JP2008286960A - Microlens array sheet - Google Patents

Microlens array sheet Download PDF

Info

Publication number
JP2008286960A
JP2008286960A JP2007131190A JP2007131190A JP2008286960A JP 2008286960 A JP2008286960 A JP 2008286960A JP 2007131190 A JP2007131190 A JP 2007131190A JP 2007131190 A JP2007131190 A JP 2007131190A JP 2008286960 A JP2008286960 A JP 2008286960A
Authority
JP
Japan
Prior art keywords
refractive index
light
light shielding
resin layer
array sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007131190A
Other languages
Japanese (ja)
Inventor
Takanori Oi
孝紀 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2007131190A priority Critical patent/JP2008286960A/en
Publication of JP2008286960A publication Critical patent/JP2008286960A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microlens array sheet for a transmission type screen that is a light diffusion sheet which has high transmittance, by which a bright video is observed, by which an observer does not feel an unnatural feeling even when observing the video while changing a viewing angle and which has excellent diffusing performance. <P>SOLUTION: The microlens array sheet comprises a light emitting substrate 2 composed of transparent material, and a microlens comprising a light shielding layer 3 arranged on the light emitting substrate and having a plurality of nearly rectangular holes, a resin layer 4 provided on the surface of the light shielding layer and having a first refractive index, and a resin layer 5 formed to cover over the hole parts on the resin layer having the first refractive index and having a second refractive index, and the curvature of the microlens on the light emitting substrate side is larger than the 1/2 of the short side of the hole on the light emitting substrate side. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、球面または非球面状の複数のマイクロレンズを有するマイクロレンズアレイシートに関し、特に背面投射型のプロジェクション式テレビジョンに用いられる透過型スクリーン用マイクロレンズアレイシートに関するものである。   The present invention relates to a microlens array sheet having a plurality of spherical or aspherical microlenses, and more particularly to a transmissive screen microlens array sheet used in a rear projection type projection television.

従来、背面投射型プロジェクション式テレビジョン用の視野角を改善するため、マイクロレンズアレイシートを用いたスクリーンが用いられている(例えば、特許文献1を参照。)。このマイクロレンズアレイシートは、図10に示すように、遮光性基材24に略円錐形状の孔33を複数設け、その孔33上にマイクロレンズ26を配置している。この孔33の形状は、マイクロレンズアレイ27側の開口径が反対側の開口径よりも大きい略円錐形状をしているので、高透過率で高コントラストの映像が得られる。   Conventionally, a screen using a microlens array sheet has been used to improve the viewing angle for a rear projection type projection television (see, for example, Patent Document 1). In this microlens array sheet, as shown in FIG. 10, a plurality of substantially conical holes 33 are provided in the light-shielding substrate 24, and the microlenses 26 are disposed on the holes 33. Since the hole 33 has a substantially conical shape in which the opening diameter on the microlens array 27 side is larger than the opening diameter on the opposite side, a high transmittance and high contrast image can be obtained.

ところが、この構成では視野角の拡大は望めないので、さらに視野角を広げるために、社交性基材に設けた略円錐形状の孔自身をマイクロレンズに使用する構成が考えられる。その構成を、図5に示す。図5(a)は、マイクロレンズ全体の斜視図であり、個々のマイクロレンズは千鳥状に配列されている。図5(b)は、マイクロレンズ部の拡大部である。図に示すように、光出射基板2の方向に先細りの形状をした孔を開けた遮光層3を光出射基板2上に設け、その孔の表面に屈折率の低い樹脂層4をコートし、その上に樹脂層4よりも高い屈折率をもつ樹脂5で孔全体を埋め、マオクロレンズを形成している。   However, in this configuration, the viewing angle cannot be increased. Therefore, in order to further widen the viewing angle, a configuration in which a substantially conical hole itself provided in the social base material is used for the microlens is conceivable. The configuration is shown in FIG. FIG. 5A is a perspective view of the entire microlens, and the individual microlenses are arranged in a staggered manner. FIG. 5B is an enlarged portion of the microlens portion. As shown in the figure, a light shielding layer 3 having a hole tapered in the direction of the light emitting substrate 2 is provided on the light emitting substrate 2, and a resin layer 4 having a low refractive index is coated on the surface of the hole, On top of that, the entire hole is filled with a resin 5 having a refractive index higher than that of the resin layer 4 to form a macro lens.

