JP2008286711A - Edge detector, and line sensor for edge detector - Google Patents

Edge detector, and line sensor for edge detector Download PDF

Info

Publication number
JP2008286711A
JP2008286711A JP2007133420A JP2007133420A JP2008286711A JP 2008286711 A JP2008286711 A JP 2008286711A JP 2007133420 A JP2007133420 A JP 2007133420A JP 2007133420 A JP2007133420 A JP 2007133420A JP 2008286711 A JP2008286711 A JP 2008286711A
Authority
JP
Japan
Prior art keywords
light
line sensor
monochromatic
light receiving
edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007133420A
Other languages
Japanese (ja)
Other versions
JP4879087B2 (en
Inventor
Toshiki Koshi
俊樹 越
Shiro Kano
史朗 加納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2007133420A priority Critical patent/JP4879087B2/en
Priority to TW97124499A priority patent/TW201000847A/en
Publication of JP2008286711A publication Critical patent/JP2008286711A/en
Application granted granted Critical
Publication of JP4879087B2 publication Critical patent/JP4879087B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an edge detector capable of detecting accurately an edge portion of a shielding object, even when an ambient temperature in a measuring space is fluctuated or even when characteristics are dispersed in respective constitutive components when produced. <P>SOLUTION: This edge detector is provided with: a laser light source for generating a monochomatic light; a light projection part composed of a light projection lens for converting the monochomatic light from the laser light source into a monochromatic parallel beam, and a light projection window for emitting the monochromatic parallel beam; a photoreception window provided opposedly to the light projection window; a photoreception part composed of a light diffusion element for diffusing the monochromatic parallel beam incident from the photoreception window over a prescribed range, and a line sensor arrayed unidirectionally, at a prescribed pitch, with a plurality of photoreception cells for receiving the diffused monochomatic light; and a detecting part for analyzing a photoreception quantity distribution of the line sensor to detect the edge position in an arrayed direction of the photoreception cells of the shielding object existing in an optical path of the monochromatic parallel beam. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、投光器から照射された単色光を受光器で受光し、該単色光を遮る遮蔽物のエッジ位置を検出する光学式のエッジ検出装置及び該エッジ検出装置に用いるラインセンサに関するものである。   The present invention relates to an optical edge detection device that receives monochromatic light emitted from a projector by a light receiver and detects an edge position of a shielding object that blocks the monochromatic light, and a line sensor used in the edge detection device. .

図10は、特許文献1に開示される従来のエッジ検出装置の構成を示す図である。図10において、このエッジ検出装置は、ラインセンサ100、投光器101及びエッジ検出部102を備える。ラインセンサ100は、一定方向に所定のピッチで複数の受光セル(画素)が配列されており、投光器101から照射された単色平行光を受光する。投光器101は、ラインセンサ100の受光面に対向して配置され、レーザダイオード(LD)からなる光源101a、単色光(レーザ光)を導く光ファイバ101b、投光レンズ101cおよびLDを制御するドライバIC101dを備える。尚、図10において投光部1、受光部2等は筐体内に収納されている。   FIG. 10 is a diagram illustrating a configuration of a conventional edge detection device disclosed in Patent Document 1. In FIG. In FIG. 10, the edge detection apparatus includes a line sensor 100, a projector 101, and an edge detection unit 102. The line sensor 100 has a plurality of light receiving cells (pixels) arranged at a predetermined pitch in a certain direction, and receives the monochromatic parallel light emitted from the projector 101. The light projector 101 is disposed to face the light receiving surface of the line sensor 100, and includes a light source 101a composed of a laser diode (LD), an optical fiber 101b for guiding monochromatic light (laser light), a light emitting lens 101c, and a driver IC 101d that controls the LD. Is provided. In FIG. 10, the light projecting unit 1, the light receiving unit 2, and the like are housed in a housing.

投光器101において、光源101aにより発生された単色光(レーザ光)は、光ファイバ101bを介して投光レンズ101cに導かれ、投光レンズ101cによって単色平行光に変換された後、ラインセンサ100に照射される。投光器101とラインセンサ100の受光面の間に形成された測定空間103を遮蔽物104が通過すると、ラインセンサ100へ照射される単色平行光が遮蔽される。エッジ検出部102は、マイクロコンピュータから構成されており、ラインセンサ100の出力を解析して測定空間103で単色平行光を遮蔽した遮蔽物104の受光セルの配列方向におけるエッジ位置を検出する。   In the projector 101, the monochromatic light (laser light) generated by the light source 101 a is guided to the projector lens 101 c through the optical fiber 101 b, converted into monochromatic parallel light by the projector lens 101 c, and then applied to the line sensor 100. Irradiated. When the shielding object 104 passes through the measurement space 103 formed between the projector 101 and the light receiving surface of the line sensor 100, the monochromatic parallel light irradiated to the line sensor 100 is shielded. The edge detection unit 102 includes a microcomputer, and detects the edge position in the arrangement direction of the light receiving cells of the shielding object 104 that shields the monochromatic parallel light in the measurement space 103 by analyzing the output of the line sensor 100.

エッジ検出部102による遮蔽物104のエッジ位置の検出は、測定空間103で遮蔽物104が単色平行光の一部を遮ることにより生じた、ラインセンサ100の全受光量の変化あるいは遮蔽物104のエッジ部分に生じるフレネル回折に起因した受光パターン(受光量の分布)を解析することによりなされる。このようにして、従来のエッジ検出装置は、ラインセンサ100の受光面上の光強度分布に従って遮蔽物104のエッジ位置を高精度に検出する。(例えば、特許文献1を参照)   The detection of the edge position of the shield 104 by the edge detection unit 102 is caused by the change in the total amount of light received by the line sensor 100 or the change of the shield 104 caused by the shield 104 blocking a part of the monochromatic parallel light in the measurement space 103. This is done by analyzing a light receiving pattern (distribution of received light amount) caused by Fresnel diffraction occurring at the edge portion. In this manner, the conventional edge detection device detects the edge position of the shielding object 104 with high accuracy according to the light intensity distribution on the light receiving surface of the line sensor 100. (For example, see Patent Document 1)

