlet 11. 10 includes a cross flow fan 4 that guides air taken from the suction port 2 a to the blower outlet 11, a heat exchanger 3 disposed on the upstream side of the impeller 5, and a side wall plate 9.

次いで、空気調和機1Aについて詳細に説明する。
ディフューザ6は、スクロール部7A及びスタビライザ8により構成されている。スクロール部7Aは、軸方向を水平にして配置された円柱状の羽根車5の背面側に設けられ、意匠パネル2が、スクロール部7Aの上端部から、羽根車5の上部を覆って羽根車5の前面側にアーチ状に張り出すように配設されている。このとき、意匠パネル2及びスクロール部7Aの長手方向は、羽根車5の軸方向に平行に配置される。また、羽根車5は軸周りに回転自在に配設されている。なお、詳細には図示しないが、羽根車5の外周面は、周方向に所定のピッチで設けられた羽根により構成されている。また、吸込口2aが、意匠パネル2の前面と上面に桟状に形成されている。以降、羽根車5の軸方向を単に軸方向とする。
Next, the air conditioner 1A will be described in detail.
The diffuser 6 includes a scroll portion 7A and a stabilizer 8. The scroll portion 7A is provided on the back side of the cylindrical impeller 5 arranged with the axial direction horizontal, and the design panel 2 covers the upper portion of the impeller 5 from the upper end portion of the scroll portion 7A. 5 is arranged so as to project in an arch shape on the front side. At this time, the longitudinal direction of the design panel 2 and the scroll portion 7 </ b> A is arranged in parallel to the axial direction of the impeller 5. The impeller 5 is disposed so as to be rotatable around an axis. Although not shown in detail, the outer peripheral surface of the impeller 5 is composed of blades provided at a predetermined pitch in the circumferential direction. Moreover, the suction inlet 2a is formed in the front and upper surfaces of the design panel 2 in the shape of a rail. Hereinafter, the axial direction of the impeller 5 is simply referred to as the axial direction.

スタビライザ8は、スクロール部7Aの下部側の壁面と相対するように、スクロール部7Aから張りだした意匠パネル2の先端から羽根車5側に突出して配設されている。また、側壁板9が、スクロール部7A、意匠パネル2、及びスタビライザ8によって形成された軸方向両側の開口を覆うように取り付けられている。そして、スクロール部7A、意匠パネル2、及び側壁板9それぞれの下端側に囲まれた開口が吹出口11を構成している。   The stabilizer 8 is disposed so as to protrude from the front end of the design panel 2 protruding from the scroll portion 7A toward the impeller 5 so as to face the lower wall surface of the scroll portion 7A. Moreover, the side wall board 9 is attached so that the opening of the axial direction both sides formed of 7 A of scroll parts, the design panel 2, and the stabilizer 8 may be covered. An opening surrounded by the lower ends of the scroll portion 7 </ b> A, the design panel 2, and the side wall plate 9 constitutes the air outlet 11.

さらに、吸込口2aから吹出口11に通ずる通風路10が、スクロール部7A、スタビライザ8、意匠パネル2、及び側壁板9で形成された空間に形成されている。また、熱交換器3が羽根車5の吸込口2a側(上流側)に、羽根車5を逆V字型に覆って通風路10内に配設されている。   Furthermore, the ventilation path 10 which leads from the suction inlet 2a to the blower outlet 11 is formed in the space formed by the scroll portion 7A, the stabilizer 8, the design panel 2, and the side wall plate 9. Further, the heat exchanger 3 is disposed in the ventilation path 10 on the suction port 2a side (upstream side) of the impeller 5 so as to cover the impeller 5 in an inverted V shape.

上記のように構成された空気調和機1Aでは、羽根車5が回転されると、空気が吸込口2aから吸い込まれ、さらに熱交換器3を通過し、羽根車5を貫流する。このとき、スクロール部7Aの上端は、羽根車5の吸込口2a側まで延設されており、気流は、スクロール部7Aによって羽根車5の背後に案内されるようになっている。さらに気流は、相対するスクロール部7Aとスタビライザ8との間に形成された通風路10の部位を通過して吹出口11から室内に放出されるようになっている。即ち、スクロール部7Aの通風路10側の壁面(以下、案内壁面7aとする)が、気流を羽根車5の背後から吹出口11に案内している。   In the air conditioner 1 </ b> A configured as described above, when the impeller 5 is rotated, air is sucked from the suction port 2 a, passes through the heat exchanger 3, and flows through the impeller 5. At this time, the upper end of the scroll part 7A is extended to the suction port 2a side of the impeller 5, and the airflow is guided behind the impeller 5 by the scroll part 7A. Further, the airflow passes through a portion of the ventilation path 10 formed between the scroll portion 7A and the stabilizer 8 facing each other and is discharged into the room from the air outlet 11. That is, the wall surface of the scroll portion 7 </ b> A on the side of the ventilation path 10 (hereinafter referred to as the guide wall surface 7 a) guides the airflow from the rear of the impeller 5 to the air outlet 11.

次いで、スクロール部7Aにおける通風路10側の壁面の形状について図1及び図2を参照しつつ説明する。なお、図1において、軸方向の中間の位置での空気調和機1Aの羽根車5の軸方向に垂直な断面を破線で示し、さらに、軸方向の一端部の位置での空気調和機1Aの羽根車5の側断面におけるスクロール部7Aを実線にて併記している。また、図2では、スクロール部7Aの長手方向(軸方向)の中間位置でのスクロール部7Aの部位を破線にて示している。   Next, the shape of the wall surface on the ventilation path 10 side in the scroll portion 7A will be described with reference to FIGS. In addition, in FIG. 1, the cross section perpendicular | vertical to the axial direction of the impeller 5 of the air conditioner 1A in the intermediate position of an axial direction is shown with a broken line, and also the air conditioner 1A in the position of the one end part of an axial direction is shown. The scroll portion 7A in the side cross section of the impeller 5 is also shown by a solid line. Moreover, in FIG. 2, the site | part of the scroll part 7A in the intermediate position of the longitudinal direction (axial direction) of the scroll part 7A is shown with the broken line.

図1及び図2において、案内壁面7aは、軸方向に垂直な断面の壁面形状が、羽根車5の背後から吹出口11まで連続する通風路10の外側に凸状の滑らかな曲線となっている。また、案内壁面7aの吹出口11側の端部の高さが軸方向に亘って同じになっている。さらに、案内壁面7aは、吹出口11に近づくほど羽根車5の軸心との間の距離が長くなっている。   1 and 2, the guide wall surface 7a has a wall surface with a cross section perpendicular to the axial direction, and has a smooth curve that protrudes outwardly from the ventilation path 10 that continues from the rear of the impeller 5 to the air outlet 11. Yes. Moreover, the height of the edge part by the side of the blower outlet 11 of the guide wall surface 7a is the same over the axial direction. Furthermore, the distance between the guide wall surface 7a and the shaft center of the impeller 5 becomes longer as it approaches the outlet 11.

また、案内壁面7aは、通風路10の外側への突出量が、破線で示される軸方向の中央部から実線で示される軸方向の両端部に向かって漸次減少する気流方向に直交する断面の壁面形状を、羽根車5の背後から吹出口11側の端部近傍まで連続するように形成されている。つまり、案内壁面7aは、軸方向に垂直な断面における通風路面積の大きさを、それぞれ軸方向に位置をずらして比較したときに、スクロール部7Aの軸方向の中央を含む断面での通風路面積が最大となるように形成されている。   In addition, the guide wall surface 7a has a cross section orthogonal to the airflow direction in which the amount of protrusion to the outside of the ventilation path 10 gradually decreases from the axial center portion indicated by the broken line toward both axial end portions indicated by the solid line. The wall surface shape is formed so as to continue from the rear of the impeller 5 to the vicinity of the end on the outlet 11 side. That is, when the guide wall surface 7a compares the size of the air passage area in the cross section perpendicular to the axial direction while shifting the position in the axial direction, the air passage in the cross section including the center in the axial direction of the scroll portion 7A. It is formed so as to maximize the area.

さらに、案内壁面7aは、気流方向に直交する通風路10の断面における軸方向の中央部と両端部の通風路10の外側への突出量の差が吹出口11側端部近傍から吹出口11に向かうにつれて漸次縮小し、軸方向に亘って同じ高さに形成された吹出口11の下端部と連結するように形成されている。
以下、気流方向と直交する通風路10の断面を通風路断面とし、軸方向に垂直な断面を通風路側断面として説明する。
Furthermore, the guide wall surface 7a has a difference in the amount of protrusion of the cross section of the ventilation path 10 perpendicular to the airflow direction to the outside of the ventilation path 10 between the axial center and both ends from the vicinity of the outlet 11 side end. It is formed so as to be gradually reduced as it goes to and connected to the lower end portion of the air outlet 11 formed at the same height in the axial direction.
Hereinafter, the cross section of the ventilation path 10 orthogonal to the airflow direction will be described as the ventilation path cross section, and the cross section perpendicular to the axial direction will be described as the ventilation path side section.

