JP2008290918A - Method for manufacturing multilayer carbon nanotube and multilayer carbon nanotube - Google Patents

Method for manufacturing multilayer carbon nanotube and multilayer carbon nanotube Download PDF

Info

Publication number
JP2008290918A
JP2008290918A JP2007139596A JP2007139596A JP2008290918A JP 2008290918 A JP2008290918 A JP 2008290918A JP 2007139596 A JP2007139596 A JP 2007139596A JP 2007139596 A JP2007139596 A JP 2007139596A JP 2008290918 A JP2008290918 A JP 2008290918A
Authority
JP
Japan
Prior art keywords
carbon nanotube
walled carbon
catalyst
iron
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007139596A
Other languages
Japanese (ja)
Other versions
JP4660705B2 (en
JP2008290918A5 (en
Inventor
Morinobu Endo
守信 遠藤
Kenji Takeuchi
健司 竹内
Satoshi Iioi
悟史 飯生
Tomoyuki Fukuyo
知行 福世
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinshu University NUC
MEFS KK
Original Assignee
Shinshu University NUC
MEFS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinshu University NUC, MEFS KK filed Critical Shinshu University NUC
Priority to JP2007139596A priority Critical patent/JP4660705B2/en
Publication of JP2008290918A publication Critical patent/JP2008290918A/en
Publication of JP2008290918A5 publication Critical patent/JP2008290918A5/ja
Application granted granted Critical
Publication of JP4660705B2 publication Critical patent/JP4660705B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems of a conventional method for manufacturing multilayer carbon nanotubes in which multilayer carbon nanotubes obtained by a vapor phase growth method are subjected to a high temperature heating process over the generation temperature of carbon nanotubes, so as to obtain multilayer carbon nanotubes in a high crystallization degree. <P>SOLUTION: In the process of manufacturing multilayer carbon nanotubes by a catalytic vapor phase growth method in which a carbon source gas is made to flow in a heated atmosphere held at a predetermined temperature in the presence of a catalyst and multilayer carbon nanotubes are grown from the surface of the catalyst, an iron-containing garnet powder is used for the catalyst. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は多層カーボンナノチューブの製造方法及び多層カーボンナノチューブに関し、更に詳細には触媒が存在し且つ所定温度に保持された加熱雰囲気内に炭素源気体を流通し、前記触媒の表面から多層カーボンナノチューブが成長する触媒気相成長法による多層カーボンナノチューブの製造方法及び多層カーボンナノチューブに関する。 The present invention relates to a method for producing multi-walled carbon nanotubes and multi-walled carbon nanotubes, and more specifically, a catalyst is present and a carbon source gas is circulated in a heated atmosphere maintained at a predetermined temperature. The present invention relates to a method for producing a multi-walled carbon nanotube by a catalytic vapor phase growth method and a multi-walled carbon nanotube.

多層カーボンナノチューブの製造方法としては、触媒が存在し且つ所定温度に保持された加熱雰囲気内に炭素源気体を流通して、金属触媒の表面から多層カーボンナノチューブを成長させる触媒気相成長法がある(例えば下記特許文献1、特許文献2参照)。
この触媒気相成長法では、金属触媒が存在し且つ多層カーボンナノチューブが形成される温度に加熱された加熱雰囲気内に、メタン等の炭化水素と水素又はアルゴン等のキャリアガスとの混合ガスを導入し、金属触媒の表面から多層カーボンナノチューブを成長させる。
かかる触媒気相成長法で用いられる金属触媒としては、主として鉄、コバルト、ニッケル等が用いられ、特に鉄が汎用されている。
この金属触媒としての鉄は、フェロセン等の有機鉄化合物を用いる方法(例えば下記特許文献3参照)、或いはアルミナ、シリカ、マグネシア等のセラミックに鉄を担持する方法(例えば特許文献4、特許文献5、特許文献6及び特許文献7参照)がある。
特開昭52−103528号公報 特公昭62−242号公報 特開平8−60446号公報 特開2004−182548号公報 特開2005−272261号公報 特開2006−232643号公報 特開昭62−500943号公報
As a method for producing multi-walled carbon nanotubes, there is a catalytic vapor phase growth method in which a carbon source gas is circulated in a heated atmosphere in which a catalyst is present and maintained at a predetermined temperature to grow multi-walled carbon nanotubes from the surface of the metal catalyst. (For example, refer to Patent Document 1 and Patent Document 2 below).
In this catalytic vapor deposition method, a mixed gas of a hydrocarbon such as methane and a carrier gas such as hydrogen or argon is introduced into a heated atmosphere heated to a temperature at which a metal catalyst is present and multi-walled carbon nanotubes are formed. Then, multi-walled carbon nanotubes are grown from the surface of the metal catalyst.
As a metal catalyst used in such a catalyst vapor phase growth method, iron, cobalt, nickel and the like are mainly used, and particularly iron is widely used.
The iron as the metal catalyst is a method using an organic iron compound such as ferrocene (for example, see Patent Document 3 below), or a method of supporting iron on a ceramic such as alumina, silica, magnesia (for example, Patent Document 4, Patent Document 5). Patent Document 6 and Patent Document 7).
JP-A-52-103528 Japanese Patent Publication No.62-242 JP-A-8-60446 JP 2004-182548 A JP 2005-272261 A JP 2006-232643 A Japanese Patent Application Laid-Open No. 62-5000943

かかる触媒気相成長法では、多層カーボンナノチューブを安定して得ることができ、現在、多層カーボンナノチューブの量産方法として採用されている。
しかし、従来の触媒気相成長法で得られた多層カーボンナノチューブは、そのままでは結晶化度が低いため、電導度、熱伝導度、強度が低く実用に供するには種々の問題が存在する。また、多層カーボンナノチューブの表面は、熱分解炭素被覆層で覆われている。
このため、従来の触媒気相成長法で得られた多層カーボンナノチューブは、その用途によっては、その生成温度を超える温度での高温加熱処理が施される。かかる高温加熱処理での加熱温度は、通常、2000℃以上である。
この様な、高温加熱処理は、煩雑な作業で且つエネルギー的にも損失が伴う。また、高温加熱処理を施すことによって、多層カーボンナノチューブの表面を覆っていた熱分解炭素被覆層の結晶化度を向上できるものの、分散剤等を用いるなど、前処理をしなければ樹脂等との分散が不十分となることが判明した。
一方、高温加熱処理が未処理の多層カーボンナノチューブは、高温加熱処理を施した多層カーボンナノチューブに比較して、樹脂等との分散性が良好となる傾向があることも判明した。
また、従来の金属触媒として、フェロセン等の有機鉄化合物を用いる方法、或いはアルミナ、シリカ、マグネシア等のセラミックに鉄を担持する方法では、触媒の製造コストが高価であり、多層カーボンナノチューブの製造コストが高価となっている。
そこで、本発明は、高結晶化度の多層カーボンナノチューブを得るべく、触媒気相成長法で得た多層カーボンナノチューブに、その生成温度を超える高温加熱処理を施す従来の多層カーボンナノチューブの製造方法の課題を解消し、触媒気相成長法のみで高結晶化度の多層カーボンナノチューブを安価で得られる多層カーボンナノチューブの製造方法及び多層カーボンナノチューブを提供することを目的とする。
In such a catalytic vapor phase growth method, multi-walled carbon nanotubes can be obtained stably, and is currently employed as a mass production method for multi-walled carbon nanotubes.
However, since the multi-walled carbon nanotubes obtained by the conventional catalytic vapor phase growth method have low crystallinity as they are, there are various problems to put them into practical use because of low electrical conductivity, thermal conductivity and strength. The surface of the multi-walled carbon nanotube is covered with a pyrolytic carbon coating layer.
For this reason, the multi-walled carbon nanotubes obtained by the conventional catalytic vapor phase growth method are subjected to a high-temperature heat treatment at a temperature exceeding the generation temperature depending on the application. The heating temperature in such high-temperature heat treatment is usually 2000 ° C. or higher.
Such a high-temperature heat treatment is a complicated operation and involves energy loss. In addition, although the crystallinity of the pyrolytic carbon coating layer covering the surface of the multi-walled carbon nanotube can be improved by performing a high-temperature heat treatment, a resin or the like can be used unless a pretreatment is performed, such as using a dispersant. It was found that dispersion was insufficient.
On the other hand, it has also been found that multi-walled carbon nanotubes that have not been subjected to high-temperature heat treatment tend to have better dispersibility with resins or the like than multi-walled carbon nanotubes that have been subjected to high-temperature heat treatment.
In addition, in the method using an organic iron compound such as ferrocene as a conventional metal catalyst or the method of supporting iron on a ceramic such as alumina, silica or magnesia, the production cost of the catalyst is high, and the production cost of the multi-walled carbon nanotube Has become expensive.
Therefore, the present invention provides a conventional multi-walled carbon nanotube production method in which a multi-walled carbon nanotube obtained by catalytic vapor deposition is subjected to high-temperature heat treatment exceeding the generation temperature in order to obtain a multi-walled carbon nanotube with high crystallinity. An object of the present invention is to provide a method for producing a multi-walled carbon nanotube and a multi-walled carbon nanotube that can solve the problem and obtain a multi-walled carbon nanotube having a high crystallinity at a low cost only by catalytic vapor phase growth.

