JP2008289734A - Creation method for osteoblast-base material complex - Google Patents
Creation method for osteoblast-base material complex Download PDFInfo
- Publication number
- JP2008289734A JP2008289734A JP2007139639A JP2007139639A JP2008289734A JP 2008289734 A JP2008289734 A JP 2008289734A JP 2007139639 A JP2007139639 A JP 2007139639A JP 2007139639 A JP2007139639 A JP 2007139639A JP 2008289734 A JP2008289734 A JP 2008289734A
- Authority
- JP
- Japan
- Prior art keywords
- osteoblast
- culture
- substrate
- osteoblasts
- base material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Materials For Medical Uses (AREA)
Abstract
Description
本発明は、骨芽細胞−基材複合体の作製方法に関する。 The present invention relates to a method for producing an osteoblast-substrate complex.
これまで、骨の欠損部を補填したり、再生させたりするためには、体の別の部位から自己の骨を移植するだけでなく、様々な人工インプラントが開発されてきた。特に、ヒドロキシアパタイトや、生体吸収性セラミックであるβ−TCPなどの人工材料を細胞培養の基材(足場材)とし、その基材に幹細胞を加えた複合体が代表的なものとされる。 In the past, in order to make up for or regenerate bone defects, various artificial implants have been developed in addition to transplanting bones from other parts of the body. In particular, a complex in which an artificial material such as hydroxyapatite or β-TCP which is a bioabsorbable ceramic is used as a cell culture substrate (scaffold) and stem cells are added to the substrate is representative.
しかし、これらの材料も治療期間、耐久性に問題があり、長期使用には不適当である。そこで、生体骨以上の強度を有し、治癒期間を短くできる基材として、チタン又はチタン合金が開発された(例えば、特許文献1〜4参照)。 However, these materials also have problems in the treatment period and durability, and are not suitable for long-term use. Therefore, titanium or a titanium alloy has been developed as a base material having a strength higher than that of living bone and capable of shortening the healing period (see, for example, Patent Documents 1 to 4).
しかし、細胞の基材としてチタン不織布を用いた場合、細胞が不織布に不均一に定着したり、細胞が不織布の外部にとどまり内部に侵入しなかったりするため、そうして作られた骨芽細胞−基材複合体が移植された時、生体との親和性に乏しかった。 However, when titanium non-woven fabric is used as the cell base material, the cells are unevenly fixed on the non-woven fabric, or the cells stay outside the non-woven fabric and do not enter the inside. -When the substrate composite was transplanted, the affinity with the living body was poor.
そこで、本発明は、生体との親和性がより優れた骨芽細胞−基材複合体の作製方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a method for producing an osteoblast-substrate complex having a better affinity with a living body.
本発明者等は、骨芽細胞の足場として金属製不織布状ファイバーからなる基材を用い、骨芽細胞を播種した基材を旋回攪拌することにより、骨芽細胞が基材内に均一に侵入して効率よく増殖することを見出した。 The present inventors use a base material made of a metal non-woven fiber as a scaffold for osteoblasts, and the osteoblasts uniformly enter the base material by swirling and stirring the base material seeded with osteoblasts. And found to proliferate efficiently.
即ち、本発明は下記の通りである。
(1)骨芽細胞−細胞培養基材複合体の作製方法であって、骨芽細胞を金属製不織布状ファイバーからなる細胞培養基材に播種する工程と、骨芽細胞が播種された該基材を旋回培養する工程と、を含むことを特徴とする方法。
That is, the present invention is as follows.
(1) A method for producing an osteoblast-cell culture substrate complex, the step of seeding osteoblasts on a cell culture substrate composed of a metallic nonwoven fiber, and the substrate on which osteoblasts are seeded And swirling culture of the material.
(2)間葉系幹細胞を骨芽細胞に誘導する工程をさらに含むことを特徴とする、(1)に記載の方法。 (2) The method according to (1), further comprising a step of inducing mesenchymal stem cells into osteoblasts.
(3)前記骨芽細胞はヒト由来であることを特徴とする、(1)または(2)に記載の方法。 (3) The method according to (1) or (2), wherein the osteoblast is derived from a human.
(4)前記金属はチタンまたはチタン合金であるか、またはチタンコートされていることを特徴とする、(1)〜(3)のいずれかに記載の方法。 (4) The method according to any one of (1) to (3), wherein the metal is titanium or a titanium alloy, or is titanium-coated.
(5)(1)〜(4)のいずれかに記載の方法によって製造されることを特徴とする、骨芽細胞−基材複合体。 (5) An osteoblast-substrate complex produced by the method according to any one of (1) to (4).
(6)ヒトやヒト以外の脊椎動物の骨欠損を治療または補填する方法であって、脊椎動物の骨芽細胞を金属製不織布状ファイバーからなる細胞培養基材に播種する工程と、前記細胞播種された基材を旋回培養する工程と、前記旋回培養された基材を脊椎動物に移植する工程とを含むことを特徴とする、方法。 (6) A method for treating or supplementing bone defects in humans or non-human vertebrates, wherein vertebrate osteoblasts are seeded on a cell culture substrate made of a metallic nonwoven fiber; A method comprising swirling the cultured substrate and transplanting the swirled substrate into a vertebrate.