このように、空気調和機1Aの案内壁面7aが、羽根車5の背後から吹出口11側の端部に至るまで連続する曲面により形成され、かつ、吹出口11側の端部の高さが軸方向に亘って同じであり、また、案内壁面7aと相対するスタビライザ8の壁面、及び側壁板9の壁面は平坦に形成されている。従って、羽根車5を貫流した気流は、流れを乱されることなく、スムーズに吹出口11に到達し、吹出口11から放出される気流の吹出し角度は、軸方向に亘って一定となる。   Thus, the guide wall surface 7a of the air conditioner 1A is formed by a curved surface that continues from the back of the impeller 5 to the end on the outlet 11 side, and the height of the end on the outlet 11 side is high. It is the same over the axial direction, and the wall surface of the stabilizer 8 and the wall surface of the side wall plate 9 facing the guide wall surface 7a are formed flat. Therefore, the airflow flowing through the impeller 5 reaches the air outlet 11 smoothly without disturbing the flow, and the angle of the airflow discharged from the air outlet 11 is constant over the axial direction.

また、通風路側断面における通風路面積は、軸方向の中央部側が軸方向の両端部側より大きくなる。そして、羽根車5を貫流する際に増加した気流の動圧は、通風路面積の大きい中央部で通風路面積の小さい両端部よりも、大きく静圧に変換される。従って、通風路10では、軸方向の中央部と両端部の静圧の差により中央部から両端部に向かわせる力が気流に働く。   Moreover, the ventilation path area in a ventilation path side cross section becomes larger in the axial center part side than the axial both ends. And the dynamic pressure of the airflow increased when flowing through the impeller 5 is converted to a larger static pressure at the central portion where the ventilation path area is larger than at both ends where the ventilation path area is small. Accordingly, in the ventilation path 10, a force that is directed from the central portion to both ends acts on the airflow due to the difference in static pressure between the central portion in the axial direction and both ends.

ここで、空気調和機1Aの吹出口11から放出される気流の風量分布を測定した結果を図3に示す。
図3では、吹出口11での軸方向の所定箇所を通過する気流ごとの風量及び向きが、風量の大きさに比例する長さを有する矢印付きの直線で視覚的に表されている。矢印が下向きにある場合は、気流が吹出口11から室内に放出されている状態を示す。そして、図3に示されるように、気流は、吹出口11の軸方向の全域に亘って、略均一な風量分布で室内に放出されていることが確認された。
Here, the result of having measured the air volume distribution of the airflow discharged | emitted from the blower outlet 11 of 1 A of air conditioners is shown in FIG.
In FIG. 3, the air volume and direction of each airflow passing through a predetermined portion in the axial direction at the air outlet 11 are visually represented by a straight line with an arrow having a length proportional to the magnitude of the airflow. When the arrow is pointing downward, the airflow is released into the room from the air outlet 11. And as FIG. 3 showed, it was confirmed that the airflow is discharged | emitted indoors by the substantially uniform air volume distribution over the whole area of the axial direction of the blower outlet 11. As shown in FIG.

上記測定結果について考察する。
まず、一般的に、羽根車5を貫流した気流は、羽根車5の軸方向の両端で風量が減少する。しかし、上述したように、空気調和機1Aの通風路10では、軸方向の中央部と両端部の静圧の差により中央部から両端部に向かわせる力が気流に働く。これにより、羽根車5の下流側の通風路10では、軸方向の両端側での風量が羽根車5の貫流直後の気流の風量の減少分を補うように増大される。従って、通風路10では、気流の風量は、軸方向に亘って均一化する。さらに、気流を遮るように吹出口11に突出する壁面もないので、吹出口11に到達された気流は、静圧を吹出口11で動圧を上昇させるように再変換することなく放出される。以上により、吹出口11から放出される気流の風量分布は軸方向の全域に亘って略均一になったものと判断される。
Consider the above measurement results.
First, in general, the amount of air flowing through the impeller 5 decreases at both ends of the impeller 5 in the axial direction. However, as described above, in the ventilation path 10 of the air conditioner 1A, the force that is directed from the central part to both ends acts on the airflow due to the difference in the static pressure between the central part and both ends in the axial direction. As a result, in the ventilation path 10 on the downstream side of the impeller 5, the air volume at both ends in the axial direction is increased so as to compensate for the decrease in the air volume of the air stream immediately after the impeller 5 flows through. Therefore, in the ventilation path 10, the air volume of the airflow is made uniform over the axial direction. Further, since there is no wall surface protruding to the air outlet 11 so as to block the air current, the air current reaching the air outlet 11 is released without reconverting the static pressure so as to increase the dynamic pressure at the air outlet 11. . From the above, it is determined that the air volume distribution of the airflow discharged from the outlet 11 is substantially uniform over the entire area in the axial direction.

ここで、スクロール部の案内壁面が軸方向全域に亘って平坦に形成された比較例の空気調和機を用意し、吸込口2aのフィルタが経年的に付着した埃などにより目詰まりを起こしたものについて吹出口11から放出される気流の風量分布を測定した結果を図4に示す。
なお、図示しないが、吸込口2aのフィルタが目詰まりを起こしていない比較例の空気調和機についても吹出口11から放出される気流の風量分布を測定したところ、吹出口11の軸方向の両端側ほど風量が減少することが確認された。
Here, the air conditioner of the comparative example in which the guide wall surface of the scroll part is formed flat over the entire axial direction is prepared, and the filter of the suction port 2a is clogged with dust attached over time. FIG. 4 shows the results of measuring the air volume distribution of the airflow discharged from the outlet 11 for.
Although not shown, when the air volume distribution of the airflow discharged from the outlet 11 is measured for the air conditioner of the comparative example in which the filter of the inlet 2a is not clogged, both ends in the axial direction of the outlet 11 are measured. It was confirmed that the air volume decreased toward the side.

図4では、図3と同様に、吹出口11の軸方向の所定箇所を通過する気流の風量及び向きが、気流の風量の大きさに比例する長さを有する矢印付きの直線で視覚的に表されている。線分の長さが0のときに気流の風量は0であり、また、矢印が下向きにある場合は、気流が吹出口11から室内に放出され、矢印が上向きにある場合は、気流が吹出口11から通風路10内に逆流している状態を表している。
比較例の空気調和機では、図4に示されるように、吹出口11における軸方向の両端において、気流が逆流して通風路10内に入りこむことが確認された。
In FIG. 4, as in FIG. 3, the flow rate and direction of the airflow passing through a predetermined position in the axial direction of the air outlet 11 are visually indicated by a straight line with an arrow having a length proportional to the magnitude of the flow rate of the airflow. It is represented. When the length of the line segment is 0, the airflow of the airflow is 0, and when the arrow is downward, the airflow is discharged into the room from the air outlet 11, and when the arrow is upward, the airflow is blown. The state which is flowing backward in the ventilation path 10 from the exit 11 is represented.
In the air conditioner of the comparative example, as shown in FIG. 4, it was confirmed that the air current flows backward into the ventilation path 10 at both ends in the axial direction of the air outlet 11.

次いで上記結果について考察する。
上述したように、吹出口11の軸方向の両端から放出される気流の風量は、吸込口2aのフィルタが目詰まりを起こしていないときでも減少する。これに加え、吸込口2aのフィルタが目詰まりを起こし、吸込口2aでの圧力損失が大きくなると、気流を吹出口11から放出させようとする力が弱くなり、吹出口11における軸方向の両端では、気流が逆流して通風路10内に入りこむものと判断される。
Next, the above results will be considered.
As described above, the amount of airflow discharged from both ends of the blower outlet 11 in the axial direction is reduced even when the filter of the suction inlet 2a is not clogged. In addition to this, when the filter of the suction port 2a is clogged and the pressure loss at the suction port 2a becomes large, the force to release the airflow from the outlet 11 becomes weaker, and both axial ends of the outlet 11 become smaller. Then, it is determined that the airflow flows backward and enters the ventilation path 10.

これに対し、空気調和機1Aでは、目詰まりが吸込口2aで発生したとしても、上述したように吹出口11の軸方向の両端側でも、風量が増大しているので、吹出口11における軸方向の端部から気流が逆流して通風路10内に入り込むことが極力抑えられる。   On the other hand, in the air conditioner 1A, even if clogging occurs at the suction port 2a, the air volume increases at both ends in the axial direction of the air outlet 11 as described above. It is possible to suppress as much as possible that the air current flows backward from the end of the direction and enters the ventilation path 10.