本発明者等は、前記課題を解決すべく種々検討した結果、触媒として鉄含有のガーネット粉末を用いたところ、触媒気相成長法のみで実用に耐え得る高結晶化度の多層カーボンナノチューブを得られることを見出し、本発明に到達した。
すなわち、本発明は、触媒が存在し且つ所定温度に保持された加熱雰囲気内に炭素源気体を流通して、前記触媒の表面から多層カーボンナノチューブを成長させる触媒気相成長法によって多層カーボンナノチューブを製造する際に、前記触媒として、鉄含有の鉱物粉末を用いることを特徴とする多層カーボンナノチューブの製造方法にある。
かかる本発明において、鉄含有の鉱物粉末として、鉄含有のガーネット粉末又は鉄含有の珪砂を好適に用いることができる。
更に、触媒として用いる鉄含有の鉱物粉末に、炭素源気体を流通する前に加熱処理を施すことによって、触媒単位重量当たりの多層カーボンナノチューブの収量を増大できる。
As a result of various studies to solve the above problems, the present inventors have used a garnet powder containing iron as a catalyst, and obtained a multi-walled carbon nanotube having a high crystallinity that can withstand practical use only by catalytic vapor deposition. The present invention has been reached.
That is, the present invention provides a multi-wall carbon nanotube by a catalyst vapor phase growth method in which a multi-wall carbon nanotube is grown from the surface of the catalyst by circulating a carbon source gas in a heated atmosphere in which a catalyst is present and maintained at a predetermined temperature. In production, the present invention resides in a method for producing a multi-walled carbon nanotube, wherein iron-containing mineral powder is used as the catalyst.
In the present invention, iron-containing garnet powder or iron-containing silica sand can be suitably used as the iron-containing mineral powder.
Furthermore, the yield of multi-walled carbon nanotubes per unit weight of the catalyst can be increased by subjecting the iron-containing mineral powder used as the catalyst to a heat treatment before circulating the carbon source gas.

また、本発明は、触媒が存在し且つ所定温度に保持された加熱雰囲気内に炭素源気体を流通する触媒気相成長法によって得られ、且つ前記加熱雰囲気の温度を超える高温での高温加熱処理が施されていない多層カーボンナノチューブであって、前記多層カーボンナノチューブの透過型電子顕微鏡写真において、前記多層カーボンナノチューブの直線状部分を形成する中空部を囲む積層部の主たる部分が、互いに平行状態の層によって形成されていることを特徴とする多層カーボンナノチューブでもある。
かかる本発明において、多層カーボンナノチューブの直線状部分を形成する中空部を囲む積層部の中央部及びその近傍を形成する層が互いに平行状態の層によって形成されていることが好ましい。
具体的には、多層カーボンナノチューブの直線状部分を形成する中空部を囲む積層部の任意の箇所を幅方向に三等分したうち、その中間部分の幅で且つ前記多層カーボンナノチューブの長手方向に沿った長さ10nmの四角形の領域を形成する複数層が互いに平行状態であることが好ましい。
更に、本発明は、触媒が存在し且つ所定温度に保持された加熱雰囲気内に炭素源気体を流通する触媒気相成長法によって得られ、且つ前記加熱雰囲気温度を超える温度での高温加熱処理が施されていない多層カーボンナノチューブであって、前記多層カーボンナノチューブのラマンスペクトルが、その1300cm−1付近の吸収ピークDと1600cm−1付近の吸収ピークGとの比(D/G)が0.8以下であることを特徴とする多層カーボンナノチューブにある。
The present invention also provides a high-temperature heat treatment at a high temperature obtained by a catalyst vapor phase growth method in which a carbon source gas is circulated in a heated atmosphere in which a catalyst is present and maintained at a predetermined temperature, and exceeds the temperature of the heated atmosphere. In the transmission electron micrograph of the multi-walled carbon nanotube, the main parts of the laminated part surrounding the hollow part forming the linear part of the multi-walled carbon nanotube are parallel to each other. It is also a multi-walled carbon nanotube characterized by being formed of layers.
In the present invention, it is preferable that the central part of the laminated part surrounding the hollow part forming the linear part of the multi-walled carbon nanotube and the layer forming the vicinity thereof are formed by layers in parallel with each other.
Specifically, an arbitrary part of the laminated part surrounding the hollow part forming the linear part of the multi-walled carbon nanotube is divided into three equal parts in the width direction, and the width of the middle part and the longitudinal direction of the multi-walled carbon nanotube It is preferable that a plurality of layers forming a rectangular region having a length of 10 nm along each other are in a parallel state.
Furthermore, the present invention is obtained by a catalytic vapor phase growth method in which a carbon source gas is circulated in a heating atmosphere in which a catalyst is present and maintained at a predetermined temperature, and high-temperature heat treatment at a temperature exceeding the heating atmosphere temperature is performed. a multi-walled carbon nanotubes that have not been subjected the Raman spectrum of the multi-walled carbon nanotubes, the ratio of the absorption peak G in the vicinity of the absorption peak D and 1600 cm -1 in the vicinity of the 1300 cm -1 (D / G) is 0.8 The multi-walled carbon nanotube is characterized by the following.

本発明によれば、触媒気相成長法のみで実用に耐え得る高結晶化度の多層カーボンナノチューブを得ることができる。
その結果、触媒気相成長法で得られた多層カーボンナノチューブの結晶化度を向上すべく施す、その生成温度を超える高温加熱処理を省略でき、多層カーボンナノチューブの製造工程を簡略化でき且つ省エネルギーを図ることができる。
また、触媒として、鉄含有の鉱物粉末を用いるため、従来のフェロセン等の有機鉄化合物を触媒として用いる場合、或いはアルミナ、シリカ、マグネシア等のセラミックに鉄を担持したものを触媒として用いる場合に比較して、触媒コストを低減でき、多層カーボンナノチューブの製造コストの低減も図ることができる。
更に、本発明によって得られた多層カーボンナノチューブは、その表面が粗面に形成されており、比表面積を大とすることができ、樹脂等との分散性を向上できるものと期待できる。
According to the present invention, it is possible to obtain a multi-walled carbon nanotube having a high crystallinity that can withstand practical use only by the catalytic vapor deposition method.
As a result, it is possible to omit the high-temperature heat treatment exceeding the generation temperature, which is performed to improve the crystallinity of the multi-walled carbon nanotubes obtained by the catalytic vapor deposition method, simplify the multi-walled carbon nanotube manufacturing process and save energy. Can be planned.
In addition, since iron-containing mineral powder is used as a catalyst, it is compared with the case where a conventional organic iron compound such as ferrocene is used as a catalyst, or the case where iron is supported on a ceramic such as alumina, silica, magnesia or the like. Thus, the catalyst cost can be reduced, and the production cost of the multi-walled carbon nanotube can be reduced.
Furthermore, the multi-walled carbon nanotubes obtained by the present invention are expected to have a rough surface, increase the specific surface area, and improve the dispersibility with a resin or the like.