そのマイクロレンズの断面を図6に示す。遮光層3の三角形状の傾斜面には、低屈折率透明層が約1μmの薄膜状に形成され、反射層として機能する。また、球面屈折層を形成する遮光層3の断面三角形の脚部に挟まれた開口部6には光出射方向に凸の球面レンズ状に形成されてあり、球面屈折レンズ8として機能する。
特開2006−209057号公報
A cross section of the microlens is shown in FIG. A low refractive index transparent layer is formed in a thin film shape of about 1 μm on the triangular inclined surface of the light shielding layer 3 and functions as a reflective layer. Further, the opening 6 sandwiched between the leg portions of the cross-sectional triangle of the light shielding layer 3 forming the spherical refractive layer is formed in a spherical lens shape convex in the light emitting direction, and functions as the spherical refractive lens 8.
JP 2006-209057 A

しかしながら、前記従来の構成では、図7の点線に示すように、マイクロレンズアレイシート1に垂直入射された平行光が、樹脂層4に交差する箇所で全反射を起こし、その全反射された光が開口部6上に形成されている第1の屈折率を持つ樹脂層4に全反射を繰り返すことにより戻り光となってマイクロレンズアレイシート1の入射側に向うため、透過率を低下させるという課題を有していた。   However, in the conventional configuration, as shown by the dotted line in FIG. 7, the parallel light perpendicularly incident on the microlens array sheet 1 causes total reflection at a location intersecting the resin layer 4, and the totally reflected light. Is caused to return to the incident side of the microlens array sheet 1 by repeating total reflection on the resin layer 4 having the first refractive index formed on the opening 6, thereby reducing the transmittance. Had problems.

この戻り光が発生する位置は、特定の位置である。図8(b)に計測方法を示す。これは、光源11から発する平行光9がマイクロレンズを透過し、光出射基板2に出射された光をディテクタ12で受光して出射光量の測定を行った。この例では、マイクロレンズ短辺の大きさを60μmとし、平行光を発する光源11の幅Swを2μmとしたときの、前記平行光を発する光源の位置を横軸とし、マイクロレンズの中心の位置を0とし、遮光層3の頂部の位置を30とする。縦軸を透過率(入射光量に対する出射光量の比)とすると、図9に示すように、横軸の値が7.5から12.5までの範囲で透過率が低下している。すなわち、この部分で光透過率が低下している。   The position where the return light is generated is a specific position. FIG. 8B shows a measurement method. The parallel light 9 emitted from the light source 11 passes through the microlens, and the light emitted to the light emitting substrate 2 is received by the detector 12 to measure the amount of emitted light. In this example, when the size of the short side of the microlens is 60 μm and the width Sw of the light source 11 that emits parallel light is 2 μm, the position of the light source that emits parallel light is the horizontal axis, and the position of the center of the microlens Is 0, and the position of the top of the light shielding layer 3 is 30. If the vertical axis represents the transmittance (ratio of the amount of emitted light to the amount of incident light), as shown in FIG. 9, the transmittance decreases in the range from 7.5 to 12.5 on the horizontal axis. That is, the light transmittance is reduced at this portion.

本発明は、前記従来の課題を解決するもので、光透過率を向上させた遮光層組み込み型マイクロレンズアレイシートを提供することを目的とする。   The present invention solves the above-described conventional problems, and an object thereof is to provide a microlens array sheet incorporating a light shielding layer with improved light transmittance.

透明材料から成る光出射基板と、前記光出射基板上に配置された複数の略長方形状の孔をもつ遮光層と、前記遮光層表面に設けられた第1の屈折率を持つ樹脂層と、前記第1の屈折を持つ樹脂層上に前記孔部を覆うように形成された第2の屈折率を持つ樹脂層からなるマイクロレンズと、前記マイクロレンズの前記光出射基板側の曲率が前記光出射基板側の前記孔の短辺の1/2より大きいことを特徴としたものである。   A light emitting substrate made of a transparent material, a light shielding layer having a plurality of substantially rectangular holes disposed on the light emitting substrate, a resin layer having a first refractive index provided on the surface of the light shielding layer, A microlens made of a resin layer having a second refractive index formed so as to cover the hole on the resin layer having the first refraction, and a curvature of the microlens on the light output substrate side is the light It is characterized by being larger than ½ of the short side of the hole on the output substrate side.