次いで、空気調和機1Aにおいて、案内壁面7aの通風路10の外側への突出量を変化させたときの消費電力を測定した結果について具体的に説明する。
ここで、羽根車5の軸心を含む平面が交差する案内壁面7aの一端又は他端の部位(端部)と羽根車5の軸心との間の距離を第1長さとし、当該平面が交差する案内壁面7aの軸方向の中央部の部位と羽根車5の軸心との間の距離を第2長さとする。そして、第1長さと第2長さの差をαとしたとき、図1に示されるように、羽根車5の軸心を含む平面が案内壁面7aの羽根車5の背後の部位から吹出口11側の端部に至る全領域と交差するように、当該平面を羽根車5の軸心まわりに回転させた場合に、当該平面の各回転角度毎に得られる差αの最大値を最大壁面間距離δとする。また、図2に示されるように、スクロール部7Aの軸方向の長さをスクロール部長さLとする。
Next, in the air conditioner 1A, a result of measuring the power consumption when the amount of protrusion of the guide wall surface 7a to the outside of the ventilation path 10 is changed will be specifically described.
Here, the distance between one end or the other end (end portion) of the guide wall surface 7a intersecting with the plane including the axis of the impeller 5 and the axis of the impeller 5 is a first length, and the plane is The distance between the central portion of the intersecting guide wall surface 7a in the axial direction and the axis of the impeller 5 is the second length. When the difference between the first length and the second length is α, as shown in FIG. 1, the plane including the axial center of the impeller 5 extends from the portion behind the impeller 5 on the guide wall surface 7 a to the outlet. When the plane is rotated around the axis of the impeller 5 so as to intersect with the entire region reaching the end on the 11 side, the maximum value of the difference α obtained for each rotation angle of the plane is the maximum wall surface. The distance δ is assumed. Further, as shown in FIG. 2, the length of the scroll portion 7A in the axial direction is defined as a scroll portion length L.

そして、スクロール部7Aの軸方向の長さの中間部が最も通風路10の外側に突出するようにスクロール部7Aを変形させて最大壁面間距離δを変化させたときの空気調和機1Aの消費電力を、最大壁面間距離δ/スクロール部長さLをパラメータとして測定した。なお、スクロール部長さLは一定である。比較のため、最大壁面間距離δが0のスクロール部を有する比較例の空気調和機(図示せず)に対しても、消費電力を測定した。以下、最大壁面間距離δ/スクロール部長さLを単にδ/Lとする。
空気調和機1Aの消費電力は、δ/Lを0から0.02まで変化させて測定した。比較例の空気調和機の消費電力を100としたときの空気調和機1Aの消費電力を図5に示す。
図5に示されるように、案内壁面が平面である(δ/L=0である)比較例の空気調和機の消費電力に対して、空気調和機1Aの消費電力は測定したδ/Lの全範囲で小さくなった。
And consumption of the air conditioner 1A when the scroll portion 7A is deformed and the maximum distance δ between the wall surfaces is changed so that the intermediate portion of the axial length of the scroll portion 7A protrudes most outside the ventilation path 10 The electric power was measured using the maximum distance between wall surfaces δ / the length L of the scroll portion as a parameter. Note that the scroll portion length L is constant. For comparison, power consumption was also measured for a comparative air conditioner (not shown) having a scroll portion with a maximum inter-wall distance δ of 0. Hereinafter, the maximum inter-wall surface distance δ / the scroll portion length L is simply δ / L.
The power consumption of the air conditioner 1A was measured by changing δ / L from 0 to 0.02. FIG. 5 shows the power consumption of the air conditioner 1A when the power consumption of the air conditioner of the comparative example is 100.
As shown in FIG. 5, the power consumption of the air conditioner 1 </ b> A is δ / L compared to the power consumption of the air conditioner of the comparative example in which the guide wall surface is flat (δ / L = 0). It became smaller in the whole range.

また、δ/Lを連続して変化させた場合、消費電力は、下に凸の形状で連続して変化する特性となった。そして、δ/Lの値を0から0.002近傍まで増大させたときは、緩やかに消費電力が低下し、さらにδ/Lを増大させると急激に消費電力が低下した。さらに、δ/Lが0.003≦δ/L≦0.01の範囲にあるときに消費電力は略最小値で推移した。δ/Lが0.003≦δ/L≦0.01の範囲にあるとき、消費電力は、δ/Lが0のときに比べて7%程度低下した。また、δ/Lの値が0.01より大きくなると再び消費電力が増大するが、消費電力は、測定範囲において、δ/Lが0のときのものより大きくなることはなかった。   Further, when δ / L was continuously changed, the power consumption became a characteristic that continuously changed in a downwardly convex shape. When the value of δ / L was increased from 0 to around 0.002, the power consumption gradually decreased, and when δ / L was further increased, the power consumption decreased rapidly. Further, when δ / L is in the range of 0.003 ≦ δ / L ≦ 0.01, the power consumption has changed to a substantially minimum value. When δ / L is in the range of 0.003 ≦ δ / L ≦ 0.01, the power consumption is reduced by about 7% compared to when δ / L is 0. Further, when the value of δ / L becomes larger than 0.01, the power consumption increases again, but the power consumption does not become larger than that when δ / L is 0 in the measurement range.

次いで、上記結果について考察する。
δ/Lが0より大きないずれの値においても、通風路側断面における通風路面積は、案内壁面7aの軸方向の両端を除けばδ/Lが0のものと比較して大きくなる。従って、軸方向の各位置における通風路側断面が大きくなった空気調和機1Aでは、比較例の空気調和機に比べ、通風路10における動圧が減少する。これにより、空気調和機1Aでは、吹き出し気流の動圧損失が抑制され、消費電力が比較例の空気調和機に対して減少したものと判断される。
Next, the above results will be considered.
At any value where δ / L is larger than 0, the ventilation path area in the cross section of the ventilation path is larger than that when δ / L is 0 except for both axial ends of the guide wall surface 7a. Therefore, in the air conditioner 1A in which the cross section of the ventilation path at each position in the axial direction is large, the dynamic pressure in the ventilation path 10 is reduced as compared with the air conditioner of the comparative example. Thereby, in the air conditioner 1A, it is determined that the dynamic pressure loss of the blown airflow is suppressed, and the power consumption is reduced with respect to the air conditioner of the comparative example.

また、δ/Lが増大するほど、案内壁面7aの通風路側断面の壁面形状が通風路10の外側に大きく突出されて通風路側断面の通風路面積が大きくなるので、通風路10内の気流の速度が遅くなる。特に、案内壁面7aの軸方向の中央部側で、通風路側断面における案内壁面7aは大きく突出される。ある程度突出された案内壁面7aの部位を、速度の遅い気流が通過する場合、気流は、気流方向に沿った案内壁面7aの形状変化に追従しきれず、気流の一部が案内壁面7aから剥離される。気流が案内壁面7aから剥離された周辺では、気流が乱されて消費電力を増大させる要因となる。   Further, as δ / L increases, the wall surface shape of the guide wall 7a in the cross section on the side of the ventilation path protrudes greatly outside the ventilation path 10 and the area of the ventilation path in the cross section of the ventilation path increases. The speed is slow. In particular, the guide wall surface 7a in the cross section on the ventilation path side is greatly protruded on the axial center side of the guide wall surface 7a. When a slow-velocity airflow passes through the portion of the guide wall surface 7a protruding to some extent, the airflow cannot follow the shape change of the guide wall surface 7a along the airflow direction, and a part of the airflow is separated from the guide wall surface 7a. The In the vicinity where the air current is peeled off from the guide wall surface 7a, the air current is disturbed and becomes a factor of increasing power consumption.

以上を鑑みると、δ/Lが0<δ/L≦0.0015の範囲では、案内壁面7aの突出量は少なく、案内壁面7aから剥離される気流が殆どないが、軸方向の各位置における通風路側断面の通風路面積の増大量も小さいため、通風路面積の増大による消費電力の低減効果が大きく現れないものと判断される。
そして、δ/Lを0.0015から0.003に向けてさらに増大させた場合、案内壁面7aから剥離される気流は僅かである一方で、軸方向の各位置における通風路側断面の通風路面積が増大する。従って、δ/Lの増大に伴って、消費電力の低減効果が徐々に現れて、消費電力が比較例の空気調和機に対して減少したものと判断される。
In view of the above, when δ / L is in the range of 0 <δ / L ≦ 0.0015, the protruding amount of the guide wall surface 7a is small, and there is almost no air flow separated from the guide wall surface 7a, but at each position in the axial direction. Since the increase amount of the ventilation path area in the cross section of the ventilation path is small, it is determined that the effect of reducing the power consumption due to the increase of the ventilation path area does not appear greatly.
When δ / L is further increased from 0.0015 to 0.003, the air flow separated from the guide wall surface 7a is small, while the air passage area of the air passage side cross-section at each position in the axial direction is small. Will increase. Therefore, as δ / L increases, it is determined that the effect of reducing power consumption gradually appears and the power consumption is reduced with respect to the air conditioner of the comparative example.