(7)ヒトやヒト以外の脊椎動物から骨芽細胞を採取する工程を含むことを特徴とする(6)に記載の方法。 (7) The method according to (6), comprising a step of collecting osteoblasts from a human or a non-human vertebrate.
(8)ヒトやヒト以外の脊椎動物から間葉系幹細胞を採取する工程と、前記間葉系幹細胞を骨芽細胞に誘導する工程をさらに含むことを特徴とする(6)に記載の方法。 (8) The method according to (6), further comprising a step of collecting mesenchymal stem cells from a human or a non-human vertebrate, and a step of inducing the mesenchymal stem cells into osteoblasts.
本発明によって、生体との親和性がより優れた骨芽細胞−基材複合体の作製方法を提供することが可能となる。 According to the present invention, it is possible to provide a method for producing an osteoblast-substrate complex having better affinity with a living body.
以下、上記知見に基づき完成した本発明の実施の形態を、実施例を挙げながら詳細に説明する。なお、本発明の目的、特徴、利点、および、そのアイデアは、本明細書の記載により、当業者には明らかであり、本明細書の記載から、当業者であれば容易に本発明を再現できる。以下に記載された発明の実施の形態及び具体的な実施例などは、本発明の好ましい実施態様を示すものであり、例示又は説明のために示されているのであって、本発明をそれらに限定するものではない。本明細書で開示されている本発明の意図並びに範囲内で、本明細書の記載に基づき、様々な改変並びに修飾ができることは、当業者にとって明らかである。 Hereinafter, embodiments of the present invention completed based on the above knowledge will be described in detail with reference to examples. The objects, features, advantages, and ideas of the present invention will be apparent to those skilled in the art from the description of the present specification, and those skilled in the art can easily reproduce the present invention from the description of the present specification. it can. The embodiments and specific examples of the invention described below show preferred embodiments of the present invention and are shown for illustration or explanation, and the present invention is not limited to them. It is not limited. It will be apparent to those skilled in the art that various modifications and variations can be made based on the description of the present specification within the spirit and scope of the present invention disclosed herein.
==骨芽細胞−基材複合体及びその使用方法==
本発明にかかる骨芽細胞−基材複合体は、金属製不織布状ファイバーからなる細胞培養基材と骨芽細胞を用いて、骨芽細胞を基材に播種し、細胞が播種された基材を旋回培養することによって製造することができる。
== Osteoblast-substrate complex and method of use thereof ==
The osteoblast-substrate complex according to the present invention is a base material on which cells are seeded by seeding osteoblasts on a base material using a cell culture base material and osteoblasts made of a non-woven fiber made of metal. Can be produced by swirling culture.
基材に用いる金属製不織布状ファイバーの金属材料としては、特に限定されないが、特にチタン(酸化チタンを含む)またはチタン合金が好ましい。あるいは、ステンレスなどの金属がチタンコートされていてもよく、その場合、コーティング方法は特に限定されない。ファイバーの直径は限定されないが、10〜200μmが好ましい。また、細胞培養基材におけるファイバーの密度は、細胞を培養するに必要とされる通気性が確保される範囲で限定されないが、基材の耐久性を考慮すれば、気孔率40〜95%が好ましく、60〜80%がより好ましく、85〜90%が特に好ましい。さらに、完全連通孔構造であることが好ましい。なお、金属製不織布状ファイバーからなる細胞培養基材の形状は、ディスク状(円盤状)、直方体状など、特に限定されない。 Although it does not specifically limit as a metal material of the metal nonwoven fabric fiber used for a base material, Especially titanium (a titanium oxide is included) or a titanium alloy is preferable. Alternatively, a metal such as stainless steel may be coated with titanium, in which case the coating method is not particularly limited. The diameter of the fiber is not limited, but is preferably 10 to 200 μm. In addition, the density of the fiber in the cell culture substrate is not limited as long as the air permeability required for culturing the cells is ensured, but considering the durability of the substrate, the porosity is 40 to 95%. Preferably, 60 to 80% is more preferable, and 85 to 90% is particularly preferable. Furthermore, a completely communicating hole structure is preferable. In addition, the shape of the cell culture substrate made of a metallic non-woven fiber is not particularly limited, such as a disk shape (disk shape) or a rectangular parallelepiped shape.
培養に用いる骨芽細胞は、マウスやヒト等の顎骨及び大腿骨等の骨髄から、骨髄穿刺により採取することができる。また、骨髄から間葉系幹細胞を採取し、これを培養して骨芽細胞に分化誘導してもよい。骨芽細胞への分化誘導は、分化誘導培地を用いるなど、公知の方法を用いることができる。 Osteoblasts used for culture can be collected by bone marrow puncture from bone marrows such as jaw bones and femurs of mice and humans. Alternatively, mesenchymal stem cells may be collected from the bone marrow and cultured to induce differentiation into osteoblasts. For differentiation induction into osteoblasts, a known method such as using a differentiation induction medium can be used.