本発明のマイクロレンズアレイシートによれば、シートの開口部に形成した低屈折率樹脂レンズに直接入射する光成分について、その低屈折率樹脂の曲率の大きさを制御することで、全反射による戻り光を抑制することが可能であり、また遮光層の斜面に対し開口部まで厚みを一定にして反射面となる低屈折率樹脂を塗布することが可能であることから、遮光層の斜面に塗布された低屈折率樹脂により反射された光について全反射による戻り光の割合を低減することができ、スクリーン全体として明るい画像を得ることができる。   According to the microlens array sheet of the present invention, the light component directly incident on the low refractive index resin lens formed at the opening of the sheet is controlled by the total reflection by controlling the magnitude of the curvature of the low refractive index resin. It is possible to suppress the return light, and it is possible to apply a low-refractive index resin as a reflective surface with a constant thickness up to the opening with respect to the slope of the light shielding layer. With respect to the light reflected by the applied low refractive index resin, the ratio of return light due to total reflection can be reduced, and a bright image can be obtained as a whole screen.

(実施の形態)
以下に、本発明のマイクロレンズアレイシートの実施の形態を図面とともに詳細に説明する。
(Embodiment)
Hereinafter, embodiments of the microlens array sheet of the present invention will be described in detail with reference to the drawings.

図1は、本発明のマイクロレンズアレイシートの垂直方向による断面構造図を示す。図1(a)において、マイクロレンズアレイシート1は、大きくは光出射基板2と、遮光層3と、第1の屈折率を持つ樹脂層4と第2の屈折率を持つ樹脂層5とで構成される。   FIG. 1 shows a cross-sectional structure diagram of the microlens array sheet of the present invention in the vertical direction. In FIG. 1A, a microlens array sheet 1 is roughly composed of a light emitting substrate 2, a light shielding layer 3, a resin layer 4 having a first refractive index, and a resin layer 5 having a second refractive index. Composed.

光出射基板2は、基材として通常、屈折率1.49のPMMAあるいは屈折率1.52程度のMS樹脂(スチレンとMMAとの重合体)が用いられ、基材中には直径約10μm以下の拡散微粒子が10%前後の体積率で分散されている。この拡散微粒子としては、一般的に、屈折率が基材より高いMS樹脂からなるビーズが用いられる。   The light emitting substrate 2 is usually made of PMMA having a refractive index of 1.49 or MS resin (polymer of styrene and MMA) having a refractive index of about 1.52 as a base material, and the diameter of the base material is about 10 μm or less. Are dispersed at a volume ratio of about 10%. As the diffusion fine particles, beads made of MS resin having a refractive index higher than that of the base material are generally used.

遮光層3は、断面四角形状である第1の立体遮光部301と断面三角形状である第2の立体遮光部302を合わせたものであり、共に基材として熱硬化性又は2液硬化性、EB硬化性のポリウレタン系樹脂などが用いられ、基材中には光吸収性のある黒色の顔料微粒子が分散されている。   The light shielding layer 3 is a combination of the first three-dimensional light shielding portion 301 having a quadrangular cross section and the second three-dimensional light shielding portion 302 having a triangular cross section, both of which are thermosetting or two-component curable as a base material. An EB curable polyurethane-based resin or the like is used, and light-absorbing black pigment fine particles are dispersed in the substrate.