そして、δ/Lが0.003の手前からは、案内壁面7aからの気流の剥離量が増大し始めるため、気流が案内壁面7aから剥離されるのに起因して消費電力が増大される。これにより、δ/Lの増大に対して消費電力の低減量が小さくなる。
そして、δ/Lが0.003以上では、軸方向の各位置における通風路側断面の通風路面積が大きくなるのに起因した消費電力の低減量と、気流が案内壁面7aから剥離されるのに起因した消費電力の増大量とが打ち消しあい、δ/Lの増大に伴う消費電力の低下が抑制されるものと判断される。以降、δ/Lが0.01に達するまで、軸方向の各位置における通風路側断面の通風路面積が大きくなるのに起因した消費電力の低減量と、気流が案内壁面7aから剥離されるのに起因した消費電力の増大量とが打ち消しあい、消費電力が最小値のまま推移するものと判断される。
Since the amount of separation of the airflow from the guide wall surface 7a starts to increase before δ / L is 0.003, the power consumption is increased due to the separation of the airflow from the guide wall surface 7a. Thereby, the reduction amount of power consumption becomes small with respect to the increase of δ / L.
When δ / L is 0.003 or more, the reduction in power consumption due to the increase in the ventilation path area of the ventilation path side cross section at each position in the axial direction and the airflow is separated from the guide wall surface 7a. The resulting increase in power consumption cancels out, and it is determined that a decrease in power consumption accompanying an increase in δ / L is suppressed. Thereafter, until δ / L reaches 0.01, the reduction in power consumption due to the increase in the ventilation path area of the ventilation path side cross section at each axial position, and the airflow is separated from the guide wall surface 7a. It is determined that the amount of increase in power consumption due to this cancels out and the power consumption remains at the minimum value.

また、δ/Lが0.01より大きくなると、軸方向の各位置における通風路側断面の通風路面積が大きくなるのに起因した消費電力の低減量より、通風路面積が大きくなるのに起因した消費電力の増大量より大きくなる。さらに、δ/Lが大きいほど、気流が案内壁面7aから剥離されるのに起因した消費電力の増大量の変化の割合が、通風路面積が大きくなるのに起因した消費電力の低減量の変化の割合より大きくなる。これにより、δ/Lが0.01より大きくなると、消費電力の低減効果が徐々に小さくなるものと判断される。   Further, when δ / L is larger than 0.01, the air passage area is larger than the reduction amount of power consumption caused by the air passage area of the air passage side cross section at each axial position is increased. It becomes larger than the increase amount of power consumption. Further, as δ / L is larger, the rate of change in the increase in power consumption due to the airflow being peeled from the guide wall surface 7a is the change in the reduction in power consumption due to the increase in the ventilation path area. Will be greater than Thus, when δ / L is greater than 0.01, it is determined that the effect of reducing power consumption is gradually reduced.

この実施の形態1によれば、案内壁面7aは、通風路側断面の壁面形状が、羽根車5の背後から吹出口11まで連続する通風路10の外側に凸状の滑らかな曲線となっている。
また、案内壁面7aは、通風路10の外側への突出量が、軸方向の中央部から軸方向の両端部に向かって漸次減少する通風路断面の壁面形状を、羽根車5の背後から吹出口11側の端部近傍まで連続するように形成されている。さらに、案内壁面7aは、吹出口11側端部近傍から吹出口11に向かって、通風路断面における軸方向の中央部と両端部の通風路10の外側への突出量の差を漸次縮小し、軸方向に亘って同じ高さに形成された吹出口11の端部と連結するように形成されている。
According to the first embodiment, the guide wall surface 7a has a smooth curved curve with the wall surface shape of the cross section on the side of the ventilation path protruding outward from the ventilation path 10 continuing from the rear of the impeller 5 to the outlet 11. .
Further, the guide wall surface 7a blows the wall surface shape of the ventilation path cross section from the rear side of the impeller 5 so that the amount of protrusion to the outside of the ventilation path 10 gradually decreases from the central part in the axial direction toward both end parts in the axial direction. It is formed so as to continue to the vicinity of the end on the outlet 11 side. Furthermore, the guide wall surface 7a gradually reduces the difference in the amount of protrusion of the air passage cross section from the vicinity of the air outlet 11 side end portion toward the air outlet 11 to the outside of the air passage 10 at the axial center and both ends of the air passage. It is formed so that it may connect with the edge part of the blower outlet 11 formed in the same height over the axial direction.

従って、通風路側断面の風量変動や圧力変動が、軸方向に関して不連続に変化することはなく、かつ、連続的に変化する。これにより、風量変動や圧力変動の同時性が、クロスフローファンの軸方向に関して大きく弱められ、離散周波数雑音の発生を抑制する効果が最大限に発揮される。さらに、羽根車5を貫流した気流は、通風路10内をスムーズに流れて吹出口11側に到達されるので、乱気流が発生されることがなく、広帯域雑音の増大を抑制できる。また、従来のように吹出口11で気流の静圧を再変換することもないので、空気調和機1Aの電力効率を向上させることができる。   Therefore, the air volume fluctuation and the pressure fluctuation in the cross section on the ventilation path side do not change discontinuously in the axial direction and change continuously. As a result, the simultaneity of the air volume fluctuation and the pressure fluctuation is greatly weakened in the axial direction of the cross flow fan, and the effect of suppressing the generation of discrete frequency noise is maximized. Furthermore, since the airflow flowing through the impeller 5 smoothly flows through the ventilation path 10 and reaches the outlet 11 side, turbulent airflow is not generated and an increase in broadband noise can be suppressed. Moreover, since the static pressure of airflow is not reconverted by the blower outlet 11 conventionally, the power efficiency of 1 A of air conditioners can be improved.

また、通風路10では、軸方向の中央部と両端部の静圧の差により中央部から両端部に向かわせる力が気流に働くので、気流の風量が軸方向に亘って均一化される。さらに、吹出口11は、軸方向に亘って同じ高さに形成されている。従って、空気調和機1Aには、吹出口11から室内に放出される気流の吹出角度を制御するための上下フラップ(図示せず)を配設するのが一般的であるが、気流の吹き出し角度を制御しようとする上下フラップの効果が、吹出口11の軸方向に亘って均一に働くので、上下フラップによる良好な気流制御性を期待できる。   Moreover, in the ventilation path 10, since the force which goes to both ends from a center part acts on an airflow by the difference of the static pressure of the center part of an axial direction and both ends, the air volume of an airflow is equalized over an axial direction. Furthermore, the blower outlet 11 is formed in the same height over the axial direction. Therefore, the air conditioner 1A is generally provided with upper and lower flaps (not shown) for controlling the blowing angle of the airflow discharged from the blower outlet 11 into the room. Since the effect of the upper and lower flaps for controlling the air pressure acts uniformly over the axial direction of the air outlet 11, good air flow controllability by the upper and lower flaps can be expected.

また、案内壁面7aの壁面形状は、スクロール部7Aのδ/Lを、0.003≦δ/L≦0.01の範囲となるように形成することで空気調和機1Aの電力効率をより向上できる。   Moreover, the wall surface shape of the guide wall surface 7a further improves the power efficiency of the air conditioner 1A by forming δ / L of the scroll portion 7A in a range of 0.003 ≦ δ / L ≦ 0.01. it can.

さらに、通風路10の軸方向の中央で通風路側断面における通風路面積を大きくしたことにより吹出口11における軸方向の端部から気流が逆流して通風路10内に入り込むことがないので以下の効果も得られる。
即ち、スクロール部の案内壁面が平坦な比較例の空気調和機では、吸込口2aが目詰まりを起こして吸込口2aの圧力損失が大きくなると、図4に示されるように軸方向の端部において気流の逆流が生じる。つまり、気流の風量が少ない吹出口11の両端部では、比較例の空気調和機の内部に外部の空気が流れ込みやすくなる。気流が通風路10内に逆流する場合、以下の問題が発生する。比較例の空気調和機が冷房運転を行っている時に、室内の湿った暖気が通風路10内に逆流すると、暖気が熱交換器3で冷やされて熱交換器3に結露が生じる。この結露が多量になると、羽根車5の風力により、吹出口11から、水滴が滴下される。
Furthermore, since the air passage area in the cross section of the air passage is enlarged at the center in the axial direction of the air passage 10, the air flow does not flow backward from the end of the air outlet 11 in the axial direction and enters the air passage 10. An effect is also obtained.
That is, in the air conditioner of the comparative example in which the guide wall surface of the scroll portion is flat, when the suction port 2a is clogged and the pressure loss of the suction port 2a becomes large, as shown in FIG. A backflow of airflow occurs. That is, external air easily flows into the air conditioner of the comparative example at both ends of the air outlet 11 where the air volume of the airflow is small. When the airflow flows backward into the ventilation path 10, the following problem occurs. When the air conditioner of the comparative example is performing a cooling operation, if warm indoor air flows backward into the ventilation path 10, the warm air is cooled by the heat exchanger 3 and condensation occurs in the heat exchanger 3. When this dew condensation becomes large, water droplets are dripped from the air outlet 11 by the wind power of the impeller 5.

