JP2008291310A - Magnesium material production method - Google Patents

Magnesium material production method Download PDF

Info

Publication number
JP2008291310A
JP2008291310A JP2007137696A JP2007137696A JP2008291310A JP 2008291310 A JP2008291310 A JP 2008291310A JP 2007137696 A JP2007137696 A JP 2007137696A JP 2007137696 A JP2007137696 A JP 2007137696A JP 2008291310 A JP2008291310 A JP 2008291310A
Authority
JP
Japan
Prior art keywords
magnesium
substrate
laser
alkali treatment
scanning speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007137696A
Other languages
Japanese (ja)
Inventor
Tomoaki Yamazaki
倫昭 山崎
Yoshihito Kawamura
能人 河村
Masaaki Otsu
雅亮 大津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumamoto University NUC
Original Assignee
Kumamoto University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumamoto University NUC filed Critical Kumamoto University NUC
Priority to JP2007137696A priority Critical patent/JP2008291310A/en
Publication of JP2008291310A publication Critical patent/JP2008291310A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnesium material production method for producing a magnesium material having excellent corrosion resistance without affecting internal structure. <P>SOLUTION: The surface of a magnesium substrate (matrix) 100 is subjected to alkali treatment (an alkali treatment step), and the surface of the magnesium substrate subjected to the alkali treatment is irradiated with laser beam at a scanning rate in the range of 20 to 100 mms<SP>-1</SP>(a laser irradiation step). The laser average output is controlled to ≤11 W, and the frequency is controlled to 150 to 250 kHz. The whole of the surface in the magnesium substrate 10 is covered with a homogeneous MgO film 11, and high corrosion resistance is exhibited. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、マグネシウムまたはマグネシウム合金の表面に耐蝕性の被膜を有するマグネシウム材の製造方法に関する。   The present invention relates to a method for producing a magnesium material having a corrosion-resistant coating on the surface of magnesium or a magnesium alloy.

マグネシウム合金は軽量であり、かつ高い強度を有するため、特に輸送機器の部材としての適用が期待されている。しかし、マグネシウムは耐食性が低く、そのため用途の拡大が思うように進んでいないのが現状である。耐蝕性向上のためには表面処理を施せばよく、その手法として、クロメート処理、アノード酸化法により被膜を形成する方法がある。しかしながら、それぞれクロムフリー化の社会的要請、合金系がAl元素を含むものに限定される、といった理由から、代替技術の開発が望まれている。   Since magnesium alloys are lightweight and have high strength, they are expected to be used particularly as members of transportation equipment. However, magnesium is low in corrosion resistance, and as a result, the expansion of applications is not progressing as expected. In order to improve the corrosion resistance, a surface treatment may be applied, and there are methods of forming a film by a chromate treatment or an anodic oxidation method. However, the development of alternative technologies is desired because of the social demands for chromium-free materials and the fact that the alloy system is limited to those containing Al elements.

ところで、マグネシウムまたはその合金においては、表面を覆うMg(OH)2 不働態被膜の下にMgO内層被膜が存在し、そのMgO被膜の形成が不十分な場所から腐食が進行することが明らかとなっている。そこで、緻密なMg(OH)2 被膜を形成した後に、673〜773Kの温度で1時間焼成してMgO被膜とすることにより耐食性を向上させる技術が提案されている(特許文献1)。焼成以外の方法としては、レーザ光をマグネシウムの表面に照射することによって、Mg(OH)2 被膜をMgOへと改質する試みが行われている(非特許文献1)。
特開2003−193259号公報 山崎倫昭、泉尚吾、大津雅亮、河村能人:日本金属学会講演概要、 2006年春季(第138回)大会
By the way, in magnesium or an alloy thereof, it becomes clear that the MgO inner layer coating exists under the Mg (OH) 2 passive coating covering the surface, and corrosion proceeds from a place where the formation of the MgO coating is insufficient. ing. Therefore, a technique for improving the corrosion resistance by forming a dense Mg (OH) 2 film and firing it at a temperature of 673-773 K for 1 hour to form an MgO film has been proposed (Patent Document 1). As a method other than firing, an attempt has been made to modify the Mg (OH) 2 coating to MgO by irradiating the surface of magnesium with laser light (Non-patent Document 1).
JP 2003-193259 A Tomoaki Yamazaki, Shogo Izumi, Masaaki Otsu, Noto Kawamura: Outline of the Japan Institute of Metals, Spring (138th) Meeting

しかしながら、上述の焼成方法では、高温に長時間曝されることによってマグネシウム内部組織が変化(例えば、結晶粒の粗大化、時効合金においては安定相β相の析出による過時効)してしまい、機械的特性の低下に繋がるといった問題を有していた。また、レーザ光を照射する方法では、照射条件、特にレーザ走査速度およびレーザ周波数が不適切であったため、均質なMgO被膜を形成するには至らず、表面被膜が極めて不完全であったため、耐食性が十分ではなかった。   However, in the above-described firing method, the magnesium internal structure is changed by being exposed to high temperature for a long time (for example, coarsening of crystal grains, overaging due to precipitation of stable phase β phase in aging alloys) It has a problem that it leads to a decline in target characteristics. Also, in the method of irradiating with laser light, the irradiation conditions, particularly the laser scanning speed and the laser frequency, were inappropriate, so that a homogeneous MgO film could not be formed, and the surface film was extremely incomplete, so corrosion resistance Was not enough.

本発明はかかる問題点に鑑みてなされたもので、その目的は、内部組織に影響を与えることなく、耐食性に優れたマグネシウム材を製造することのできるマグネシウム材の製造法を提供することにある。   The present invention has been made in view of such problems, and an object thereof is to provide a method for producing a magnesium material capable of producing a magnesium material having excellent corrosion resistance without affecting the internal structure. .