本発明では、触媒として、鉄含有の鉱物粉末を用いることが肝要である。この鉄含有の鉱物としては、鉄含有のガーネット、鉄含有のかんらん石、鉄含有のスピネル、鉄含有の輝石、白鉄鉱、黄鉄鉱、チタン鉄鉱、鉄重石、鉄マンガン重石、ギレスピー石、磁苦土鉱、鉄含有の珪砂等を挙げることができる。こられの鉱物は、製鉄原料、土木材、研磨材等に広く利用されており、高品質で且つ組成及び結晶構造が一定のものを安価に入手できる。
また、これらの鉄含有の鉱物粉末は、天然に産出した鉱物由来のものであってもよく、人工的に合成された鉱物由来のものであってもよい。
特に、かかる鉄含有の鉱物粉末のうち、鉄含有のガーネットや珪砂を好適に用いることができる。工業的にガーネットは研磨材として用いられており、珪砂は土木材や建材として用いられている。
ここで、鉄含有のガーネットとしては、具体的には鉄ばん柘榴石[FeAl(SiO);almandine]又は灰鉄柘榴石[CaFe(SiO);andradite]等を挙げることができる。
また、珪砂は、主としてSiOから成るが、鉄成分も含まれているため、多層カーボンナノチューブの触媒として使用できるものと考えられる。
かかる鉄含有の鉱物の鉱物は、粉末状として用いる。その粉末程度は、粉末の平均粒径が1mm以下とすることが好ましい。
In the present invention, it is important to use iron-containing mineral powder as a catalyst. These iron-containing minerals include iron-containing garnet, iron-containing olivine, iron-containing spinel, iron-containing pyroxene, marcasite, pyrite, titanite, iron barite, ferromanganese barite, gilespyite, magnetism Examples include earth ore and iron-containing quartz sand. These minerals are widely used for iron-making raw materials, earth and lumber, abrasives, etc., and high-quality, constant composition and crystal structures can be obtained at low cost.
These iron-containing mineral powders may be derived from naturally occurring minerals or may be derived from artificially synthesized minerals.
In particular, among such iron-containing mineral powders, iron-containing garnet and silica sand can be suitably used. Industrially, garnet is used as an abrasive, and silica sand is used as earthwork or building material.
Here, as iron-containing garnet, specifically, iron agate meteorite [Fe 3 Al 2 (SiO 4 ) 3 ; almandine] or ash iron meteorite [Ca 3 Fe 2 (SiO 4 ) 3 ; andradite] or the like Can be mentioned.
Silica sand is mainly composed of SiO 2 , but also contains an iron component, so it can be used as a catalyst for multi-walled carbon nanotubes.
Such an iron-containing mineral is used as a powder. It is preferable that the powder has an average particle size of 1 mm or less.

この様に、粉末状とした鉄含有の鉱物粉末は、図1に示す様に、アルミナボート等の載置台10の一面側に散布する。この散布は、鉱物粉末を載置台10の一面側に直接散布してもよく、鉱物粉末を分散した水等の溶媒を載置台10の一面側に散布した後、溶媒を蒸発させてもよい。
粉末状とした鉄含有の鉱物粉末12が一面側に散布された載置台10を加熱管14内に挿入して載置した後、電気炉16内に加熱管14ごと挿入する。次いで、電気炉16によって加熱管14を所定温度に加熱しつつ、加熱管14の一方側から炭素源気体としてのメタンとキャリアーガスとしてのアルゴン又は水素との混合ガスを導入し、加熱管14の他方側から混合ガスを抜き出す。
この炭素源気体としては、メタンの他に、エタン、プロパン等の炭化水素、ベンゼン等の芳香族炭化水素、一酸化炭素、メタノール、エタノール等の低級アルコールを用いることができる。かかる炭素源気体とキャリアーガスとの混合ガスは、例えばアルゴンと炭素源気体との混合ガスを所定時間用いた後、水素と炭素源気体との混合ガスに切り換えてもよい。
また、電気炉16内の温度は、使用した炭素源気体の熱分解温度に応じて調整する。具体的には400〜1200℃の範囲内で温度調整を図ることが好ましい。
In this manner, the powdered iron-containing mineral powder is dispersed on one surface side of the mounting table 10 such as an alumina boat as shown in FIG. In this spraying, the mineral powder may be directly sprayed on the one surface side of the mounting table 10, or the solvent may be evaporated after the solvent such as water in which the mineral powder is dispersed is sprayed on the one surface side of the mounting table 10.
After placing the mounting table 10 in which the powdered iron-containing mineral powder 12 is dispersed on one side into the heating tube 14 and placing it, the heating tube 14 is inserted into the electric furnace 16. Next, while heating the heating tube 14 to a predetermined temperature by the electric furnace 16, a mixed gas of methane as a carbon source gas and argon or hydrogen as a carrier gas is introduced from one side of the heating tube 14. The mixed gas is extracted from the other side.
As the carbon source gas, in addition to methane, hydrocarbons such as ethane and propane, aromatic hydrocarbons such as benzene, lower alcohols such as carbon monoxide, methanol, and ethanol can be used. The mixed gas of the carbon source gas and the carrier gas may be switched to a mixed gas of hydrogen and the carbon source gas after using a mixed gas of argon and the carbon source gas for a predetermined time, for example.
Moreover, the temperature in the electric furnace 16 is adjusted according to the thermal decomposition temperature of the used carbon source gas. Specifically, it is preferable to adjust the temperature within a range of 400 to 1200 ° C.

かかる触媒気相成長法によって得られた多層カーボンナノチューブであって、その生成温度(電気炉16内の温度)を超える温度での高温加熱処理が施されていない、本発明に係る製造方法によって得られた多層カーボンナノチューブ(以下、本発明のas-grown多層カーボンナノチューブと称する)は、その透過型電子顕微鏡写真である図2に示す様に、多層カーボンナノチューブの直線状部分を形成する中空部を囲む積層部の主たる部分が、互いに平行状態の層によって形成されている。
具体的には、図3に示す様に、本発明のas-grown多層カーボンナノチューブの直線状部分を形成する中空部を囲む積層部の任意の箇所を幅方向に三等分し、その中間部分の幅で且つ多層カーボンナノチューブの長手方向に沿った長さ10nmの四角形の領域(図3の白線で囲まれた領域)を形成する複数層が互いに平行状態である。
一方、触媒として、フェロセンを用いた従来の多層カーボンナノチューブの製造方法で得たas-grown多層カーボンナノチューブ(以下、従来のas-grown多層カーボンナノチューブと称することがある)は、その透過型電子顕微鏡写真である図4に示す様に、多層カーボンナノチューブの直線状部分を形成する中空部を囲む積層部の大部分は、波状の層によって形成されている。この波状の層は、熱分解炭素被覆層である。
特に、図2及び図3に示す本発明のas-grown多層カーボンナノチューブでは、多層カーボンナノチューブの直線状部分を形成する中空部を囲む積層部の中央部及びその近傍を形成する層が互いに平行状態の層によって形成されている。これに対し、図4に示す従来のas-grown多層カーボンナノチューブでは、その積層部の中央部及びその近傍は波状の層によって形成されており、図2及び図3に示す本発明のas-grown多層カーボンナノチューブとは大きく相違することは明らかである。
It is a multi-walled carbon nanotube obtained by such catalytic vapor phase growth method, and obtained by the production method according to the present invention, which is not subjected to high-temperature heat treatment at a temperature exceeding its production temperature (temperature in the electric furnace 16). The obtained multi-walled carbon nanotube (hereinafter referred to as the as-grown multi-walled carbon nanotube of the present invention) has a hollow portion forming a linear portion of the multi-walled carbon nanotube as shown in FIG. The main part of the surrounding laminated part is formed by layers parallel to each other.
Specifically, as shown in FIG. 3, an arbitrary portion of the laminated portion surrounding the hollow portion forming the linear portion of the as-grown multi-walled carbon nanotube of the present invention is divided into three equal parts in the width direction, and the intermediate portion A plurality of layers forming a rectangular region (region surrounded by a white line in FIG. 3) having a width of 10 nm and a length of 10 nm along the longitudinal direction of the multi-walled carbon nanotubes are in parallel with each other.
On the other hand, an as-grown multi-walled carbon nanotube obtained by a conventional method for producing multi-walled carbon nanotubes using ferrocene as a catalyst (hereinafter sometimes referred to as a conventional as-grown multi-walled carbon nanotube) is a transmission electron microscope. As shown in FIG. 4 which is a photograph, most of the laminated part surrounding the hollow part forming the linear part of the multi-walled carbon nanotube is formed by a wave-like layer. This wavy layer is a pyrolytic carbon coating layer.
In particular, in the as-grown multi-walled carbon nanotube of the present invention shown in FIGS. 2 and 3, the central part of the laminated part surrounding the hollow part forming the linear part of the multi-walled carbon nanotube and the layer forming the vicinity thereof are parallel to each other. It is formed by the layer of. On the other hand, in the conventional as-grown multi-walled carbon nanotube shown in FIG. 4, the central part and the vicinity thereof are formed by a wavy layer, and the as-grown of the present invention shown in FIGS. Clearly, this is very different from multi-walled carbon nanotubes.