一方、空気調和機1Aでは、羽根車5の下流から吹出口11までの間の通風路10では、スクロール部7Aの軸方向の中央部と両端部の静圧の差により、中央部から両端部に向かわせる力が気流に生じる。このため、万一、吸込口2aの目詰まりにより吸込口2aの圧力損失が大きくなった場合でも、吹出口11の軸方向の両端側の風量が、軸方向の中央部の風量に近い量まで増大しているので、気流が吹出口11から通風路10内に逆流することを防止できる。   On the other hand, in the air conditioner 1A, in the ventilation path 10 between the downstream of the impeller 5 and the blower outlet 11, due to the difference in static pressure between the central portion and both end portions in the axial direction of the scroll portion 7A, both end portions are arranged from the center portion. A force is directed to the airflow. For this reason, even if the pressure loss of the suction port 2a increases due to clogging of the suction port 2a, the air volume at both ends in the axial direction of the air outlet 11 is close to the air volume at the central portion in the axial direction. Since it increases, it can prevent that an airflow flows backward into the ventilation path 10 from the blower outlet 11. FIG.

実施の形態2.
図6はこの発明の実施の形態2に係る空気調和機のクロスフローファンに駆動モータが連結された状態を示す斜視図、図7はこの発明の実施の形態2に係る空気調和機における(スクロール部7Bの一端と側断面最大位置との間の長さx)/スクロール部長さLと消費電力との関係を示す図である。なお、図6において、上記実施の形態1と同一又は相当部分には同一符号を付し、その説明は省略する。
また、図6では、通風路側断面における通風路面積が最大となるスクロール部の軸方向の位置を破線で示している。
Embodiment 2. FIG.
FIG. 6 is a perspective view showing a state in which a drive motor is connected to a crossflow fan of an air conditioner according to Embodiment 2 of the present invention, and FIG. 7 is a diagram (scroll in the air conditioner according to Embodiment 2 of the present invention. It is a figure which shows the relationship between the length x) between one end of the part 7B and the side cross-section maximum position / scroll part length L, and power consumption. In FIG. 6, the same or corresponding parts as those in the first embodiment are given the same reference numerals, and the description thereof is omitted.
Further, in FIG. 6, the position in the axial direction of the scroll portion where the ventilation path area in the ventilation path side cross section is maximized is indicated by a broken line.

一体
図6において、空気調和機1Bは、通風路側断面におけるスクロール部7Bの通風路10側の壁面(以降、案内壁面7bと記載する)の壁面形状が、通風路10の外側に凸状の曲線であり、さらに、吹出口11側の端部の高さが、軸方向に亘って同じになっている。
In FIG. 6, the air conditioner 1 </ b> B has a curved surface in which the wall surface of the scroll portion 7 </ b> B on the side of the ventilation path 10 (hereinafter referred to as a guide wall surface 7 b) has a convex shape on the outside of the ventilation path 10. Furthermore, the height of the end portion on the air outlet 11 side is the same over the axial direction.

また、案内壁面7bは、通風路10の外側への突出量が案内壁面7bの羽根車5の軸方向の所定部位から両端部に向かって漸次減少する通風路断面における壁面形状を、羽根車5の背後から吹出口11側の端部近傍まで連続するように形成されている。このとき、当該所定部位は、案内壁面7bの軸方向の中間部に対して当該軸方向の一端側に所定距離ずれている。   In addition, the guide wall surface 7b has a wall surface shape in the cross section of the air passage where the amount of protrusion to the outside of the air passage 10 gradually decreases from a predetermined position in the axial direction of the impeller 5 of the guide wall surface 7b toward both ends. It is formed so that it may continue from the back of this to the vicinity of the end on the outlet 11 side. At this time, the predetermined portion is shifted by a predetermined distance toward one end side in the axial direction with respect to the intermediate portion in the axial direction of the guide wall surface 7b.

即ち、案内壁面7bは、通風路側断面における通風路面積の大きさを、それぞれ軸方向に位置をずらして比較したときに、少なくとも、スクロール部7Bの軸方向の中央より一端側の所定部位を含む通風路側断面での通風路面積が最大となるように形成されている。
これにより、スクロール部7Aの軸方向の中央部で通風路側断面の通風路面積が最大となるように形成された案内壁面7aに比べ、案内壁面7bの一端側の軸方向の傾斜は急となる。以下、通風路側断面における通風路面積が最大となる案内壁面7bの所定部位の軸方向の位置を側断面最大位置とする。
That is, the guide wall surface 7b includes at least a predetermined portion on one end side from the center in the axial direction of the scroll portion 7B when comparing the size of the ventilation path area in the cross section of the ventilation path with the position shifted in the axial direction. It forms so that the ventilation path area in a ventilation path side cross section may become the maximum.
As a result, the inclination in the axial direction on one end side of the guide wall surface 7b becomes steeper compared to the guide wall surface 7a formed so that the ventilation path area of the cross section on the ventilation path side is maximized in the central portion of the scroll portion 7A in the axial direction. . Hereinafter, the position in the axial direction of the predetermined part of the guide wall surface 7b where the ventilation path area in the ventilation path side cross section is maximum is defined as the maximum side cross section position.

さらに、案内壁面7bは、通風路断面における側断面最大位置と両端部の通風路10の外側への突出量の差が、吹出口11側端部近傍から吹出口11に向かって漸次縮小し、軸方向に亘って同じ高さに形成された吹出口11の端部と連結するように形成されている。   Further, in the guide wall surface 7b, the difference between the maximum position of the side cross section in the cross section of the ventilation path and the amount of protrusion of the both end portions to the outside of the ventilation path 10 is gradually reduced from the vicinity of the air outlet 11 side end toward the air outlet 11. It forms so that it may connect with the edge part of the blower outlet 11 formed in the same height over the axial direction.

また、羽根車5は、軸方向の一端の開口を塞口する側壁5aを有している。さらに、挿通孔5bが、側壁5aに、羽根車5の軸と同軸に形成されている。
そして、羽根車5を軸まわりに回転させる駆動力を供給する駆動モータ13が、羽根車5の一方の側壁5aの外面と相対するように羽根車5の外部に配置されている。また、連結軸14の一端が駆動モータ13に連結され、連結軸14は、駆動モータ13の駆動力により軸まわりに回転するようになっている。
The impeller 5 has a side wall 5a that closes an opening at one end in the axial direction. Further, an insertion hole 5b is formed in the side wall 5a coaxially with the shaft of the impeller 5.
A drive motor 13 that supplies a driving force for rotating the impeller 5 about its axis is disposed outside the impeller 5 so as to face the outer surface of one side wall 5 a of the impeller 5. Further, one end of the connecting shaft 14 is connected to the drive motor 13, and the connecting shaft 14 rotates around the shaft by the driving force of the driving motor 13.

そして、一方の側壁5aの内側には、ファンボス16が、その孔中心を挿通孔5bの孔中心に一致せて突設されている。
そして、側壁5aの挿通孔5bに挿通された連結軸14の他端が、ファンボス16の孔に挿入されて、ファンボス16に固定されている。このとき、連結軸14は羽根車5と同軸に配置されている。
他の構成は、上記実施の形態1と同様に構成されている。
And the fan boss | hub 16 protrudes in the inner side of one side wall 5a, making the hole center correspond to the hole center of the penetration hole 5b.
The other end of the connecting shaft 14 inserted through the insertion hole 5 b of the side wall 5 a is inserted into the hole of the fan boss 16 and fixed to the fan boss 16. At this time, the connecting shaft 14 is disposed coaxially with the impeller 5.
Other configurations are the same as those in the first embodiment.

上記のように連結軸14が連結された羽根車5は、駆動モータ13の駆動力によって回転される連結軸14の軸まわりの回転に連動して回転する。
なお、図6では、羽根車5を側壁5aにより開口が塞口された円筒状に図示しているが、羽根車5の外周面に周方向に所定のピッチで配設された羽根(図示せず)の付け根は、径方向に関し、羽根車5の外周面から羽根車5の軸心側に所定距離侵入したところに配置されている。
The impeller 5 to which the connecting shaft 14 is connected as described above rotates in conjunction with the rotation around the connecting shaft 14 that is rotated by the driving force of the drive motor 13.
In FIG. 6, the impeller 5 is illustrated in a cylindrical shape in which the opening is closed by the side wall 5 a, but the impeller 5 is disposed on the outer peripheral surface of the impeller 5 at a predetermined pitch in the circumferential direction (not illustrated). The root of (z) is arranged at a position that enters a predetermined distance from the outer peripheral surface of the impeller 5 to the axial center side of the impeller 5 in the radial direction.