本発明のマグネシウム材の製造方法は、マグネシウムを含むと共に処理表面を有する基質(マグネシウムまたはその合金)の処理表面にアルカリ処理を施す工程と、アルカリ処理がなされた基質の処理表面に、20mms-1以上100mms-1以下の範囲の走査速度でレーザ光を照射する工程とを含むものである。 The method for producing a magnesium material of the present invention includes a step of subjecting a treated surface of a substrate (magnesium or an alloy thereof) containing magnesium and having a treated surface to an alkali treatment, and a treated surface of the substrate subjected to the alkali treatment to 20 mms −1 And a step of irradiating laser light at a scanning speed in the range of 100 mms −1 or less.

本発明のマグネシウム材の製造方法では、アルカリ処理によって、マグネシウムを含む基質の処理表面上に一様で緻密なMg(OH)2 被膜が形成される。次いで、このMg(OH)2 被膜に対して、所定の走査速度でレーザ光が照射されることによって、Mg(OH)2 被膜が均質かつ緻密なMgO被膜へと改質される。なお、レーザ光の出力は11W以下、周波数は150kHz以上250kHz以下であることが望ましい。 In the method for producing a magnesium material of the present invention, a uniform and dense Mg (OH) 2 film is formed on the treated surface of the substrate containing magnesium by alkali treatment. Then, with respect to the Mg (OH) 2 coating by laser light is irradiated at a predetermined scanning speed, Mg (OH) 2 coating is reformed into homogeneous and dense MgO film. The laser beam output is preferably 11 W or less and the frequency is 150 kHz or more and 250 kHz or less.

アルカリ処理は、例えばアルカリ溶液にマグネシウムを含む基質を浸漬させることにより行われる。アルカリ溶液としては、水酸化マグネシウム、塩化ナトリウム、塩化マグネシウムおよび水酸化ナトリウムのうち少なくとも1種を含有することが望ましく、浸漬時間は5分以上15分以下であることが望ましい。   The alkali treatment is performed, for example, by immersing a substrate containing magnesium in an alkali solution. The alkaline solution preferably contains at least one of magnesium hydroxide, sodium chloride, magnesium chloride, and sodium hydroxide, and the immersion time is preferably 5 minutes to 15 minutes.

本発明のマグネシウム材の製造方法によれば、アルカリ処理を施した基質表面にレーザ光を20mms-1以上100mms-1以下の走査速度で照射するようにしたので、緻密で一様な高耐食性のMgO被膜を有するマグネシウム材を製造することができる。 According to the method for producing a magnesium material of the present invention, the surface of the substrate that has been subjected to alkali treatment is irradiated with laser light at a scanning speed of 20 mms −1 or more and 100 mms −1 or less. A magnesium material having an MgO coating can be produced.

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

本発明の一実施の形態に係るマグネシウム材は、例えば板状のマグネシウム基板の表面に緻密で一様な高耐食性のMgO被膜を有するものである。このマグネシウム材は、例えば輸送機器、電子機器の筐体として用いられる。マグネシウム基板は、マグネシウム単体(Mg)に限らずマグネシウム合金であってもよい。マグネシウム単体とは、純度99.9%以上のものをいう。マグネシウム合金とは、Mgに、合金元素としてのAl:0.001〜10(原子%)、Zn:0.001〜3(原子%)、Mn:0.001〜0.5(原子%)、Si:0.001〜1(原子%)、希土類元素(Y、La、Ce、Pr、Nd、Sm、Gd,Tb、Dy、Ho、Er、Tm、Yb):0.1〜5(原子%)のうちの少なくとも1種を含むものであり、不可避不純物を含んでもよい。   The magnesium material according to an embodiment of the present invention has, for example, a dense and uniform highly corrosion-resistant MgO coating on the surface of a plate-like magnesium substrate. This magnesium material is used, for example, as a casing for transportation equipment and electronic equipment. The magnesium substrate is not limited to magnesium alone (Mg) but may be a magnesium alloy. Magnesium alone means a substance having a purity of 99.9% or more. Magnesium alloy refers to Mg as alloy elements: Al: 0.001 to 10 (atomic%), Zn: 0.001 to 3 (atomic%), Mn: 0.001 to 0.5 (atomic%), Si: 0.001 to 1 (atomic%), rare earth elements (Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb): 0.1 to 5 (atomic%) ), And may contain inevitable impurities.

なお、本実施の形態でいうMgO被膜とは、カチオンとしてMgを90%以上含み、場合によってAl、Zn、Mn、希土類元素を含んだ酸化物のことである。   Note that the MgO film in the present embodiment is an oxide containing 90% or more of Mg as a cation, and optionally containing Al, Zn, Mn, and a rare earth element.

このマグネシウム材は、マグネシウム基板(基質)の表面にアルカリ処理を施し(アルカリ処理工程)、このアルカリ処理がなされたマグネシウム基板の表面に20mms-1以上100mms-1以下の範囲の走査速度でレーザ光を照射する(レーザ照射工程)、ことにより得ることができる。 The magnesium material, subjected to alkali treatment to the surface of the magnesium substrate (substrate) (alkaline treatment step), a laser beam at a scanning speed of the surface to 20Mms -1 or more 100Mms -1 or less in the range of the magnesium substrate, on which the alkali treatment is made (Laser irradiation process).