本実施例では、光出射基板2の厚みは1mm、遮光層3の水平と垂直のピッチは各々60μm、85μmとする。図1(a)の遮光層3の断面について、断面四角形状である第1の立体遮光部301の断面形状を長方形とし、第1の立体遮光部301のスクリーン面に対し垂直方向の長さaを10μm、水平方向の長さ2bを40μmとし、この1/2の値がb(=20μm)となる。また、第2の立体遮光部302の断面形状を略三角形状とし、第1の立体遮光部301及び第2の立体遮光部302を合わせた高さh0を156μmとする。また、第2の立体遮光部302の断面三角形状底部における傾斜面と水平面からなる角度θ1を80deg、第2の立体遮光部302の断面三角形状頂部付近の傾斜面と水平面からなる角度θ2を85degとし、第2の立体遮光部302の断面三角形状底部と頂部との間の斜面は円弧状とする。また開口部6の幅Bを20μmとする。   In this embodiment, the thickness of the light emitting substrate 2 is 1 mm, and the horizontal and vertical pitches of the light shielding layer 3 are 60 μm and 85 μm, respectively. With respect to the cross section of the light shielding layer 3 in FIG. 1A, the cross section of the first three-dimensional light shielding portion 301 having a quadrangular cross section is rectangular, and the length a in the direction perpendicular to the screen surface of the first three-dimensional light shielding portion 301. Is 10 μm, the horizontal length 2b is 40 μm, and a half of this is b (= 20 μm). Further, the cross-sectional shape of the second three-dimensional light shielding portion 302 is substantially triangular, and the combined height h0 of the first three-dimensional light shielding portion 301 and the second three-dimensional light shielding portion 302 is 156 μm. Further, the angle θ1 formed by the inclined surface and the horizontal plane at the bottom of the triangular cross section of the second three-dimensional light shielding portion 302 is 80 deg, and the angle θ2 formed by the inclined surface near the top of the triangular triangular shape of the second three-dimensional light blocking portion 302 and the horizontal plane is 85 deg. The slope between the bottom and the top of the triangular cross section of the second three-dimensional light shielding portion 302 is an arc. The width B of the opening 6 is 20 μm.

次に、第2の屈折率を持つ樹脂層5で使用される樹脂の屈折率より低い低屈折率透明樹脂を材料とし、遮光層3の表面及び開口部6の表面に塗布して第1の屈折率を持つ樹脂層4を形成する。例えば、シリコンやフッ素系が導入された低屈折率のアクリレート系樹脂などが用いられる。今回は、低屈折率の透明紫外線硬化樹脂、屈折率1.46の材料を用いた。   Next, a low refractive index transparent resin lower than the refractive index of the resin used in the resin layer 5 having the second refractive index is used as a material and applied to the surface of the light shielding layer 3 and the surface of the opening 6. A resin layer 4 having a refractive index is formed. For example, a low refractive index acrylate resin into which silicon or fluorine is introduced is used. This time, a transparent UV curable resin having a low refractive index and a material having a refractive index of 1.46 were used.

この低屈折率の透明紫外線硬化樹脂を遮光層3の凹凸面に、スプレー法にて定量塗布を行った後、紫外線硬化を行った。スプレー塗布前に、塗布液体との濡れ性を上げるために遮光層3の表面をオゾン処理した。スプレー塗布した直後に、遮光層3の傾斜面へ塗布液体の薄膜が形成されると共に、開口部6には凹状のメニスカスにより球面屈折レンズ8が形成される。   This low refractive index transparent ultraviolet curable resin was quantitatively applied to the concavo-convex surface of the light shielding layer 3 by a spray method, and then UV cured. Prior to spray application, the surface of the light shielding layer 3 was treated with ozone in order to improve wettability with the application liquid. Immediately after spray coating, a thin film of coating liquid is formed on the inclined surface of the light shielding layer 3, and a spherical refractive lens 8 is formed in the opening 6 by a concave meniscus.

球面屈折レンズ8は、第1の立体遮光部と第2の立体遮光部との境界間に形成される。球面屈折レンズ8の高さの位置及び曲率の大きさは、図1(b)において第1の立体遮光部301と第2の立体遮光部302との境界を変極点P、P’とし、P−P’間に形成されたレンズの曲率の大きさを塗布する液量で調整する。即ち、液量を多く塗布するように調整することで、第1の立体遮光部301と第2の立体遮光部302との境界の位置P−P’で形成される凹状の球面屈折レンズ8の曲率は大きくなる。   The spherical refractive lens 8 is formed between the boundary between the first three-dimensional light shielding part and the second three-dimensional light shielding part. The height position of the spherical refractive lens 8 and the magnitude of the curvature are inflection points P and P ′ at the boundaries between the first three-dimensional light shielding portion 301 and the second three-dimensional light shielding portion 302 in FIG. The magnitude of the curvature of the lens formed between -P 'is adjusted by the amount of liquid applied. That is, the concave spherical refractive lens 8 formed at the position PP ′ of the boundary between the first three-dimensional light shielding portion 301 and the second three-dimensional light shielding portion 302 is adjusted by applying a large amount of liquid. Curvature increases.

次に、第2の屈折率を持つ樹脂層5となる高屈折率の透明紫外線硬化性樹脂を、遮光層3の頂点からの膜厚が100μmとなるように、スプレー法にて塗布した。高屈折率の透明紫外線硬化樹脂は屈折率1.57の材料を用いた。塗布の後、紫外線硬化を行い、光拡散スクリーン1を完成した。   Next, a transparent UV curable resin having a high refractive index to be the resin layer 5 having the second refractive index was applied by a spray method so that the film thickness from the top of the light shielding layer 3 was 100 μm. A material having a refractive index of 1.57 was used as the transparent UV curable resin having a high refractive index. After coating, UV curing was performed to complete the light diffusion screen 1.

なお、光拡散スクリーン1の光出射基板側とは反対側の開口部の形状は図5に示すように、無数に略長方形を千鳥状に配列されているが、他に略三角形や略四角形等の形状を有するものを密に配列した形でもよい。   In addition, as shown in FIG. 5, the shape of the opening part on the opposite side of the light diffusing screen 1 of the light diffusing screen 1 is arranged in an infinite number of substantially rectangular shapes in a staggered manner. The shape which closely arranged what has the shape of this may be sufficient.

次に、作製した光拡散スクリーン1について、光学シミュレーションによる性能評価を行った結果について説明する。   Next, the results of performance evaluation by optical simulation on the produced light diffusion screen 1 will be described.

図3に、本発明の実施の形態1におけるマイクロレンズアレイシートの光源の位置による透過率の変化を表すグラフ図を示す。また、図8にマイクロレンズアレイシートの光源の位置による測定を模式的に示す図を示す。図3について、横軸を光源の位置を表す。図8の球面屈折レンズ8の中心((i)の破線上)に光源を置いた位置を0μmとし、遮光層3の頂部((ii)の破線上)に光源を置いた位置を30μmとする。また、光源の幅Swを2μmとする。また、縦軸をスクリーンの透過率を表す。スクリーンの出射側にディテクタ12を置き、光源から発生した光量をディテクタ12で受光した光量で割った値を透過率としている。図3の特性について、実線を本発明の形状による透過率分布、破線を従来の形状による透過率分布を示す。   FIG. 3 is a graph showing the change in transmittance depending on the position of the light source of the microlens array sheet in Embodiment 1 of the present invention. Moreover, the figure which shows typically the measurement by the position of the light source of a micro lens array sheet | seat in FIG. 8 is shown. In FIG. 3, the horizontal axis represents the position of the light source. The position at which the light source is placed at the center of the spherical refractive lens 8 in FIG. 8 (on the broken line (i)) is 0 μm, and the position at which the light source is placed at the top of the light shielding layer 3 (on the broken line in (ii)) is 30 μm. . The light source width Sw is 2 μm. The vertical axis represents the screen transmittance. The detector 12 is placed on the exit side of the screen, and the value obtained by dividing the amount of light generated from the light source by the amount of light received by the detector 12 is taken as the transmittance. Regarding the characteristics of FIG. 3, the solid line shows the transmittance distribution according to the shape of the present invention, and the broken line shows the transmittance distribution according to the conventional shape.

光源の位置が0の場合、本発明の形状、従来の形状共に透過率が90%程度であるが、光源の位置をずらし、その値が大きくなるにつれて透過率が減少し、光源の位置10において本発明の形状、従来の形状共に極小値となる。そのときの透過率は、従来の形状では50%、本発明の形状では70%となる。光源の位置が10を超えると透過率が向上し、光源の位置が30になると再び透過率が90%となる。図3の透過率分布より、光源の位置が7.5から12.5までの範囲において、従来の形状と本発明の形状を比較した時透過率の差が生じている。これは、図8(a)の球面屈折レンズ8が第1の立体遮光部301の底面より下部に形成されていることによって、第1の立体遮光部301の表面に塗布されている第1の屈折率を持つ樹脂層4に反射された光について開口部6及び光出射基板2を透過する割合が従来の形状よりも増加したことと、球面屈折レンズ8の曲率を調節することで、スクリーンに垂直入射した光において、第1の屈折率を持つ樹脂層4に反射されずに直接球面屈折レンズ8に入射した光が、全反射を起こすことなく開口部6及び光出射基板2を透過するためである。   When the position of the light source is 0, the transmittance is about 90% for both the shape of the present invention and the conventional shape. However, the position of the light source is shifted, and the transmittance decreases as the value increases. Both the shape of the present invention and the conventional shape are minimum values. The transmittance at that time is 50% for the conventional shape and 70% for the shape of the present invention. When the position of the light source exceeds 10, the transmittance is improved. When the position of the light source is 30, the transmittance is again 90%. From the transmittance distribution of FIG. 3, a difference in transmittance occurs when the position of the light source is in the range of 7.5 to 12.5 and the conventional shape and the shape of the present invention are compared. This is because the spherical refractive lens 8 of FIG. 8A is formed below the bottom surface of the first three-dimensional light shielding portion 301, so that the first three-dimensional light shielding portion 301 is coated on the surface. The ratio of the light reflected by the resin layer 4 having a refractive index that is transmitted through the opening 6 and the light emitting substrate 2 is increased as compared with the conventional shape, and the curvature of the spherical refractive lens 8 is adjusted, so that the screen In the vertically incident light, the light directly incident on the spherical refractive lens 8 without being reflected by the resin layer 4 having the first refractive index is transmitted through the opening 6 and the light emitting substrate 2 without causing total reflection. It is.

図4に、本発明の球面屈折レンズ8の寸法比に対するスクリーン透過率の特性図を示す。図1(b)における凹状の球面屈折レンズ8について、形成されたレンズの幅(P−P’間の幅)をLw、第1の立体遮光部301と第2の立体遮光部302との境界の位置P−P’から底面までの高さをLhとしたとき、光源から発する平行光が凹状の球面屈折レンズ8に直接入射した場合における、Lh/Lwの比に対する透過率の大きさの特性図を図4に示す。Lh/Lwの比が大きくなるほど、凹状の球面屈折レンズ8の曲率は小さくなり、Lh/Lwが0.5のとき、凹状の球面屈折レンズ8の断面は半円を描くようになる。   FIG. 4 is a characteristic diagram of screen transmittance with respect to the dimensional ratio of the spherical refractive lens 8 of the present invention. With respect to the concave spherical refractive lens 8 in FIG. 1B, the width of the formed lens (the width between PP ′) is Lw, and the boundary between the first three-dimensional light shielding portion 301 and the second three-dimensional light shielding portion 302 When the height from the position PP ′ to the bottom surface is Lh, parallel light emitted from the light source is directly incident on the concave spherical refractive lens 8 and the characteristic of the magnitude of transmittance with respect to the ratio of Lh / Lw The figure is shown in FIG. As the Lh / Lw ratio increases, the curvature of the concave spherical refractive lens 8 decreases, and when Lh / Lw is 0.5, the concave spherical refractive lens 8 has a semicircular cross section.

また光源の設定をLwの長さと同様、20μmとしている。図4では、第1の屈折率を持つ樹脂層の屈折率が1.46、第2の屈折率を持つ樹脂層の屈折率が1.57である場合の特性を示している。Lh/Lwの値が0から0.3までの範囲では、透過率は約93%を示しているが、Lh/Lwの値が0.3を超えると透過率は線形的に低下する。即ち、透過率が低下しない範囲でLh/Lwを設定し、且つ、レンズによる拡散効果を最大限に持たせるために、図4の第1の屈折率を持つ樹脂層の屈折率が1.46、第2の屈折率を持つ樹脂層の屈折率が1.57である場合においては、Lh/Lwを0.3前後に設定することが望ましい。   The setting of the light source is set to 20 μm, similar to the length of Lw. FIG. 4 shows characteristics when the refractive index of the resin layer having the first refractive index is 1.46 and the refractive index of the resin layer having the second refractive index is 1.57. When the value of Lh / Lw ranges from 0 to 0.3, the transmittance is about 93%. However, when the value of Lh / Lw exceeds 0.3, the transmittance decreases linearly. That is, in order to set Lh / Lw within a range where the transmittance does not decrease and to maximize the diffusion effect by the lens, the refractive index of the resin layer having the first refractive index in FIG. When the refractive index of the resin layer having the second refractive index is 1.57, it is desirable to set Lh / Lw to around 0.3.

本発明にかかる透過型スクリーン用の拡散シートは、全反射型光拡散シートに強く現れる3つの輝度ピークによる凹凸を解消して、広い視野角且つ高い透過率を有し、背面投射型ディスプレイ等として有用である。   The diffusing sheet for a transmissive screen according to the present invention eliminates unevenness due to three luminance peaks that strongly appear in the total reflection type light diffusing sheet, has a wide viewing angle and high transmittance, and is used as a rear projection display or the like. Useful.

本発明の実施の形態1におけるマイクロレンズアレイシートの断面を模式的に示す図The figure which shows typically the cross section of the micro lens array sheet in Embodiment 1 of this invention. 本発明の実施の形態1におけるマイクロレンズアレイシートの発明の効果の説明図Explanatory drawing of the effect of the invention of the microlens array sheet in Embodiment 1 of this invention 本発明の実施の形態1におけるマイクロレンズアレイシートの光源の位置による透過率の変化を示すグラフThe graph which shows the change of the transmittance | permeability by the position of the light source of the micro lens array sheet in Embodiment 1 of this invention 本発明の実施の形態1におけるマイクロレンズアレイシートのスクリーン底部曲率と透過率との特性図Characteristic chart of screen bottom curvature and transmittance of microlens array sheet in Embodiment 1 of the present invention 本発明の実施の形態1におけるマイクロレンズアレイシート全体の斜視図The perspective view of the whole micro lens array sheet in Embodiment 1 of this invention 従来のマイクロレンズアレイシートの断面を模式的に示す図The figure which shows the cross section of the conventional micro lens array sheet typically 従来のマイクロレンズアレイシートの動作説明図Operation explanatory diagram of a conventional microlens array sheet マイクロレンズアレイシートの光源の位置による測定を模式的に示す図The figure which shows typically the measurement by the position of the light source of a micro lens array sheet 従来のマイクロレンズアレイシートの光源の位置による透過率の変化を示す特性図Characteristic diagram showing the change in transmittance according to the position of the light source of the conventional microlens array sheet 従来のマイクロレンズアレイシートを模式的に示す図The figure which shows the conventional micro lens array sheet typically

符号の説明Explanation of symbols

1 光拡散シート
2 光出射基板
3 遮光層
4 第1の屈折率を持つ樹脂層
5 第2の屈折率を持つ樹脂層
6 開口部
7 反射レンズ
8 球面屈折レンズ
9 平行光
10 反射光
11 光源
12 ディテクタ
24 遮光性基材
25 透明層
26 マイクロレンズ
27 マイクロレンズアレイ
32 レーザ光
33 セルフアライメント孔
34 光出射面
35 マイクロレンズアレイシート
301 第1の立体遮光部
302 第2の立体遮光部
DESCRIPTION OF SYMBOLS 1 Light diffusing sheet 2 Light emission board | substrate 3 Light-shielding layer 4 Resin layer with 1st refractive index 5 Resin layer with 2nd refractive index 6 Opening part 7 Reflective lens 8 Spherical refractive lens 9 Parallel light 10 Reflected light 11 Light source 12 Detector 24 Light-shielding base material 25 Transparent layer 26 Micro lens 27 Micro lens array 32 Laser light 33 Self-alignment hole 34 Light emitting surface 35 Micro lens array sheet 301 First three-dimensional light shielding portion 302 Second three-dimensional light shielding portion

Claims (4)

透明材料から成る光出射基板と、
前記光出射基板上に配置された複数の略長方形状の孔をもつ遮光層と、
前記遮光層表面に設けられた第1の屈折率を持つ樹脂層と、
前記第1の屈折を持つ樹脂層よりも屈折率が高く、前記第1の屈折を持つ樹脂層上に前記孔部を覆うように形成された第2の屈折率を持つ樹脂層からなるマイクロレンズと、
前記マイクロレンズの前記光出射基板側の曲率が前記光出射基板側の前記孔の短辺の1/2より大なるマイクロレンズアレイシート。
A light emitting substrate made of a transparent material;
A light shielding layer having a plurality of substantially rectangular holes disposed on the light emitting substrate;
A resin layer having a first refractive index provided on the surface of the light shielding layer;
A microlens made of a resin layer having a second refractive index which is higher in refractive index than the resin layer having the first refraction and is formed on the resin layer having the first refraction so as to cover the hole. When,
A microlens array sheet in which a curvature of the microlens on the light output substrate side is larger than ½ of a short side of the hole on the light output substrate side.
前記遮光層は、反射面となる第1の屈折率を持つ樹脂層が塗布される第1の立体遮光部と、前記第1の立体遮光部より下に前記略長方形状の孔を覆うように前記第1の屈折率を持つ樹脂層による曲率が形成され、前記第1の立体遮光部と前記光出射基板との間に第2の立体遮光部が形成されることを特徴とする請求項1に記載のマイクロレンズアレイシート。 The light shielding layer is configured to cover a first three-dimensional light shielding portion to which a resin layer having a first refractive index serving as a reflection surface is applied, and the substantially rectangular hole below the first three-dimensional light shielding portion. The curvature of the resin layer having the first refractive index is formed, and a second three-dimensional light shielding portion is formed between the first three-dimensional light shielding portion and the light emitting substrate. The microlens array sheet according to 1. 前記マイクロレンズの形状は、球面または非球面である請求項1に記載のマイクロレンズアレイシート。 The microlens array sheet according to claim 1, wherein a shape of the microlens is a spherical surface or an aspherical surface. 前記略長方形状の孔は、前記光出射基板側の開口部が前記光出射基板側と反対側の開口部よりも小なる請求項1に記載のマイクロレンズアレイシート。 2. The microlens array sheet according to claim 1, wherein the substantially rectangular hole has an opening on the light emitting substrate side smaller than an opening on the opposite side to the light emitting substrate side.
JP2007131190A 2007-05-17 2007-05-17 Microlens array sheet Pending JP2008286960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007131190A JP2008286960A (en) 2007-05-17 2007-05-17 Microlens array sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007131190A JP2008286960A (en) 2007-05-17 2007-05-17 Microlens array sheet

Publications (1)

Publication Number Publication Date
JP2008286960A true JP2008286960A (en) 2008-11-27

Family

ID=40146753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007131190A Pending JP2008286960A (en) 2007-05-17 2007-05-17 Microlens array sheet

Country Status (1)

Country Link
JP (1) JP2008286960A (en)

Similar Documents

Publication Publication Date Title
US7443582B2 (en) Screen and image projection system using the same
JP4142568B2 (en) OPTICAL ELEMENT AND COLOR DISPLAY DEVICE USING THE OPTICAL ELEMENT
JP6601742B2 (en) Transmission screen and head-up display device using the same
JP2008501128A (en) Display optical device having tapered waveguide and method of manufacturing the same
KR20070110245A (en) Light collimating device
KR102266524B1 (en) Diffuser plate and projection image display device
KR20060038381A (en) Micro-lens array based light transmitting screen with tunable gain
JP2004294465A (en) Diffusion sheet and transmission type screen
JP2008139845A (en) Optical plate
JP2005300907A (en) Screen and image projection system using the same
KR101001247B1 (en) Condensing Film for LCD Backlight Unit and LCD Backlight Unit thereof
JP5295721B2 (en) Backlight unit
JP6489300B2 (en) Transmission screen and head-up display device using the same
JP2008310251A (en) Optical sheet, back light unit, and display apparatus
JP2011191780A (en) Screen and image projection system
JP2000035616A (en) Screen sheet
JP6806911B2 (en) Backlight unit and liquid crystal display
JP2008262209A (en) Light diffusion sheet and projection screen
WO2012005135A1 (en) Light diffusion sheet and display device provided with the light diffusion sheet
KR100466039B1 (en) Optical device for a display having tapered waveguides and process for making thereof
JP5343490B2 (en) Prism sheet, transmissive screen, rear projection display
JP2008286960A (en) Microlens array sheet
JP4727962B2 (en) Screen and image projection system
JP2007133209A (en) Surface protection sheet and transmission type screen
JP2007248938A (en) Transmission type screen and its manufacturing method, and rear projection display device