以下、側断面最大位置が案内壁面7bの軸方向の中央部から一端側(ファンボス16側)に所定距離ずらして配置されるように案内壁面7bを形成したことによる効果について述べる。
上記のように連結軸14と羽根車5との間の連結が、側壁5aの内面に固定されたファンボス16を用いて行われる場合、羽根車5の軸方向のファンボス16側の端部近傍では、気流が羽根車5を貫流する際の通風抵抗がファンボス16によって増大する。また、羽根車5のファンボス16側の端部近傍では、羽根が、連結軸14との連結作業を容易にするため省略される場合もある。これにより、羽根車5を貫流した直後の気流の風量は、羽根車5のファンボス16側で特に減少される。
Hereinafter, an effect obtained by forming the guide wall surface 7b so that the maximum position of the side cross section is shifted from the central portion in the axial direction of the guide wall surface 7b to one end side (fan boss 16 side) will be described.
When the connection between the connecting shaft 14 and the impeller 5 is performed using the fan boss 16 fixed to the inner surface of the side wall 5a as described above, the end of the impeller 5 on the fan boss 16 side in the axial direction. In the vicinity, the airflow resistance when the airflow flows through the impeller 5 is increased by the fan boss 16. Further, in the vicinity of the end portion of the impeller 5 on the fan boss 16 side, the blade may be omitted in order to facilitate the connecting operation with the connecting shaft 14. Thereby, the air volume of the airflow immediately after flowing through the impeller 5 is particularly reduced on the fan boss 16 side of the impeller 5.

しかし、案内壁面7bは、側断面最大位置が案内壁面7bの軸方向の一端側に配置されるように形成されているので、側断面最大位置が案内壁面7bの軸方向の中央部にある時に比べ、通風路側断面における軸方向の一端近傍の通風路面積が増大されている。これにより、通風路10の軸方向の一端近傍では、他端部近傍より通風抵抗が小さくなり、風量が増加する。さらに、通風路10では、軸方向に関し、側断面最大位置と両端部の静圧の差により側断面最大位置から両端部に向かわせる力も気流に働いている。   However, since the guide wall surface 7b is formed such that the maximum position of the side cross section is disposed on one end side in the axial direction of the guide wall surface 7b, when the maximum position of the side cross section is in the central portion of the guide wall surface 7b in the axial direction. In comparison, the air passage area in the vicinity of one end in the axial direction in the air passage side section is increased. Thereby, in the vicinity of one end of the ventilation path 10 in the axial direction, the ventilation resistance is smaller than in the vicinity of the other end, and the air volume is increased. Further, in the ventilation path 10, in the axial direction, a force directed from the side cross-section maximum position to both ends due to the difference in the static pressure between the side cross-section maximum position and both ends also acts on the airflow.

このように、案内壁面7bが、ファンボス16を羽根車5の側壁5aの内面に配設したことに起因する羽根車5の一端側を貫流した気流の風量不足分を補って、通風路10の軸方向の一端側での風量を増大させるように形成されている。即ち、通風路10では、気流の風量は、軸方向に亘って均一化される。なお、通風路側断面における軸方向の他端近傍の通風路面積は減少するが、側断面最大位置と軸方向両端部における静圧の差により側断面最大位置から両端部に向かわせる力は残存している。従って、通風路10の風量を均一化する効果が損なわれるものではない。   In this way, the guide wall 7b compensates for the shortage of the airflow flowing through one end of the impeller 5 due to the fan boss 16 being disposed on the inner surface of the side wall 5a of the impeller 5, and the ventilation path 10 It is formed so as to increase the air volume at one end side in the axial direction. That is, in the ventilation path 10, the air volume of the airflow is made uniform over the axial direction. Note that the area of the ventilation path near the other end in the axial direction in the cross section on the side of the ventilation path is reduced, but the force directed from the maximum position in the side section to both ends remains due to the difference in static pressure between the maximum position in the side section and both ends in the axial direction. ing. Therefore, the effect of making the air volume of the ventilation path 10 uniform is not impaired.

ここで、通風路10での気流の風量が軸方向に亘って均一化されているときは、軸方向に関する気流の風速分布も均一であり、通風路10の軸方向に関する気流の風量分布が不均一なときは、軸方向に関する気流の風速分布も不均一になる。
このため、吹出口11から同じ風量の気流を室内に放出する場合、風量分布が均一なときの気流の風速は、風量分布が不均一なときの気流の風速分布における風速の最大値に比べて小さくなる。つまり、駆動モータ13の負荷が、風量分布が不均一なときより、風量分布が均一なときの方が風速を小さくできる分だけ低減されるので、空気調和機1Bの消費電力が、側断面最大位置が案内壁面7bの軸方向の中央部にある空気調和機の消費電力より低減される。以下、側断面最大位置をファンボス16側に移動して気流を均一化することに起因する消費電力の低減を気流の均一化に起因する消費電力とする。
Here, when the airflow of the airflow in the ventilation path 10 is uniform over the axial direction, the airflow distribution of the airflow in the axial direction is also uniform, and the airflow distribution of the airflow in the axial direction of the ventilation path 10 is not uniform. When uniform, the wind speed distribution of the airflow in the axial direction is also nonuniform.
For this reason, when the airflow of the same air volume is discharged into the room from the air outlet 11, the wind speed of the air current when the air volume distribution is uniform is larger than the maximum value of the wind speed in the air speed distribution of the air current when the air volume distribution is non-uniform. Get smaller. That is, since the load of the drive motor 13 is reduced by the amount that the wind speed can be reduced when the air volume distribution is uniform than when the air volume distribution is non-uniform, the power consumption of the air conditioner 1B is maximized in the side section. The position is reduced from the power consumption of the air conditioner at the axial center of the guide wall surface 7b. Hereinafter, the reduction of power consumption caused by moving the maximum position of the side cross section toward the fan boss 16 to make the air flow uniform will be referred to as power consumption caused by the uniform air flow.

次に、本実施の形態の構成とすることによる効果を試験により確認したので、以下にその内容を具体的に説明する。
ここで、スクロール部7Bの一端と側断面最大位置との間の軸方向に関する長さをxとする。以下、(スクロール部7Bの一端と側断面最大位置との間の長さx)/(スクロール部長さL)を単にx/Lとして説明する。
Next, since the effect of having the configuration of the present embodiment was confirmed by a test, the contents thereof will be specifically described below.
Here, the length in the axial direction between one end of the scroll portion 7B and the maximum position in the side cross section is x. Hereinafter, (length x between one end of scroll part 7B and the side cross-section maximum position) / (scroll part length L) is simply referred to as x / L.

そして、空気調和機1Bの消費電力を、x/Lをパラメータとし、x/Lを0.5の近傍の値(<0.5)から0.1まで変化させて測定した。このとき、Lは一定とし、側断面最大位置を案内壁面7bの軸方向の中央部側から徐々に一端側に移動させて消費電力を測定した。また、x/Lが0.5である空気調和機の消費電力も測定した。そして、x/Lが0.5である空気調和機の消費電力を100としたときの空気調和機1Bの消費電力を図7に示す。   The power consumption of the air conditioner 1B was measured by changing x / L from a value in the vicinity of 0.5 (<0.5) to 0.1 with x / L as a parameter. At this time, L was kept constant, and the power consumption was measured by gradually moving the maximum position of the side cross section from the central side in the axial direction of the guide wall surface 7b to one end side. Moreover, the power consumption of the air conditioner whose x / L is 0.5 was also measured. And the power consumption of the air conditioner 1B when the power consumption of the air conditioner whose x / L is 0.5 is set to 100 is shown in FIG.

図7に示されるように、x/Lを0.5から0.1まで連続して変化させた場合、空気調和機1Bの消費電力は、下に凸の形状で連続して変化する特性となった。そして、x/Lが0.16<x/L<0.5の範囲のときに、空気調和機1Bの消費電力はx/Lが0.5である空気調和機の消費電力より低下した。なかでも、x/Lが0.27≦x/L≦0.31の範囲にあるときに、空気調和機1Bの消費電力は略最小値で推移し、このときの消費電力は、x/Lが0.5である空気調和機の消費電力に対して約2%低下した。   As shown in FIG. 7, when x / L is continuously changed from 0.5 to 0.1, the power consumption of the air conditioner 1B continuously changes in a downwardly convex shape. became. When x / L is in the range of 0.16 <x / L <0.5, the power consumption of the air conditioner 1B is lower than the power consumption of the air conditioner having x / L of 0.5. Especially, when x / L is in the range of 0.27 ≦ x / L ≦ 0.31, the power consumption of the air conditioner 1B changes at a substantially minimum value, and the power consumption at this time is x / L It was about 2% lower than the power consumption of the air conditioner with 0.5.