特開2004−177335号公報JP 2004-177335 A

従来のエッジ検出装置は、上記のように構成されているので、ラインセンサ100の受光セルに単色平行光が照射されていない幅103aから遮蔽物104の位置を検出することが可能である。しかしながら、ラインセンサの受光セルや投光レンズの製造時の特性ばらつきなどにより、製品毎にレーザ光の発光または受光の量、さらには放射されるレーザの干渉パターンにばらつきが生じる場合がある。尚、干渉パターンとは、筐体内での散乱、反射して複数のレーザ光が合わさって生じるものをいう。また光源101aは周囲温度によって出力するレーザ光の発光波長が異なることから、周囲温度により干渉パターンが変化し、ラインセンサ100に照射される単色平行光のパターンが変化してしまう。更にレーザ光を制御するドライバIC100dも温度特性を持っているため、周囲温度により光源の出力パワーなどが変わってしまう。これら製造ばらつきや周囲温度による各素子の特性の変動により、各受光セルが出力する受光信号が変動し、検出精度の向上の妨げとなる。特にドライバIC100dは電源投入後数十分かけて表面温度が上昇して放熱するので、それにより投光器内部の温度上昇を招くことから、エッジ検出装置の電源投入から温度が安定して正確に計測できるまでにある程度の時間が必要となってしまう。   Since the conventional edge detection apparatus is configured as described above, it is possible to detect the position of the shielding object 104 from the width 103a where the monochromatic parallel light is not irradiated on the light receiving cells of the line sensor 100. However, there may be variations in the amount of laser light emitted or received and the interference pattern of the emitted laser for each product due to variations in the characteristics of the light receiving cell of the line sensor and the light projecting lens. The interference pattern refers to a pattern generated by scattering and reflection in a casing and combining a plurality of laser beams. In addition, since the light source 101a emits light with different wavelengths depending on the ambient temperature, the interference pattern changes depending on the ambient temperature, and the pattern of monochromatic parallel light irradiated on the line sensor 100 changes. Furthermore, since the driver IC 100d for controlling the laser light also has temperature characteristics, the output power of the light source changes depending on the ambient temperature. Due to these manufacturing variations and fluctuations in the characteristics of each element due to the ambient temperature, the light reception signal output from each light reception cell fluctuates, which hinders improvement in detection accuracy. In particular, the driver IC 100d has a surface temperature that rises several tens of minutes after the power is turned on and dissipates heat. This causes an increase in the temperature inside the projector, so that the temperature can be stably and accurately measured since the edge detector is turned on. A certain amount of time will be required.

次に、ラインセンサ100は受光セルを機械的損傷から保護するため、透明な保護ガラスを受光セルと非接触に配置する構造が一般的である。本来この保護ガラスは受光特性に影響を与えないようにするため非常に透明度の高いガラスを使用することが望ましいが、ラインセンサ100のコストを下げるために、透明度の低い安価なガラスが採用される場合がある。このため、保護ガラスに入光したレーザ光は乱反射や新たな干渉が発生し、各受光セルの出力信号を変動させてしまうという問題があった。 Next, in order to protect the light receiving cell from mechanical damage, the line sensor 100 generally has a structure in which a transparent protective glass is disposed in contact with the light receiving cell. Originally, it is desirable that this protective glass is a highly transparent glass so as not to affect the light receiving characteristics, but in order to reduce the cost of the line sensor 100, an inexpensive glass having a low transparency is adopted. There is a case. For this reason, there has been a problem that the laser light incident on the protective glass causes irregular reflection or new interference, which fluctuates the output signal of each light receiving cell.

図11は、図10において測定空間103にガラスなどの透明な遮蔽物104を挿入したときのラインセンサ100の各受光セルの受光量を示した図である。図11−(1)に示すようにラインセンサ100にレーザ光が照射されると、受光セルはその受光量に応じた信号を出力する。尚、投光レンズ101cや光源101aの理想的な特性としては、受光側においてラインセンサ100の真ん中を中心に弧を描くような受光特性となることである。ここで、図11−(1)では、Aの部分にガラスのエッジ部分があることを示している。エッジ部分ではフレネル回折によりガラス表面部分よりも受光量の落ち込みが大きくなるため、エッジ検出部102がその落ち込み具合からエッジ部分と判断する。 FIG. 11 is a diagram showing the amount of light received by each light receiving cell of the line sensor 100 when a transparent shield 104 such as glass is inserted into the measurement space 103 in FIG. When the line sensor 100 is irradiated with laser light as shown in FIG. 11- (1), the light receiving cell outputs a signal corresponding to the amount of light received. The ideal characteristic of the light projecting lens 101c and the light source 101a is that the light receiving characteristic is such that an arc is drawn around the center of the line sensor 100 on the light receiving side. Here, in FIG. 11- (1), it has shown that there exists an edge part of glass in the part of A. FIG. At the edge portion, the drop in the amount of received light becomes larger than that at the glass surface portion due to Fresnel diffraction, so the edge detection unit 102 determines that the edge portion is based on the degree of the drop.

一方、図11−(2)は周囲温度が変化したことにより、レーザ光の波長、出力パワーが変化し、ラインセンサ100への照射状態が変化し、受光セルの受光量が変化したことを示す図である。ここで、図11−(1)と同様に遮蔽物104としてガラスを挿入した場合、Aの部分にガラスのエッジによる受光量の落ち込みが発生するが、自由空間部分であるBの部分にも温度変化やレーザ光の干渉パターンの変動による受光量の落ち込みが発生する場合がある。この場合、エッジ検出部102は所定の受光量の落ち込みを基準しきい値として判断しているので、自由空間部分であるBの部分にもエッジがあると誤って判断してしまうことになる。従来、この誤判断を回避する方法として、検出対象が存在しない場合の受光量の最小値から所定レベルの基準値を設定して、この基準値以下の受光量を検出した場合にのみエッジ部分と判断する方法が提案されている。しかしながら、周囲温度は常時変化するものであり、それに合わせて受光量が変化してしまうことから、周囲温度が変動する環境では採用することができない。また一方では温度センサー等で周囲温度を測定し、周囲温度の変化に合わせて基準値を可変にする機能を具備させる方法もあるが、非常に複雑な制御が必要となってしまう。従って、実際には光源周辺部の周囲温度を安定させる必要が生じ、高価で大規模なシステムの構築を余儀なくされるという問題があった。 On the other hand, FIG. 11- (2) shows that the wavelength of the laser beam and the output power change due to the change in the ambient temperature, the irradiation state to the line sensor 100 changes, and the amount of light received by the light receiving cell changes. FIG. Here, when glass is inserted as the shielding object 104 as in FIG. 11- (1), a drop in the amount of light received due to the edge of the glass occurs in the portion A, but the temperature in the portion B, which is a free space portion, also occurs. There may be a drop in the amount of received light due to a change or fluctuation in the interference pattern of the laser beam. In this case, since the edge detection unit 102 determines a drop in the predetermined amount of received light as a reference threshold value, it erroneously determines that there is an edge in the portion B which is a free space portion. Conventionally, as a method of avoiding this misjudgment, an edge portion is detected only when a reference value of a predetermined level is set from the minimum value of the received light amount when there is no detection target, and the received light amount below this reference value is detected. A method of judging is proposed. However, since the ambient temperature changes constantly and the amount of received light changes accordingly, it cannot be used in an environment where the ambient temperature varies. On the other hand, there is a method of providing a function of measuring the ambient temperature with a temperature sensor or the like and making the reference value variable according to the change in ambient temperature, but very complicated control is required. Therefore, in practice, it is necessary to stabilize the ambient temperature around the light source, and there is a problem that an expensive and large-scale system must be constructed.