旋回培養に用いる培地は、特に限定されないが、旋回培養中も間葉系幹細胞から骨芽細胞へ、骨芽細胞から骨細胞へという分化方向への圧力をかけるため、骨芽細胞分化誘導培地で行うことが好ましい。また、培養条件も特に限定されないが、培養温度は、37℃が好ましく、培養時間は、1日〜8週間が好ましく、1週間〜6週間が特に好ましい。旋回速度は、特に限定されないが、40〜100 rpmが好ましく、60〜80 rpmであることがさらに好ましい。なお、旋回培養時に、細胞播種された基材を網などの上に置き底面の接触を少なくすることで、基材底面にも細胞を接着させてもよい。 The medium used for the swirl culture is not particularly limited. However, in order to apply pressure in the differentiation direction from the mesenchymal stem cells to the osteoblasts and from the osteoblasts to the bone cells even during the swirl culture, Preferably it is done. Although the culture conditions are not particularly limited, the culture temperature is preferably 37 ° C., and the culture time is preferably 1 day to 8 weeks, particularly preferably 1 week to 6 weeks. The turning speed is not particularly limited, but is preferably 40 to 100 rpm, and more preferably 60 to 80 rpm. It is to be noted that the cells may be adhered to the bottom surface of the substrate by placing the cell-seeded substrate on a net or the like and reducing the contact of the bottom surface during swirling culture.
このように製造した骨芽細胞−基材複合体は、骨欠損、例えば、関節、歯根、頭蓋骨、または、長骨等の欠損、を治療または補填するのに使用することができる。 The thus produced osteoblast-substrate complex can be used to treat or compensate for bone defects, for example, defects such as joints, tooth roots, skulls, or long bones.
この際、骨芽細胞を基材に播種するより前に、骨欠損部の形状に合わせて基材を成形しておくことが好ましい。骨欠損部の形状は、レントゲン、または、CT等の常法によって測定することができる。基材を成形するには、例えば、この測定された欠損部の形状を持つセラミック型を作成し、その型に基材を詰め焼成することで、骨欠損部の形状を有する基材が得られる。 At this time, it is preferable to mold the base material in accordance with the shape of the bone defect before seeding the osteoblasts on the base material. The shape of the bone defect can be measured by a conventional method such as X-ray or CT. In order to mold the base material, for example, a ceramic mold having the shape of the measured defect portion is prepared, and the base material having the shape of the bone defect portion is obtained by filling the die with the base material and firing it. .
また、基材と他の担体とを組み合わることによって、目的とする骨欠損部を治療または補填してもよい。ここで併用する担体は特に限定されず、例えば、セラミックやヒドロキシアパタイトなどでできた既知のインプラント体等の周りに細胞培養基材を固定した後に、骨芽細胞を播種し、旋回培養することで、本発明に係る骨芽細胞−基材複合体を備えるインプラント体を得ることができる。 Moreover, you may treat or supplement the target bone defect part by combining a base material and another support | carrier. The carrier used here is not particularly limited. For example, after fixing a cell culture substrate around a known implant body made of ceramic or hydroxyapatite, seeding osteoblasts and swirling culture An implant body provided with the osteoblast-substrate complex according to the present invention can be obtained.
==ヒトやヒト以外の脊椎動物の骨欠損を治療または補填する方法==
上述の方法によって製造される骨芽細胞−基材複合体をヒトやヒト以外の脊椎動物の骨欠損部に移植することによって、骨欠損を治療または補填することができる。実施例に示すように、上述の方法によって骨芽細胞−基材複合体を製造することにより、骨芽細胞が基材内に均一に侵入して効率よく増殖する。
== How to treat or compensate for bone defects in humans and non-human vertebrates ==
A bone defect can be treated or compensated by transplanting the osteoblast-substrate complex produced by the above-described method into a bone defect part of a human or a non-human vertebrate. As shown in Examples, by producing an osteoblast-substrate complex by the above-described method, osteoblasts uniformly invade into the substrate and efficiently proliferate.
この場合、細胞培養基材に播種する骨芽細胞としては、脊椎動物から採取した骨芽細胞か、望ましくは、脊椎動物から採取した間葉系幹細胞を骨芽細胞に誘導したものを用いる。また、骨芽細胞−基材複合体を移植する個体と同一個体から、骨芽細胞または間葉系幹細胞を採取することが、免疫学上好ましい。 In this case, as osteoblasts to be seeded on the cell culture substrate, osteoblasts collected from vertebrates, or preferably those obtained by inducing mesenchymal stem cells collected from vertebrates into osteoblasts are used. In addition, it is preferable in terms of immunology to collect osteoblasts or mesenchymal stem cells from the same individual to which the osteoblast-substrate complex is transplanted.
以下、実施例により本発明をさらに具体的に説明するが、本発明の範囲は下記の実施例に限定されることはない。 EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, the scope of the present invention is not limited to the following Example.