上記測定結果について考察する。
x/Lを0.5より徐々に0.31まで減少させた場合、風量分布の均一化効果もx/Lの値の減少にともなって大きくなるので、消費電力はx/Lが0.31に近づくほど低減するものと判断される。しかし、x/Lが0.31になると、側断面最大位置がファンボス16に接近し過ぎたことにより、何等かの気流の乱れが誘発されるものと判断される。この気流の乱れは、空気調和機1Bの消費電力を増大させる要因となる。以下、側断面最大位置がファンボス16に接近し過ぎたことによる空気調和機1Bの消費電力の増大を気流の乱れに起因する消費電力の増大とする
Consider the above measurement results.
When x / L is gradually decreased from 0.5 to 0.31, the effect of uniforming the air volume distribution increases as the value of x / L decreases, so the power consumption is 0.31 at x / L. It is judged that it decreases as it approaches. However, when x / L becomes 0.31, it is determined that some turbulence of airflow is induced because the maximum position of the side cross section is too close to the fan boss 16. This turbulence of the air current becomes a factor that increases the power consumption of the air conditioner 1B. Hereinafter, the increase in the power consumption of the air conditioner 1B due to the fact that the maximum position of the side cross section is too close to the fan boss 16 is referred to as an increase in the power consumption due to the turbulence of the airflow.

つまり、x/Lが0.27≦x/L≦0.31の間では、x/Lが小さいほど、気流の均一化に起因する消費電力の低減量が大きくなるものの、気流の乱れに起因する消費電力の増大量も大きくなるので、空気調和機1Bのトータルの消費電力は略最小値のまま推移するものと判断される。   That is, when x / L is between 0.27 ≦ x / L ≦ 0.31, the smaller the x / L, the greater the reduction in power consumption due to air flow uniformity, but it is due to air flow turbulence. Therefore, it is determined that the total power consumption of the air conditioner 1B is maintained at a substantially minimum value.

そして、x/Lを0.27よりさらに小さくするにつれ、気流の乱れに起因する消費電力の増大が、気流の均一化に起因する消費電力の低減よりも支配的になり、x/Lが小さいほど消費電力が増大するものと判断される。そして、消費電力はx/Lが0.16となったときに、x/L=0.5のときの消費電力と同じ値となる。   As x / L is further reduced from 0.27, the increase in power consumption due to airflow turbulence becomes more dominant than the reduction in power consumption due to airflow uniformity, and x / L is small. It is determined that the power consumption increases. Then, when x / L becomes 0.16, the power consumption becomes the same value as the power consumption when x / L = 0.5.

この実施の形態2によれば、空気調和機1Bは、通風路側断面におけるスクロール部7Bの案内壁面7bの壁面形状が、通風路10の外側に凸状の曲線であり、さらに、吹出口11側の端部の高さが、軸方向に亘って同じになっている。また、案内壁面7bは、通風路10の外側への突出量が、側断面最大位置から軸方向の両端部に向かって漸次減少する通風路断面の壁面形状を、羽根車5の背後から吹出口11側の端部近傍まで連続するように形成されている。このとき、案内壁面7bは、側断面最大位置がx/Lが、0.16<x/L<0.5を満足するように形成されている。   According to this second embodiment, in the air conditioner 1B, the wall surface shape of the guide wall surface 7b of the scroll portion 7B in the cross section of the ventilation path is a convex curve on the outside of the ventilation path 10, and further on the outlet 11 side. The heights of the end portions are the same in the axial direction. Further, the guide wall surface 7b has a wall surface shape of the cross section of the ventilation path in which the amount of protrusion to the outside of the ventilation path 10 gradually decreases from the maximum position in the side section toward both ends in the axial direction. It is formed so as to continue to the vicinity of the end on the 11th side. At this time, the guide wall surface 7b is formed so that the maximum position of the side cross section x / L satisfies 0.16 <x / L <0.5.

連結軸14と羽根車5との間の連結が、側壁5aの内面に固定されたファンボス16を用いて行われているので、羽根車5を貫流する気流は、ファンボス16側の端部近傍で減少する。しかし、案内壁面7bは、側断面最大位置がx/Lが、0.16<x/L<0.5を満足するように形成されているので、羽根車5の下流の通風路10では、軸方向のファンボス16側の端部近傍の通風路側断面における通風路面積が増大する。従って、ファンボス16側の端部近傍の風量が増大する。これにより、羽根車5の下流側の通風路10では、羽根車5を貫流した気流の羽根車5の軸方向の一端側の風量不足分が補われる。これにより、気流の風量は、通風路10全域で均一化されるので、気流が吹出口11から通風路10内に逆流することを防止しつつ、空気調和機1Bの電力効率を向上させることができる。さらに、x/Lを0.27≦x/L≦0.31とすることで、空気調和機1Bの電力効率の向上効果を最大限に発揮できる。   Since the connection between the connecting shaft 14 and the impeller 5 is performed using the fan boss 16 fixed to the inner surface of the side wall 5a, the airflow flowing through the impeller 5 is the end portion on the fan boss 16 side. Decrease nearby. However, since the guide wall surface 7b is formed so that the maximum position of the side cross section x / L satisfies 0.16 <x / L <0.5, in the ventilation path 10 downstream of the impeller 5, The ventilation path area in the ventilation path side cross section in the vicinity of the end on the fan boss 16 side in the axial direction increases. Therefore, the air volume in the vicinity of the end on the fan boss 16 side increases. Thereby, in the ventilation path 10 on the downstream side of the impeller 5, the shortage of the air volume on one end side in the axial direction of the impeller 5 of the airflow flowing through the impeller 5 is compensated. Thereby, since the air volume of the airflow is made uniform throughout the ventilation path 10, it is possible to improve the power efficiency of the air conditioner 1B while preventing the airflow from flowing back into the ventilation path 10 from the air outlet 11. it can. Furthermore, the effect of improving the power efficiency of the air conditioner 1B can be maximized by setting x / L to 0.27 ≦ x / L ≦ 0.31.

この発明の実施の形態1に係る空気調和機の側断面図である。It is a sectional side view of the air conditioner which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る空気調和機のスクロール部の斜視図である。It is a perspective view of the scroll part of the air conditioner concerning Embodiment 1 of this invention. この発明の実施の形態1に係る空気調和機の吹出口での気流の風量及び向きを表す図である。It is a figure showing the air volume and direction of the airflow in the blower outlet of the air conditioner which concerns on Embodiment 1 of this invention. 比較例の空気調和機の吹出口での気流の風量及び向きを表す図である。It is a figure showing the air volume and direction of the airflow in the blower outlet of the air conditioner of a comparative example. この発明の実施の形態1に係る空気調和機における最大壁面間距離δ/スクロール部長さLと消費電力との関係を示す図である。It is a figure which shows the relationship between the largest wall surface distance (delta) / scroll part length L, and power consumption in the air conditioner which concerns on Embodiment 1 of this invention. この発明の実施の形態2に係る空気調和機のクロスフローファンに駆動モータが連結された状態を示す斜視図である。It is a perspective view which shows the state by which the drive motor was connected with the crossflow fan of the air conditioner which concerns on Embodiment 2 of this invention. この発明の実施の形態2に係る空気調和機における(スクロール部7Bの一端と側断面最大位置との間の長さx)/スクロール部長さLと消費電力との関係を示す図である。It is a figure which shows the relationship between (length x between the end of the scroll part 7B and the side cross-section maximum position) / scroll part length L, and power consumption in the air conditioner which concerns on Embodiment 2 of this invention.

符号の説明Explanation of symbols

1A,1B 空気調和機、4 クロスフローファン、5 羽根車、7a,7b 案内壁面、7A,7B スクロール部、10 通風路、11 吹出口、13 駆動モータ、14 連結軸、16 ファンボス。   1A, 1B Air conditioner, 4 Cross flow fan, 5 impeller, 7a, 7b Guide wall surface, 7A, 7B Scroll part, 10 Ventilation path, 11 Air outlet, 13 Drive motor, 14 Connecting shaft, 16 Fan boss.