(アルカリ処理工程)
本実施の形態では、まず、マグネシウム基板をアルカリ溶液へと浸漬させる。すなわち、マグネシウム基板を、化学成分として水1L中の質量に換算して、Mg(OH)2 :0.001〜0.012gとNaCl:0.001〜300g、MgCl2 :0〜400g、Mg(OH)2 :0.001〜0.012g、NaOH:0〜500gの少なくとも1種を含む水溶液に、10秒以上1時間以下の間、浸漬させる。なお、浸漬時間は5分以上15分以下とすることが好ましい。5分未満の浸漬では、耐食MgO皮膜の前駆体となる水酸化マグネシウム皮膜の形成が不十分であり、15分を超える処理を行っても効果は変わらないからである。
(Alkali treatment process)
In the present embodiment, first, the magnesium substrate is immersed in an alkaline solution. That is, when the magnesium substrate is converted into a mass in 1 L of water as a chemical component, Mg (OH) 2 : 0.001 to 0.012 g, NaCl: 0.001 to 300 g, MgCl 2 : 0 to 400 g, Mg ( OH) 2 : 0.001 to 0.012 g, NaOH: It is immersed for 10 seconds or more and 1 hour or less in an aqueous solution containing 0 to 500 g. In addition, it is preferable that immersion time shall be 5 to 15 minutes. This is because immersion in less than 5 minutes results in insufficient formation of a magnesium hydroxide film serving as a precursor of the corrosion-resistant MgO film, and the effect does not change even if treatment for more than 15 minutes is performed.

このアルカリ処理によって、マグネシウム基板の表面には、一様で緻密なMg(OH)2 被膜が形成される。 By this alkali treatment, a uniform and dense Mg (OH) 2 film is formed on the surface of the magnesium substrate.

(レーザ照射工程)
Mg(OH)2 被膜が形成されたマグネシウム基板をアルカリ溶液から取り出したのち、このマグネシウム基板の表面にQスイッチ型もしくはそれに準ずるパルス型のレーザ光を、走査速度40mm/s以上120mm/s以下の範囲で照射する。このときの平均出力は、例えば12W以下、周波数100kHz以上400kHzの範囲とする。これにより、Mg(OH)2 被膜が酸化され、マグネシウム基板の表面に膜厚0.5〜3μmの均一な結晶性MgO被膜が形成される。
(Laser irradiation process)
After the magnesium substrate on which the Mg (OH) 2 coating is formed is taken out of the alkaline solution, a Q-switch type or equivalent pulse type laser beam is applied to the surface of the magnesium substrate at a scanning speed of 40 mm / s or more and 120 mm / s or less. Irradiate in range. The average output at this time is, for example, 12 W or less and a frequency range of 100 kHz to 400 kHz. As a result, the Mg (OH) 2 coating is oxidized, and a uniform crystalline MgO coating having a thickness of 0.5 to 3 μm is formed on the surface of the magnesium substrate.

なお、照射条件は、レーザ平均出力を11W以下、周波数を150kHz以上250kHz以下、レーザ走査速度を20mm/s以上100mm/s以下とすることが好ましい。レーザ平均出力が11Wを超えると、レーザによる溶融痕が表面の一部に形成され耐食性の低下が起り、また、周波数が150kHz未満のときはピーク出力が過剰となり表面溶融が起る可能性があり、周波数が250kHzを超えるとピーク出力の低下が起り水酸化マグネシウムのMgOへの改質が不十分となるからである。また、レーザ走査速度が20mm/s未満のときは形成されるMgOの凝集が起り、レーザ走査速度が100mm/sを超えると、水酸化マグネシウム皮膜からMgO皮膜への改質が不十分になるからである。   The irradiation conditions are preferably an average laser output of 11 W or less, a frequency of 150 kHz to 250 kHz, and a laser scanning speed of 20 mm / s to 100 mm / s. If the laser average power exceeds 11 W, melt marks due to the laser are formed on a part of the surface and the corrosion resistance is lowered, and when the frequency is less than 150 kHz, the peak power may be excessive and surface melting may occur. This is because when the frequency exceeds 250 kHz, the peak output is lowered and the modification of magnesium hydroxide to MgO becomes insufficient. Further, when the laser scanning speed is less than 20 mm / s, aggregation of formed MgO occurs, and when the laser scanning speed exceeds 100 mm / s, the modification from the magnesium hydroxide film to the MgO film becomes insufficient. It is.

図1(A),(B)は、レーザ照射条件を上述の条件(レーザ平均出力:11W以下、周波数:150kHz以上250kHz以下、レーザ走査速度:20mm/s以上100mm/s以下)で行った場合、図2(A)、(B)はそれ以外の条件で行った場合の被膜形成の状態を表す模式図である。上述の条件の場合では、図1(A)に示したように、マグネシウム基板10上に均質なMgO膜11が表面全体を覆っており、マグネシウム基板10にも変質を見せない。また、図1(B)のように一部凝集MgO12も観察されるが、膜厚には影響を及ぼさず図1(A)と同様、被膜を形成している。図1(B)もマグネシウム基板10に変質は見せない。一方、図2(A)では、MgO膜11が表面全体を覆っておらず、厚みも一定ではない。凝集MgO12も多く存在し、一部は残存Mg(OH)2 13のままである。さらに図2(B)に至ると、熱影響部14によりマグネシウム基板10の構造が変質してしまっている。 1A and 1B, the laser irradiation conditions are as described above (laser average output: 11 W or less, frequency: 150 kHz to 250 kHz, laser scanning speed: 20 mm / s to 100 mm / s). 2 (A) and 2 (B) are schematic views showing the state of film formation when performed under other conditions. In the case of the above-mentioned conditions, as shown in FIG. 1A, the homogeneous MgO film 11 covers the entire surface on the magnesium substrate 10, and the magnesium substrate 10 is not altered. Further, partially aggregated MgO12 is also observed as shown in FIG. 1B, but the film thickness is not affected and a film is formed as in FIG. FIG. 1B also shows no alteration to the magnesium substrate 10. On the other hand, in FIG. 2A, the MgO film 11 does not cover the entire surface, and the thickness is not constant. There are also many agglomerated MgO 12, and some remain as residual Mg (OH) 2 13. Further, when reaching FIG. 2B, the structure of the magnesium substrate 10 has been altered by the heat affected zone 14.