[実施例1] 培養方法の骨形成能への影響
本実施例では、金属製不織布状ファイバーからなる細胞培養基材を用い、間葉系幹細胞を骨芽細胞に分化させながら旋回培養し、この結果を静置培養時と比較した。
[Example 1] Effect of culture method on bone formation ability In this example, a cell culture substrate composed of a metallic nonwoven fiber was used, and mesenchymal stem cells were cultured while being differentiated into osteoblasts. The results were compared with those during static culture.
1.間葉系幹細胞及び細胞培養基材
まず、Fisher344系ラット(7週齢、雄)の大腿骨から骨髄穿刺により採取した間葉系幹細胞を、T-225フラスコを用いて、15%ウシ胎児血清(Fetal Bovine Serum, FBS)含有基本培地(Minimum Essential Medium, MEM)で初代培養した。
細胞培養基材として用いる、ディスク状に成形された純チタン製不織布状ファイバー(Titanium-Web(T-W)、ファイバー直径50μm、ディスク直径5 mm x厚さ2 mm、完全連通孔構造、気孔率87%、株式会社ハイレックスコーポレーション製)は、予め脱脂処理しておき、さらに播種細胞直前に190℃で6時間乾熱滅菌した。
1. Mesenchymal Stem Cells and Cell Culture Substrates First, mesenchymal stem cells collected by bone marrow puncture from the femur of Fisher344 rats (7 weeks old, male) were collected using a T-225 flask with 15% fetal bovine serum ( Primary culture was performed in a minimum essential medium (MEM) containing Fetal Bovine Serum (FBS).
Pure titanium non-woven fiber formed into a disk shape to be used as a cell culture substrate (Titanium-Web (TW), fiber diameter 50 μm, disk diameter 5 mm x thickness 2 mm, completely communicating hole structure, porosity 87%) (Manufactured by Hyrex Corporation) was previously degreased and further sterilized by dry heat at 190 ° C. for 6 hours immediately before the seeded cells.
2.培養条件
2−1.静置培養
骨芽細胞分化誘導培地(10 nMデキサメサゾン、0.28 mMアスコルビン酸及び10 mMβ-グリセロリン酸含有MEM)に、2.5 x 106 cells/mLの濃度で間葉系幹細胞溶液を懸濁させた。脱脂・滅菌したT-Wを、96 well plateに1 disk/wellで入れ、細胞懸濁液を200μL/well(5 x 105 cells/well)入れ、細胞を播種した。ピペッティングを3回行った後、37℃にて静置培養した。
2. Culture conditions 2-1. Static culture A mesenchymal stem cell solution was suspended at a concentration of 2.5 × 10 6 cells / mL in osteoblast differentiation medium (MEM containing 10 nM dexamethasone, 0.28 mM ascorbic acid and 10 mM β-glycerophosphate). Degreased and sterilized TW was added to a 96-well plate at 1 disk / well, a cell suspension was added at 200 μL / well (5 × 10 5 cells / well), and the cells were seeded. After pipetting three times, stationary culture was performed at 37 ° C.
2−2.旋回培養
上記方法で一晩静置培養した後、T-Wの下に純チタン製金網を敷いた。引続き、37℃にて、70 rpm(THE BELLY BUTTON, Stoval Life Science, Inc., USA)にて水平旋回培養した。培地交換時を除き、培養中は旋回を継続させた。
2-2. Swirl culture After static culture overnight by the above method, a pure titanium wire mesh was laid under the TW. Subsequently, horizontal swirling culture was performed at 37 ° C. and 70 rpm (THE BELLY BUTTON, Stoval Life Science, Inc., USA). The rotation was continued during the culture except for the medium exchange.
3.旋回培養群と静置培養群との比較
培養開始後14日目に、静置培養及び旋回培養の各々について、Live/dead Viability Assay Kit(Molecular Probe社)を用いて生細胞を染色し、蛍光顕微鏡で観察した。結果を図1に示す。
3. Comparison between swirl culture group and stationary culture group On the 14th day after the start of culture, live cells were stained for each of stationary culture and swirl culture using Live / dead Viability Assay Kit (Molecular Probe), and fluorescent. Observed with a microscope. The results are shown in FIG.
また、培養開始後7日目及び14日目に、培養を終了した基材を、2.0 mLのマイクロチューブに規定量の10 mM Tris-HCl及び1 mM EDTA (pH 7.4)とともに入れて細胞と基材を破砕した。得られた検体に対し、以下のように、DNA量、骨芽細胞のマーカーであるアルカリホスホターゼ(Alkaline Phosphatase, ALPase)活性、及びカルシウム量を測定した。測定結果を、それぞれ図2〜4に示す In addition, on the 7th and 14th days after the start of the culture, the cultured substrate is placed in a 2.0 mL microtube together with a predetermined amount of 10 mM Tris-HCl and 1 mM EDTA (pH 7.4), and the cells and the substrate. The material was crushed. The amount of DNA, the activity of alkaline phosphotase (Alkaline Phosphatase, ALPase), which is an osteoblast marker, and the amount of calcium were measured for the obtained specimens as follows. The measurement results are shown in FIGS.
DNA量の測定方法は、次の通りである。まず、検体中の20μLの上清に対し、Hoechst 33258 (molecular probe社) (5μg/mL)含有バッファーを200μL添加し、5分後の蛍光をプレートリーダーにて測定した(Wallac 1420 ARVOsx; PerkinElmaer Life and Analytical Sciences, Boston, MA)。DNA標準液には、salmon sperm DNA (Invitrogen)を使用した。 The method for measuring the amount of DNA is as follows. First, 200 μL of Hoechst 33258 (molecular probe) (5 μg / mL) -containing buffer was added to 20 μL of the supernatant in the sample, and the fluorescence after 5 minutes was measured with a plate reader (Wallac 1420 ARVOsx; PerkinElmaer Life and Analytical Sciences, Boston, MA). Salmon sperm DNA (Invitrogen) was used as the DNA standard solution.
ALPase活性の測定にあたっては、検体中の20μLの上清とpNPP (p-nitrophenyl phosphate)溶液(Zymed Laboratories, South San Francisco, CA) 180μLとを透明プレートに添加し、37℃で30分間インキュベートした。pNPPはALPase活性存在下でpNPに還元され、黄色を呈するため、この呈色による吸光度の変化を、プレートリーダーを用いて測定した。コントロールには、pNP溶液を使用した。 In measuring ALPase activity, 20 μL of the supernatant and 180 μL of pNPP (p-nitrophenyl phosphate) solution (Zymed Laboratories, South San Francisco, Calif.) Were added to a transparent plate and incubated at 37 ° C. for 30 minutes. Since pNPP is reduced to pNP in the presence of ALPase activity and exhibits a yellow color, the change in absorbance due to this coloration was measured using a plate reader. For control, a pNP solution was used.
カルシウム量の測定にあたっては、残りの検体に20%蟻酸を500μL添加して10%蟻酸溶液とし、4℃にて3日以上脱灰処理したものをカルシウム測定検体とした。この検体を、純水を用いて希釈し、ICP法(SPS7800 plasma spectrometer; Seiko Instruments Inc., Chiba, Japan)によって測定した。 In measuring the calcium amount, 500 μL of 20% formic acid was added to the remaining sample to form a 10% formic acid solution, and the sample after decalcification at 4 ° C. for 3 days or more was used as the calcium measurement sample. This specimen was diluted with pure water and measured by the ICP method (SPS7800 plasma spectrometer; Seiko Instruments Inc., Chiba, Japan).
4.結果
図1に観察されるように、旋回培養では、チタンファイバーに沿って、基材の内部にまで細胞が侵入して増殖しており、旋回培養のほうが、チタンと細胞の親和性が高まることが示された。また、旋回培養時に純チタン金網上で培養を行い容器底面との接触を点接触にすることで、基材底面での細胞増殖が可能になった。
図2に示したDNA量の測定において、旋回培養群は、静置培養群と比較して非常に良好な細胞増殖を示した。また、図3に示したALPase活性の測定より、旋回培養群は、静置培養群と比較して非常に良好な骨芽細胞分化誘導を示した。さらに、図4に示したカルシウム量の測定でも、旋回培養群においては、静置培養群と比較して、骨芽細胞が顕著に骨化していることが示された。
4). Results As observed in FIG. 1, in swirl culture, cells infiltrated into the base material along the titanium fiber and proliferated, and swirl culture has higher affinity between titanium and cells. It has been shown. In addition, cell culture on the bottom surface of the substrate has become possible by culturing on pure titanium wire mesh during swirl culture and making point contact with the bottom surface of the container.
In the measurement of the amount of DNA shown in FIG. 2, the swirl culture group showed very good cell growth compared to the stationary culture group. From the measurement of ALPase activity shown in FIG. 3, the swirl culture group showed very good osteoblast differentiation induction compared to the stationary culture group. Furthermore, the measurement of the amount of calcium shown in FIG. 4 also showed that osteoblasts were significantly ossified in the swirl culture group compared to the stationary culture group.
このように、T-Wを基材とした骨芽細胞の旋回培養は、臨床応用を視野に入れた場合においても、非常に簡便でハイパフォーマンスな培養方法である。 Thus, swiveling culture of osteoblasts using T-W as a base material is a very simple and high-performance culture method even in view of clinical application.
[実施例2] 旋回培養の骨形成能への影響
間葉系幹細胞の培養時に、予め骨芽細胞に分化誘導したうえで基材に播種し、水平旋回培養した(Osteoblast Like Cells、OBSc。以下、OBSc群と省略する)。この結果を、あらかじめ骨芽細胞に誘導していない間葉系幹細胞を、基材を用いて培養した時と比較した(Mesenchymal Stem Cells, MSCs。以下、MSCs群と省略する)。
[Example 2] Effect of swirling culture on bone formation ability When culturing mesenchymal stem cells, differentiation induction into osteoblasts was previously induced, seeded on a substrate, and then subjected to horizontal swirling culture (Osteoblast Like Cells, OBSc. And abbreviated as OBSc group). The results were compared with those obtained by culturing mesenchymal stem cells not previously induced in osteoblasts using a substrate (Mesenchymal Stem Cells, MSCs; hereinafter abbreviated as MSCs group).
1.培養
1−1.MSCs群
実施例1に記載した方法により、Fisher344系ラット由来大腿骨から得た間葉系幹細胞を15%FBS含有MEMで初代培養した。
1−2.OBSc群
上記MSCs群で用いたFisher344系ラット由来大腿骨から得た間葉系幹細胞を、骨芽細胞分化誘導培地にて7日間培養し、間葉系幹細胞を骨芽細胞に分化誘導した。
1. Culture 1-1. MSCs group By the method described in Example 1, mesenchymal stem cells obtained from Fisher344 rat-derived femurs were primarily cultured in MEM containing 15% FBS.
1-2. OBSc group The mesenchymal stem cells obtained from the Fisher344 rat-derived femur used in the MSCs group were cultured in an osteoblast differentiation induction medium for 7 days, and the mesenchymal stem cells were induced to differentiate into osteoblasts.
2.本培養
骨芽細胞分化誘導培地に、2.5 x 106 cells/mLの濃度でMSCs群またはOBSc群をそれぞれ懸濁させた。24 well plateに、脱脂・滅菌したT-Wを1 disk/wellで入れ、各細胞懸濁液を200μL/well(5 x 105 cells/well)で播種した。ピペッティングを3回行った後、37℃にて一晩静置培養した。T-Wの下に純チタン製金網を敷き、引続き、70 rpm(THE BELLY BUTTON, Stoval Life Science, Inc., USA)にて水平旋回培養した。
2. The MSCs group or OBSc group was suspended in a main culture osteoblast differentiation induction medium at a concentration of 2.5 × 10 6 cells / mL. Degreased and sterilized TW was added to a 24-well plate at 1 disk / well, and each cell suspension was seeded at 200 μL / well (5 × 10 5 cells / well). After pipetting three times, static culture was performed overnight at 37 ° C. A pure titanium wire mesh was laid under TW, followed by horizontal swirling culture at 70 rpm (THE BELLY BUTTON, Stoval Life Science, Inc., USA).
3.培養結果の比較
旋回培養後1日、7日及び14日の時点で、実施例1と同様に、生細胞染色、DNA量、ALPase活性、及びカルシウム量、の測定を行った。
なお、オステオカルシン量の測定にあたっては、カルシウム量測定後の溶液を遠心し、上清500μLをNAP-5カラム(Sephadex G-25 DNA grade, Amersham Bioscience, Uppsala, Sweden)を通し、さらに10%蟻酸1.0 mLをカラムに通して、1.5 mL溶液を回収した。この溶液を遠心し、沈殿物を500μLのバッファーに再懸濁したものをオステオカルシン測定検体とした。オステオカルシン合成量の定量は、ラットオステオカルシンEIAキット(No. BT-490; Biomedical Technologies Inc., MA, USA)を用いて行った。
3. Comparison of culture results At the time of 1st, 7th and 14th after the swirling culture, the measurement of live cell staining, DNA amount, ALPase activity, and calcium amount was performed in the same manner as in Example 1.
In measuring the amount of osteocalcin, the solution after the calcium amount measurement was centrifuged, and 500 μL of the supernatant was passed through a NAP-5 column (Sephadex G-25 DNA grade, Amersham Bioscience, Uppsala, Sweden), and further 10% formic acid 1.0 mL was passed through the column to recover a 1.5 mL solution. This solution was centrifuged, and the precipitate resuspended in 500 μL of buffer was used as an osteocalcin measurement sample. The amount of osteocalcin synthesized was quantified using a rat osteocalcin EIA kit (No. BT-490; Biomedical Technologies Inc., MA, USA).
生細胞染色の結果を図5に示す。また、DNA量、ALPase活性、カルシウム量、そして、オステオカルシン量の測定結果を、それぞれ図6〜9に示す。 The results of live cell staining are shown in FIG. Moreover, the measurement result of DNA amount, ALPase activity, calcium amount, and osteocalcin amount is shown in FIGS.
4.結果
図5より、MSCs群では、細胞が基材の外側に張り付くように不均一に増殖しているのに対し、OBCs群では、細胞は基材の中に入り込み、各ファイバーに沿って付着しながら均一に増殖していた。このことから、MSCs群よりOBCs群のほうが、細胞−基質複合体と生体との親和性が優れていると考えられる。
図6及び図7より、MSCs群のほうが細胞増殖が盛んであるものの、初期(1日目、7日目)では、骨芽細胞の分化マーカーのレベルはOBCs群のほうが高く、14日目では、OBCs群のほうでは、骨芽細胞の分化マーカーのレベルが低下している。これは、OBCs群において、7日目以降、骨芽細胞が骨に分化(骨形成)したため、骨芽細胞の分化マーカーのレベルが低下したと考えられる。
図8及び図9より、カルシウム量及びオステオカルシン量のいずれも、MSCs群よりOBCs群のほうが多く、細胞の骨形成がより進んでいると考えられる。
このように、MSCs群よりOBCs群のほうが、細胞と基材との親和性がよく、細胞は均一に増殖し、骨形成の度合いが高くなるため、より骨再生を促進させる能力が高いと考えられた。
4). Results From FIG. 5, in the MSCs group, the cells proliferated unevenly so as to stick to the outside of the substrate, whereas in the OBCs group, the cells entered the substrate and adhered along each fiber. However, it was growing uniformly. From this, it is considered that the OBCs group has better affinity between the cell-substrate complex and the living body than the MSCs group.
From FIG. 6 and FIG. 7, although the cell growth is more active in the MSCs group, the level of differentiation marker of osteoblasts is higher in the OBCs group in the initial stage (1st day and 7th day), and in the 14th day In the OBCs group, the level of osteoblast differentiation marker is lower. This is probably because osteoblasts differentiated into bone (bone formation) from day 7 in the OBCs group, and the level of osteoblast differentiation markers decreased.
From FIG. 8 and FIG. 9, it is considered that both the amount of calcium and the amount of osteocalcin are more in the OBCs group than in the MSCs group, and the bone formation of the cells is more advanced.
In this way, the OBCs group has better affinity between the cells and the base material, the cells grow uniformly, and the degree of bone formation is higher than the MSCs group. It was.
5.骨芽細胞−基材複合体の生体内への移植
さらに、これら培養した骨芽細胞−基材複合体を、同系ラット背部へ皮下移植した。移植から3週間及び6週間後に、生体内での骨形成能を、ALPase活性、カルシウム量、オステオカルシン量、及び、μCTによる画像解析にて評価した。
これら生体内におけるALPase活性測定、カルシウム量の測定結果、及び、オステオカルシン量の測定結果を図10に、そして、μCTによる画像解析結果を図11に示す。
5. Transplantation of osteoblast-substrate complex in vivo Further, these cultured osteoblast-substrate complexes were implanted subcutaneously into the back of syngeneic rats. Three and six weeks after transplantation, the in vivo bone forming ability was evaluated by ALPase activity, calcium content, osteocalcin content, and image analysis by μCT.
FIG. 10 shows the ALPase activity measurement, calcium content measurement result, and osteocalcin content measurement result in vivo, and FIG. 11 shows the image analysis result by μCT.
6.結果
図10より、MSCs群のほうが、骨芽細胞の量が多く、OBCs群のほうが、より骨形成が進んでいることが示された。
また、図11より、OBCs群では、基材内部に、均一にしかも多量の骨組織が生じていることが示された。
このように、初期培養時に間葉系幹細胞を骨芽細胞に予備誘導した後に、T-Wに播種し旋回培養した骨芽細胞−基材複合体は、移植後の生体内において非常に優れた骨形成を行い、かつ基材内部への均一な骨組織形成を示した。
6). Results FIG. 10 shows that the MSCs group has more osteoblasts, and the OBCs group has more bone formation.
In addition, FIG. 11 shows that in the OBCs group, a large amount of bone tissue is uniformly generated inside the base material.
Thus, after pre-inducing mesenchymal stem cells into osteoblasts during the initial culture, the osteoblast-substrate complex seeded on TW and cultured in a swivel manner is very excellent in bone formation in vivo after transplantation. And showed uniform bone tissue formation inside the substrate.
Claims (6)
骨芽細胞を金属製不織布状ファイバーからなる基材に播種する工程と、
骨芽細胞が播種された該基材を旋回培養する工程と、
を含むことを特徴とする方法。 A method for producing an osteoblast-substrate complex comprising:
Seeding osteoblasts on a substrate composed of a metallic nonwoven fiber;
Swirling culture of the substrate seeded with osteoblasts;
A method comprising the steps of:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007139639A JP2008289734A (en) | 2007-05-25 | 2007-05-25 | Creation method for osteoblast-base material complex |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007139639A JP2008289734A (en) | 2007-05-25 | 2007-05-25 | Creation method for osteoblast-base material complex |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008289734A true JP2008289734A (en) | 2008-12-04 |
Family
ID=40165096
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007139639A Pending JP2008289734A (en) | 2007-05-25 | 2007-05-25 | Creation method for osteoblast-base material complex |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008289734A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012090822A (en) * | 2010-10-27 | 2012-05-17 | Nagoya Univ | Implant fixation assisting agent and method of manufacturing the same |
WO2017051650A1 (en) * | 2015-09-24 | 2017-03-30 | 株式会社村田製作所 | Cell culture method and cell culture device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003533276A (en) * | 2000-05-16 | 2003-11-11 | レンセラール ポリテクニック インスティチュート | Electrically conductive nanocomposites for biomedical applications |
JP2004008436A (en) * | 2002-06-06 | 2004-01-15 | Olympus Corp | Cultural bone and manufacturing method therefor |
JP2004016398A (en) * | 2002-06-14 | 2004-01-22 | Tissue Engineering Initiative Co Ltd | Footing material made of titanium for bone regeneration and method for manufacturing the same |
JP2005329060A (en) * | 2004-05-20 | 2005-12-02 | Kobe Steel Ltd | Implant material and method of manufacturing the same |
WO2006090777A1 (en) * | 2005-02-23 | 2006-08-31 | Hi-Lex Corporation | Medical material, artificial tooth root and method of producing material for clinical use |
-
2007
- 2007-05-25 JP JP2007139639A patent/JP2008289734A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003533276A (en) * | 2000-05-16 | 2003-11-11 | レンセラール ポリテクニック インスティチュート | Electrically conductive nanocomposites for biomedical applications |
JP2004008436A (en) * | 2002-06-06 | 2004-01-15 | Olympus Corp | Cultural bone and manufacturing method therefor |
JP2004016398A (en) * | 2002-06-14 | 2004-01-22 | Tissue Engineering Initiative Co Ltd | Footing material made of titanium for bone regeneration and method for manufacturing the same |
JP2005329060A (en) * | 2004-05-20 | 2005-12-02 | Kobe Steel Ltd | Implant material and method of manufacturing the same |
WO2006090777A1 (en) * | 2005-02-23 | 2006-08-31 | Hi-Lex Corporation | Medical material, artificial tooth root and method of producing material for clinical use |
Non-Patent Citations (1)
Title |
---|
JPN6012043468; TAKAHASHI Y et al: Biomaterials Vol.26, No.17, 2005, P.3587-3596 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012090822A (en) * | 2010-10-27 | 2012-05-17 | Nagoya Univ | Implant fixation assisting agent and method of manufacturing the same |
WO2017051650A1 (en) * | 2015-09-24 | 2017-03-30 | 株式会社村田製作所 | Cell culture method and cell culture device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mangano et al. | The osteoblastic differentiation of dental pulp stem cells and bone formation on different titanium surface textures | |
Alliot-Licht et al. | Characterization of α-smooth muscle actin positive cells in mineralized human dental pulp cultures | |
Mao et al. | Effect of micro-nano-hybrid structured hydroxyapatite bioceramics on osteogenic and cementogenic differentiation of human periodontal ligament stem cell via Wnt signaling pathway | |
Li et al. | In vitro responses of human bone marrow stromal cells to a fluoridated hydroxyapatite coated biodegradable Mg–Zn alloy | |
Gurevich et al. | Fibrin microbeads for isolating and growing bone marrow–derived progenitor cells capable of forming bone tissue | |
Gao et al. | Influence of nanotopography on periodontal ligament stem cell functions and cell sheet based periodontal regeneration | |
Schumacher et al. | Static and dynamic cultivation of bone marrow stromal cells on biphasic calcium phosphate scaffolds derived from an indirect rapid prototyping technique | |
Kim et al. | Cellular attachment and osteoblast differentiation of mesenchymal stem cells on natural cuttlefish bone | |
US20190185818A1 (en) | Novel chicken egg-based metastasis model for cancer | |
Ohgushi | Osteogenically differentiated mesenchymal stem cells and ceramics for bone tissue engineering | |
Brady et al. | The primordium of a biological joint replacement: coupling of two stem cell pathways in biphasic ultrarapid compressed gel niches | |
Yu et al. | Cubic multi-ions-doped Na2TiO3 nanorod-like coatings: Structure-stable, highly efficient platform for ions-exchanged release to immunomodulatory promotion on vascularized bone apposition | |
JP7058607B2 (en) | Customized Bone-Implant Hybrid Graft | |
CN109504710B (en) | Application of KDM4D | |
JP3953419B2 (en) | Undifferentiated pluripotent cells and related tissue or tooth production method using the same | |
Zou et al. | A novel design of temporomandibular joint prosthesis for lateral pterygoid muscle attachment: a preliminary study | |
Tsukanaka et al. | Evaluation of bioactivity of alkali-and heat-treated titanium using fluorescent mouse osteoblasts | |
Tsuchiya et al. | Collagen type I matrix affects molecular and cellular behavior of purified porcine dental follicle cells | |
JP2008289734A (en) | Creation method for osteoblast-base material complex | |
RU2449755C2 (en) | Method of eliminating bone defects with restoration of bone tissue in them | |
Wittenburg et al. | Scaffold preferences of mesenchymal stromal cells and adipose-derived stem cells from green fluorescent protein transgenic mice influence the tissue engineering of bone | |
Faucheux et al. | Biocompatibility testing of a bovine hydroxy—apatite ceramic material with the use of osteo-progenitor cells isolated from human bone marrow | |
RU2416434C1 (en) | Bioengineered structure for bony defect closure and osteogenesis and method for producing said structure | |
Manso et al. | Testing biomaterials by the in-situ evaluation of cell response | |
JP3650734B2 (en) | Methods for inducing osteoblast differentiation of human extramedullary adipose tissue cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100420 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20100420 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120821 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121002 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121023 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121214 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130115 |