Claims (4)

羽根車、及び通風路を構成し、該羽根車の背後から吹出口へと気流を案内する案内壁面を有するスクロール部を有するクロスフローファンを備えた空気調和機において、
上記案内壁面は、上記吹出口側の端部が、上記羽根車の軸方向の全域に亘って同じ高さに形成され、上記羽根車の軸方向に垂直な断面における壁面形状を上記通風路の外側に凸状とし、かつ上記通風路の外側への突出量が上記羽根車の軸方向の中央部から両端部に向かって漸次減少する気流方向に直交する断面における壁面形状を、上記羽根車の背後から上記吹出口側の端部近傍まで連続し、その後上記羽根車の軸方向における上記通風路の外側への突出量の差を気流方向の上記吹出口側に向かって漸次縮小し、上記羽根車の軸方向の全域に亘って同じ高さに形成された上記吹出口側の端部に連結する曲面で構成されていることを特徴とする空気調和機。
In an air conditioner including a cross flow fan having a scroll portion having a guide wall that constitutes an impeller and a ventilation path and guides an air flow from the back of the impeller to an air outlet,
The guide wall has an end portion on the outlet side that is formed at the same height over the entire area in the axial direction of the impeller, and has a wall surface shape in a cross section perpendicular to the axial direction of the impeller. The wall surface shape in a cross section orthogonal to the airflow direction which is convex outward and the amount of protrusion to the outside of the ventilation passage gradually decreases from the central part of the impeller toward the both ends is defined by the impeller Continue from the back to the vicinity of the end on the outlet side, and then gradually reduce the difference in the amount of protrusion to the outside of the ventilation path in the axial direction of the impeller toward the outlet side in the airflow direction. An air conditioner comprising a curved surface connected to an end portion on the outlet side formed at the same height over the entire region in the axial direction of the vehicle.
上記案内壁面は、該案内壁面の上記羽根車の軸方向の長さをLとし、及び上記案内壁面と交差する上記羽根車の軸心を含む平面における上記案内壁面の端部と上記羽根車の軸心との間の距離と上記案内壁面の上記羽根車の軸方向の中央部と上記羽根車の軸心との間の距離との差をαとし、上記平面が上記案内壁面の上記羽根車の背後の部位から上記吹出口側の端部に至る全領域と交差するように、上記平面を上記羽根車の軸心まわりに回転させた場合に、上記平面の各回転角度毎に得られる上記αの最大値をδとすると、0.003≦δ/L≦0.01を満足するように形成されていることを特徴とする請求項1記載の空気調和機。   The guide wall surface has a length in the axial direction of the impeller of the guide wall as L, and an end of the guide wall surface in a plane including an axis of the impeller intersecting the guide wall surface and the impeller The difference between the distance between the shaft center and the distance between the central portion of the guide wall surface in the axial direction of the impeller and the shaft center of the impeller is α, and the flat surface is the impeller of the guide wall surface. When the plane is rotated around the axis of the impeller so as to intersect with the entire area from the rear part to the end on the outlet side, the above-mentioned obtained at each rotation angle of the plane 2. The air conditioner according to claim 1, wherein the air conditioner is formed so as to satisfy 0.003 ≦ δ / L ≦ 0.01, where δ is a maximum value of α. 羽根車、及び通風路を構成し、該羽根車の背後から吹出口へと気流を案内する案内壁面を有するスクロール部を有するクロスフローファンと、上記羽根車の一端側の側壁の内側に配設されたファンボスと、先端が上記側壁に挿通されて該羽根車の内部に配置され、上記羽根車と同軸に上記ファンボスに固定された連結軸と、該連結軸に上記羽根車の外部で連結され、該連結軸を軸まわりに回転させる駆動力を発生する駆動モータと、を備える空気調和機において、
上記案内壁面は、上記吹出口側の端部が、上記羽根車の軸方向の全域に亘って同じ高さに形成され、上記羽根車の軸方向に垂直な断面における壁面形状を上記通風路の外側に凸状とし、かつ上記通風路の外側への突出量が上記案内壁面の上記羽根車の軸方向の所定部位から両端部に向かって漸次減少する気流方向に直交する断面における壁面形状を、上記羽根車の背後から上記吹出口側の端部近傍まで連続し、その後軸方向における上記通風路の外側への突出量の差を気流方向の上記吹出口側に向かって漸次縮小し、上記羽根車の軸方向の全域に亘って同じ高さに形成された上記吹出口側の端部に連結する曲面で構成され、さらに、上記案内壁面の上記羽根車の軸方向の長さをLとし、上記案内壁面の一端と上記所定部位との間の軸方向の長さをxとすると、0.16<x/L<0.5を満足するように形成されていることを特徴とする空気調和機。
An impeller and a cross-flow fan having a scroll portion having a guide wall surface for guiding an air flow from the rear side of the impeller to the air outlet, and an inner side of a side wall on one end side of the impeller A fan boss, a tip of which is inserted into the side wall of the impeller and disposed inside the impeller, fixed to the fan boss coaxially with the impeller, and connected to the connecting shaft outside the impeller. In an air conditioner comprising: a drive motor that is coupled and generates a driving force that rotates the coupling shaft about the axis;
The guide wall has an end portion on the outlet side that is formed at the same height over the entire area in the axial direction of the impeller, and has a wall surface shape in a cross section perpendicular to the axial direction of the impeller. The wall surface shape in a cross section orthogonal to the airflow direction that is convex outward and the amount of protrusion to the outside of the ventilation path gradually decreases from a predetermined portion of the guide wall surface in the axial direction of the impeller toward both ends, Continue from the rear of the impeller to the vicinity of the end on the outlet side, and then gradually reduce the difference in the amount of protrusion to the outside of the ventilation path in the axial direction toward the outlet side in the airflow direction. It is composed of a curved surface connected to the end on the outlet side formed at the same height over the entire area in the axial direction of the car, and further, the length of the guide wall in the axial direction of the impeller is L, Axial length between one end of the guide wall and the predetermined part When the the x, air conditioner, characterized in that it is formed so as to satisfy 0.16 <x / L <0.5.
上記x/Lは0.27≦x/L≦0.31の範囲にあることを特徴とする請求項3記載の空気調和機。   4. The air conditioner according to claim 3, wherein the x / L is in a range of 0.27 ≦ x / L ≦ 0.31.
JP2008037189A 2007-04-25 2008-02-19 Air conditioner Active JP4926090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008037189A JP4926090B2 (en) 2007-04-25 2008-02-19 Air conditioner

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007115957 2007-04-25
JP2007115957 2007-04-25
JP2008037189A JP4926090B2 (en) 2007-04-25 2008-02-19 Air conditioner

Publications (2)

Publication Number Publication Date
JP2008292137A true JP2008292137A (en) 2008-12-04
JP4926090B2 JP4926090B2 (en) 2012-05-09

Family

ID=40167033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008037189A Active JP4926090B2 (en) 2007-04-25 2008-02-19 Air conditioner

Country Status (1)

Country Link
JP (1) JP4926090B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019120097A1 (en) * 2017-12-20 2019-06-27 青岛海尔空调器有限总公司 Air supply control method for air conditioner and computer storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09229403A (en) * 1996-02-20 1997-09-05 Fujitsu General Ltd Air conditioner
JP2002061872A (en) * 2000-08-11 2002-02-28 Fujitsu General Ltd Air conditioner
JP2002195595A (en) * 2000-12-22 2002-07-10 Daikin Ind Ltd Indoor machine for air conditioner
JP2006046705A (en) * 2004-08-02 2006-02-16 Hitachi Home & Life Solutions Inc Indoor unit for separated type air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09229403A (en) * 1996-02-20 1997-09-05 Fujitsu General Ltd Air conditioner
JP2002061872A (en) * 2000-08-11 2002-02-28 Fujitsu General Ltd Air conditioner
JP2002195595A (en) * 2000-12-22 2002-07-10 Daikin Ind Ltd Indoor machine for air conditioner
JP2006046705A (en) * 2004-08-02 2006-02-16 Hitachi Home & Life Solutions Inc Indoor unit for separated type air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019120097A1 (en) * 2017-12-20 2019-06-27 青岛海尔空调器有限总公司 Air supply control method for air conditioner and computer storage medium

Also Published As

Publication number Publication date
JP4926090B2 (en) 2012-05-09

Similar Documents

Publication Publication Date Title
JP5709965B2 (en) Wall-mounted air conditioner
JP4938241B2 (en) Structure of blower fan
JP5213953B2 (en) Blower and heat pump device using this blower
JP5645596B2 (en) Multiblade centrifugal fan and air conditioner using the same
WO2009139422A1 (en) Centrifugal fan
KR20080104169A (en) Multi-blade fan
JP6377172B2 (en) Outdoor unit for propeller fan, propeller fan device and air conditioner
JP5744209B2 (en) Air conditioner
JP2013011413A (en) Air conditioner
JP2013015246A (en) Air conditioning indoor unit
JP2019019762A (en) Blower module
JP5550319B2 (en) Multiblade centrifugal fan and air conditioner using the same
WO2016129379A1 (en) Air conditioner
JP6398086B2 (en) Blower and air conditioner using the same
JP4926090B2 (en) Air conditioner
WO2011024215A1 (en) Fan unit and air conditioner equipped with fan unit
JP4760950B2 (en) Recessed ceiling ventilation fan
JP4395539B1 (en) Multiblade centrifugal fan and vehicle air conditioner
US20240068486A1 (en) Scroll casing, and air-sending device and air-conditioning apparatus which include the same
JP2000146214A (en) Air conditioner
JP6094749B2 (en) Air conditioner
KR20160005420A (en) Power saving type low-noise fan
JP2000064991A (en) Air-conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4926090

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250