触媒としてガーネット等の鉄含有の鉱物粉末を用いた触媒気相成長法によって得られた本発明のas-grown多層カーボンナノチューブと、触媒としてセラミックに鉄を担持した鉄担持触媒を用いた従来の触媒気相成長法によって得られた従来のas-grown多層カーボンナノチューブとの相違については、そのメカニズムは未だ充分に充分に解明されていないが以下のように推察される。
つまり、本発明で用いるガーネット等の鉄含有の鉱物粉末では、鉱物粉末を形成する酸化物結晶中に鉄原子が原子レベルで分散して存在している。このため、ガーネット等の鉄含有の鉱物粉末を触媒として用いる触媒気相成長法では、鉱物粉末中に浸透又は拡散する炭素源ガス又は水素ガスによって鉄原子が還元されて還元鉄から成るクラスターを形成する。かかる還元鉄のクラスターの表面に接触する炭素が層状に積層されて多層カーボンナノチューブを形成する。この還元鉄のクラスターは、鉱物粉末と炭素源ガス又は水素ガスとの接触時間と共に成長し、成長するクラスターの外面に接触する炭素が順次層状に積層される結果、直線状部分を形成する中空部を囲む積層部の主たる部分が、互いに平行状態の層によって形成された多層カーボンナノチューブを得ることができるものと考えられる。
一方、従来の鉄担持触媒では、鉄が表面に散点状に露出しているのみである。このため、かかる従来の触媒として用いる触媒気相成長法では、触媒の表面に露出している鉄が炭素源ガス又は水素ガスによって還元されるのみであり、触媒として作用する部分は限定的である。
このため、所定領域に形成された還元鉄の外面に接触する炭素が順次層状に積層された触媒関与部分(図4に示すAの部分)の外側に、触媒が関与しないで形成された熱分解炭素被覆層(図4に示すBの部分)が形成される。
Conventional catalyst using as-grown multi-walled carbon nanotube of the present invention obtained by catalytic vapor phase growth method using iron-containing mineral powder such as garnet as catalyst and iron-supported catalyst having iron supported on ceramic as catalyst Regarding the difference from the conventional as-grown multi-walled carbon nanotubes obtained by the vapor phase growth method, the mechanism has not been sufficiently elucidated yet, but is presumed as follows.
In other words, in iron-containing mineral powders such as garnet used in the present invention, iron atoms are dispersed at the atomic level in oxide crystals forming the mineral powder. For this reason, in the catalytic vapor phase growth method using iron-containing mineral powder such as garnet as a catalyst, iron atoms are reduced by carbon source gas or hydrogen gas that permeates or diffuses into the mineral powder to form clusters composed of reduced iron. To do. Carbon in contact with the surface of the reduced iron cluster is laminated in layers to form multi-walled carbon nanotubes. This reduced iron cluster grows with the contact time between the mineral powder and the carbon source gas or hydrogen gas, and the carbon in contact with the outer surface of the growing cluster is sequentially laminated in layers, resulting in a hollow portion forming a linear portion. It is considered that multi-walled carbon nanotubes can be obtained in which the main portion of the laminated portion surrounding the layers is formed of layers in parallel with each other.
On the other hand, in the conventional iron-supported catalyst, iron is only exposed in the form of dots on the surface. For this reason, in the catalyst vapor phase growth method used as such a conventional catalyst, iron exposed on the surface of the catalyst is only reduced by the carbon source gas or hydrogen gas, and the portion acting as a catalyst is limited. .
For this reason, the thermal decomposition formed without catalyst involvement outside the catalyst participation portion (portion A shown in FIG. 4) in which carbon in contact with the outer surface of the reduced iron formed in a predetermined region is sequentially layered. A carbon coating layer (portion B shown in FIG. 4) is formed.

図2及び図3の本発明のas-grown多層カーボンナノチューブと図4の従来のas-grown多層カーボンナノチューブとのラマンスペクトルを図5に示す。図5において、吸収スペクトルAが図2及び図3の本発明のas-grown多層カーボンナノチューブの吸収スペクトルを示し、吸収スペクトルBが図4の従来のas-grown多層カーボンナノチューブの吸収スペクトルを示す。
図5に示す吸収スペクトルでは、その1300cm−1付近の吸収ピークDは、多層カーボンナノチューブを形成する結晶内の欠陥に基づく吸収であり、1600cm−1付近の吸収ピークGは多層カーボンナノチューブを形成する結晶に基づく吸収である。このため、吸収ピークDと吸収ピークGとの比(D/G)が小さい程、多層カーボンナノチューブの結晶化度が高いことを示す。
FIG. 5 shows Raman spectra of the as-grown multi-walled carbon nanotube of the present invention of FIGS. 2 and 3 and the conventional as-grown multi-walled carbon nanotube of FIG. In FIG. 5, the absorption spectrum A shows the absorption spectrum of the as-grown multi-walled carbon nanotube of the present invention shown in FIGS. 2 and 3, and the absorption spectrum B shows the absorption spectrum of the conventional as-grown multi-walled carbon nanotube of FIG.
In the absorption spectrum shown in FIG. 5, the absorption peak D of near 1300 cm -1 is the absorption based on a defect in the crystal forming a multi-walled carbon nanotubes, the absorption peak G around 1600 cm -1 to form a multi-walled carbon nanotube Absorption based on crystals. For this reason, it shows that the crystallinity degree of a multi-walled carbon nanotube is so high that the ratio (D / G) of the absorption peak D and the absorption peak G is small.