このように、従来のエッジ検出装置は、周囲温度によってレーザ光の波長や出力パワーの変化により各受光セルが出力する受光信号が異なってしまい、装置の性能に悪影響を及ぼすという問題があった。また、ラインセンサの受光セルや投光レンズの製造時の特性ばらつきなどにより、製品毎にレーザ光の発光または受光の量にばらつきが生じ、装置の性能に悪影響を及ぼすという問題があった。さらには安価なラインセンサにおいてはラインセンサの保護ガラスに入光したレーザ光に乱反射や新たな干渉が発生し、各受光セルが出力する受光信号を変動させる程度が大きくなってしまうため、高精度なエッジの検知をする場合には安価なラインセンサを使用することは不可能であった。   As described above, the conventional edge detection device has a problem in that the light reception signal output from each light receiving cell differs depending on the ambient temperature and the change in the wavelength of the laser light and the output power, which adversely affects the performance of the device. In addition, there is a problem in that the amount of laser light emitted or received varies from product to product due to variations in the characteristics of the light receiving cell of the line sensor and the light projecting lens, and the performance of the apparatus is adversely affected. Furthermore, in an inexpensive line sensor, the laser light incident on the protective glass of the line sensor is subject to irregular reflection and new interference, which increases the degree to which the received light signal output from each light receiving cell fluctuates. When detecting a simple edge, it was impossible to use an inexpensive line sensor.

この発明は、上記のような課題を解決するためになされたもので、測定空間内の周囲温度の変動や構成する各部品の製造ばらつきの影響を低減して、容易に遮蔽物のエッジ部分の誤検知を回避できるエッジ検出装置を得ることを目的とする。   The present invention has been made to solve the above-described problems, and reduces the influence of fluctuations in the ambient temperature in the measurement space and manufacturing variations of the constituent parts, so that the edge portion of the shield can be easily formed. An object of the present invention is to obtain an edge detection device that can avoid erroneous detection.

この発明に係るエッジ検出装置は、単色光を発生するレーザ光源と、該レーザ光源からの単色光を単色平行光に変換する投光レンズと、該単色平行光を放射する投光窓とからなる投光部と、前記投光窓に対向して設けられた受光窓と、該受光窓から侵入する前記単色平行光を所定の範囲で拡散する光拡散素子と、該拡散させた単色光を受光する複数の受光セルを一方向に所定のピッチで配列したラインセンサとからなる受光部と、前記ラインセンサの受光量分布を解析して前記単色平行光の光路に存在する遮蔽物の前記受光セルの配列方向におけるエッジ位置を検出する検出部とを備えたエッジ検出装置である。 An edge detection apparatus according to the present invention includes a laser light source that generates monochromatic light, a light projecting lens that converts the monochromatic light from the laser light source into monochromatic parallel light, and a light projection window that emits the monochromatic parallel light. A light projecting unit, a light receiving window provided opposite to the light projecting window, a light diffusing element that diffuses the monochromatic parallel light entering from the light receiving window within a predetermined range, and receiving the diffused monochromatic light A light receiving unit comprising a line sensor in which a plurality of light receiving cells are arranged at a predetermined pitch in one direction, and the light receiving cell of a shielding object present in the optical path of the monochromatic parallel light by analyzing a light receiving amount distribution of the line sensor And an edge detecting device that detects an edge position in the arrangement direction.

またこの発明に係るエッジ検出装置は、前記遮蔽物の種類により変わる該遮蔽物の透過率に応じて前記光拡散素子のヘイズを選択して使用するものである。 Moreover, the edge detection apparatus according to the present invention selects and uses the haze of the light diffusing element in accordance with the transmittance of the shielding object that varies depending on the type of the shielding object.

好ましくは、前記光拡散素子のヘイズが50%以下であるエッジ検出装置である。 Preferably, the edge detection device has a haze of the light diffusing element of 50% or less.

またこの発明に係るエッジ検出装置は、前記ラインセンサの受光セル上に保護用ガラスが装備され、該保護用ガラスに前記光拡散素子が接着されたものである。   In the edge detection device according to the present invention, a protective glass is provided on the light receiving cell of the line sensor, and the light diffusing element is bonded to the protective glass.

この発明に係るエッジ検出装置によれば、単色光を発生するレーザ光源と、該レーザ光源からの単色光を単色平行光に変換する投光レンズと、該単色平行光を放射する投光窓とからなる投光部と、前記投光窓に対向して設けられた受光窓と、該受光窓から侵入する前記単色平行光を所定の範囲で拡散する光拡散素子と、該拡散させた単色光を受光する複数の受光セルを一方向に所定のピッチで配列したラインセンサとからなる受光部と、前記ラインセンサの受光量分布を解析して前記単色平行光の光路に存在する遮蔽物の前記受光セルの配列方向におけるエッジ位置を検出する検出部とを備えるので、周囲温度の変化により、レーザ光の波長や出力パワーが変化した場合でも、受光セルからの出力信号に急激な変化を生じることなく、また、ラインセンサの受光セルや投光レンズに製造時の特性ばらつきがある場合でも、安定した出力信号をエッジ検出部に供給することができ、遮蔽物のない空間部分をエッジ部分と誤って検出することを防止できるという効果がある。   According to the edge detection device of the present invention, a laser light source that generates monochromatic light, a projection lens that converts the monochromatic light from the laser light source into monochromatic parallel light, and a projection window that emits the monochromatic parallel light; A light projecting unit comprising: a light receiving window provided opposite to the light projecting window; a light diffusing element that diffuses the monochromatic parallel light entering from the light receiving window within a predetermined range; and the diffused monochromatic light A light receiving unit comprising a line sensor in which a plurality of light receiving cells for receiving light are arranged at a predetermined pitch in one direction, and analyzing the received light amount distribution of the line sensor, the shielding member existing in the optical path of the monochromatic parallel light Since it has a detector that detects the edge position in the array direction of the light receiving cells, even if the wavelength or output power of the laser light changes due to changes in the ambient temperature, a sudden change occurs in the output signal from the light receiving cells. Not again Even if the in-sensor light-receiving cell or the projection lens has variations in manufacturing characteristics, a stable output signal can be supplied to the edge detection unit, and a space part without an obstruction can be erroneously detected as an edge part. There is an effect that it can be prevented.

またこの発明によれば、前記遮蔽物の透過率にあわせて前記光拡散素子のヘイズ(曇度)を選択するので、受光セルからの出力信号のばらつきや急激な変化を生じることなく、遮蔽物の種別が変わっても安定した出力信号をエッジ検出部に供給することができるという効果がある。   According to the invention, since the haze (cloudiness) of the light diffusing element is selected in accordance with the transmittance of the shielding object, the shielding object does not cause variations in output signals from the light receiving cells or abrupt changes. Even if the type changes, a stable output signal can be supplied to the edge detection unit.

またこの発明によれば、光拡散素子のヘイズを50%以下とすることで、受光セルからの出力信号のばらつきや急激な変化を生じることなく、安定した出力信号をエッジ検出部に供給するとともに、ガラスなどの透明体のエッジ部分も正確に検出できるという効果がある。   Further, according to the present invention, by setting the haze of the light diffusing element to 50% or less, a stable output signal is supplied to the edge detection unit without causing a variation in output signal from the light receiving cell or a sudden change. There is an effect that an edge portion of a transparent body such as glass can be accurately detected.

更にこの発明によれば、ラインセンサ素子の受光セル上に保護用ガラスが装備され、該保護用ガラスに光拡散素子を接着することにより、保護用ガラスによるレーザ光の乱反射や新たな干渉パターンの影響を除去でき、安価なラインセンサを使用できるという効果がある。   Furthermore, according to the present invention, a protective glass is provided on the light receiving cell of the line sensor element, and by adhering a light diffusion element to the protective glass, irregular reflection of the laser beam by the protective glass or a new interference pattern can be obtained. The effect can be eliminated, and an inexpensive line sensor can be used.

図1は、この発明の実施の形態によるエッジ検出装置の構成を示す図である。本エッジ検出装置は、投光部1、受光部2及びエッジ検出部3を備える。投光部1は、受光部2の受光窓23の受光面に対向して配置され、レーザダイオード(LD)からなる光源10、光源10を制御するドライバIC11、投光レンズ12及び投光窓13を備える。投光レンズ12は、光源10により発生された単色光を、受光部2のラインセンサ21の中央部にむけて投光窓13を介して放射する。なお、ここでいう単色光は、工業的に生産されているレーザダイオードや光フィルタを用いて得られる程度の波長分布特性を有する光のことである。なお、投光窓13は透明なガラスである。 FIG. 1 is a diagram showing a configuration of an edge detection apparatus according to an embodiment of the present invention. The edge detection apparatus includes a light projecting unit 1, a light receiving unit 2, and an edge detection unit 3. The light projecting unit 1 is disposed to face the light receiving surface of the light receiving window 23 of the light receiving unit 2, and includes a light source 10 including a laser diode (LD), a driver IC 11 that controls the light source 10, a light projecting lens 12, and a light projecting window 13. Is provided. The light projecting lens 12 emits monochromatic light generated by the light source 10 toward the center of the line sensor 21 of the light receiving unit 2 through the light projecting window 13. The monochromatic light referred to here is light having a wavelength distribution characteristic of a degree obtained by using industrially produced laser diodes or optical filters. The projection window 13 is transparent glass.

受光部2は、受光窓23、光拡散素子22及びラインセンサ21を備える。ラインセンサ21は、一定方向に所定のピッチで配列された複数の受光セル(画素)を有しており、投光部1から照射された単色光を受光する。ここで受光窓23は使用する光源10の単色光の波長に合わせたフィルタ機能を持たせることにより、ラインセンサ21への外乱光の影響を緩和できる。   The light receiving unit 2 includes a light receiving window 23, a light diffusing element 22, and a line sensor 21. The line sensor 21 has a plurality of light receiving cells (pixels) arranged at a predetermined pitch in a certain direction, and receives the monochromatic light emitted from the light projecting unit 1. Here, the light receiving window 23 has a filter function in accordance with the wavelength of the monochromatic light of the light source 10 to be used, so that the influence of disturbance light on the line sensor 21 can be reduced.

エッジ検出部3は、A/D変換部31、プロセッサ32及び表示部33を備える。A/D変換部31は受光部2のラインセンサ21から出力される受光セルの出力信号をアナログ値からデジタル値に変換する。プロセッサ32は、A/D変換部31によってデジタル変換されたラインセンサ21の出力信号を解析して、測定空間4で単色平行光の一部を遮蔽した遮蔽物5の受光セルの配列方向におけるエッジ位置を検出する。表示部33は、プロセッサ32による検出結果を表示する。なお、A/D変換部31かつ/またはプロセッサ32は、受光部2内に設けてもよい。その場合には、受光部2とエッジ検出部3との間はデジタル通信となることから、ノイズに強くなり、配線距離を延ばすことが可能となる。また、エッジ検出部3全てを受光部2内に設けても良い。 The edge detection unit 3 includes an A / D conversion unit 31, a processor 32, and a display unit 33. The A / D conversion unit 31 converts the output signal of the light receiving cell output from the line sensor 21 of the light receiving unit 2 from an analog value to a digital value. The processor 32 analyzes the output signal of the line sensor 21 digitally converted by the A / D conversion unit 31, and the edge in the arrangement direction of the light receiving cells of the shielding object 5 that shields a part of the monochromatic parallel light in the measurement space 4. Detect position. The display unit 33 displays the detection result obtained by the processor 32. The A / D conversion unit 31 and / or the processor 32 may be provided in the light receiving unit 2. In that case, since the digital communication is performed between the light receiving unit 2 and the edge detecting unit 3, it is strong against noise and the wiring distance can be extended. Further, the entire edge detector 3 may be provided in the light receiver 2.

図2はラインセンサ21の各受光セルの受光量を示す図である。横軸は各受光セルの位置であり、縦軸は受光した単色光の強さ(受光量)である。測定空間4は投光窓13と受光窓23の間の空間であり、遮蔽物5が不透明体の場合、測定空間4を遮蔽すると、遮蔽された部分5aは受光セルの受光量がほぼ0となる。エッジ検出部3において、ラインセンサ21における受光セルの配列長21aと遮蔽された部分5aの比率から、遮蔽物5のエッジ部分の位置を計算して判断する。なお、ガラスやフィルムのような透明な物体(透明体)の場合には、遮蔽された部分5aの受光セルの受光量は0にはならず、遮蔽物5が何も入っていない状態に比べて受光量が減少する状態となる。尚、減少の割合に関しては、遮蔽物5の透明度などに依存する。 FIG. 2 is a diagram showing the amount of light received by each light receiving cell of the line sensor 21. The horizontal axis represents the position of each light receiving cell, and the vertical axis represents the intensity of monochromatic light received (the amount of received light). The measurement space 4 is a space between the light projecting window 13 and the light receiving window 23. When the shielding object 5 is an opaque body, when the measurement space 4 is shielded, the light receiving cell receives almost zero light in the shielded part 5a. Become. In the edge detection unit 3, the position of the edge part of the shielding object 5 is calculated and determined from the ratio between the array length 21 a of the light receiving cells in the line sensor 21 and the shielded part 5 a. In the case of a transparent object (transparent body) such as glass or film, the amount of light received by the light receiving cell of the shielded portion 5a is not zero, compared to a state in which no shield 5 is present. As a result, the amount of received light decreases. Note that the rate of reduction depends on the transparency of the shield 5 and the like.

図3はエッジ部分の検出に使用するフレネル回折を説明する図である。フレネル回折による光強度分布は、図3に示すようにエッジ位置近傍で急峻に立ち上がり、エッジ位置から離れるに従って振動しながら収束する。なお、単色平行光のフレネル回折によるラインセンサ21の受光面上における光強度分布を利用して遮蔽物5のエッジ部分の位置を検出する場合、予め光強度分布の特性を高精度に求めておくことが必要であるが、本特性の高精度な近似方法に関しては、特開2004−177335号公報に開示されている。   FIG. 3 is a diagram for explaining Fresnel diffraction used for detection of an edge portion. The light intensity distribution by Fresnel diffraction rises steeply near the edge position as shown in FIG. 3, and converges while oscillating as the distance from the edge position increases. When detecting the position of the edge portion of the shield 5 using the light intensity distribution on the light receiving surface of the line sensor 21 by Fresnel diffraction of monochromatic parallel light, the characteristics of the light intensity distribution are obtained in advance with high accuracy. However, a highly accurate approximation method of this characteristic is disclosed in Japanese Patent Application Laid-Open No. 2004-177335.

受光部2において、受光窓23とラインセンサ21の間に光拡散素子22を設置することにより、光拡散素子22を透過した単色光は所定の拡散幅にて拡散され、ラインセンサ21に照射されため、本発明の係るラインセンサ21の出力信号の安定化を実現する。すなわち、光拡散素子22をラインセンサ21の前面に設置することにより、受光セルに入力する単色光が拡散され、多方向から各受光セルに照射するので受光量が安定するとともに、一方で平行な単色光を遮蔽物5に照射してそのエッジ部分のフレネル回折をラインセンサ21に入力することが可能となる。なお、当然のことながら拡散したレーザ光を遮蔽物5に照射してもフレネル回折は起こらないので、例えば投光窓13の表面に光拡散素子22を貼付して用いることはできない。尚、光拡散素子22は薄いフィルム状や板状のものなど、耐久性などを考慮しながら選択する。具体的には、透明性プラスチックスやすりガラス等を用いることができ、特にポリエチレンテレフタレート(PET)等の基材にコーティング処理を施した光拡散フィルムが有効である。光拡散素子22を透過した単色光は所定の拡散幅にて拡散され、ラインセンサ21に照射される。   In the light receiving unit 2, by installing the light diffusing element 22 between the light receiving window 23 and the line sensor 21, the monochromatic light transmitted through the light diffusing element 22 is diffused with a predetermined diffusion width, and is irradiated to the line sensor 21. Therefore, stabilization of the output signal of the line sensor 21 according to the present invention is realized. That is, by installing the light diffusing element 22 on the front surface of the line sensor 21, the monochromatic light input to the light receiving cell is diffused and irradiated to each light receiving cell from multiple directions. It becomes possible to irradiate the shielding object 5 with monochromatic light and input the Fresnel diffraction of the edge portion to the line sensor 21. As a matter of course, Fresnel diffraction does not occur even when the shield 5 is irradiated with the diffused laser light, and therefore, for example, the light diffusing element 22 cannot be attached to the surface of the projection window 13 for use. The light diffusing element 22 is selected in consideration of durability, such as a thin film or plate. Specifically, a transparent plastic filed glass or the like can be used, and in particular, a light diffusion film in which a base material such as polyethylene terephthalate (PET) is coated is effective. The monochromatic light transmitted through the light diffusing element 22 is diffused with a predetermined diffusion width and is irradiated to the line sensor 21.

また、ラインセンサの受光セルが受光する受光量等の特性は、光拡散素子22のヘイズ(濁度または曇度)の違いで異なってくる。ここで、ヘイズ(Haze)とは拡散透過光の全光線透過光に対する割合から求められるもので、光拡散素子22の表面の粗さに影響されるものであり、パーセンテージ(%)で表される。ヘイズの違いによる受光量分布出力の違いを図4に示す。図4−(1)は光拡散素子22を設置しない状態の各受光セルの受光量分布を示すものであり、単色光の干渉パターンによって各受光セルに均等に単色光が照射されず、±20%以上の受光量のばらつきが生じる。特に干渉によっては数十セル毎の単位で受光量分布にうねりが生じている。ここで図4−(2)ではヘイズが50%の光拡散素子22を設置した場合の受光量分布であり、数十セル毎に発生していた受光量分布のうねりが除去されている。さらに、図4−(3)はヘイズ90%の光拡散素子22を設置した場合の受光量分布であり、隣接するセル毎の受光量のばらつきも抑えられ、更に安定した受光量分布を得ることができる。これはラインセンサ21に入光する直前に光拡散素子22を設置することでレーザ光が拡散され、受光セルには拡散されたレーザ光単色光が照射されることから、複数方向からの単色光が照射されるからであり、干渉パターンの影響も小さくなる。さらには、周囲温度により単色光の波長が変化して干渉パターンが変わったとしても、単色光の変化は限定され、微量な受光量の変化に留まることから、周囲温度に影響されないエッジ検出装置を構成することが可能となる。 Further, the characteristics such as the amount of light received by the light receiving cells of the line sensor differ depending on the difference in haze (turbidity or haze) of the light diffusing element 22. Here, the haze is obtained from the ratio of the diffuse transmitted light to the total light transmitted light, and is affected by the surface roughness of the light diffusing element 22, and is expressed as a percentage (%). . The difference in the received light amount distribution output due to the difference in haze is shown in FIG. FIG. 4- (1) shows the received light amount distribution of each light receiving cell in a state where the light diffusing element 22 is not installed. The monochromatic light is not evenly irradiated to each light receiving cell due to the interference pattern of the monochromatic light, and ± 20 % Or more of the received light amount varies. In particular, depending on the interference, the received light amount undulates in units of several tens of cells. Here, FIG. 4- (2) shows the received light amount distribution when the light diffusing element 22 having a haze of 50% is installed, and the waviness of the received light amount distribution generated every several tens of cells is removed. Furthermore, FIG. 4-(3) shows the received light amount distribution when the light diffusing element 22 having a haze of 90% is installed, and variation in the received light amount between adjacent cells can be suppressed, and a more stable received light amount distribution can be obtained. Can do. This is because the laser light is diffused by installing the light diffusing element 22 immediately before entering the line sensor 21, and the diffused laser light monochromatic light is irradiated to the light receiving cell, so that monochromatic light from a plurality of directions is emitted. This is because the influence of the interference pattern is reduced. Furthermore, even if the wavelength of monochromatic light changes due to the ambient temperature and the interference pattern changes, the change in monochromatic light is limited and only a small amount of received light changes. It can be configured.

図5は周囲温度による受光量の変動を示した図である。遮蔽物5が測定空間4に入っていないときの各セルの受光量を基準量1.00として、周囲温度を変化させてみる。図10に示す従来のエッジ検出装置では図5−(1)のように単色光の波長変化による干渉パターンの変動により±20%程度の受光量の変動が生じている。一方、図5−(2)はヘイズ90%の光拡散素子22を設置した場合であり、周囲温度を変化させても受光量の変動はほとんど発生しない。特にヘイズの大きい光拡散素子22を挿入する程、単色光の拡散が大きくなり、単色光の波長の変動に強くなる。 FIG. 5 is a diagram showing fluctuations in the amount of received light depending on the ambient temperature. Let the received light amount of each cell when the shield 5 is not in the measurement space 4 be the reference amount 1.00, and change the ambient temperature. In the conventional edge detection apparatus shown in FIG. 10, the fluctuation of the received light amount is about ± 20% due to the fluctuation of the interference pattern due to the change of the wavelength of the monochromatic light as shown in FIG. On the other hand, FIG. 5- (2) shows a case where the light diffusing element 22 having a haze of 90% is installed, and even if the ambient temperature is changed, the amount of received light hardly varies. In particular, as the light diffusing element 22 having a large haze is inserted, the diffusion of the monochromatic light is increased and the wavelength of the monochromatic light is more resistant to fluctuation.

ここで図6は、ヘイズ90%の光拡散素子22を設置して測定空間4に不透明体の遮蔽物5を挿入したときの受光量を示した図である。図10に示す従来の光拡散素子22を使用しないエッジ検出装置同様に、フレネル回折が発生し、問題なく遮蔽物5のエッジ部分を検出することができる。   Here, FIG. 6 is a diagram showing the amount of light received when the light diffusing element 22 having a haze of 90% is installed and the opaque shield 5 is inserted into the measurement space 4. Similar to the edge detection device that does not use the conventional light diffusing element 22 shown in FIG. 10, Fresnel diffraction occurs, and the edge portion of the shield 5 can be detected without any problem.

一方図7は、測定空間4にガラスのような透明体の遮蔽物5を挿入したときの受光量を示した図である。図7−(1)は図10に示す従来のエッジ検出装置であり、5aはガラスが挿入されている部分であり、5bは遮蔽物5の無い自由空間である。この場合、エッジ部分にはフレネル回折により5cのような大きな受光量の落ち込みが発生し、この落ち込みからエッジの位置を検出することが可能となる。例えば、図7−(1)において、エッジと判断する受光量の変動のしきい値を0.5とすると、ガラスの挿入されている部分5aの受光量(換算値)の落ち込みは0.8程度であるので、エッジ部分を正確に検知することが可能となる。 On the other hand, FIG. 7 is a diagram showing the amount of received light when a transparent shielding object 5 such as glass is inserted into the measurement space 4. 7- (1) is the conventional edge detection apparatus shown in FIG. 10, 5a is a part in which glass is inserted, and 5b is a free space without the shielding object 5. FIG. In this case, a large drop in the amount of received light such as 5c occurs at the edge portion due to Fresnel diffraction, and the position of the edge can be detected from this drop. For example, in FIG. 7- (1), when the threshold value of the variation in the amount of received light that is determined to be an edge is 0.5, the drop in the amount of received light (converted value) of the portion 5a in which the glass is inserted is 0.8. Therefore, the edge portion can be accurately detected.

ここで、ヘイズ90%の光拡散素子22を配置した場合、図7−(2)のようにエッジによる受光量の変動の落ち込みは非常に小さくなる。これは光拡散素子22により単色光の拡散が大きくなり、多数の拡散された単色光が各方向から受光セルに入光され、フィルタがかかったような状態となるからである。不透明体であれば遮蔽物5による遮光部分が明確であるためエッジ検出を正確におこなうことができるが、一方、遮蔽物5が透明体の場合にはエッジ部分におけるフレネル回折の効果が減少してしまい、正確なエッジ検出ができなくなるという課題が生じる。 Here, when the light diffusing element 22 having a haze of 90% is arranged, the drop in the variation in the amount of received light due to the edge becomes very small as shown in FIG. This is because the diffusion of the monochromatic light is increased by the light diffusing element 22, and a large number of diffused monochromatic lights enter the light receiving cell from each direction and are in a state of being filtered. In the case of an opaque body, the light shielding portion by the shielding object 5 is clear, so that the edge detection can be performed accurately. On the other hand, when the shielding object 5 is a transparent body, the effect of Fresnel diffraction at the edge portion is reduced. Therefore, there arises a problem that accurate edge detection cannot be performed.

そこで、本発明者は、光拡散素子のヘイズ値を低くすることでその課題が解決することを確認した。図7−(3)はヘイズ50%の光拡散素子22を配置した場合の受光量を示したものであり、図7−(1)に示す光拡散素子22が無い場合に比べてややエッジによる落ち込みは小さくなるが、エッジの判断しきい値を0.6にすれば十分にエッジ部分を検出することができる。さらには、ガラスが挿入されている5aの部分は光拡散素子22により安定化されるので、受光量の落ち込みが小さく安定しており、かつ周囲温度による自由空間5b部分の受光量の変動も少ないので、エッジ判断のしきい値を高くすることが可能となり、エッジ部分の検出は十分可能である。なお、遮蔽物5が透明度の高いガラスや非常に薄いフィルムの場合には、更にヘイズが小さいものを選択することが有効となる。一方、遮蔽物5がナイフエッジのような不透明体の場合には、ヘイズが高いほうが受光量の変動が少なく安定した計測ができる。このように、光拡散素子22は遮蔽物5の透過率に合わせてヘイズを選択することすることが有効である。なお、光拡散素子のヘイズが50%以下であれば、透明体のエッジ部分の正確な検出と各受光セルの受光量の安定の両立ができより好ましい。 Then, this inventor confirmed that the subject was solved by making the haze value of a light-diffusion element low. FIG. 7- (3) shows the amount of light received when the light diffusing element 22 having a haze of 50% is arranged, which is slightly due to the edge as compared to the case without the light diffusing element 22 shown in FIG. 7- (1). Although the drop is reduced, if the edge judgment threshold is set to 0.6, the edge portion can be sufficiently detected. Furthermore, since the portion 5a into which the glass is inserted is stabilized by the light diffusing element 22, the drop in the amount of received light is small and stable, and the variation in the amount of received light in the free space 5b portion due to the ambient temperature is small. Therefore, it is possible to increase the threshold for edge judgment, and the edge portion can be sufficiently detected. In addition, when the shielding object 5 is a highly transparent glass or a very thin film, it is effective to select one having a smaller haze. On the other hand, when the shielding object 5 is an opaque body such as a knife edge, the higher the haze, the less the fluctuation of the amount of received light, and the stable measurement can be performed. Thus, it is effective for the light diffusing element 22 to select the haze according to the transmittance of the shield 5. If the haze of the light diffusing element is 50% or less, it is more preferable because both the accurate detection of the edge portion of the transparent body and the stability of the received light amount of each light receiving cell can be achieved.

図8はラインセンサ21と光拡散素子22の構成を示す一例である。ラインセンサ21は一方向に所定のピッチで配列された複数の受光セル211により単色光を受光するが、受光セル211をゴミなどから保護するための保護用ガラス212がセル上数mmの位置に配置される。各々の位置関係は図9に示す通り、受光窓23の下にラインセンサ21がくるように配置する。ここで、光拡散素子22を保護用ガラス212の上に接着することにより、受光セル211と光拡散素子22の位置関係が固定されるため、受光量分布の特性の変動が抑えられる。また、光拡散素子22を受光セル211に近づけるほど拡散によるエッジ部分のフレネル回折の落ち込み低下を回避できるのでより近づけることが好ましい。更に、保護用ガラス212には単色光の乱反射や干渉を抑える観点から限りなく透明なガラスを採用することが好ましいが、ラインセンサ21のコストが高くなってしまうことから、一般には透明度の低いガラスが採用されている。しかし、本発明の光拡散素子22を受光窓23と保護用ガラス212の間に配置し、さらにはラインセンサ21の保護用ガラス212と接着することで、レーザ光の乱反射や干渉を軽減できるという効果がある。なお、保護用ガラス212と受光セル211の間に光拡散素子22を設置しても同様の効果がある。尚、光拡散素子と保護用ガラスの接着は、例えば光学部品用の接着剤など透光性を有する接着剤で行う。 FIG. 8 shows an example of the configuration of the line sensor 21 and the light diffusing element 22. The line sensor 21 receives monochromatic light by a plurality of light receiving cells 211 arranged at a predetermined pitch in one direction, but a protective glass 212 for protecting the light receiving cells 211 from dust or the like is at a position of several mm above the cells. Be placed. As shown in FIG. 9, each positional relationship is arranged so that the line sensor 21 comes under the light receiving window 23. Here, since the positional relationship between the light receiving cell 211 and the light diffusing element 22 is fixed by adhering the light diffusing element 22 onto the protective glass 212, fluctuations in the characteristics of the received light amount distribution can be suppressed. Further, the closer the light diffusing element 22 is to the light receiving cell 211, the lower the drop in Fresnel diffraction at the edge due to diffusion can be avoided, so it is preferable that the light diffusing element 22 be closer. Further, it is preferable to use a transparent glass as the protective glass 212 from the viewpoint of suppressing irregular reflection and interference of monochromatic light. However, since the cost of the line sensor 21 is increased, generally a glass with low transparency is used. Is adopted. However, by arranging the light diffusing element 22 of the present invention between the light receiving window 23 and the protective glass 212 and further adhering to the protective glass 212 of the line sensor 21, it is possible to reduce irregular reflection and interference of laser light. effective. Even if the light diffusing element 22 is installed between the protective glass 212 and the light receiving cell 211, the same effect is obtained. The light diffusing element and the protective glass are bonded with a light-transmitting adhesive such as an adhesive for optical components.

上述のように、本発明を実施することで、周囲温度の変化によりレーザ光の波長や出力パワーが変化した場合でも、受光セルからの出力信号に急激な変化を生じることなく、また、ラインセンサの受光セルや投光レンズに製造時の特性ばらつきがある場合でも、安定した出力信号をエッジ検出部に供給することがすることができ、遮蔽物のない空間部分をエッジ部分と誤って検出することを防止できるという効果がある。また副次的な効果として、光源付近のドライバICによる発熱の影響を除去する上でも有効であり、電源投入してから計測可能となるまでの安定時間を短くできる効果がある。さらに副次的な効果として、ラインセンサの保護用ガラスによるレーザ光の乱反射や新たな干渉パターンの影響を除去でき、安価なラインセンサを使用できるという効果がある。 As described above, by implementing the present invention, even when the wavelength or output power of the laser beam changes due to a change in ambient temperature, the output signal from the light receiving cell does not change suddenly, and the line sensor Even if there are variations in manufacturing characteristics of the light receiving cell and the light projecting lens, a stable output signal can be supplied to the edge detection unit, and a space part without a shield is erroneously detected as an edge part. There is an effect that can be prevented. Further, as a secondary effect, it is effective in removing the influence of heat generated by the driver IC near the light source, and there is an effect of shortening the stable time from when the power is turned on until measurement is possible. Further, as a secondary effect, there is an effect that an inexpensive line sensor can be used because the influence of the irregular reflection of the laser beam by the protective glass of the line sensor and the influence of a new interference pattern can be removed.

この発明の実施の形態1によるエッジ検出装置の構成を示す図である。It is a figure which shows the structure of the edge detection apparatus by Embodiment 1 of this invention. 実施形態1におけるラインセンサの各受光セルの受光量を示す図である。It is a figure which shows the light reception amount of each light reception cell of the line sensor in Embodiment 1. FIG. エッジ部分の検出に使用するフレネル回折を説明する図である。It is a figure explaining the Fresnel diffraction used for the detection of an edge part. 光拡散素子のヘイズの違いによる各受光セルの受光量分布を説明する図である。It is a figure explaining the light reception amount distribution of each light reception cell by the difference in the haze of a light-diffusion element. 周囲温度による受光量の変動を説明する図である。It is a figure explaining the fluctuation | variation of the light reception amount by ambient temperature. 不透明体の遮蔽物を挿入したときの受光量を示した図である。It is the figure which showed the light reception amount when inserting the shielding body of an opaque body. 透明体の遮蔽物を挿入したときの受光量を示した図である。It is the figure which showed the light reception amount when inserting the shielding body of a transparent body. ラインセンサと光拡散素子の構成を示す図である。It is a figure which shows the structure of a line sensor and a light-diffusion element. ラインセンサと光拡散素子の位置関係を示す図である。It is a figure which shows the positional relationship of a line sensor and a light-diffusion element. 従来のエッジ検出装置の構成を示す図である。It is a figure which shows the structure of the conventional edge detection apparatus. 従来のエッジ検出装置の各受光セルの受光量分布を説明する図である。It is a figure explaining received light quantity distribution of each light reception cell of the conventional edge detection apparatus.

符号の説明Explanation of symbols

1 投光部
2 受光部
3 エッジ検出部
4 測定空間
5 遮蔽物
10 光源
11 ドライバIC
12 投光レンズ
13 投光窓
21 ラインセンサ
211 受光セル
212 保護用ガラス
22 光拡散素子
23 受光窓
31 A/D変換部
32 プロセッサ
33 表示部
100 ラインセンサ
101 投光器
101a 光源
101b 光ファイバ
101c 投光レンズ
101d ドライバIC
102 エッジ検出部
103 測定空間
104,104a,104b 遮蔽物
105 受光セル




































DESCRIPTION OF SYMBOLS 1 Light projection part 2 Light reception part 3 Edge detection part 4 Measurement space 5 Shielding object 10 Light source 11 Driver IC
DESCRIPTION OF SYMBOLS 12 Light projection lens 13 Light projection window 21 Line sensor 211 Light reception cell 212 Protective glass 22 Light diffusion element 23 Light reception window 31 A / D conversion part 32 Processor 33 Display part 100 Line sensor 101 Light projector 101a Light source 101b Optical fiber 101c Light projection lens 101d Driver IC
102 Edge detection unit 103 Measurement space 104, 104a, 104b Shielding object 105 Light receiving cell




































Claims (5)

単色光を発生するレーザ光源と、該レーザ光源からの単色光を単色平行光に変換する投光レンズと、該単色平行光を放射する投光窓とからなる投光部と、
前記投光窓に対向して設けられた受光窓と、該受光窓から侵入する前記単色平行光を所定の範囲で拡散する光拡散素子と、該拡散させた単色光を受光する複数の受光セルを一方向に所定のピッチで配列したラインセンサとからなる受光部と、
前記ラインセンサの受光量分布を解析して前記単色平行光の光路に存在する遮蔽物の前記受光セルの配列方向におけるエッジ位置を検出する検出部と
を備えたエッジ検出装置。
A light projecting unit comprising: a laser light source that generates monochromatic light; a light projecting lens that converts the monochromatic light from the laser light source into monochromatic parallel light; and a light projecting window that emits the monochromatic parallel light;
A light receiving window provided opposite to the light projecting window, a light diffusing element for diffusing the monochromatic parallel light entering from the light receiving window in a predetermined range, and a plurality of light receiving cells for receiving the diffused monochromatic light A light receiving unit composed of line sensors arranged at a predetermined pitch in one direction,
An edge detection apparatus comprising: a detection unit that analyzes a received light amount distribution of the line sensor and detects an edge position in an arrangement direction of the light receiving cells of a shielding object present in the optical path of the monochromatic parallel light.
前記光拡散素子は、前記遮蔽物の種類により変わる透過率に応じてヘイズを選択して使用することを特徴とする請求項1記載のエッジ検出装置。 The edge detection device according to claim 1, wherein the light diffusing element selects and uses a haze according to a transmittance that varies depending on a type of the shielding object. 前記光拡散素子は、ヘイズが50%以下であることを特徴とする請求項1記載のエッジ検出装置。 The edge detection device according to claim 1, wherein the light diffusing element has a haze of 50% or less. 前記ラインセンサの受光セル上に保護用ガラスが装備され、該保護用ガラスに前記光拡散素子が接着されたことを特徴とする請求項1記載のエッジ検出装置。 The edge detection device according to claim 1, wherein a protective glass is provided on the light receiving cell of the line sensor, and the light diffusion element is bonded to the protective glass. 複数の受光セルが一方向に所定のピッチで配列され、該受光セル上に保護用ガラスを備え、該保護用ガラスに所定のヘイズを有する光拡散素子を接着させたことを特徴とするエッジ検出装置用ライセンサ。















Edge detection characterized in that a plurality of light receiving cells are arranged at a predetermined pitch in one direction, a protective glass is provided on the light receiving cells, and a light diffusing element having a predetermined haze is bonded to the protective glass. Licenser for equipment.















JP2007133420A 2007-05-18 2007-05-18 Edge detector and line sensor for edge detector Active JP4879087B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007133420A JP4879087B2 (en) 2007-05-18 2007-05-18 Edge detector and line sensor for edge detector
TW97124499A TW201000847A (en) 2007-05-18 2008-06-30 Edge detector, and line sensor for edge detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007133420A JP4879087B2 (en) 2007-05-18 2007-05-18 Edge detector and line sensor for edge detector

Publications (2)

Publication Number Publication Date
JP2008286711A true JP2008286711A (en) 2008-11-27
JP4879087B2 JP4879087B2 (en) 2012-02-15

Family

ID=40146561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007133420A Active JP4879087B2 (en) 2007-05-18 2007-05-18 Edge detector and line sensor for edge detector

Country Status (2)

Country Link
JP (1) JP4879087B2 (en)
TW (1) TW201000847A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6423145A (en) * 1987-07-20 1989-01-25 Asahi Chemical Ind Optical appearance inspection device
JP2004177335A (en) * 2002-11-28 2004-06-24 Yamatake Corp Method and device for detection of position
JP2004226372A (en) * 2003-01-27 2004-08-12 Yamatake Corp Position detection method and apparatus
JP2004340781A (en) * 2003-05-16 2004-12-02 Nireco Corp Device and method for detecting edge position of strip matter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6423145A (en) * 1987-07-20 1989-01-25 Asahi Chemical Ind Optical appearance inspection device
JP2004177335A (en) * 2002-11-28 2004-06-24 Yamatake Corp Method and device for detection of position
JP2004226372A (en) * 2003-01-27 2004-08-12 Yamatake Corp Position detection method and apparatus
JP2004340781A (en) * 2003-05-16 2004-12-02 Nireco Corp Device and method for detecting edge position of strip matter

Also Published As

Publication number Publication date
TW201000847A (en) 2010-01-01
TWI359937B (en) 2012-03-11
JP4879087B2 (en) 2012-02-15

Similar Documents

Publication Publication Date Title
US10823635B1 (en) Monitoring DOE performance using total internal reflection
CN109642850B (en) DOE defect monitoring using total internal reflection
EP1313222B1 (en) Method and apparatus for self-monitoring of proximity sensors
US9494530B2 (en) Optical sensor for detecting lubricant deterioration
US9459352B2 (en) Multi-sensor proximity sensing using a near zone light sensor and a far zone light sensor
CN108344378B (en) Laser projection module, damage detection method thereof, depth camera and electronic device
CA2652591A1 (en) Position detector
JP2009150690A (en) Reflection-type optical sensor
JP2011525239A (en) Photoelectric switch and method for detecting objects
CN101639342B (en) Edge detection device and line sensor for same
JP2009276126A (en) Thermopile infrared detector
US20180306715A1 (en) Smoke-detecting photosensor
JP4879087B2 (en) Edge detector and line sensor for edge detector
JP2016051146A (en) Optical detection device
JP4893456B2 (en) Position dimension measuring device
JP2009002701A (en) Edge detector and line sensor for edge detector
KR101093366B1 (en) Edge detection device and line sensor for edge detection device
KR100994392B1 (en) Edge detection device and line sensor for edge detection device
JP2018124122A (en) Raindrop detector
JP2016133491A (en) Gas detection device
JP2007003348A (en) Regression reflection typed photo-electronic sensor
CN113227650A (en) Light emitting module with irregular and/or aperiodic conductive traces
JP2006040913A (en) Photoelectric sensor
JP2008153320A (en) Light source system
JP2008034420A (en) Photointerrupter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100315

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111129

R150 Certificate of patent or registration of utility model

Ref document number: 4879087

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3