このように、本実施の形態では、マグネシウム基板をアルカリ処理し一様で緻密なMg(OH)2 被膜を形成した後に、比較的低出力なレーザ光を低走査速度で照射するようにしたので、基板の内部組織に影響を与えずに表面のみを改質し、緻密で一様な高耐食性のMgO被膜を形成することができる。基質をマグネシウム基板として説明しているが、その形状は基板状に限るものではなく、任意である。 As described above, in the present embodiment, the magnesium substrate is subjected to alkali treatment to form a uniform and dense Mg (OH) 2 film, and then a relatively low output laser beam is irradiated at a low scanning speed. It is possible to modify only the surface without affecting the internal structure of the substrate and form a dense and uniform highly corrosion-resistant MgO film. Although the substrate is described as a magnesium substrate, the shape is not limited to the substrate shape and is arbitrary.

さらに、本発明の具体的な実施例について説明する。   Further, specific examples of the present invention will be described.

(製造条件)
化学成分として水1L中の質量に換算して、Mg(OH)2 :0.012gの物質を含む水溶液に、マグネシウム単体(純度99.9%)を5〜15分間浸漬させ、一様で緻密なMg(OH)2 被膜を形成した後に、平均出力11W、周波数200kHzのレーザ光を速度25〜100mm/sの範囲で走査した。
(腐食試験)
上記の製造条件で製造したマグネシウム材を1質量%NaCl水溶液に浸漬させた後、腐食速度を算出し、光学顕微鏡により表面状態を観測した。
なお、腐食速度の算出方法は、下記の計算式により行った。

Figure 2008291310

Cr:腐食速度(mm year-1
Vh:発生水素量(ml)
M:試料金属の平均質量(g mol-1
r:試料金属のの密度(g cm-3
A:試料金属の初期表面積(mm2
t:浸漬時間(min.) (Production conditions)
In terms of mass in 1L of water as a chemical component, magnesium simple substance (purity 99.9%) is immersed in an aqueous solution containing a substance of Mg (OH) 2 : 0.012 g for 5 to 15 minutes. After forming a Mg (OH) 2 film, a laser beam having an average output of 11 W and a frequency of 200 kHz was scanned at a speed of 25 to 100 mm / s.
(Corrosion test)
After immersing the magnesium material manufactured under the above manufacturing conditions in a 1 mass% NaCl aqueous solution, the corrosion rate was calculated, and the surface state was observed with an optical microscope.
In addition, the calculation method of the corrosion rate was performed by the following calculation formula.

Figure 2008291310

C r : Corrosion rate (mm year -1 )
V h : Amount of generated hydrogen (ml)
M: Average mass of sample metal (g mol -1 )
r: Density of sample metal (g cm -3 )
A: Initial surface area of sample metal (mm 2 )
t: Immersion time (min.)

(実施例1−1)
実施例1−1として、飽和水酸化マグネシウムへの浸漬時間を10分間、レーザ光の走査速度を50mm/sとし、上記製造条件によりマグネシウム材を作製した。
(Example 1-1)
As Example 1-1, the immersion time in saturated magnesium hydroxide was 10 minutes, the scanning speed of the laser beam was 50 mm / s, and a magnesium material was produced according to the manufacturing conditions described above.

(比較例1,2,3−1)
比較例1としては、マグネシウム材(純度99.9%)を研磨しただけのもの(アルカリ溶液浸漬なし、レーザ照射なし)を、比較例2としては、マグネシウム材(純度99.9%)を飽和水酸化マグネシウム水溶液に10分間浸漬させたもの(レーザ照射なし)を、比較例3−1としてはレーザの走査速度を200mm/sとした以外は実施例1と同様にして作製したものを用いた。
(Comparative Examples 1, 2, 3-1)
As Comparative Example 1, a magnesium material (purity: 99.9%) is simply polished (no alkali solution immersion, no laser irradiation), and as Comparative Example 2, the magnesium material (purity: 99.9%) is saturated. What was immersed in magnesium hydroxide aqueous solution for 10 minutes (without laser irradiation) was used as Comparative Example 3-1, which was prepared in the same manner as in Example 1 except that the laser scanning speed was 200 mm / s. .

実施例1−1、比較例1、比較例2、比較例3−1で得られたマグネシウム材の表面を光学顕微鏡で観察した。図3(A)、(B)、(C)、(D)はそれぞれ実施例1−1、比較例1、比較例2、比較例3−1の光学顕微鏡による写真である。比較例1と比べて比較例2では、金属表面が黄色に呈色している。これは、マグネシウム水溶液への浸漬により、金属表面がMg(OH)2 に化学変化したためであると推測される。この比較例2に対して、実施例1−1はレーザ光を走査速度50mm/sで照射したものであるが、レーザ光を照射することで黄色へ呈色されていた部分の色がとれてしまっていた。これは50mm/sの走査速度でのレーザ照射により表面のMg(OH)2 がMgOへと化学変化したためだと考えられる。一方、比較例2に対して、200mm/sの走査速度でレーザ光を照射した比較例3−1は、レーザ光を照射したにもにもかかわらず部分的に黄色の呈色が残っていた。走査速度を速くしたことで、金属表面の化学変化が十分に行われなかったとためだと考えられる。 The surface of the magnesium material obtained in Example 1-1, Comparative Example 1, Comparative Example 2, and Comparative Example 3-1 was observed with an optical microscope. 3 (A), (B), (C), and (D) are photographs taken with an optical microscope of Example 1-1, Comparative Example 1, Comparative Example 2, and Comparative Example 3-1, respectively. Compared with comparative example 1, in comparative example 2, the metal surface is colored yellow. This is presumably because the metal surface was chemically changed to Mg (OH) 2 by immersion in the magnesium aqueous solution. In contrast to Comparative Example 2, Example 1-1 was irradiated with laser light at a scanning speed of 50 mm / s, but the color of the portion that was colored yellow was removed by irradiating the laser light. I was sorry. This is considered to be because the surface Mg (OH) 2 was chemically changed to MgO by laser irradiation at a scanning speed of 50 mm / s. On the other hand, in Comparative Example 3-1, in which laser light was irradiated at a scanning speed of 200 mm / s compared to Comparative Example 2, yellow coloration remained partially despite laser light irradiation. . This is thought to be because the chemical change of the metal surface was not performed sufficiently by increasing the scanning speed.

(実施例2−1,3−1)
実施例2−1としてレーザ走査速度を25mm/sとした以外は実施例1−1と同様に作製したもの、実施例3−1としてレーザ走査速度を100mm/sとした以外は実施例1−1と同様に作製したものを使用した。
(Examples 2-1 and 3-1)
Example 2-1 was prepared in the same manner as Example 1-1 except that the laser scanning speed was 25 mm / s, and Example 3-1 was the same as Example 1 except that the laser scanning speed was 100 mm / s. What was produced like 1 was used.

実施例1−1、2−1、3−1および比較例3−1の耐食被膜の厚さを共焦点光学顕微鏡により測定した。具体的には、光を試料に垂直に入射させ、大気/皮膜界面および皮膜/内部金属界面からの反射光を検出し、その深さプロファイルを測定することで算出した。図4はその際のMgO被膜の厚さとレーザ走査速度の関係を表すものである。MgO被膜は、実施例1−1(レーザ走査速度50mm/s)の場合は厚さ約1.1μmとなり、最も厚いMgO被膜を形成した。実施例2−1(レーザ走査速度が25mm/s)の場合には約0.8μm、実施例3−1(レーザ走査速度が100mm/s)の場合には約0.6μmであった。一方、比較例3−1(レーザ走査速度が200mm/s)の場合には被膜の厚さは約0.4μmであった。   The thicknesses of the corrosion-resistant coatings of Examples 1-1, 2-1, 3-1 and Comparative Example 3-1 were measured with a confocal optical microscope. Specifically, the light was incident perpendicularly on the sample, the reflected light from the air / film interface and the film / internal metal interface was detected, and the depth profile was measured. FIG. 4 shows the relationship between the thickness of the MgO film and the laser scanning speed at that time. In the case of Example 1-1 (laser scanning speed 50 mm / s), the MgO film had a thickness of about 1.1 μm, and the thickest MgO film was formed. In the case of Example 2-1 (laser scanning speed of 25 mm / s), it was about 0.8 μm, and in the case of Example 3-1 (laser scanning speed of 100 mm / s), it was about 0.6 μm. On the other hand, in the case of Comparative Example 3-1 (laser scanning speed is 200 mm / s), the thickness of the coating was about 0.4 μm.

次に、XRD(X-ray diffraction :X線回折装置)により、実施例1−1、2−1、3−1および比較例3−1それぞれにおいて形成した被膜の成分を調べた。図5はそのX線回折図を表すものである。実施例1−1、実施例2−1(図示せず)、実施例3−1(図示せず)ではMgOに起因する回折線が観測されたが、比較例3−1では見られなかった。実施例1−1、実施例2−1(図示せず)、実施例3−1(図示せず)で観測された回折線はブロードであることから、結晶粒径は極めて小さいことが示唆される。比較例3−1ではMgOに起因する回折線が観測されず、Mg(OH)2の回折線が観察されたことから、マグネシウム金属表面被膜には多くのMg(OH)2 が残存していることが推測される。 Next, the components of the coating formed in each of Examples 1-1, 2-1, and 3-1 and Comparative Example 3-1 were examined by XRD (X-ray diffraction: X-ray diffraction apparatus). FIG. 5 shows the X-ray diffraction pattern. In Example 1-1, Example 2-1 (not shown), and Example 3-1 (not shown), diffraction lines due to MgO were observed, but not in Comparative Example 3-1. . The diffraction lines observed in Example 1-1, Example 2-1 (not shown), and Example 3-1 (not shown) are broad, suggesting that the crystal grain size is extremely small. The In Comparative Example 3-1, a diffraction line caused by MgO was not observed, and a diffraction line of Mg (OH) 2 was observed. Therefore, a large amount of Mg (OH) 2 remained in the magnesium metal surface coating. I guess that.

(実施例1−2、1−3,実施例2−2、2−3,実施例3−2,3−3,比較例3−−2、3−3)
実施例1−2として飽和水酸化マグネシウムへの浸漬時間を5分間とした以外は実施例1−1と同様のもの、実施例1−3として飽和マグネシウムの浸漬時間を15分とした以外は実施例1−1と同様のもの、実施例2−2として飽和水酸化マグネシウムへの浸漬時間を5分間とした以外は実施例2−1と同様のもの、実施例2−3として飽和水酸化マグネシウムへの浸漬時間を15分とした以外は実施例2−1と同様のもの、実施例3−2として飽和水酸化マグネシウムへの浸漬時間を5分間とした以外は実施例3−1と同様のもの、実施例3−3として飽和水酸化マグネシウムへの浸漬時間を15分とした以外は実施例3−1と同様のものを使用した。また、比較例3−2として飽和水酸化マグネシウムへの浸漬時間を5分間とした以外は比較例3−1と同様のもの、実施例3−3として飽和マグネシウムの浸漬時間を15分とした以外は比較例3−1と同様のものを使用した。
(Examples 1-2, 1-3, Examples 2-2, 2-3, Examples 3-2, 3-3, Comparative Examples 3--2, 3-3)
Example 1-2 was the same as Example 1-1 except that the immersion time in saturated magnesium hydroxide was 5 minutes, and Example 1-3 was carried out except that the immersion time in saturated magnesium was 15 minutes. The same as Example 1-1, except that the immersion time in saturated magnesium hydroxide was 5 minutes as Example 2-2, and saturated magnesium hydroxide as Example 2-3. The same as Example 2-1 except that the immersion time in 15 minutes was the same as Example 2-1, except that the immersion time in saturated magnesium hydroxide was 5 minutes as Example 3-2. As Example 3-3, the same one as in Example 3-1 was used except that the immersion time in saturated magnesium hydroxide was 15 minutes. Moreover, except that the immersion time in saturated magnesium hydroxide was 5 minutes as Comparative Example 3-2, except that the immersion time of saturated magnesium was 15 minutes as Example 3-3 Used the same as in Comparative Example 3-1.

実施例1−1〜1−3、2−1〜2−3、3−1〜3−3および比較例3−1〜3−3の耐食性を上記腐食試験により調べた。図6は実施例1−1〜1−3、2−1〜2−3、3−1〜3−3および比較例3−1〜3−3の腐食速度とレーザ走査速度の関係を表すものである。レーザ走査速度50mm/sの条件とした実施例1−1〜1−3の場合がもっとも高い耐食性を示すことがわかった。また実施例1−1〜1−3での腐食速度にほとんど差異は見られなかった。レーザ走査速度25mm/sを条件とした実施例2−1〜2−3は実施例1−1〜1−3ほどの耐食性は観測されないものの、高い耐食性を示した。また、実施例2−1〜2−3では飽和水酸化マグネシウムへの浸漬時間による顕著な差は見られなかった。レーザ走査速度100mm/sの条件とした実施例3−1〜3−3は浸漬時間の違いにより耐食性が異なる結果となった。浸漬時間を10分、15分とした実施例3−1、3−3では実施例1−1〜1−3とほぼ同等の高い耐食性を示しがが、浸漬時間を5分としたものは耐食性がわずかながら劣った。しかしながら、これら実施例1−1〜1−3、実施例2−1〜2−3、実施例3−1〜3−3では腐食速度は2mm/年以下であり、高い耐食性を示した。一方、比較例3−1〜3−3では最も耐食性の高い比較例3−3においても6mm/年程度まで腐食が進み、最も耐食性の低い比較例3−1では7mm/年程度まで耐食性が低下することが明らかとなった。   The corrosion resistance of Examples 1-1 to 1-3, 2-1 to 2-3, 3-1 to 3-3 and Comparative Examples 3-1 to 3-3 was examined by the above corrosion test. FIG. 6 shows the relationship between the corrosion rate and laser scanning rate of Examples 1-1 to 1-3, 2-1 to 2-3, 3-1 to 3-3, and Comparative Examples 3-1 to 3-3. It is. It was found that Examples 1-1 to 1-3 with the laser scanning speed of 50 mm / s exhibited the highest corrosion resistance. Moreover, the difference was hardly seen in the corrosion rate in Examples 1-1 to 1-3. Examples 2-1 to 2-3 on the condition of a laser scanning speed of 25 mm / s showed high corrosion resistance, although the corrosion resistance of Examples 1-1 to 1-3 was not observed. Moreover, in Example 2-1 to 2-3, the remarkable difference by the immersion time to saturated magnesium hydroxide was not seen. Examples 3-1 to 3-3 under the conditions of a laser scanning speed of 100 mm / s resulted in different corrosion resistance depending on the difference in immersion time. In Examples 3-1 and 3-3 in which the immersion time was 10 minutes and 15 minutes, high corrosion resistance was almost the same as in Examples 1-1 to 1-3, but the immersion time was 5 minutes. Was slightly inferior. However, in Examples 1-1 to 1-3, Examples 2-1 to 2-3, and Examples 3-1 to 3-3, the corrosion rate was 2 mm / year or less, indicating high corrosion resistance. On the other hand, in Comparative Examples 3-1 to 3-3, even in Comparative Example 3-3 having the highest corrosion resistance, corrosion proceeds to about 6 mm / year, and in Comparative Example 3-1 having the lowest corrosion resistance, the corrosion resistance decreases to about 7 mm / year. It became clear to do.

図7(A)は実施例1−1の腐食試験後、図7(B)は比較例3−1の腐食試験後の光学顕微鏡による表面観察結果である。実施例1−1では腐食試験後も綺麗な表面を有しているのに対して、比較例3−1では腐食試験後、マグネシウム金属含有の糸状腐食が起っている様子が伺える。   FIG. 7A shows the results of surface observation by an optical microscope after the corrosion test of Example 1-1, and FIG. 7B shows the results of surface observation by an optical microscope after the corrosion test of Comparative Example 3-1. While Example 1-1 has a clean surface even after the corrosion test, Comparative Example 3-1 shows that magnesium metal-containing filamentous corrosion has occurred after the corrosion test.

本発明のレーザ照射により形成されるMgO被膜の模式図である。It is a schematic diagram of the MgO film formed by laser irradiation of the present invention. レーザ照射により形成されるMgO被膜の模式図(比較例)である。It is a schematic diagram (comparative example) of the MgO film formed by laser irradiation. 実施例1−1、比較例1、比較例2および比較例3−1による金属表面の光学顕微鏡写真である。It is an optical microscope photograph of the metal surface by Example 1-1, Comparative Example 1, Comparative Example 2, and Comparative Example 3-1. 実施例1−1、実施例2−1、実施例3−1および比較例3−1による表面被膜の厚さを表す図である。It is a figure showing the thickness of the surface film by Example 1-1, Example 2-1, Example 3-1, and Comparative Example 3-1. 実施例1−1、実施例2−1、実施例3−1、比較例3−1による表面被膜のX線回折結果を表す図である。It is a figure showing the X-ray-diffraction result of the surface film by Example 1-1, Example 2-1, Example 3-1, and Comparative Example 3-1. 実施例1−1〜1−3、実施例2−1〜2−3、実施例3−1〜3−1および比較例3−1〜3−3による腐食速度とレーザ走査速度の関係を表す図である。The relationship between the corrosion rate and the laser scanning rate according to Examples 1-1 to 1-3, Examples 2-1 to 2-3, Examples 3-1 to 3-1, and Comparative Examples 3-1 to 3-3 is shown. FIG. 実施例1−1および3−1の腐食試験後の光学顕微鏡による写真である。It is the photograph by the optical microscope after the corrosion test of Example 1-1 and 3-1.

符号の説明Explanation of symbols

10…マグネシウム基板(基質)、11…MgO膜、12…凝集MgO、13…残存Mg(OH)2 、14…熱影響部 DESCRIPTION OF SYMBOLS 10 ... Magnesium substrate (substrate), 11 ... MgO film | membrane, 12 ... Aggregation MgO, 13 ... Residual Mg (OH) 2 , 14 ... Heat affected zone

Claims (6)

マグネシウムを含むと共に処理表面を有する基質の前記処理表面にアルカリ処理を施す工程と、
前記アルカリ処理がなされた基質の処理表面に、20mms-1以上100mms-1以下の範囲の走査速度でレーザ光を照射する工程と
を含むことを特徴とするマグネシウム材の製造方法。
Applying alkali treatment to the treated surface of the substrate comprising magnesium and having a treated surface;
Irradiating the treated surface of the substrate subjected to the alkali treatment with a laser beam at a scanning speed in the range of 20 mms -1 or more and 100 mms -1 or less.
前記アルカリ処理を、前記基質をアルカリ溶液に浸漬させることにより行う
ことを特徴とする請求項1に記載のマグネシウム材。
The magnesium material according to claim 1, wherein the alkali treatment is performed by immersing the substrate in an alkali solution.
前記アルカリ溶液は、水酸化マグネシウム、塩化ナトリウム、塩化マグネシウムおよび水酸化ナトリウムのうち少なくとも1種を含む溶液である
ことを特徴とする請求項2に記載のマグネシウム材の製造方法。
The said alkaline solution is a solution containing at least 1 sort (s) among magnesium hydroxide, sodium chloride, magnesium chloride, and sodium hydroxide. The manufacturing method of the magnesium material of Claim 2 characterized by the above-mentioned.
前記アルカリ溶液への浸漬時間は5分以上15分以下である
ことを特徴とする請求項2または3に記載のマグネシウム材の製造方法。
The method for producing a magnesium material according to claim 2 or 3, wherein the immersion time in the alkaline solution is 5 minutes or more and 15 minutes or less.
前記レーザ光の出力は11W以下である
ことを特徴とする請求項1ないし4のいずれか1項に記載のマグネシウム材の製造方法。
The method for producing a magnesium material according to any one of claims 1 to 4, wherein the output of the laser beam is 11 W or less.
前記レーザ光の周波数は150kHz以上250kHz以下の範囲である
ことを特徴とする請求項1ないし5のいずれか1項に記載のマグネシウム材の製造方法。
The method for producing a magnesium material according to any one of claims 1 to 5, wherein the frequency of the laser light is in a range of 150 kHz to 250 kHz.
JP2007137696A 2007-05-24 2007-05-24 Magnesium material production method Pending JP2008291310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007137696A JP2008291310A (en) 2007-05-24 2007-05-24 Magnesium material production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007137696A JP2008291310A (en) 2007-05-24 2007-05-24 Magnesium material production method

Publications (1)

Publication Number Publication Date
JP2008291310A true JP2008291310A (en) 2008-12-04

Family

ID=40166346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007137696A Pending JP2008291310A (en) 2007-05-24 2007-05-24 Magnesium material production method

Country Status (1)

Country Link
JP (1) JP2008291310A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010503767A (en) * 2006-09-13 2010-02-04 マグネシウム エレクトロン リミテッド Gadolinium-containing magnesium alloy
JP2017501305A (en) * 2013-12-26 2017-01-12 ポスコPosco Color-treated substrate and method for coloring the substrate for the same
CN108677039A (en) * 2018-04-04 2018-10-19 深圳万佳互动科技有限公司 A kind of magnesium alloy of Laser Surface Treatment
JP2020045507A (en) * 2018-09-14 2020-03-26 岡山県 Magnesium alloy molded article and manufacturing method therefor
EP4071272A1 (en) 2021-04-09 2022-10-12 Mitsubishi Heavy Industries, Ltd. Surface modification method of mg-al-ca based alloy
CN116356171A (en) * 2023-05-31 2023-06-30 北京爱康宜诚医疗器材有限公司 Medical magnesium alloy and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002069665A (en) * 2000-09-01 2002-03-08 Tokyo Inst Of Technol Thin film forming method with laser beam
JP2003193259A (en) * 2001-12-25 2003-07-09 New Industry Research Organization SURFACE TREATMENT METHOD FOR Mg ALLOY PRODUCT AND Mg ALLOY PRODUCT WITH HIGHLY CORROSION RESISTANT FILM FORMED
JP2005200730A (en) * 2004-01-19 2005-07-28 Itagaki Kinzoku Kk Method and device for forming oxide film by laser light irradiation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002069665A (en) * 2000-09-01 2002-03-08 Tokyo Inst Of Technol Thin film forming method with laser beam
JP2003193259A (en) * 2001-12-25 2003-07-09 New Industry Research Organization SURFACE TREATMENT METHOD FOR Mg ALLOY PRODUCT AND Mg ALLOY PRODUCT WITH HIGHLY CORROSION RESISTANT FILM FORMED
JP2005200730A (en) * 2004-01-19 2005-07-28 Itagaki Kinzoku Kk Method and device for forming oxide film by laser light irradiation

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010503767A (en) * 2006-09-13 2010-02-04 マグネシウム エレクトロン リミテッド Gadolinium-containing magnesium alloy
JP2017501305A (en) * 2013-12-26 2017-01-12 ポスコPosco Color-treated substrate and method for coloring the substrate for the same
JP2017505381A (en) * 2013-12-26 2017-02-16 ポスコPosco Color-treated substrate and method for coloring the substrate for the same
CN108677039A (en) * 2018-04-04 2018-10-19 深圳万佳互动科技有限公司 A kind of magnesium alloy of Laser Surface Treatment
JP2020045507A (en) * 2018-09-14 2020-03-26 岡山県 Magnesium alloy molded article and manufacturing method therefor
EP4071272A1 (en) 2021-04-09 2022-10-12 Mitsubishi Heavy Industries, Ltd. Surface modification method of mg-al-ca based alloy
JP2022161559A (en) * 2021-04-09 2022-10-21 三菱重工業株式会社 SURFACE MODIFICATION METHOD FOR Mg-Al-Ca BASED ALLOY
JP7235254B2 (en) 2021-04-09 2023-03-08 三菱重工業株式会社 Method for modifying surface of Mg-Al-Ca alloy
CN116356171A (en) * 2023-05-31 2023-06-30 北京爱康宜诚医疗器材有限公司 Medical magnesium alloy and preparation method thereof
CN116356171B (en) * 2023-05-31 2023-09-12 北京爱康宜诚医疗器材有限公司 Medical magnesium alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2008291310A (en) Magnesium material production method
Li et al. Ordered Co 3 O 4 hierarchical nanorod arrays: tunable superhydrophilicity without UV irradiation and transition to superhydrophobicity
TWI700137B (en) Metal powder for metal lamination forming and formed objects made by using the metal powder
Wheeler Kinetics and mechanism of the oxidation of cerium in air at ambient temperature
SE465128B (en) CORN-ORIENTED STEEL TUNNER PLATE FOR ELECTRICAL PURPOSES AND PROCEDURES FOR PREPARING THE PLATE
WO2020081150A1 (en) Aluminum alloys having iron and rare earth elements
Golkovsky et al. Cladding of tantalum and niobium on titanium by electron beam, injected in atmosphere
Morton et al. In situ selective laser gas nitriding for composite TiN/Ti-6Al-4V fabrication via laser powder bed fusion
KR20190137129A (en) Cu-Co-Si-based copper alloy sheet and manufacturing method and parts using the sheet
WO2020041726A1 (en) Additive-containing alloy embodiments and methods of making and using the same
EP2222897A1 (en) Method for preparing polycrystalline structures having improved mechanical and physical properties
KR101591028B1 (en) Surface treatment method for magnesium or magnesium alloy
Xu et al. Effects of electroless nickel plating method for low temperature joining ZnS ceramics
Singh et al. Establishing environment friendly surface treatment for AZ91 magnesium alloy for subsequent electroless nickel plating
JP6286562B2 (en) Surface-treated substrate and method for surface treatment of substrate for the same
Hao et al. Dual-electrolyte fabrication of micro arc oxidation coatings on Ta–12W alloy with enhanced wear resistance
EP1381522A1 (en) Processing method of creating rainbow color, method of manufacturing article which presents rainbow-coloured reflective luster, and article which presents rainbow-coloured reflective luster
JP2009054716A (en) RARE EARTH-BASED PERMANENT MAGNET HAVING Mg-CONTAINING Al COATING ON SURFACE THEREOF, AND MANUFACTURING METHOD THEREOF
JP6422157B2 (en) Diamond etching method, diamond crystal defect detection method, and diamond crystal growth method
JP2006028539A (en) Surface treatment method for magnesium base material, and method for manufacturing magnesium shaped article
Chernyshikhin et al. Laser Polishing of Nickel-Titanium Shape Memory Alloy Produced via Laser Powder Bed Fusion
CN115717231A (en) Paracrystalline metal material, preparation method and application thereof
US20070246663A1 (en) Radiation image phosphor or scintillator panel
JP7435405B2 (en) Aluminum member and its manufacturing method
RU2112087C1 (en) Method of producing of protective coatings on aluminum and its alloys

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120409

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120821