かかる観点から吸収スペクトルAと吸収スペクトルBとを比較すると、吸収スペクトルAの吸収ピークGは吸収ピークDよりも高いため、吸収ピークDと吸収ピークGとの比(D/G)は1未満である。これに対し、吸収スペクトルBの吸収ピークGは吸収ピークDよりも低く、吸収ピークDと吸収ピークGとの比(D/G)は1以上である。
従って、吸収スペクトルAを示す図2及び図3の本発明のas-grown多層カーボンナノチューブは、吸収スペクトルBを示す図4の従来のas-grown多層カーボンナノチューブよりも高結晶化度である。
かかる図2及び図3の本発明のas-grown多層カーボンナノチューブのラマンスペクトルにおいて、吸収ピークDと吸収ピークGとの比(D/G)が好ましくは0.8以下、更に好ましくは0.5以下、特に好ましくは0.3以下である。
但し、図2及び図3の本発明のas-grown多層カーボンナノチューブよりも更に一層の高結晶化度の多層カーボンナノチューブが必要である場合には、図2及び図3の本発明のas-grown多層カーボンナノチューブに更に加熱処理を施してもよい。この加熱処理は、図4の従来のas-grown多層カーボンナノチューブに施す高温加熱処理よりも簡易化できる。
Comparing the absorption spectrum A and the absorption spectrum B from this point of view, the absorption peak G of the absorption spectrum A is higher than the absorption peak D. Therefore, the ratio (D / G) between the absorption peak D and the absorption peak G is less than 1. is there. On the other hand, the absorption peak G of the absorption spectrum B is lower than the absorption peak D, and the ratio (D / G) between the absorption peak D and the absorption peak G is 1 or more.
Therefore, the as-grown multi-walled carbon nanotubes of the present invention of FIG. 2 and FIG. 3 showing the absorption spectrum A have higher crystallinity than the conventional as-grown multi-walled carbon nanotubes of FIG.
In the Raman spectrum of the as-grown multi-walled carbon nanotube of the present invention shown in FIGS. 2 and 3, the ratio (D / G) of the absorption peak D to the absorption peak G is preferably 0.8 or less, more preferably 0.5. Hereinafter, it is particularly preferably 0.3 or less.
However, when a multi-walled carbon nanotube having higher crystallinity than the as-grown multi-walled carbon nanotube of the present invention of FIGS. 2 and 3 is required, the as-grown of the present invention of FIGS. The multi-walled carbon nanotube may be further subjected to a heat treatment. This heat treatment can be simplified more than the high temperature heat treatment applied to the conventional as-grown multi-walled carbon nanotube of FIG.

以上の説明では、図1に示す様に、粉末状とした鉄含有の鉱物粉末12が一面側に散布された載置台10を加熱管14内に挿入して載置した後、電気炉16内に加熱管14ごと挿入し、次いで、電気炉16によって加熱管14を所定温度に加熱しつつ、加熱管14の一方側から炭素源気体としてのメタンとキャリアーガスとしてのアルゴン又は水素との混合ガスを導入している。
ここで、触媒として用いる鉄含有の鉱物粉末12に加熱処理を施した後、加熱処理を施した鉄含有の鉱物粉末12が載置された加熱管14に炭素源気体としてのメタンとキャリアーガスとしてのアルゴン又は水素との混合ガスを導入することによって、触媒単位重量当たりの多層カーボンナノチューブの収量を増大できる。
この鉄含有の鉱物粉末12に施す加熱処理としては、温度が500〜1500℃の酸化雰囲気中(空気中)又は採用する加熱温度下で化学的に不活性な不活性ガス雰囲気中(窒素ガスやアルゴンガス中)で触媒として用いる鉄含有の鉱物粉末12に加熱処理を施すことが好ましい。
また、かかる加熱処理は、加熱管14に挿入する前に予め粉末状とした鉄含有の鉱物粉末12に施してもよい。或いは、粉末状とした鉄含有の鉱物粉末12が一面側に散布された載置台10を加熱管14内に挿入して載置した後、電気炉16内に加熱管14ごと挿入し、次いで、電気炉16によって加熱管14を所定温度に加熱しつつ、加熱管14の一方側から空気、アルゴンガス又は窒素ガスを導入して施してもよい。
尚、図1に示す様に、鉱物粉末12が一面側に散布された載置台10を加熱管14内に挿入して載置し、鉱物粉末を静置した状態で所定温度に加熱しつつ、炭素源気体とキャリアーガスとの混合ガスを導入して多層カーボンナノチューブを製造していたが、鉱物粉末を炭素源気体とキャリアーガスとの混合ガスで浮遊させて多層カーボンナノチューブを製造してもよい。
In the above description, as shown in FIG. 1, after placing the mounting table 10 in which the powdered iron-containing mineral powder 12 is dispersed on one side into the heating tube 14 and mounting it, Then, the heating tube 14 is inserted into the heating tube 14, and then the heating tube 14 is heated to a predetermined temperature by the electric furnace 16, and a mixed gas of methane as the carbon source gas and argon or hydrogen as the carrier gas from one side of the heating tube 14. Has been introduced.
Here, after heat-treating the iron-containing mineral powder 12 used as a catalyst, the heating tube 14 on which the heat-treated iron-containing mineral powder 12 is placed as methane and a carrier gas as a carbon source gas. By introducing a mixed gas of argon or hydrogen, it is possible to increase the yield of multi-walled carbon nanotubes per catalyst unit weight.
The heat treatment applied to the iron-containing mineral powder 12 may be performed in an oxidizing atmosphere (in the air) at a temperature of 500 to 1500 ° C. or in an inert gas atmosphere (nitrogen gas or It is preferable to heat-treat the iron-containing mineral powder 12 used as a catalyst in (in argon gas).
Further, the heat treatment may be performed on the iron-containing mineral powder 12 that has been powdered before being inserted into the heating tube 14. Alternatively, after placing the mounting table 10 on which the iron-containing mineral powder 12 in the form of powder is spread on one side into the heating tube 14 and placing it, the heating tube 14 is inserted into the electric furnace 16, and then Air, argon gas, or nitrogen gas may be introduced from one side of the heating tube 14 while the heating tube 14 is heated to a predetermined temperature by the electric furnace 16.
In addition, as shown in FIG. 1, the mounting table 10 in which the mineral powder 12 is dispersed on one side is inserted and placed in the heating tube 14, and the mineral powder is left standing and heated to a predetermined temperature, Multi-walled carbon nanotubes were produced by introducing a mixed gas of a carbon source gas and a carrier gas. However, multi-walled carbon nanotubes may be produced by suspending mineral powder in a mixed gas of a carbon source gas and a carrier gas. .

触媒として、下記表1に示す組成のガーネット粉末[宇部サンド工業(株)製BARTON GARNET(商品名)]を用いた。この組成は、X線マイクロアナライザー(EPMA)を用いて測定した値である。また、ガーネット粉末の平均粒径は約0.1mmであった。   As the catalyst, garnet powder [BARTON GARNET (trade name) manufactured by Ube Sand Industries, Ltd.] having the composition shown in Table 1 below was used. This composition is a value measured using an X-ray microanalyzer (EPMA). The average particle size of the garnet powder was about 0.1 mm.

このガーネット粉末300mgを長方形のアルミナボート10(幅25mm×長さ200mm)の一面側に散布し、図1に示す加熱管14内に挿入して載置した後、電気炉16内に加熱管14ごと挿入して、加熱管14を所望温度に加熱した。
先ず、電気炉16によって加熱管14を850℃に加熱して、加熱管14の一方側からメタン(300ml/分)とキャリアーガスとしてのアルゴン(100ml/分)との混合ガスを導入し、加熱管14の他方側から混合ガスを抜き出す。この850℃での加熱処理を30分間行った。
次いで、加熱管14を冷却して、アルミナボート10を取り出し、ガーネット粉末の粒子表面に黒色の針状体が成長していた。この黒色の針状体が、その生成温度を超える温度での高温加熱処理が施されていないas-grown多層カーボンナノチューブである。
After 300 mg of this garnet powder is spread on one side of a rectangular alumina boat 10 (width 25 mm × length 200 mm), inserted into the heating tube 14 shown in FIG. 1 and placed, the heating tube 14 is placed in the electric furnace 16. And the heating tube 14 was heated to a desired temperature.
First, the heating tube 14 is heated to 850 ° C. by the electric furnace 16, and a mixed gas of methane (300 ml / min) and argon (100 ml / min) as a carrier gas is introduced from one side of the heating tube 14 and heated. The mixed gas is extracted from the other side of the tube 14. This heat treatment at 850 ° C. was performed for 30 minutes.
Next, the heating tube 14 was cooled, the alumina boat 10 was taken out, and black needles were growing on the surface of the garnet powder particles. This black needle-like body is an as-grown multi-walled carbon nanotube that has not been subjected to high-temperature heat treatment at a temperature exceeding its generation temperature.

かかるas-grown多層カーボンナノチューブの透過型電子顕微鏡写真を図2に示す。図2に示す多層カーボンナノチューブは、その直線状部分を形成する中空部を囲む積層部の殆どの部分が、互いに平行状態の層によって形成されている。このため、多層カーボンナノチューブの直線状部分を形成する中空部を囲む積層部の中央部及びその近傍が、互いに平行状態の層によって形成されている。また、図3に示す様に、多層カーボンナノチューブの直線状部分を形成する中空部を囲む積層部の任意の箇所を三等分したうち、その中間部分の幅で且つ多層カーボンナノチューブの長手方向に沿った長さ10nmの四角形の領域(図3に白線で示す四角形の領域)を形成する複数層が互いに平行状態でもある。   A transmission electron micrograph of such as-grown multi-walled carbon nanotubes is shown in FIG. In the multi-walled carbon nanotube shown in FIG. 2, most of the laminated part surrounding the hollow part forming the linear part is formed by layers in parallel with each other. For this reason, the center part of the lamination | stacking part surrounding the hollow part which forms the linear part of a multilayer carbon nanotube, and its vicinity are formed of the mutually parallel layer. In addition, as shown in FIG. 3, an arbitrary portion of the laminated portion surrounding the hollow portion forming the linear portion of the multi-walled carbon nanotube is divided into three equal parts, and the width of the intermediate portion and in the longitudinal direction of the multi-walled carbon nanotube A plurality of layers forming a 10 nm long rectangular region (a rectangular region indicated by a white line in FIG. 3) are also in parallel with each other.

実施例1において、電気炉16によって加熱管14を850℃に加熱しつつ、加熱管14の一方側からメタン(300ml/分)とキャリアーガスとしてのアルゴン(100ml/分)との混合ガスを導入することに代えて、加熱管14を950℃に加熱しつつ、加熱管14の一方側からメタン(300ml/分)とキャリアーガスとしての水素(200ml/分)との混合ガスを導入し、加熱管14の他方側から混合ガスを抜き出す。この950℃での加熱処理を10分間行った他は、実施例1と同様にしてas-grown多層カーボンナノチューブを得た。得られたas-grown多層カーボンナノチューブの透過型電子顕微鏡写真は、図2に示すものと略同一であって、その直線状部分を形成する中空部を囲む積層部の殆どの部分が、互いに平行状態の層によって形成されている。このため、多層カーボンナノチューブの直線状部分を形成する中空部を囲む積層部の中央部及びその近傍が、互いに平行状態の層によって形成されている。   In Example 1, a mixed gas of methane (300 ml / min) and argon as a carrier gas (100 ml / min) was introduced from one side of the heating tube 14 while the heating tube 14 was heated to 850 ° C. by the electric furnace 16. Instead of heating, while heating the heating tube 14 to 950 ° C., a mixed gas of methane (300 ml / min) and hydrogen as a carrier gas (200 ml / min) is introduced from one side of the heating tube 14 and heated. The mixed gas is extracted from the other side of the tube 14. As-grown multi-walled carbon nanotubes were obtained in the same manner as in Example 1 except that the heat treatment at 950 ° C. was performed for 10 minutes. The transmission electron micrograph of the obtained as-grown multi-walled carbon nanotube is almost the same as that shown in FIG. 2, and most of the laminated part surrounding the hollow part forming the linear part is parallel to each other. It is formed by a state layer. For this reason, the center part of the lamination | stacking part surrounding the hollow part which forms the linear part of a multilayer carbon nanotube, and its vicinity are formed of the mutually parallel layer.

比較例1Comparative Example 1

縦型加熱炉(内径17.0cm,長さ150cm)の頂部に、スプレーノズルを取り付ける。加熱炉の炉内温度を1200℃に昇温・維持し、スプレーノズルから4wt%のフェロセンを含有するベンゼンの液体原料20g/分を100リットル/分の水素ガスの流量で炉壁に直接噴霧(スプレー)散布するように供給する。このような条件の下で、フェロセンは熱分解して鉄微粒子を作り、これがシード(種)となってベンゼンの熱分解による炭素によって多層カーボンナノチューブを成長させてas-grown多層カーボンナノチューブを得た。得られたas-grown多層カーボンナノチューブの透過型電子顕微鏡写真を図4に示す。図4に示す透過型電子顕微鏡写真では、その中空部を囲む積層部の大部分は波状の層によって形成されている。このため、図4に示すas-grown多層カーボンナノチューブでは、その積層部の内周面側の数層が層状に積層されているものの、積層部の中央部及びその近傍は波状の層(熱分解炭素被覆層)によって形成されており、その積層部の任意の箇所を三等分したうち、その中間部分の幅で且つ多層カーボンナノチューブの長手方向に沿った長さ10nmの四角形の領域も波状の層によって形成されている。   A spray nozzle is attached to the top of a vertical heating furnace (inner diameter 17.0 cm, length 150 cm). The furnace temperature in the heating furnace was raised and maintained at 1200 ° C., and 20 g / min of benzene containing 4 wt% ferrocene was sprayed directly from the spray nozzle onto the furnace wall at a hydrogen gas flow rate of 100 liters / min ( Spray) Supply to spray. Under these conditions, ferrocene was pyrolyzed to produce iron fine particles, which became seeds and grew multi-walled carbon nanotubes by carbon from the thermal decomposition of benzene to obtain as-grown multi-walled carbon nanotubes. . A transmission electron micrograph of the obtained as-grown multi-walled carbon nanotube is shown in FIG. In the transmission electron micrograph shown in FIG. 4, most of the laminated portion surrounding the hollow portion is formed by a wavy layer. For this reason, in the as-grown multi-walled carbon nanotube shown in FIG. 4, several layers on the inner peripheral surface side of the laminated portion are laminated in layers, but the central portion of the laminated portion and the vicinity thereof are wavy layers (thermal decomposition). A rectangular region having a width of the intermediate portion and a length of 10 nm along the longitudinal direction of the multi-walled carbon nanotube is obtained by dividing the arbitrary portion of the laminated portion into three equal parts. Formed by layers.

実施例1及び比較例2で得られた多層カーボンナノチューブについてのラマンスペクトルを図5に示す。図5に示すラマンスペクトルのうち、吸収スペクトルAが実施例1で得たas-grown多層カーボンナノチューブの吸収スペクトルを示し、吸収スペクトルBが比較例1で得たas-grown多層カーボンナノチューブの吸収スペクトルを示す。
図5に示す吸収スペクトルAと吸収スペクトルBとを比較すると、吸収スペクトルAの吸収ピークGは吸収ピークDよりも高いため、吸収ピークDと吸収ピークGとの比(D/G)は0.51未満である。これに対し、吸収スペクトルBの吸収ピークGは吸収ピークDよりも低く、吸収ピークDと吸収ピークGとの比(D/G)は1.22である。
従って、吸収スペクトルAを示す実施例1のas-grown多層カーボンナノチューブは、吸収スペクトルBを示す比較例1のas-grown多層カーボンナノチューブよりも高結晶化度である。
FIG. 5 shows Raman spectra of the multi-walled carbon nanotubes obtained in Example 1 and Comparative Example 2. Among the Raman spectra shown in FIG. 5, the absorption spectrum A shows the absorption spectrum of the as-grown multi-walled carbon nanotube obtained in Example 1, and the absorption spectrum B shows the absorption spectrum of the as-grown multi-walled carbon nanotube obtained in Comparative Example 1. Indicates.
When the absorption spectrum A and the absorption spectrum B shown in FIG. 5 are compared, the absorption peak G of the absorption spectrum A is higher than the absorption peak D. Therefore, the ratio (D / G) of the absorption peak D to the absorption peak G is 0. It is less than 51. On the other hand, the absorption peak G of the absorption spectrum B is lower than the absorption peak D, and the ratio (D / G) between the absorption peak D and the absorption peak G is 1.22.
Therefore, the as-grown multi-walled carbon nanotube of Example 1 showing the absorption spectrum A has a higher crystallinity than the as-grown multi-walled carbon nanotube of Comparative Example 1 showing the absorption spectrum B.

実施例1において、触媒として、ガーネット粉末に代えて、粒径が約0.1mm程度の珪砂(宇部サンド株式会社製、鉄の含有量;FeO換算で約1重量%)を用いた他は、実施例1と同様にしてas-grown多層カーボンナノチューブを得た。得られたas-grown多層カーボンナノチューブの透過型電子顕微鏡写真を図6に示す。図6に示す透過型電子顕微鏡写真では、図2に示す実施例1のas-grown多層カーボンナノチューブの透過型電子顕微鏡写真と同様に、その直線状部分を形成する中空部を囲む側壁部の殆どの部分が、互いに平行状態の層によって形成されている。 In Example 1, instead of garnet powder, silica sand having a particle size of about 0.1 mm (manufactured by Ube Sand Co., Ltd., iron content; about 1% by weight in terms of Fe 2 O 3 ) was used as the catalyst. Otherwise, as-grown multi-walled carbon nanotubes were obtained in the same manner as in Example 1. A transmission electron micrograph of the obtained as-grown multi-walled carbon nanotube is shown in FIG. In the transmission electron micrograph shown in FIG. 6, as in the transmission electron micrograph of the as-grown multi-walled carbon nanotube of Example 1 shown in FIG. 2, most of the side wall portion surrounding the hollow portion forming the linear portion is obtained. Are formed by layers parallel to each other.

実施例1において、ガーネット粉末に、大気中で1000℃の加熱雰囲気中で約6時間の加熱処理を施した後、加熱処理を施したガーネット粉末を触媒に用いて実施例1と同様にしてas-grown多層カーボンナノチューブを得た。
本実施例で得られたas-grown多層カーボンナノチューブの収量は、実施例1で得られたas-grown多層カーボンナノチューブの約10倍であった。
尚、得られたas-grown多層カーボンナノチューブの透過型電子顕微鏡写真は、図2に示すものと同一であった。
In Example 1, the garnet powder was subjected to heat treatment in the atmosphere at 1000 ° C. for about 6 hours, and then the heat-treated garnet powder was used as a catalyst in the same manner as in Example 1. -grown multi-walled carbon nanotubes were obtained.
The yield of the as-grown multi-walled carbon nanotubes obtained in this example was about 10 times that of the as-grown multi-walled carbon nanotubes obtained in Example 1.
The obtained transmission electron micrograph of the as-grown multi-walled carbon nanotube was the same as that shown in FIG.

本発明に係る多層カーボンナノチューブを製造する装置を説明する概略図である。It is the schematic explaining the apparatus which manufactures the multi-walled carbon nanotube concerning this invention. 触媒としてガーネット粉末を用いて得られた実施例1のas-grown多層カーボンナノチューブの透過型電子顕微鏡写真である。2 is a transmission electron micrograph of as-grown multi-walled carbon nanotubes of Example 1 obtained using garnet powder as a catalyst. 図2に示す多層カーボンナノチューブの透過型電子顕微鏡写真において、多層カーボンナノチューブの側壁部の任意の箇所を幅方向に三等分したうち、その中間部分の幅で且つ多層カーボンナノチューブの長手方向に沿った長さ10nmの四角形の領域を説明する説明図である。In the transmission electron micrograph of the multi-walled carbon nanotube shown in FIG. 2, an arbitrary portion of the side wall of the multi-walled carbon nanotube is divided into three equal parts in the width direction, and the width of the middle portion is along the longitudinal direction of the multi-walled carbon nanotube. It is explanatory drawing explaining the square area | region of length 10nm. 触媒としてフェロセンを用いて得られた比較例1のas-grown多層カーボンナノチューブの透過型電子顕微鏡写真である。2 is a transmission electron micrograph of as-grown multi-walled carbon nanotubes of Comparative Example 1 obtained using ferrocene as a catalyst. 実施例1及び比較例1で得られた多層カーボンナノチューブについてのラマンスペクトルを示すチャートである。3 is a chart showing Raman spectra for multi-walled carbon nanotubes obtained in Example 1 and Comparative Example 1. FIG. 触媒として珪砂を用いて得られた実施例4のas-grown多層カーボンナノチューブの透過型電子顕微鏡写真である。It is a transmission electron micrograph of the as-grown multi-walled carbon nanotube of Example 4 obtained using silica sand as a catalyst.

符号の説明Explanation of symbols

10 載置台
12 鉱物粉末
14 加熱管
16 電気炉
10 mounting table 12 mineral powder 14 heating tube 16 electric furnace

Claims (7)

触媒が存在し且つ所定温度に保持された加熱雰囲気内に炭素源気体を流通して、前記触媒の表面から多層カーボンナノチューブを成長させる触媒気相成長法によって多層カーボンナノチューブを製造する際に、
前記触媒として、鉄含有の鉱物粉末を用いることを特徴とする多層カーボンナノチューブの製造方法。
When a multi-walled carbon nanotube is produced by a catalytic vapor phase growth method in which a multi-walled carbon nanotube is grown from the surface of the catalyst by circulating a carbon source gas in a heated atmosphere in which a catalyst is present and maintained at a predetermined temperature,
A method for producing a multi-walled carbon nanotube, wherein iron-containing mineral powder is used as the catalyst.
鉄含有の鉱物粉末として、鉄含有のガーネット粉末又は鉄含有の珪砂を用いる請求項1記載の多層カーボンナノチューブの製造方法。   The method for producing a multi-walled carbon nanotube according to claim 1, wherein iron-containing garnet powder or iron-containing silica sand is used as the iron-containing mineral powder. 触媒として用いる鉄含有の鉱物粉末に、炭素源気体を流通する前に加熱処理を施す請求項1又は請求項2記載の多層カーボンナノチューブの製造方法。   The method for producing a multi-walled carbon nanotube according to claim 1 or 2, wherein the iron-containing mineral powder used as a catalyst is subjected to a heat treatment before flowing the carbon source gas. 触媒が存在し且つ所定温度に保持された加熱雰囲気内に炭素源気体を流通する触媒気相成長法によって得られ、且つ前記加熱雰囲気の温度を超える高温での高温加熱処理が施されていない多層カーボンナノチューブであって、
前記多層カーボンナノチューブの透過型電子顕微鏡写真において、前記多層カーボンナノチューブの直線状部分を形成する中空部を囲む積層部の主たる部分が、互いに平行状態の層によって形成されていることを特徴とする多層カーボンナノチューブ。
A multilayer obtained by a catalyst vapor phase growth method in which a carbon source gas is circulated in a heated atmosphere in which a catalyst is present and maintained at a predetermined temperature, and is not subjected to high-temperature heat treatment at a high temperature exceeding the temperature of the heated atmosphere A carbon nanotube,
In the transmission electron micrograph of the multi-walled carbon nanotube, the multi-layer carbon nanotube is characterized in that the main part of the laminated part surrounding the hollow part forming the linear part of the multi-walled carbon nanotube is formed by layers parallel to each other. carbon nanotube.
多層カーボンナノチューブの直線状部分を形成する中空部を囲む積層部の中央部及びその近傍が、互いに平行状態の層によって形成されている請求項4記載の多層カーボンナノチューブ。   The multi-walled carbon nanotube according to claim 4, wherein the central portion of the laminated portion surrounding the hollow portion forming the linear portion of the multi-walled carbon nanotube and the vicinity thereof are formed by layers parallel to each other. 多層カーボンナノチューブの直線状部分を形成する中空部を囲む積層部の主たる部分が、前記積層部の任意の箇所を幅方向に三等分したうち、その中間部分の幅で且つ前記多層カーボンナノチューブの長手方向に沿った長さ10nmの四角形の領域を形成する複数層が互いに平行状態である請求項4又は請求項5記載の多層カーボンナノチューブ。 The main part of the laminated part surrounding the hollow part forming the linear part of the multi-walled carbon nanotube is divided into three parts in the width direction of the arbitrary part of the laminated part. The multi-walled carbon nanotube according to claim 4 or 5, wherein a plurality of layers forming a rectangular region having a length of 10 nm along the longitudinal direction are parallel to each other. 触媒が存在し且つ所定温度に保持された加熱雰囲気内に炭素源気体を流通する触媒気相成長法によって得られ、且つ前記加熱雰囲気温度を超える温度での高温加熱処理が施されていない多層カーボンナノチューブであって、
前記多層カーボンナノチューブのラマンスペクトルが、その1300cm−1付近の吸収ピークDと1600cm−1付近の吸収ピークGとの比(D/G)が0.8以下であることを特徴とする多層カーボンナノチューブ。
Multilayer carbon obtained by a catalyst vapor phase growth method in which a carbon source gas is circulated in a heated atmosphere in which a catalyst is present and maintained at a predetermined temperature, and is not subjected to a high-temperature heat treatment at a temperature exceeding the temperature of the heated atmosphere Nanotubes,
Multi-wall carbon nanotubes Raman spectrum of the multi-walled carbon nanotubes, the ratio of the absorption peak G in the vicinity of the absorption peak D and 1600 cm -1 in the vicinity of the 1300 cm -1 (D / G) is equal to or not more than 0.8 .
JP2007139596A 2007-05-25 2007-05-25 Method for producing multi-walled carbon nanotube Expired - Fee Related JP4660705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007139596A JP4660705B2 (en) 2007-05-25 2007-05-25 Method for producing multi-walled carbon nanotube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007139596A JP4660705B2 (en) 2007-05-25 2007-05-25 Method for producing multi-walled carbon nanotube

Publications (3)

Publication Number Publication Date
JP2008290918A true JP2008290918A (en) 2008-12-04
JP2008290918A5 JP2008290918A5 (en) 2010-08-05
JP4660705B2 JP4660705B2 (en) 2011-03-30

Family

ID=40166043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007139596A Expired - Fee Related JP4660705B2 (en) 2007-05-25 2007-05-25 Method for producing multi-walled carbon nanotube

Country Status (1)

Country Link
JP (1) JP4660705B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52103528A (en) * 1976-02-25 1977-08-30 Showa Denko Kk Manufacture of carbon fibers by gas phase reaction
JPS62242B2 (en) * 1982-04-10 1987-01-07 Morinobu Endo
JP2003206117A (en) * 2002-01-15 2003-07-22 Centre National De La Recherche Scientifique (Cnrs) Process for mass production of multiwalled carbon nanotubes
JP2004168647A (en) * 2002-10-30 2004-06-17 Mitsubishi Corp Method and apparatus for manufacturing multilayer carbon nanotube and method of refining the same and pulse like high voltage large current power source
JP2004182548A (en) * 2002-12-04 2004-07-02 National Institute Of Advanced Industrial & Technology Method of manufacturing carbon nanotube
JP2005263607A (en) * 2004-03-22 2005-09-29 Univ Shinshu Cnt surface modification method and cnt
JP2005272261A (en) * 2004-03-26 2005-10-06 Toray Ind Inc Method for producing carbon nanotube
JP2006232643A (en) * 2005-02-28 2006-09-07 Univ Meijo Method for manufacturing carbon nanotube
JP2007290928A (en) * 2006-04-26 2007-11-08 Kyushu Institute Of Technology String-like carbon, method of utilizing the same and method of manufacturing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52103528A (en) * 1976-02-25 1977-08-30 Showa Denko Kk Manufacture of carbon fibers by gas phase reaction
JPS62242B2 (en) * 1982-04-10 1987-01-07 Morinobu Endo
JP2003206117A (en) * 2002-01-15 2003-07-22 Centre National De La Recherche Scientifique (Cnrs) Process for mass production of multiwalled carbon nanotubes
JP2004168647A (en) * 2002-10-30 2004-06-17 Mitsubishi Corp Method and apparatus for manufacturing multilayer carbon nanotube and method of refining the same and pulse like high voltage large current power source
JP2004182548A (en) * 2002-12-04 2004-07-02 National Institute Of Advanced Industrial & Technology Method of manufacturing carbon nanotube
JP2005263607A (en) * 2004-03-22 2005-09-29 Univ Shinshu Cnt surface modification method and cnt
JP2005272261A (en) * 2004-03-26 2005-10-06 Toray Ind Inc Method for producing carbon nanotube
JP2006232643A (en) * 2005-02-28 2006-09-07 Univ Meijo Method for manufacturing carbon nanotube
JP2007290928A (en) * 2006-04-26 2007-11-08 Kyushu Institute Of Technology String-like carbon, method of utilizing the same and method of manufacturing the same

Also Published As

Publication number Publication date
JP4660705B2 (en) 2011-03-30

Similar Documents

Publication Publication Date Title
KR101680412B1 (en) Method for producing aligned carbon nanotube aggregate
Hong et al. Controlling the growth of single-walled carbon nanotubes on surfaces using metal and non-metal catalysts
KR102307337B1 (en) boron nitride nanotubes and process for production thereof
Hoyos-Palacio et al. Catalytic effect of Fe, Ni, Co and Mo on the CNTs production
JP2016164122A (en) Synthesis of high-quality carbon single-walled nanotube
Torres et al. Unzipping of multi-wall carbon nanotubes with different diameter distributions: Effect on few-layer graphene oxide obtention
US8835006B2 (en) Carbon nanohorn carried material and process for producing carbon nanotube
JP2010137222A (en) Metal nano catalyst, manufacturing method therefor, and adjusting method of growth mode of carbon nanotube using therewith
JP2008529957A (en) Single-walled carbon nanotube catalyst
Xu et al. Synthesis and characterization of high purity GaN nanowires
Kim et al. Amorphous gallium oxide nanowires synthesized by metalorganic chemical vapor deposition
CN110255626A (en) Method based on vapor deposition preparation surface-active onion shape Nano carbon balls
WO2012057229A1 (en) Process for production of carbon nanotubes
JP7086418B2 (en) Manufacturing method of carbon nanotubes
Huang et al. Nanostructures of mixed-phase boron nitride via biased microwave plasma-assisted CVD
Donato et al. Influence of carbon source and Fe-catalyst support on the growth of multi-walled carbon nanotubes
KR101357630B1 (en) Supported Catalyst for Synthesizing Carbon Nanotubes and Method for Preparing thereof
Zhi et al. Boron carbonitride nanotubes
JP4660705B2 (en) Method for producing multi-walled carbon nanotube
JP2010018498A (en) Method for manufacturing carbon nanotube, and carbon nanotube
KR20120092344A (en) Fabrication method of carbon nanotube or carbon nanofiber using metal-organic frameworks, and the carbon nanotube or carbon nanofiber thereby
JP2005279624A (en) Catalyst, method and apparatus for producing carbon nanotube
JP2002105765A (en) Carbon nanofiber compound and method for producing carbon nanofiber
JP5196417B2 (en) Catalyst for producing carbon nanocoil and method for producing carbon nanocoil
Qian et al. Inverted SiC nanoneedles grown on carbon fibers by a two-crucible method without catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100621

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100621

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees