JP2008286476A - Engine-driven heat pump device - Google Patents

Engine-driven heat pump device Download PDF

Info

Publication number
JP2008286476A
JP2008286476A JP2007132042A JP2007132042A JP2008286476A JP 2008286476 A JP2008286476 A JP 2008286476A JP 2007132042 A JP2007132042 A JP 2007132042A JP 2007132042 A JP2007132042 A JP 2007132042A JP 2008286476 A JP2008286476 A JP 2008286476A
Authority
JP
Japan
Prior art keywords
heat
heating
cooling water
refrigerant
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007132042A
Other languages
Japanese (ja)
Other versions
JP4990677B2 (en
Inventor
Yoshitaka Shibata
善隆 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2007132042A priority Critical patent/JP4990677B2/en
Publication of JP2008286476A publication Critical patent/JP2008286476A/en
Application granted granted Critical
Publication of JP4990677B2 publication Critical patent/JP4990677B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Abstract

<P>PROBLEM TO BE SOLVED: To effectively improve heating capacity in heat pump heating. <P>SOLUTION: This engine-driven heat pump device performing a heat transporting fluid heating operation by an operation control device 58 for heating a heat transporting fluid by cooling water, and utilizing exhaust heat in hot water supply, heating and the like, is further provided with an auxiliary heat source machine 32 capable of heating the heat transporting fluid supplied to a heat utilizing portion 56 by a heat transporting fluid supplying means 57 or a hot water storage tank 27 storing the heat transporting fluid after passing through an exhaust-heat heat exchanger 14, the heat transporting fluid supplying means 27 is constituted to supply the heat transporting fluid heated by the auxiliary heat source machine 32 or the heat transporting fluid stored in the hot water storage tank 27 to the exhaust-heat heat exchanger 14, and the operation control device 58 is constituted to perform a cooling water heating operation controlling the operations of a cooling water circulating means 15 and the heat transporting fluid supplying means 57 to heat the cooling water circulated by the cooling water circulating means 15 by the heat transporting fluid supplied to the heat transporting fluid supplying means 57 in the exhaust-heat heat exchanger 14. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、エンジンにより駆動されて冷媒を圧縮する圧縮機、前記冷媒から放熱させる凝縮器、前記冷媒を膨張させる膨張弁、前記冷媒に吸熱させる蒸発器の順に前記冷媒を循環する冷媒回路と、前記エンジンの冷却水を排熱熱交換器との間で循環させる冷却水循環手段と、熱搬送流体を前記排熱熱交換器に供給し、前記排熱熱交換器の通過後の熱搬送流体を熱利用部に供給する熱搬送流体供給手段と、前記排熱熱交換器において前記冷却水循環手段にて循環される冷却水にて前記熱搬送流体供給手段にて供給される熱搬送流体を加熱すべく、前記冷却水循環手段及び前記熱搬送流体供給手段の夫々の作動を制御する熱搬送流体加熱運転を行う運転制御手段とが設けられているエンジン駆動ヒートポンプ装置に関する。   The present invention is a compressor that is driven by an engine to compress refrigerant, a condenser that dissipates heat from the refrigerant, an expansion valve that expands the refrigerant, and a refrigerant circuit that circulates the refrigerant in the order of an evaporator that absorbs heat from the refrigerant; Cooling water circulation means for circulating the cooling water of the engine to and from the exhaust heat exchanger, heat supply fluid is supplied to the exhaust heat exchanger, and the heat transfer fluid after passing through the exhaust heat exchanger A heat transfer fluid supply means for supplying heat to the heat utilization section; and a heat transfer fluid supplied by the heat transfer fluid supply means with the cooling water circulated by the cooling water circulation means in the exhaust heat exchanger. Therefore, the present invention relates to an engine-driven heat pump apparatus provided with operation control means for performing a heat carrier fluid heating operation for controlling the respective operations of the cooling water circulation means and the heat carrier fluid supply means.

上記のようなエンジン駆動ヒートポンプ装置は、凝縮器として冷媒と室内の空気との間で熱交換可能な室内機を設けるとともに、蒸発器として冷媒と室外の外気との間で熱交換可能な室外熱交換器を設け、運転制御手段が、エンジンにより圧縮機を駆動させて冷媒回路にて冷媒を循環させ、室内を暖房するヒートポンプ暖房運転を行うようにしている。
運転制御手段が、熱搬送流体加熱運転を行うことにより、排熱熱交換器において冷却水循環手段にて循環される冷却水が熱搬送流体供給手段にて供給される熱搬送流体を加熱して、エンジンの冷却水を用いて熱搬送流体を加熱している。加熱された熱搬送流体は、熱搬送流体供給手段によって熱利用部に供給されて給湯、風呂の追焚き、暖房等に利用されている。
The engine-driven heat pump apparatus as described above is provided with an indoor unit capable of exchanging heat between the refrigerant and the indoor air as a condenser and an outdoor heat capable of exchanging heat between the refrigerant and the outdoor air as an evaporator. An exchanger is provided, and the operation control means drives the compressor by the engine, circulates the refrigerant in the refrigerant circuit, and performs the heat pump heating operation for heating the room.
When the operation control means performs the heat carrier fluid heating operation, the cooling water circulated by the coolant circulation means in the exhaust heat exchanger heats the heat carrier fluid supplied by the heat carrier fluid supply means, The heat carrier fluid is heated using engine cooling water. The heated heat carrier fluid is supplied to the heat utilization unit by the heat carrier fluid supply means and used for hot water supply, bathing, heating, and the like.

従来のエンジン駆動ヒートポンプ装置では、排熱熱交換器の通過後の熱搬送流体を貯留する貯湯タンクが設けられ、熱搬送流体供給手段が、貯湯タンクに貯留されている貯湯水を熱利用部に供給するように構成されている。そして、熱利用部にて要求している熱負荷を賄えないときのために、熱搬送流体供給手段により熱利用部に供給される熱搬送流体を加熱可能な補助熱源機が設けられている。また、エンジンの冷却水にて冷媒回路の冷媒を加熱する冷媒加熱用熱交換器が設けられ、大気の熱に加えて冷却水を冷媒の加熱に利用できるようにしている(例えば、特許文献1参照。)。   In a conventional engine-driven heat pump device, a hot water storage tank for storing the heat transfer fluid after passing through the exhaust heat exchanger is provided, and the heat transfer fluid supply means uses the hot water stored in the hot water storage tank as a heat utilization unit. It is configured to supply. An auxiliary heat source device capable of heating the heat transfer fluid supplied to the heat use portion by the heat transfer fluid supply means is provided for the case where the heat load requested by the heat use portion cannot be covered. . Further, a refrigerant heating heat exchanger that heats the refrigerant in the refrigerant circuit with engine cooling water is provided so that the cooling water can be used for heating the refrigerant in addition to the heat of the atmosphere (for example, Patent Document 1). reference.).

特許第3746471号公報Japanese Patent No. 3746471

上記従来のエンジン駆動ヒートポンプ装置では、大気の熱に加えてエンジンの冷却水を冷媒の加熱に利用することによりヒートポンプ暖房運転における暖房能力(以下、単に、「暖房能力」と略称する)の向上を図るようにしているが、大気の熱と冷却水とにより冷媒を効果的に加熱できないこともあり、暖房能力の向上を効果的に図ることができない虞がある。
例えば、エンジンや冷却水の温度が低い状態からエンジンを始動させたときには、エンジンや冷却水が温まるまでは冷却水を冷媒の加熱に利用できず、冷却水を冷媒の加熱に利用できるまでの時間が長くなる。また、外気温度が非常に低い厳寒時には、大気の熱により冷媒を加熱することが期待できないので、冷却水を冷媒の加熱に利用しても得られる暖房能力が要求されている暖房能力よりも不足することがある。しかも、冷却水を冷媒の加熱に利用することにより冷却水の温度が低下し過ぎてしまい、エンジンの燃焼ガス内の水蒸気が凝縮してエンジンオイルに溶け込み、エンジンオイルの劣化を招く等の不具合が発生する虞がある。
In the above conventional engine-driven heat pump device, the heating capacity in the heat pump heating operation (hereinafter simply referred to as “heating capacity”) is improved by using engine cooling water for heating the refrigerant in addition to atmospheric heat. However, the refrigerant cannot be effectively heated by the atmospheric heat and the cooling water, and there is a possibility that the heating capacity cannot be effectively improved.
For example, when the engine is started from a state where the temperature of the engine or the cooling water is low, the cooling water cannot be used for heating the refrigerant until the engine or the cooling water is warmed, and the time until the cooling water can be used for heating the refrigerant. Becomes longer. Also, when the outside air temperature is very low, it is not possible to heat the refrigerant with atmospheric heat, so the heating capacity that can be obtained even if cooling water is used to heat the refrigerant is insufficient. There are things to do. Moreover, the use of cooling water for heating the refrigerant causes the temperature of the cooling water to decrease too much, causing water vapor in the combustion gas of the engine to condense and dissolve in the engine oil, leading to deterioration of the engine oil. May occur.

本発明は、かかる点に着目してなされたものであり、その目的は、暖房能力の向上を効果的に図ることができるエンジン駆動ヒートポンプ装置を提供する点にある。   This invention is made paying attention to this point, and the objective is to provide the engine drive heat pump apparatus which can aim at the improvement of a heating capability effectively.

この目的を達成するために、本発明に係るエンジン駆動ヒートポンプ装置の第1特徴構成は、エンジンにより駆動されて冷媒を圧縮する圧縮機、前記冷媒から放熱させる凝縮器、前記冷媒を膨張させる膨張弁、前記冷媒に吸熱させる蒸発器の順に前記冷媒を循環する冷媒回路と、前記エンジンの冷却水を排熱熱交換器との間で循環させる冷却水循環手段と、熱搬送流体を前記排熱熱交換器に供給し、前記排熱熱交換器の通過後の熱搬送流体を熱利用部に供給する熱搬送流体供給手段と、前記排熱熱交換器において前記冷却水循環手段にて循環される冷却水にて前記熱搬送流体供給手段にて供給される熱搬送流体を加熱すべく、前記冷却水循環手段及び前記熱搬送流体供給手段の夫々の作動を制御する熱搬送流体加熱運転を行う運転制御手段とが設けられているエンジン駆動ヒートポンプ装置において、前記熱搬送流体供給手段により前記熱利用部に供給される熱搬送流体を加熱可能な補助熱源機、又は、前記排熱熱交換器の通過後の熱搬送流体を貯留する貯湯タンクが設けられ、前記熱搬送流体供給手段が、前記補助熱源機にて加熱された熱搬送流体又は前記貯湯タンクに貯留された熱搬送流体を前記排熱熱交換器に供給するように構成され、前記運転制御手段が、前記排熱熱交換器において前記熱搬送流体供給手段により供給される前記熱搬送流体にて前記冷却水循環手段にて循環される冷却水を加熱すべく、前記冷却水循環手段及び前記熱搬送流体供給手段の夫々の作動を制御する冷却水加熱運転を行うように構成されている点にある。   In order to achieve this object, a first characteristic configuration of an engine-driven heat pump device according to the present invention includes a compressor that is driven by an engine to compress refrigerant, a condenser that dissipates heat from the refrigerant, and an expansion valve that expands the refrigerant. A refrigerant circuit that circulates the refrigerant in the order of an evaporator that absorbs heat to the refrigerant, a cooling water circulation means that circulates cooling water of the engine between the exhaust heat exchanger, and a heat transfer fluid that exchanges the exhaust heat A heat transfer fluid supply means for supplying the heat transfer fluid after passing through the exhaust heat exchanger to a heat utilization part, and cooling water circulated by the coolant circulation means in the exhaust heat exchanger Operation control means for performing a heat carrier fluid heating operation for controlling the respective operations of the cooling water circulation means and the heat carrier fluid supply means to heat the heat carrier fluid supplied by the heat carrier fluid supply means. In the engine-driven heat pump apparatus provided, the heat transfer after passing through the auxiliary heat source unit that can heat the heat transfer fluid supplied to the heat utilization unit by the heat transfer fluid supply unit, or the exhaust heat exchanger A hot water storage tank for storing fluid is provided, and the heat transfer fluid supply means supplies the heat transfer fluid heated by the auxiliary heat source device or the heat transfer fluid stored in the hot water storage tank to the exhaust heat exchanger. The operation control means is configured to heat the cooling water circulated in the cooling water circulation means with the heat carrier fluid supplied by the heat carrier fluid supply means in the exhaust heat exchanger. The cooling water heating operation for controlling the respective operations of the cooling water circulation means and the heat carrier fluid supply means is performed.

すなわち、運転制御手段が、冷却水加熱運転を行うことにより、排熱熱交換器において熱搬送流体にてエンジンの冷却水を加熱できるので、エンジンや冷却水の温度が低い状態からエンジンを始動させたときでも、エンジンや冷却水を短時間で温めることができる。したがって、例えば、エンジンの冷却水を冷媒の加熱に利用する場合には、冷却水を冷媒の加熱に利用できるまでの時間を極力短くすることができ、ヒートポンプ暖房の立ち上がりを早めることができる。
また、例えば、冷却水を冷媒の加熱に利用する場合には、運転制御手段が冷却水加熱運転を行うことにより、排熱熱交換器にて冷却水に加えられた熱を冷媒の加熱に利用することができる。したがって、外気温度が非常に低い厳寒時には、運転制御手段が冷却水加熱運転を行うことにより、得られる暖房能力を高めることができ、要求されている暖房能力よりも不足することを抑制できる。しかも、冷却水を冷媒の加熱に利用しても、冷却水の温度を高い温度に維持することができるので、エンジンオイルの劣化等の不具合の発生を抑制できる。
That is, since the operation control means can perform the cooling water heating operation to heat the engine cooling water with the heat transfer fluid in the exhaust heat exchanger, the engine is started from a state where the temperature of the engine or the cooling water is low. The engine and cooling water can be warmed up in a short time. Therefore, for example, when engine cooling water is used for heating the refrigerant, the time until the cooling water can be used for heating the refrigerant can be shortened as much as possible, and the rise of the heat pump heating can be accelerated.
Also, for example, when cooling water is used for heating the refrigerant, the operation control means performs the cooling water heating operation so that the heat added to the cooling water in the exhaust heat exchanger is used for heating the refrigerant. can do. Therefore, when the outside air temperature is very low and the operation temperature is very low, the operation control means can perform the cooling water heating operation, thereby increasing the heating capacity that can be obtained and suppressing the deficiency from the required heating capacity. Moreover, even if the cooling water is used for heating the refrigerant, the temperature of the cooling water can be maintained at a high temperature, so that occurrence of problems such as deterioration of engine oil can be suppressed.

このようにして、運転制御手段が冷却水加熱運転を行うことにより、エンジンや冷却水の温度が低い状態からエンジンを始動させたときや外気温度が非常に低い厳寒時でも、ヒートポンプ暖房の立ち上がりを早めることができたり、得られる暖房能力が要求されている暖房能力よりも不足することを抑制でき、暖房能力の向上を効果的に図ることができるエンジン駆動ヒートポンプ装置を提供できるに至った。   In this way, the operation control means performs the cooling water heating operation, so that the heat pump heating can be started even when the engine is started from a low temperature or when the outside air temperature is very low. It has become possible to provide an engine-driven heat pump device that can be accelerated or can be prevented from being deficient in the heating capacity that is required, and that can effectively improve the heating capacity.

本発明に係るエンジン駆動ヒートポンプ装置の第2特徴構成は、前記冷却水循環手段が、前記冷媒回路の冷媒を加熱する冷媒加熱用熱交換器を通過させる状態で冷却水を循環させるように構成され、前記冷媒加熱用熱交換器は、前記冷媒回路において、前記蒸発器と前記圧縮機との間における冷媒を加熱するように配設されている点にある。   A second characteristic configuration of the engine-driven heat pump device according to the present invention is configured such that the cooling water circulation means circulates the cooling water in a state of passing through a heat exchanger for heating the refrigerant that heats the refrigerant in the refrigerant circuit, The refrigerant heating heat exchanger is disposed in the refrigerant circuit so as to heat the refrigerant between the evaporator and the compressor.

すなわち、蒸発器と圧縮機との間における冷媒は、蒸発器での蒸発により低温となっているので、冷媒加熱用熱交換器において冷却水循環手段にて循環される冷却水が低温となっている冷媒を加熱することになる。したがって、冷媒加熱用熱交換器にて加熱された冷媒を圧縮機に戻すことができるので、冷却水を冷媒の加熱に利用して暖房能力の向上を図ることができる。
しかも、運転制御手段が冷却水加熱運転を行うことにより、排熱熱交換器にて加熱された冷却水を冷媒加熱用熱交換器に供給させて、排熱熱交換器にて冷却水に加えられた熱を冷媒の加熱に利用することができる。したがって、排熱熱交換器にて冷却水に加えられた熱により冷媒を効果的に加熱することができ、暖房能力の向上を効果的に図ることができる。
That is, since the refrigerant between the evaporator and the compressor becomes low temperature due to evaporation in the evaporator, the cooling water circulated by the cooling water circulation means in the refrigerant heating heat exchanger is low in temperature. The refrigerant will be heated. Therefore, since the refrigerant heated by the refrigerant heating heat exchanger can be returned to the compressor, the cooling capacity can be utilized for heating the refrigerant to improve the heating capacity.
Moreover, when the operation control means performs the cooling water heating operation, the cooling water heated by the exhaust heat exchanger is supplied to the refrigerant heating heat exchanger, and is added to the cooling water by the exhaust heat exchanger. The generated heat can be used for heating the refrigerant. Therefore, the refrigerant can be effectively heated by the heat applied to the cooling water in the exhaust heat exchanger, and the heating capacity can be effectively improved.

本発明に係るエンジン駆動ヒートポンプ装置の第3特徴構成は、前記冷却水循環手段が、前記エンジン、前記排熱熱交換器、前記冷媒加熱用熱交換器の順に冷却水を通過させる状態で冷却水を循環させるように構成されている点にある。   According to a third characteristic configuration of the engine-driven heat pump device according to the present invention, the cooling water circulation means allows the cooling water to pass through the engine, the exhaust heat exchanger, and the refrigerant heating heat exchanger in this order. The point is that it is configured to circulate.

すなわち、冷却水循環手段は、排熱熱交換器を通過した直後の冷却水を冷媒加熱用熱交換器に供給させる。運転制御手段が冷却水加熱運転を行うことにより、排熱熱交換器にて加熱された直後の冷却水を冷媒加熱用熱交換器に供給させることができ、冷媒加熱用熱交換器に供給する冷却水の温度を極力高温にできる。したがって、冷媒加熱用熱交換器において冷却水にて冷媒をより高温に加熱することができ、暖房能力の向上を図ることができる。しかも、排熱熱交換器にて冷却水に加えられた熱を冷媒の加熱に優先して利用することができるので、暖房能力の向上をより一層図ることができる。
また、エンジンには、冷媒加熱用熱交換器を通過した後の冷却水が戻るので、排熱熱交換器において冷却水を高温に加熱しても、冷媒加熱用熱交換器の通過により温度低下された冷却水がエンジンに戻される。したがって、冷媒加熱用熱交換器に供給する冷却水の温度を極力高温としながら、エンジンに過度に高温の冷却水が戻されるのを防止できる。
That is, the cooling water circulation means supplies the cooling water immediately after passing through the exhaust heat exchanger to the refrigerant heating heat exchanger. When the operation control means performs the cooling water heating operation, the cooling water immediately after being heated in the exhaust heat exchanger can be supplied to the refrigerant heating heat exchanger, and is supplied to the refrigerant heating heat exchanger. The temperature of the cooling water can be made as high as possible. Therefore, the refrigerant can be heated to a higher temperature with the cooling water in the refrigerant heating heat exchanger, and the heating capacity can be improved. Moreover, since the heat added to the cooling water in the exhaust heat exchanger can be used with priority over the heating of the refrigerant, the heating capacity can be further improved.
In addition, since the cooling water after passing through the refrigerant heating heat exchanger returns to the engine, even if the cooling water is heated to a high temperature in the exhaust heat exchanger, the temperature drops due to the passage through the refrigerant heating heat exchanger. The cooled water is returned to the engine. Therefore, it is possible to prevent excessively high-temperature cooling water from being returned to the engine while keeping the temperature of the cooling water supplied to the refrigerant heating heat exchanger as high as possible.

本発明に係るエンジン駆動ヒートポンプ装置の第4特徴構成は、前記凝縮器が、冷媒と室内の空気との間で熱交換可能な室内機にて構成され、前記蒸発器が、冷媒と室外の外気との間で熱交換可能な室外熱交換器にて構成され、前記運転制御手段が、前記室内を暖房するヒートポンプ暖房運転において、前記エンジンを始動させるときに前記冷却水加熱運転を行うように構成されている点にある。   According to a fourth characteristic configuration of the engine-driven heat pump device according to the present invention, the condenser is configured by an indoor unit capable of exchanging heat between the refrigerant and the indoor air, and the evaporator includes the refrigerant and the outdoor air outside the room. In the heat pump heating operation for heating the room, the operation control means is configured to perform the cooling water heating operation when starting the engine. It is in the point.

すなわち、運転制御手段が、ヒートポンプ暖房運転において、エンジンを始動させるときに冷却水加熱運転を行うので、例えば、冬季等エンジンや冷却水の温度が低い状態からエンジンを始動させるときに、冷却水加熱運転を行うことができる。冷却水を冷媒の加熱に利用することにより、排熱熱交換器にて冷却水に加えられた熱を冷媒の加熱に利用することができ、エンジンを始動させてから冷媒の加熱を開始できるまでの時間を極力短くして、ヒートポンプ暖房の立ち上がりを早めることができる。ちなみに、エンジンを始動させるときは、エンジンの始動と同時は勿論、エンジンの始動と前後数分程度ずれているときも含む。   That is, since the operation control means performs the cooling water heating operation when starting the engine in the heat pump heating operation, for example, when starting the engine from a state where the temperature of the engine or cooling water is low, such as in winter, the cooling water heating is performed. You can drive. By using the cooling water for heating the refrigerant, the heat added to the cooling water in the exhaust heat exchanger can be used for the heating of the refrigerant until the heating of the refrigerant can be started after the engine is started This makes it possible to shorten the time of heat as much as possible, thereby speeding up the start of heat pump heating. Incidentally, when starting the engine, it includes not only the start of the engine but also a time that is shifted by several minutes from the start of the engine.

本発明に係るエンジン駆動ヒートポンプ装置の第5特徴構成は、前記凝縮器が、冷媒と室内の空気との間で熱交換可能な室内機にて構成され、前記蒸発器が、冷媒と室外の外気との間で熱交換可能な室外熱交換器にて構成され、前記運転制御手段が、前記室内を暖房するヒートポンプ暖房運転において、暖房能力が不足するときに前記冷却水加熱運転を行うように構成されている点にある。   According to a fifth characteristic configuration of the engine-driven heat pump device according to the present invention, the condenser is configured by an indoor unit capable of exchanging heat between the refrigerant and the indoor air, and the evaporator is configured to be the refrigerant and the outdoor air outside the room. In the heat pump heating operation for heating the room, the operation control means is configured to perform the cooling water heating operation when the heating capacity is insufficient. It is in the point.

すなわち、得られる暖房能力が要求されている暖房能力よりも不足するときに、運転制御手段が冷却水加熱運転を行うようにしている。冷却水を冷媒の加熱に利用することにより、排熱熱交換器にて冷却水に加えられた熱を冷媒の加熱に利用することができ、得られる暖房能力を高めることができる。このようにして、得られる暖房能力が要求されている暖房能力よりも不足することを抑制できる。   That is, when the heating capacity to be obtained is less than the required heating capacity, the operation control means performs the cooling water heating operation. By using the cooling water for heating the refrigerant, the heat applied to the cooling water in the exhaust heat exchanger can be used for the heating of the refrigerant, and the resulting heating capacity can be enhanced. Thus, it can suppress that the heating capacity obtained is insufficient rather than the required heating capacity.

本発明に係るエンジン駆動ヒートポンプ装置の第6特徴構成は、前記凝縮器が、冷媒と室内の空気との間で熱交換可能な室内機にて構成され、前記蒸発器が、冷媒と室外の外気との間で熱交換可能な室外熱交換器にて構成され、前記運転制御手段が、前記室内を暖房するヒートポンプ暖房運転において、外気温度が所定温度未満であるときに前記冷却水加熱運転を行うように構成されている点にある。   According to a sixth characteristic configuration of the engine-driven heat pump device according to the present invention, the condenser is configured by an indoor unit capable of exchanging heat between the refrigerant and indoor air, and the evaporator includes the refrigerant and outdoor outdoor air. In the heat pump heating operation in which the operation control means heats the room, the cooling water heating operation is performed when the outside air temperature is lower than a predetermined temperature. It is in the point comprised as follows.

すなわち、外気温度が所定温度未満である厳寒時には、大気の熱により冷媒を加熱することが期待できないので、高い暖房能力を得ることができない。そこで、このようなときに、運転制御手段が冷却水加熱運転を行うようにしている。冷却水を冷媒の加熱に利用することにより、排熱熱交換器にて冷却水に加えられた熱を冷媒の加熱に利用することができ、得られる暖房能力を高めることができる。   That is, when the outside air temperature is lower than the predetermined temperature, it is not possible to expect the refrigerant to be heated by atmospheric heat, and thus high heating capacity cannot be obtained. Therefore, in such a case, the operation control means performs the cooling water heating operation. By using the cooling water for heating the refrigerant, the heat applied to the cooling water in the exhaust heat exchanger can be used for the heating of the refrigerant, and the resulting heating capacity can be enhanced.

本発明に係るエンジン駆動ヒートポンプ装置の第7特徴構成は、前記冷却水加熱運転の実行を指令する運転指令手段が設けられ、前記凝縮器が、冷媒と室内の空気との間で熱交換可能な室内機にて構成され、前記蒸発器が、冷媒と室外の外気との間で熱交換可能な室外熱交換器にて構成され、前記運転制御手段が、前記室内を暖房するヒートポンプ暖房運転において、前記運転指令手段にて前記冷却水加熱運転の実行が指令されているときに前記冷却水加熱運転を行うように構成されている点にある。   A seventh characteristic configuration of the engine-driven heat pump device according to the present invention is provided with operation command means for commanding execution of the cooling water heating operation, and the condenser can exchange heat between the refrigerant and indoor air. In the heat pump heating operation in which the evaporator is configured by an indoor unit, the evaporator is configured by an outdoor heat exchanger capable of exchanging heat between the refrigerant and the outdoor air, and the operation control unit heats the room. The cooling water heating operation is performed when the operation command means instructs the execution of the cooling water heating operation.

すなわち、ヒートポンプ暖房運転において、運転制御手段が冷却水加熱運転を行うか否かを運転指令手段にて指令することができる。したがって、使用者が運転指令手段にて冷却水加熱運転の実行を指令することにより、使用者の要求に合わせて冷却水加熱運転を実行させることができ、使用者の要望に応えることができる。   That is, in the heat pump heating operation, it can be instructed by the operation command means whether or not the operation control means performs the cooling water heating operation. Therefore, when the user commands the execution of the cooling water heating operation by the operation command means, the cooling water heating operation can be executed according to the user's request, and the user's request can be met.

本発明に係るエンジン駆動ヒートポンプ装置の第8特徴構成は、冷媒回路に、冷媒と室内の空気との間で熱交換可能な室内機と、冷媒と室外の外気との間で熱交換可能な室外熱交換器と、前記室内機を前記凝縮器として機能させ且つ前記室外熱交換器を前記蒸発器として機能させる暖房状態と前記室内機を前記蒸発器として機能させ且つ前記室外熱交換器を前記凝縮器として機能させる冷房状態とに冷媒の通流状態を切換自在な切換手段とが設けられ、前記冷媒加熱用熱交換器は、前記冷媒回路において、前記室外熱交換器と前記圧縮機との間に配設され、前記運転制御手段が、前記切換手段を前記暖房状態に切り換えるヒートポンプ暖房運転と前記切換手段を前記冷房状態に切り換える前記ヒートポンプ冷房運転とを択一的に行うように構成されている点にある。   An eighth feature of the engine-driven heat pump device according to the present invention is that the refrigerant circuit includes an indoor unit that can exchange heat between the refrigerant and indoor air, and an outdoor unit that can exchange heat between the refrigerant and outdoor air. A heat exchanger, a heating state in which the indoor unit functions as the condenser and the outdoor heat exchanger functions as the evaporator, and a function in which the indoor unit functions as the evaporator and the outdoor heat exchanger is condensed. Switching means capable of switching a refrigerant flow state to a cooling state to function as a cooler, and the refrigerant heating heat exchanger is provided between the outdoor heat exchanger and the compressor in the refrigerant circuit. The operation control means is configured to selectively perform a heat pump heating operation for switching the switching means to the heating state and the heat pump cooling operation for switching the switching means to the cooling state. It lies in the fact that is.

すなわち、運転制御手段が、切換手段を暖房状態に切り換えるヒートポンプ暖房運転を行うだけでなく、切換手段を冷房状態に切り換えるヒートポンプ冷房運転をも行うので、室内の暖房を行うだけでなく、室内の冷房をも行うことができる。
冷媒加熱用熱交換器は、冷媒回路において、室外熱交換器と圧縮機との間に配設されているので、運転制御手段がヒートポンプ暖房運転を行うときには、室外熱交換器を通過した後の低温の冷媒が冷媒加熱用熱交換器に供給される。したがって、冷媒加熱用熱交換器において冷却水にて冷媒を加熱することができ、暖房能力の向上を図ることができる。運転制御手段がヒートポンプ冷房運転を行うときには、圧縮機からの高温の冷媒が冷媒加熱用熱交換器に供給される。したがって、冷却水循環手段にて高温の冷却水が冷媒加熱用熱交換器に供給されても、冷却水と冷媒との温度差が小さくでき、冷媒加熱用熱交換器において冷却水が冷媒をさらに高温に加熱してしまう等の悪影響を及ぼしてしまう事を防止できる。
以上のことから、ヒートポンプ暖房運転を行うときには暖房能力の向上を図りながら、ヒートポンプ冷房運転を的確に行うことができる。
That is, the operation control means not only performs the heat pump heating operation for switching the switching means to the heating state, but also performs the heat pump cooling operation for switching the switching means to the cooling state. Can also be done.
Since the refrigerant heating heat exchanger is disposed in the refrigerant circuit between the outdoor heat exchanger and the compressor, when the operation control means performs the heat pump heating operation, A low-temperature refrigerant is supplied to the refrigerant heating heat exchanger. Therefore, the refrigerant can be heated with the cooling water in the refrigerant heating heat exchanger, and the heating capacity can be improved. When the operation control means performs the heat pump cooling operation, the high-temperature refrigerant from the compressor is supplied to the refrigerant heating heat exchanger. Therefore, even if high-temperature cooling water is supplied to the refrigerant heating heat exchanger by the cooling water circulation means, the temperature difference between the cooling water and the refrigerant can be reduced, and the cooling water further increases the temperature of the refrigerant in the refrigerant heating heat exchanger. It is possible to prevent adverse effects such as heating.
From the above, when performing the heat pump heating operation, it is possible to accurately perform the heat pump cooling operation while improving the heating capacity.

本発明に係るエンジン駆動ヒートポンプ装置の実施形態について図面に基づいて説明する。
このエンジン駆動ヒートポンプ装置は、図1〜図3に示すように、エンジン1により駆動されて冷媒を圧縮する圧縮機2、冷媒から放熱させる凝縮器3、冷媒を膨張させる膨張弁4、冷媒に吸熱させる蒸発器5の順に冷媒を循環する冷媒回路6と、エンジン1の冷却水を利用する排熱利用装置7とから構成されている。圧縮機2は、エンジン1の駆動力がベルト1aで伝達されて回転駆動するように設けられている。
図1〜3において、流体の通流状態を太線及び矢印にて示している。図1〜図3は、流体が通流する部分が異なるだけでその他の構成については同様の構成を示している。
An embodiment of an engine-driven heat pump device according to the present invention will be described with reference to the drawings.
As shown in FIGS. 1 to 3, the engine-driven heat pump device is driven by the engine 1 to compress a refrigerant 2, a condenser 3 that radiates heat from the refrigerant, an expansion valve 4 that expands the refrigerant, and the refrigerant that absorbs heat. It comprises a refrigerant circuit 6 that circulates refrigerant in the order of the evaporator 5 and an exhaust heat utilization device 7 that uses cooling water of the engine 1. The compressor 2 is provided such that the driving force of the engine 1 is transmitted by the belt 1a and is rotationally driven.
1-3, the flow state of the fluid is indicated by thick lines and arrows. 1 to 3 show the same configuration with respect to other configurations except that the portion through which the fluid flows is different.

冷媒回路6には、冷媒と室内の空気との間で熱交換可能な室内機8と、冷媒と室外の外気との間で熱交換可能な室外熱交換器9と、室内機8を凝縮器3として機能させ且つ室外熱交換器9を蒸発器として機能させる暖房状態と室内機8を蒸発器として機能させ且つ室外熱交換器9を凝縮器として機能させる冷房状態とに冷媒の通流状態を切換自在な四方弁(切換手段に相当する)10が設けられている。
四方弁10は、冷媒回路6において、圧縮機2と室内機8との間の流路及び室外熱交換器9と圧縮機2との間の流路における接続状態を切り換えることにより、暖房状態と冷房状態とに切換自在に構成されている。
The refrigerant circuit 6 includes an indoor unit 8 capable of exchanging heat between the refrigerant and indoor air, an outdoor heat exchanger 9 capable of exchanging heat between the refrigerant and outdoor air, and a condenser for the indoor unit 8. 3 and the cooling state in which the outdoor heat exchanger 9 functions as an evaporator and the cooling state in which the indoor unit 8 functions as an evaporator and the outdoor heat exchanger 9 functions as a condenser. A switchable four-way valve (corresponding to switching means) 10 is provided.
In the refrigerant circuit 6, the four-way valve 10 switches between a heating state and a connection state in a flow path between the compressor 2 and the indoor unit 8 and a flow path between the outdoor heat exchanger 9 and the compressor 2. It is configured to be switchable to a cooling state.

冷媒回路6には、圧縮機2に冷媒を戻す側の流路において、四方弁10と圧縮機2との間にアキュムレータ11が設けられている。室外熱交換器9は、室外ファン12の作動により冷媒と室外の外気とを熱交換させるように構成されている。
エンジン1、圧縮機2、四方弁10、膨張弁4、室外熱交換器9、及び、アキュムレータ11は、室外機13に備えられている。
In the refrigerant circuit 6, an accumulator 11 is provided between the four-way valve 10 and the compressor 2 in a flow path on the side where the refrigerant is returned to the compressor 2. The outdoor heat exchanger 9 is configured to exchange heat between the refrigerant and the outdoor air by the operation of the outdoor fan 12.
The engine 1, the compressor 2, the four-way valve 10, the expansion valve 4, the outdoor heat exchanger 9, and the accumulator 11 are provided in the outdoor unit 13.

エンジン1の冷却水を排熱利用装置7に備えられた排熱熱交換器14との間で循環させる冷却水循環手段15が設けられている。この冷却水循環手段15は、エンジン1、排熱熱交換器14、エンジン1の冷却水により冷媒回路6の冷媒を加熱する冷媒加熱用熱交換器16の順に冷却水を通過させる状態で冷却水を循環させるように構成されている。冷媒加熱用熱交換器16は、冷媒回路6において室外熱交換器9と四方弁10との間に設けられている。
冷却水循環手段15は、冷却水循環路17とその冷却水循環路17に設けられた冷却水循環ポンプ18とから構成されている。冷却水循環路17には、エンジン1本体の排熱を回収することに加えて、エンジン1の燃焼排ガスとの熱交換によりエンジン1の燃焼排ガスが有する熱を回収する排ガス熱交換器19が設けられている。また、図示は省略するが、冷却水循環路17にて複数の冷却水温度検出センサが設けられており、これら複数の冷却水温度検出センサにより、エンジン1に戻される冷却水の温度や排熱熱交換器14を通過した後の冷却水の温度等を検出するようにしている。
Cooling water circulating means 15 for circulating the cooling water of the engine 1 between the exhaust heat heat exchanger 14 provided in the exhaust heat utilization device 7 is provided. The cooling water circulation means 15 passes the cooling water in a state in which the cooling water is passed in the order of the engine 1, the exhaust heat exchanger 14, and the refrigerant heating heat exchanger 16 that heats the refrigerant in the refrigerant circuit 6 using the cooling water of the engine 1. It is configured to circulate. The refrigerant heating heat exchanger 16 is provided between the outdoor heat exchanger 9 and the four-way valve 10 in the refrigerant circuit 6.
The cooling water circulation means 15 includes a cooling water circulation path 17 and a cooling water circulation pump 18 provided in the cooling water circulation path 17. The cooling water circulation path 17 is provided with an exhaust gas heat exchanger 19 that collects heat of the combustion exhaust gas of the engine 1 by heat exchange with the combustion exhaust gas of the engine 1 in addition to recovering exhaust heat of the engine 1 body. ing. Although not shown, a plurality of cooling water temperature detection sensors are provided in the cooling water circulation path 17, and the temperature of the cooling water returned to the engine 1 and the exhaust heat heat by the plurality of cooling water temperature detection sensors. The temperature of the cooling water after passing through the exchanger 14 is detected.

冷却水循環路17において、排熱熱交換器14と冷媒加熱用熱交換器16との間から分岐して冷媒加熱用熱交換器16よりも下流側に合流して冷媒加熱用熱交換器16をバイパスする冷却水バイパス路20が設けられている。冷却水循環路17において冷却水バイパス路20の分岐箇所には、第1三方弁21が設けられている。
冷却水循環路17において、冷媒加熱用熱交換器16よりも下流側から分岐して冷却水バイパス路20の合流箇所よりも上流側に合流する冷却水分岐路22が設けられている。冷却水分岐路22には、室外ファン12の作動により冷却水が有する熱を室外の外気に放熱するラジエータ23、及び、リザーブタンク24が接続されたバッファ25が設けられている。冷却水循環路17において冷却水分岐路22の分岐箇所には、第2三方弁26が設けられている。
In the cooling water circulation path 17, it branches from between the exhaust heat exchanger 14 and the refrigerant heating heat exchanger 16 and joins downstream of the refrigerant heating heat exchanger 16 to connect the refrigerant heating heat exchanger 16. A coolant bypass path 20 is provided for bypassing. A first three-way valve 21 is provided at a branch point of the cooling water bypass path 20 in the cooling water circulation path 17.
In the cooling water circulation path 17, there is provided a cooling water branch path 22 that branches from the downstream side of the refrigerant heating heat exchanger 16 and joins the upstream side of the meeting place of the cooling water bypass path 20. The cooling water branch path 22 is provided with a radiator 23 that radiates the heat of the cooling water to the outdoor air by the operation of the outdoor fan 12, and a buffer 25 to which a reserve tank 24 is connected. A second three-way valve 26 is provided at a branch point of the cooling water branch path 22 in the cooling water circulation path 17.

排熱利用装置7には、熱搬送流体を排熱熱交換器14に供給し、排熱熱交換器14の通過後の熱搬送流体を熱利用部56に供給する熱搬送流体供給手段57が設けられている。熱搬送流体供給手段57が、貯湯タンク27、貯湯タンク27から取り出した貯湯水を循環する貯湯水循環路28、及び、貯湯水循環ポンプ31から構成されている。
貯湯タンク27は、排熱熱交換器14の通過後の熱搬送流体としての貯湯水を貯留するように構成されている。熱利用部56は、貯湯水が給湯路49からの給湯に利用される給湯箇所、湯張りに利用される浴槽43、風呂の追焚きに利用される風呂熱交換器34、及び、暖房端末44での暖房に利用される暖房熱交換器36から構成されている。
また、熱搬送流体供給手段57により熱利用部56に供給される貯湯水を加熱可能な補助熱源機32が設けられている。補助熱源機32は、例えば、都市ガス等の燃料ガスを供給することにより燃焼するガスバーナを備え、そのガスバーナを燃焼させて貯湯水を加熱するガス燃焼式の給湯器にて構成されている。
The exhaust heat utilization device 7 includes heat transport fluid supply means 57 that supplies the heat transport fluid to the exhaust heat exchanger 14 and supplies the heat transport fluid after passing through the exhaust heat exchanger 14 to the heat utilization unit 56. Is provided. The heat transfer fluid supply means 57 includes a hot water storage tank 27, a hot water circulation path 28 that circulates the hot water extracted from the hot water storage tank 27, and a hot water circulation pump 31.
The hot water storage tank 27 is configured to store hot water as a heat transfer fluid after passing through the exhaust heat exchanger 14. The heat utilization unit 56 includes a hot water supply location where hot water is used for hot water supply from the hot water supply passage 49, a bathtub 43 used for hot water filling, a bath heat exchanger 34 used for bathing, and a heating terminal 44. It is comprised from the heating heat exchanger 36 utilized for the heating in.
Further, an auxiliary heat source device 32 capable of heating the hot water supplied to the heat utilization unit 56 by the heat carrier fluid supply means 57 is provided. For example, the auxiliary heat source unit 32 includes a gas burner that burns by supplying a fuel gas such as city gas, and is configured by a gas combustion type hot water heater that burns the gas burner and heats the stored hot water.

貯湯水循環路28は、貯湯タンク27から貯湯水を取り出すために、貯湯タンク27の下部と貯湯水取り出し路29により接続されている。貯湯水循環路28は、貯湯タンク27に貯湯水を戻すために、貯湯タンク27の上部と貯湯水戻し路30により接続されている。このようにして、排熱熱交換器14にて加熱された貯湯水を貯湯タンク27の上部に供給して、高温の貯湯水を上部に且つ低温の貯湯水を下部に貯留させて温度成層を形成する状態で貯湯タンク27の貯湯を行うようにしている。
貯湯水循環路28には、貯湯水の循環方向において、貯湯水循環ポンプ31、排熱熱交換器14、貯湯水循環路28を通流する貯湯水を加熱可能な補助熱源機32、補助熱源機32を通過する貯湯水の量を調整自在な第1貯湯水調整弁33が設けられている。
The hot water circulation path 28 is connected to the lower part of the hot water tank 27 by a hot water extraction path 29 in order to take hot water from the hot water tank 27. The stored hot water circulation path 28 is connected to the upper part of the hot water storage tank 27 by a stored hot water return path 30 in order to return the stored hot water to the hot water storage tank 27. In this way, the hot water heated by the exhaust heat exchanger 14 is supplied to the upper part of the hot water storage tank 27 so that the hot hot water is stored in the upper part and the low temperature hot water is stored in the lower part. Hot water is stored in the hot water storage tank 27 in a state where it is formed.
In the hot water circulation path 28, an auxiliary heat source machine 32 and an auxiliary heat source machine 32 that can heat the hot water flowing through the hot water circulation pump 31, the exhaust heat exchanger 14, and the hot water circulation path 28 in the circulation direction of the hot water are provided. A first stored hot water adjustment valve 33 is provided that can adjust the amount of stored stored hot water.

貯湯水循環路28において、貯湯水戻し路30の接続箇所よりも貯湯水の循環方向の下流側が、2つの並列な流路にて構成されている。一方の流路には、風呂熱交換器34及び風呂熱交換器34へ貯湯水を通流させるか否かを調整する第2貯湯水調整弁35が設けられ、他方の流路には、暖房熱交換器36及び暖房熱交換器36へ貯湯水を通流させるか否かを調整する第3貯湯水調整弁37が設けられている。
風呂熱交換器34は、風呂ポンプ38の作動により風呂循環路39にて循環される浴槽43の浴槽水を貯湯水循環路28の貯湯水にて加熱するように構成されている。暖房熱交換器36は、暖房ポンプ40の作動により暖房循環路41にて循環される暖房水を貯湯水循環路28の貯湯水にて加熱するように構成されている。暖房用熱交換器36にて加熱された暖房水は、床暖房パネル等の暖房端末44に供給されて暖房に用いられる。暖房用循環路41には、膨張タンク42が設けられている。
In the stored hot water circulation path 28, the downstream side in the circulating direction of the stored hot water from the connection location of the stored hot water return path 30 is configured by two parallel flow paths. One flow path is provided with a bath heat exchanger 34 and a second hot water storage adjustment valve 35 that adjusts whether or not the hot water is allowed to flow to the bath heat exchanger 34. A third hot water storage adjustment valve 37 for adjusting whether or not the hot water is allowed to flow to the heat exchanger 36 and the heating heat exchanger 36 is provided.
The bath heat exchanger 34 is configured to heat the bath water in the bathtub 43 circulated in the bath circulation path 39 by the operation of the bath pump 38 with the hot water stored in the hot water circulation path 28. The heating heat exchanger 36 is configured to heat the heating water circulated in the heating circuit 41 by the operation of the heating pump 40 with the hot water stored in the hot water circulation circuit 28. Heating water heated by the heating heat exchanger 36 is supplied to a heating terminal 44 such as a floor heating panel and used for heating. An expansion tank 42 is provided in the heating circulation path 41.

貯湯水取り出し路29には、貯湯タンク27に給水するための給水路45が接続されている。給水路45には、減圧弁46、第1逆止弁47が設けられている。
貯湯水戻し路30には、貯湯水の通流量を調整する第4貯湯水調整弁48が設けられ、その第4貯湯水調整弁48よりも下流側に貯湯水を給湯するための給湯路49が分岐接続されている。給湯路49には、給水路45から分岐された分岐給水路50が接続されており、貯湯水戻し路30からの貯湯水と分岐給水路50からの水とを混合させる状態で給湯するように構成されている。給湯路49には、分岐給水路50との接続箇所にミキシングバルブ51が設けられ、貯湯水戻し路30からの貯湯水と分岐給水路50からの水との混合比を調整自在に構成されている。分岐給水路50には、第2逆止弁52が設けられている。
給湯路49から分岐して風呂循環路39に接続された湯張り路53が設けられている。給湯路49から給湯する湯水を浴槽43に供給して浴槽43の湯張りを行えるように構成されている。湯張り路53には、湯張り弁54、第3逆止弁55が設けられている。
A water supply passage 45 for supplying water to the hot water storage tank 27 is connected to the hot water storage passage 29. The water supply passage 45 is provided with a pressure reducing valve 46 and a first check valve 47.
The hot water return passage 30 is provided with a fourth hot water adjustment valve 48 for adjusting the flow rate of the hot water, and a hot water supply passage 49 for supplying hot water downstream of the fourth hot water adjustment valve 48. Is branched. A branch water supply path 50 branched from the water supply path 45 is connected to the hot water supply path 49 so that hot water is supplied in a state where hot water stored in the hot water return path 30 and water from the branch water supply path 50 are mixed. It is configured. The hot water supply passage 49 is provided with a mixing valve 51 at a connection point with the branch water supply passage 50 so that the mixing ratio of the hot water from the hot water return passage 30 and the water from the branch water supply passage 50 can be adjusted. Yes. The branch water supply path 50 is provided with a second check valve 52.
A hot water supply path 53 branched from the hot water supply path 49 and connected to the bath circulation path 39 is provided. The hot water supplied from the hot water supply passage 49 is supplied to the bathtub 43 so that the hot water filling of the bathtub 43 can be performed. The hot water filling passage 53 is provided with a hot water filling valve 54 and a third check valve 55.

このエンジン駆動ヒートポンプ装置の運転を制御する運転制御手段としての運転制御装置58が設けられている。この運転制御装置58は、図示は省略するが、例えば、室外機13の運転を制御する運転制御装置、室内機8の運転を制御する運転制御装置、排熱利用装置7の運転を制御する運転制御装置、暖房端末の運転を制御する運転制御装置等の複数の運転制御装置から構成されている。そして、複数の運転制御装置が、お互いに各種情報を通信することにより、エンジン駆動ヒートポンプ装置全体の運転を制御するように構成されている。   An operation control device 58 is provided as an operation control means for controlling the operation of the engine-driven heat pump device. Although not shown, the operation control device 58 is, for example, an operation control device that controls the operation of the outdoor unit 13, an operation control device that controls the operation of the indoor unit 8, and an operation that controls the operation of the exhaust heat utilization device 7. It comprises a plurality of operation control devices such as a control device and an operation control device for controlling the operation of the heating terminal. And a some driving | operation control apparatus is comprised so that operation | movement of the whole engine drive heat pump apparatus may be controlled by communicating various information mutually.

運転制御装置58は、エンジン1を駆動させて四方弁10を暖房状態に切り換えるヒートポンプ暖房運転と、エンジン1を駆動させて四方弁10を冷房状態に切り換えるヒートポンプ冷房運転とを択一的に行うように構成されている。
また、運転制御装置58は、ヒートポンプ暖房運転及びヒートポンプ冷房運転に加えて、排熱熱交換器14において冷却水循環手段15にて循環される冷却水にて熱搬送流体供給手段57にて供給される貯湯水を加熱すべく、冷却水循環手段15及び熱搬送流体供給手段57の夫々の作動を制御する熱搬送流体加熱運転と、排熱熱交換器14において熱搬送流体供給手段57により供給される補助熱源機32にて加熱された貯湯水にて冷却水循環手段15にて循環される冷却水を加熱すべく、補助熱源機32、冷却水循環手段15及び熱搬送流体供給手段57の夫々の作動を制御する冷却水加熱運転とを択一的に行うように構成されている。
The operation control device 58 selectively performs a heat pump heating operation in which the engine 1 is driven to switch the four-way valve 10 to the heating state and a heat pump cooling operation in which the engine 1 is driven to switch the four-way valve 10 to the cooling state. It is configured.
In addition to the heat pump heating operation and the heat pump cooling operation, the operation control device 58 is supplied by the heat transfer fluid supply means 57 with the cooling water circulated by the cooling water circulation means 15 in the exhaust heat exchanger 14. A heat transfer fluid heating operation for controlling the operation of the cooling water circulation means 15 and the heat transfer fluid supply means 57 to heat the hot water, and an auxiliary supplied by the heat transfer fluid supply means 57 in the exhaust heat exchanger 14 The operation of each of the auxiliary heat source device 32, the cooling water circulation means 15 and the heat transfer fluid supply means 57 is controlled to heat the cooling water circulated by the cooling water circulation means 15 with the hot water heated by the heat source equipment 32. The cooling water heating operation is alternatively performed.

運転制御装置58は、図外の空調リモコンによりヒートポンプ暖房運転が指令されるとヒートポンプ暖房運転を行い、図外の空調リモコンによりヒートポンプ冷房運転が指令されるとヒートポンプ冷房運転を行うように構成されている。
運転制御装置58は、ヒートポンプ暖房運転又はヒートポンプ冷房運転を行うときに、熱利用要求条件が満たされていると、熱搬送流体加熱運転を行うように構成されている。運転制御装置58は、例えば、貯湯タンク27の貯湯量が満杯ではないときに要求される貯湯要求、風呂の追焚きを行う追焚き要求、暖房端末44にて暖房する暖房要求の何れか1つが満たされると、熱利用要求条件を満たしていると判別する。
The operation controller 58 is configured to perform a heat pump heating operation when a heat pump heating operation is commanded by an air conditioning remote controller (not shown), and to perform a heat pump cooling operation when a heat pump cooling operation is commanded by an air conditioning remote controller (not shown). Yes.
The operation control device 58 is configured to perform the heat transfer fluid heating operation when the heat use requirement is satisfied when the heat pump heating operation or the heat pump cooling operation is performed. For example, the operation control device 58 has any one of a hot water storage request required when the amount of hot water stored in the hot water storage tank 27 is not full, a renewal request for reheating a bath, and a heating request for heating at the heating terminal 44. When it is satisfied, it is determined that the heat utilization requirement is satisfied.

運転制御装置58は、ヒートポンプ暖房運転において、エンジン1を始動させるときに冷却水加熱運転を行うように構成されている。運転制御装置58は、エンジン1を始動させるときに常時冷却水加熱運転を行うのではなく、冷却水循環路17の冷却水の温度が冷却水第1所定温度(例えば20℃)以下であるとき、又は、外気温度が外気第1所定温度(例えば10℃)以下であるときに、冷却水加熱運転を行うように構成されている。
また、運転制御装置58は、ヒートポンプ暖房運転において、エンジン1を始動させるときだけでなく、暖房能力が不足するとき及び外気温度が外気第2所定温度(例えば2℃)未満のときにも冷却水加熱運転を行うように構成されている。暖房能力が不足するときとは、ヒートポンプ暖房運転を行うことにより得られる暖房能力が要求されている暖房能力よりも不足するときである。例えば、外気温度が非常に低い(例えば2℃)厳寒時や、冷却水循環路17の冷却水の温度が冷却水第2所定温度(例えば55℃)以下となっているときである。
The operation control device 58 is configured to perform a cooling water heating operation when starting the engine 1 in the heat pump heating operation. The operation control device 58 does not always perform the cooling water heating operation when starting the engine 1, but when the temperature of the cooling water in the cooling water circulation path 17 is equal to or lower than the cooling water first predetermined temperature (for example, 20 ° C.), Alternatively, the cooling water heating operation is performed when the outside air temperature is equal to or lower than the first outside predetermined temperature (for example, 10 ° C.).
Further, the operation control device 58 is not only for starting the engine 1 in the heat pump heating operation but also for cooling water when the heating capacity is insufficient and when the outside air temperature is lower than the second outside predetermined temperature (for example, 2 ° C.). It is comprised so that a heating operation may be performed. The time when the heating capacity is insufficient is when the heating capacity obtained by performing the heat pump heating operation is shorter than the required heating capacity. For example, when the outside air temperature is very low (for example, 2 ° C.) or when it is extremely cold, or when the temperature of the cooling water in the cooling water circulation path 17 is equal to or lower than the cooling water second predetermined temperature (for example, 55 ° C.).

このようにして、運転制御装置58は、ヒートポンプ暖房運転において、冷却水循環路17の冷却水の温度が冷却水第1所定温度(例えば20℃)以下である又は外気温度が外気第1所定温度(例えば10℃)以下である場合にエンジン1を始動させるとき、暖房能力が不足するとき、及び、外気温度が外気第2所定温度(例えば2℃)未満のときの夫々において、冷却水加熱運転を行うように構成されている。
運転制御装置58は、冷却水加熱運転の実行中に、例えば、冷却水加熱運転の運転時間が設定時間に達する、又は、冷却水循環路17の冷却水の温度が冷却水第3所定温度(例えば70℃)以上になると、冷却水加熱運転を停止させるように構成されている。
In this way, in the heat pump heating operation, the operation control device 58 is configured such that the temperature of the cooling water in the cooling water circulation path 17 is equal to or lower than the cooling water first predetermined temperature (for example, 20 ° C.) or the outside air temperature is the first outside predetermined temperature ( For example, when the engine 1 is started when the temperature is equal to or lower than 10 ° C., when the heating capacity is insufficient, and when the outside air temperature is lower than the second outside predetermined temperature (for example, 2 ° C.), the cooling water heating operation is performed. Configured to do.
During the execution of the cooling water heating operation, for example, the operation control device 58 reaches the set time for the operation time of the cooling water heating operation, or the temperature of the cooling water in the cooling water circulation path 17 is the third predetermined temperature of the cooling water (for example, 70 ° C.) or higher, the cooling water heating operation is stopped.

図1に基づいて、運転制御装置58がヒートポンプ冷房運転と熱搬送流体加熱運転とを同時に行っている状態について説明する。
ヒートポンプ冷房運転では、運転制御装置58が、エンジン1を駆動させて四方弁10を冷房状態に切り換えることにより、圧縮機2から吐出する冷媒が、冷媒加熱用熱交換器16、室外熱交換器9、膨張弁4、室内機8、アキュムレータ11の順に通過して圧縮機2に戻るように冷媒回路6にて循環される。
熱搬送流体加熱運転では、運転制御装置58が、冷却水循環ポンプ18を作動させ、且つ、第1三方弁21及び第2三方弁26の切換状態を制御することにより、冷却水循環手段15の作動を制御する。これにより、エンジン1からの冷却水が、排熱熱交換器14、冷媒加熱用熱交換器16、排ガス熱交換器19の順に通過してエンジン1に戻るように冷却水循環路17にて循環される。さらに、運転制御装置58が、貯湯水循環ポンプ31を作動させ、且つ、第1〜第4貯湯水調整弁33,35,37,48の開閉状態を制御することにより、熱搬送流体供給手段57の作動を制御する。図1では、運転制御装置58が、熱搬送流体供給手段57の作動を制御して、貯湯タンク27への貯湯を行っている状態を示している。
Based on FIG. 1, the state in which the operation control device 58 is simultaneously performing the heat pump cooling operation and the heat carrier fluid heating operation will be described.
In the heat pump cooling operation, the operation control device 58 drives the engine 1 to switch the four-way valve 10 to the cooling state, so that the refrigerant discharged from the compressor 2 is the refrigerant heating heat exchanger 16 and the outdoor heat exchanger 9. The refrigerant is circulated in the refrigerant circuit 6 so as to pass through the expansion valve 4, the indoor unit 8, and the accumulator 11 in this order and return to the compressor 2.
In the heat transfer fluid heating operation, the operation control device 58 operates the cooling water circulation pump 18 and controls the switching state of the first three-way valve 21 and the second three-way valve 26, thereby operating the cooling water circulation means 15. Control. Thus, the cooling water from the engine 1 is circulated in the cooling water circulation path 17 so as to pass through the exhaust heat exchanger 14, the refrigerant heating heat exchanger 16, and the exhaust gas heat exchanger 19 in this order and return to the engine 1. The Further, the operation control device 58 operates the hot water circulating pump 31 and controls the open / closed states of the first to fourth hot water storage regulating valves 33, 35, 37, 48, thereby Control operation. FIG. 1 shows a state in which the operation control device 58 controls the operation of the heat transfer fluid supply means 57 to store hot water in the hot water storage tank 27.

冷媒回路6の冷媒について説明する。
冷媒加熱用熱交換器16には、圧縮機2からの高温の冷媒が供給されるとともに、冷却水循環路17にてエンジン1の排熱を回収した高温の冷却水が供給される。冷媒加熱用熱交換器16では、冷媒と冷却水との温度差を小さくでき、冷媒と冷却水との間での熱交換が積極的には行われないので、冷媒は、ほとんど温度変化することなく冷媒加熱用熱交換器16を通過する。冷媒加熱用熱交換器16を通過した冷媒は、室外熱交換器9に供給されて凝縮して室外ファン12にて送風される外気に放熱される。室外熱交換器9を通過した冷媒は、膨張弁4にて膨張されて室内機8に供給される。室内機8では、冷媒が蒸発することにより吸熱されて室内を冷房する。
The refrigerant of the refrigerant circuit 6 will be described.
The refrigerant heating heat exchanger 16 is supplied with the high-temperature refrigerant from the compressor 2 and is supplied with high-temperature cooling water recovered from the exhaust heat of the engine 1 through the cooling water circulation path 17. In the heat exchanger 16 for heating the refrigerant, the temperature difference between the refrigerant and the cooling water can be reduced, and heat exchange between the refrigerant and the cooling water is not actively performed. Therefore, the temperature of the refrigerant changes almost. Without passing through the heat exchanger 16 for heating the refrigerant. The refrigerant that has passed through the refrigerant heating heat exchanger 16 is supplied to the outdoor heat exchanger 9, condensed, and radiated to the outside air blown by the outdoor fan 12. The refrigerant that has passed through the outdoor heat exchanger 9 is expanded by the expansion valve 4 and supplied to the indoor unit 8. In the indoor unit 8, the refrigerant absorbs heat by evaporating and cools the room.

冷却水循環路17の冷却水について説明する。
排熱熱交換器14には、エンジン1の排熱を回収した高温の冷却水が供給されるとともに、貯湯水循環路28にて貯湯タンク27の下部から取り出した貯湯水が供給される。貯湯タンク27は、高温の貯湯水を上部に且つ低温の貯湯水を下部に貯留させて温度成層を形成する状態で貯湯され、貯湯タンク27の貯湯量が満杯ではないので、貯湯タンク27の下部から取り出す貯湯水は低温となる。したがって、排熱熱交換器14では、冷却水が貯湯水を加熱する。冷媒加熱用熱交換器16では、上述の如く、高温の冷媒と高温の冷却水との間での熱交換が積極的には行われないので、冷却水は、ほとんど温度変化することなく冷媒加熱用熱交換器16を通過して排ガス熱交換器19に供給される。
冷媒加熱用熱交換器16を通過した後の冷却水の温度が冷却水第4所定温度(例えば82℃)以上になる場合には、運転制御装置58が第2三方弁26の切換状態を制御することにより、図中点線矢印にて示すように、冷媒加熱用熱交換器16を通過した冷却水を冷却水分岐路22に通流させてラジエータ23に供給する。ラジエータ23に供給される冷却水は、室外ファン12にて送風される外気に放熱して温度が低下されたのち、バッファ25を通過して排ガス熱交換器19に供給される。このようにして、エンジン1に過度に高温の冷却水が戻されるのを防止している。
ちなみに、冷媒加熱用熱交換器16を通過した後の冷却水の温度が冷却水第4所定温度(例えば82℃)以上になる場合としては、例えば、貯湯タンク27の貯湯量が満杯になり貯湯タンク27への貯湯が終了されることにより、排熱熱交換器14において冷却水が貯湯水を加熱する必要が無くなった場合である。
The cooling water of the cooling water circulation path 17 will be described.
The exhaust heat exchanger 14 is supplied with high-temperature cooling water from which the exhaust heat of the engine 1 is recovered, and hot water taken out from the lower portion of the hot water storage tank 27 through the hot water circulation circuit 28. The hot water storage tank 27 stores hot water in a state in which high temperature hot water is stored in the upper part and low temperature hot water is stored in the lower part to form a temperature stratification, and the amount of hot water stored in the hot water storage tank 27 is not full. The hot water taken out from the water becomes cold. Therefore, in the waste heat exchanger 14, the cooling water heats the hot water. As described above, in the heat exchanger 16 for heating the refrigerant, heat exchange between the high-temperature refrigerant and the high-temperature cooling water is not actively performed. It passes through the heat exchanger 16 and is supplied to the exhaust gas heat exchanger 19.
When the temperature of the cooling water after passing through the refrigerant heating heat exchanger 16 is equal to or higher than the cooling water fourth predetermined temperature (for example, 82 ° C.), the operation control device 58 controls the switching state of the second three-way valve 26. By doing so, the cooling water that has passed through the refrigerant heating heat exchanger 16 is caused to flow through the cooling water branch path 22 and supplied to the radiator 23 as indicated by a dotted arrow in the figure. The cooling water supplied to the radiator 23 dissipates heat to the outside air blown by the outdoor fan 12 and decreases its temperature, and then passes through the buffer 25 and is supplied to the exhaust gas heat exchanger 19. In this way, excessively high-temperature cooling water is prevented from being returned to the engine 1.
Incidentally, when the temperature of the cooling water after passing through the refrigerant heating heat exchanger 16 becomes equal to or higher than the fourth predetermined temperature of the cooling water (for example, 82 ° C.), for example, the amount of hot water stored in the hot water storage tank 27 becomes full. This is a case in which it is no longer necessary for the cooling water in the exhaust heat exchanger 14 to heat the hot water by completing the hot water storage in the tank 27.

貯湯水循環路28の貯湯水について説明する。
排熱熱交換器14では、冷却水が貯湯水を加熱するので、排熱熱交換器14にて加熱された貯湯水が、補助熱源機32を通過して貯湯タンク27の上部に供給される。このとき、補助熱源機32は、作動を停止しており、通過する貯湯水を加熱しない。排熱熱交換器14にて加熱された貯湯水が貯湯タンク27の上部に供給されることにより、高温の貯湯水を上部に且つ低温の貯湯水を下部に貯留させて温度成層を形成する状態で貯湯タンク27に貯湯する。
The hot water stored in the hot water circulating circuit 28 will be described.
In the exhaust heat heat exchanger 14, the cooling water heats the stored hot water, so the stored hot water heated in the exhaust heat exchanger 14 passes through the auxiliary heat source device 32 and is supplied to the upper part of the hot water storage tank 27. . At this time, the auxiliary heat source machine 32 has stopped operating and does not heat the hot water stored therethrough. A state in which hot water stored in the hot water storage tank 27 is supplied to the upper part of the hot water storage tank 27 to store hot hot water in the upper part and low temperature hot water in the lower part to form temperature stratification. The hot water is stored in the hot water storage tank 27.

第1〜第4貯湯水調整弁33,35,37,48の開閉状態の制御について説明を加える。運転制御装置58が、第2貯湯水調整弁35を開弁し且つ第3貯湯水調整弁37を閉弁して、貯湯水を風呂熱交換器34及び第2貯湯水調整弁35を通過させる形態で貯湯水循環路28にて循環させる。そして、運転制御装置58が、第1貯湯水調整弁33の開度調整を行うことにより、貯湯水循環路28における循環流量全体を調整するとともに、第4貯湯水調整弁48の開度調整を行うことにより、第2貯湯水調整弁35を通過した貯湯水と貯湯水取り出し路29から取り出した貯湯水との混合比を調整する。運転制御装置58は、この混合比の調整によって排熱熱交換器14に供給する貯湯水の温度を調整することにより、排熱熱交換器14を通過した貯湯水の温度が貯湯所定温度になるようにしている。このようにして、排熱熱交換器14を通過した貯湯所定温度の貯湯水を、補助熱源機32及び第1貯湯水調整弁33を通過させて、その一部を貯湯水戻し路30にて貯湯タンク27の上部に供給するようにしている。
運転制御装置58は、貯湯タンク27の下部の貯湯水の温度が貯湯所定温度以上になると、貯湯タンク27の貯湯量が満杯であるとして、貯湯水循環ポンプ31を作動停止させて第4貯湯水調整弁48を閉じ貯湯タンク27への貯湯を終了させる。
The control of the open / closed state of the first to fourth stored hot water regulating valves 33, 35, 37, 48 will be described. The operation control device 58 opens the second stored hot water adjustment valve 35 and closes the third stored hot water adjustment valve 37 to pass the stored hot water through the bath heat exchanger 34 and the second stored hot water adjustment valve 35. The hot water is circulated in the hot water circulation path 28 in the form. Then, the operation control device 58 adjusts the opening degree of the first hot water storage adjustment valve 33, thereby adjusting the entire circulating flow rate in the hot water storage circuit 28 and adjusting the opening degree of the fourth hot water adjustment valve 48. As a result, the mixing ratio between the hot water passing through the second hot water control valve 35 and the hot water taken out from the hot water take-out passage 29 is adjusted. The operation controller 58 adjusts the temperature of the hot water supplied to the exhaust heat exchanger 14 by adjusting the mixing ratio, so that the temperature of the hot water that has passed through the exhaust heat exchanger 14 becomes a predetermined hot water storage temperature. I am doing so. In this way, the hot water stored at a predetermined temperature that has passed through the exhaust heat exchanger 14 is passed through the auxiliary heat source device 32 and the first hot water adjustment valve 33, and a part thereof is stored in the hot water return path 30. The hot water tank 27 is supplied to the upper part.
When the temperature of the hot water stored in the lower part of the hot water storage tank 27 becomes equal to or higher than the predetermined temperature, the operation control device 58 determines that the hot water storage capacity of the hot water storage tank 27 is full and stops the hot water circulation pump 31 to adjust the fourth hot water storage temperature. The valve 48 is closed and the hot water storage in the hot water storage tank 27 is ended.

図2に基づいて、運転制御装置58がヒートポンプ暖房運転と熱搬送流体加熱運転とを同時に行っている状態について説明する。
ヒートポンプ暖房運転では、運転制御装置58が、エンジン1を駆動させて四方弁10を暖房状態に切り換えることにより、圧縮機2から吐出する冷媒が、室内機8、膨張弁4、室外熱交換器9、冷媒加熱用熱交換器16、アキュムレータ11の順に通過して圧縮機2に戻るように冷媒回路6にて循環される。
熱搬送流体加熱運転については、図1と同様に、運転制御装置58が、冷却水循環ポンプ18を作動させ、且つ、第1三方弁21及び第2三方弁26の切換状態を制御することにより、冷却水循環手段15の作動を制御する。これにより、エンジン1からの冷却水が、排熱熱交換器14、冷媒加熱用熱交換器16、排ガス熱交換器19の順に通過してエンジン1に戻るように冷却水循環路17にて循環される。また、運転制御装置58が、図1と同様に、貯湯水循環ポンプ31を作動させ、且つ、第1〜第4貯湯水調整弁33,35,37,48の開閉状態を制御することにより、熱搬送流体供給手段57の作動を制御する。図2においても、図1と同様に、運転制御装置58が、熱搬送流体供給手段57の作動を制御して、貯湯タンク27への貯湯を行っている状態を示している。
Based on FIG. 2, a state in which the operation control device 58 is simultaneously performing the heat pump heating operation and the heat transfer fluid heating operation will be described.
In the heat pump heating operation, the operation control device 58 drives the engine 1 to switch the four-way valve 10 to the heating state, so that the refrigerant discharged from the compressor 2 is the indoor unit 8, the expansion valve 4, and the outdoor heat exchanger 9. Then, the refrigerant is circulated in the refrigerant circuit 6 so as to pass through the refrigerant heating heat exchanger 16 and the accumulator 11 in this order and return to the compressor 2.
As for the heat transfer fluid heating operation, as in FIG. 1, the operation control device 58 operates the cooling water circulation pump 18 and controls the switching state of the first three-way valve 21 and the second three-way valve 26. The operation of the cooling water circulation means 15 is controlled. Thus, the cooling water from the engine 1 is circulated in the cooling water circulation path 17 so as to pass through the exhaust heat exchanger 14, the refrigerant heating heat exchanger 16, and the exhaust gas heat exchanger 19 in this order and return to the engine 1. The In addition, the operation control device 58 operates the hot water circulating pump 31 and controls the open / close states of the first to fourth hot water regulating valves 33, 35, 37, and 48 as in FIG. The operation of the carrier fluid supply means 57 is controlled. 2 also shows a state in which the operation control device 58 stores hot water in the hot water storage tank 27 by controlling the operation of the heat transfer fluid supply means 57 as in FIG.

冷媒回路6の冷媒について説明する。
室内機8には、圧縮機2からの高温の冷媒が供給されるので、冷媒が凝縮することにより放熱されて室内を暖房する。室内機8を通過した冷媒は、膨張弁4にて膨張されて室外熱交換器9に供給される。室外熱交換器9に供給された冷媒は、室外ファン12にて送風される外気から吸熱して一部が蒸発し、冷媒加熱用熱交換器16に供給される。冷媒加熱用熱交換器16には、冷却水循環路17にてエンジン1の排熱を回収した高温の冷却水が供給される。したがって、冷媒加熱用熱交換器16では、冷却水が冷媒を加熱し、冷媒は完全に蒸発し、さらに加熱されるので、外気のみによるヒートポンプよりも暖房能力の向上を図ることができる。このようにして、冷媒加熱用熱交換器16は、ヒートポンプ暖房運転時の蒸発器5(室外熱交換器9)と圧縮機2との間における冷媒を加熱するように配設されている。
The refrigerant of the refrigerant circuit 6 will be described.
Since the high-temperature refrigerant from the compressor 2 is supplied to the indoor unit 8, the refrigerant is dissipated to heat the room to heat the room. The refrigerant that has passed through the indoor unit 8 is expanded by the expansion valve 4 and supplied to the outdoor heat exchanger 9. The refrigerant supplied to the outdoor heat exchanger 9 absorbs heat from the outside air blown by the outdoor fan 12 and partly evaporates, and is supplied to the refrigerant heating heat exchanger 16. The coolant heating heat exchanger 16 is supplied with high-temperature cooling water in which the exhaust heat of the engine 1 is recovered by the cooling water circulation path 17. Therefore, in the heat exchanger 16 for heating the refrigerant, the cooling water heats the refrigerant, and the refrigerant is completely evaporated and further heated. Therefore, the heating capacity can be improved as compared with the heat pump using only the outside air. In this manner, the refrigerant heating heat exchanger 16 is arranged to heat the refrigerant between the evaporator 5 (outdoor heat exchanger 9) and the compressor 2 during the heat pump heating operation.

冷却水循環路17の冷却水について説明する。
排熱熱交換器14では、図1と同様に、エンジン1からの高温の冷却水にて貯湯タンク27の下部から取り出した低温の貯湯水を加熱する。冷媒加熱用熱交換器16には、膨張弁4を通過して低温低圧になった冷媒が室外熱交換器9で一部蒸発し、低温低圧のまま気液混合状態の冷媒が供給されるので、冷却水が冷媒を加熱する。
排熱熱交換器14を通過した冷却水の温度が冷却水第5所定温度(例えば60℃)以下になる場合には、運転制御装置58が第1三方弁21の切換状態を制御することにより、図中点線矢印にて示すように、排熱熱交換器14を通過した冷却水の一部又は全量を冷却水バイパス路20に通流させて排ガス熱交換器19に供給するようにしている。このようにして、排熱熱交換器14を通過した冷却水の温度が冷却水第5所定温度(例えば60℃)以下の場合には、冷却水を冷媒加熱用熱交換器16に極力供給しないようにして、冷却水がさらに冷媒で冷却されて、冷却水の温度が下がり過ぎることを防止している。
貯湯水循環路28の貯湯水については、図1と同様であるので説明は省略する。
The cooling water of the cooling water circulation path 17 will be described.
In the exhaust heat exchanger 14, similarly to FIG. 1, the low-temperature hot water taken out from the lower portion of the hot water storage tank 27 is heated by the high-temperature cooling water from the engine 1. Since the refrigerant which has passed through the expansion valve 4 and has become low temperature and low pressure partially evaporates in the outdoor heat exchanger 9 to the refrigerant heating heat exchanger 16, the refrigerant in a gas-liquid mixed state is supplied with low temperature and low pressure. Cooling water heats the refrigerant.
When the temperature of the cooling water that has passed through the exhaust heat exchanger 14 becomes the cooling water fifth predetermined temperature (for example, 60 ° C.) or less, the operation control device 58 controls the switching state of the first three-way valve 21. As shown by the dotted arrows in the figure, a part or all of the cooling water that has passed through the exhaust heat exchanger 14 is passed through the cooling water bypass 20 and supplied to the exhaust gas heat exchanger 19. . Thus, when the temperature of the cooling water that has passed through the exhaust heat exchanger 14 is equal to or lower than the fifth predetermined temperature of the cooling water (for example, 60 ° C.), the cooling water is not supplied to the refrigerant heating heat exchanger 16 as much as possible. In this way, the cooling water is further cooled by the refrigerant, and the temperature of the cooling water is prevented from excessively decreasing.
The hot water stored in the hot water circulation circuit 28 is the same as that shown in FIG.

図3に基づいて、運転制御装置58がヒートポンプ暖房運転と冷却水加熱運転とを同時に行っている状態について説明する。
ヒートポンプ暖房運転では、図2と同様に、圧縮機2から吐出する冷媒が、室内機8、膨張弁4、室外熱交換器9、冷媒加熱用熱交換器16、アキュムレータ11の順に通過して圧縮機2に戻るように冷媒回路6にて循環される。
冷却水加熱運転では、運転制御装置58が、冷却水循環ポンプ18を作動させ、且つ、第1三方弁21及び第2三方弁26の切換状態を制御して、冷却水循環手段15の作動を制御する。これにより、エンジン1からの冷却水が、排熱熱交換器14、冷媒加熱用熱交換器16、排ガス熱交換器19の順に通過してエンジン1に戻るように冷却水循環路17にて循環される。さらに、運転制御装置58が、補助熱源機32にて貯湯水を加熱させて貯湯水循環ポンプ31を作動させ、且つ、第1〜第4貯湯水調整弁33,35,37,48の開閉状態を制御して、熱搬送流体供給手段57の作動を制御する。これにより、補助熱源機32にて加熱された貯湯水が、排熱熱交換器14を通過して補助熱源機32に戻るように貯湯水循環路28にて循環される。
Based on FIG. 3, the state which the operation control apparatus 58 is performing the heat pump heating operation and the cooling water heating operation simultaneously is demonstrated.
In the heat pump heating operation, similarly to FIG. 2, the refrigerant discharged from the compressor 2 passes through the indoor unit 8, the expansion valve 4, the outdoor heat exchanger 9, the refrigerant heating heat exchanger 16, and the accumulator 11 in order. It is circulated in the refrigerant circuit 6 so as to return to the machine 2.
In the cooling water heating operation, the operation control device 58 operates the cooling water circulation pump 18 and controls the switching state of the first three-way valve 21 and the second three-way valve 26 to control the operation of the cooling water circulation means 15. . Thus, the cooling water from the engine 1 is circulated in the cooling water circulation path 17 so as to pass through the exhaust heat exchanger 14, the refrigerant heating heat exchanger 16, and the exhaust gas heat exchanger 19 in this order and return to the engine 1. The Further, the operation control device 58 heats the stored hot water with the auxiliary heat source unit 32 to operate the stored hot water circulation pump 31 and opens and closes the first to fourth stored hot water regulating valves 33, 35, 37, 48. To control the operation of the heat transfer fluid supply means 57. Thereby, the hot water stored in the auxiliary heat source device 32 is circulated in the hot water storage circuit 28 so as to pass through the exhaust heat exchanger 14 and return to the auxiliary heat source device 32.

貯湯水循環路28の貯湯水について説明する。
運転制御装置58が、第2貯湯水調整弁35を開弁し且つ第3貯湯水調整弁37及び第4貯湯水調整弁48を閉弁して、補助熱源機32を通過した貯湯水を風呂熱交換器34、排熱熱交換器14の順に通過させて補助熱源機32に戻す形態で貯湯水循環路28にて循環させる。そして、運転制御装置58が、補助熱源機32の燃焼量を調整するとともに、第1貯湯水調整弁33の開度調整を行い貯湯水循環路28における循環流量全体を調整することにより、排熱熱交換器14に供給される貯湯水の温度を所望温度(例えば、70〜80℃)とし且つ排熱熱交換器14に供給される貯湯水の流量を所望流量となるようにしている。
The hot water stored in the hot water circulating circuit 28 will be described.
The operation control device 58 opens the second hot water adjustment valve 35 and closes the third hot water adjustment valve 37 and the fourth hot water adjustment valve 48 to bathe the hot water passing through the auxiliary heat source device 32. The heat exchanger 34 and the exhaust heat exchanger 14 are passed through in this order and returned to the auxiliary heat source unit 32 to be circulated in the hot water circulation circuit 28. Then, the operation control device 58 adjusts the amount of combustion of the auxiliary heat source unit 32 and adjusts the opening degree of the first hot water storage adjustment valve 33 to adjust the entire circulation flow rate in the hot water storage circuit 28, thereby exhaust heat heat. The temperature of the hot water supplied to the exchanger 14 is set to a desired temperature (for example, 70 to 80 ° C.), and the flow rate of the hot water supplied to the exhaust heat exchanger 14 is set to a desired flow rate.

冷却水循環路17の冷却水について説明する。
冷却水循環路17の冷却水の温度が冷却水第1所定温度(例えば20℃)以下である又は外気温度が外気第1所定温度(例えば10℃)以下である場合にエンジン1を始動させるとき、暖房能力が不足するとき、外気温度が外気第2所定温度(例えば2℃)未満のときの夫々において、冷却水加熱運転が行われる。したがって、排熱熱交換器14に供給される冷却水の温度は、いずれのときであっても比較的低温になっている。一方、排熱熱交換器14には、補助熱源機32にて加熱された所望温度(例えば、70〜80℃)の貯湯水が供給される。したがって、排熱熱交換器では、貯湯水が冷却水よりも高温となり、貯湯水が冷却水を加熱する。
The cooling water of the cooling water circulation path 17 will be described.
When the engine 1 is started when the temperature of the cooling water in the cooling water circulation path 17 is equal to or lower than the cooling water first predetermined temperature (for example, 20 ° C.) or the outside air temperature is equal to or lower than the first outside predetermined temperature (for example, 10 ° C.), When the heating capacity is insufficient, the cooling water heating operation is performed each time when the outside air temperature is lower than the outside air second predetermined temperature (for example, 2 ° C.). Therefore, the temperature of the cooling water supplied to the exhaust heat exchanger 14 is relatively low at any time. On the other hand, the waste heat exchanger 14 is supplied with hot water stored at a desired temperature (for example, 70 to 80 ° C.) heated by the auxiliary heat source device 32. Therefore, in the exhaust heat exchanger, the hot water is higher in temperature than the cooling water, and the hot water heats the cooling water.

排熱熱交換器14にて加熱された冷却水は、冷媒加熱用熱交換器16に供給されて低温の冷媒を加熱する。そして、排熱熱交換器14にて加熱された直後の冷却水を冷媒加熱用熱交換器16に供給しているので、排熱熱交換器14にて冷却水に加えられた熱を冷媒加熱用熱交換器16において冷媒の加熱に優先的に利用でき、暖房能力の向上を効果的に図ることができる。そして、冷媒加熱用熱交換器16の通過後の冷却水は、まだ高温を維持しているので、その高温の冷却水により排ガス熱交換器19及びエンジン1を温めることができる。このようにして、排熱熱交換器14にて冷却水に加えられた熱を、冷媒の加熱、排ガス熱交換器19の加熱、及び、エンジン1の加熱に用いることができる。   The cooling water heated by the exhaust heat exchanger 14 is supplied to the refrigerant heating heat exchanger 16 to heat the low-temperature refrigerant. Since the cooling water immediately after being heated by the exhaust heat exchanger 14 is supplied to the refrigerant heating heat exchanger 16, the heat added to the cooling water by the exhaust heat exchanger 14 is heated by the refrigerant. The heat exchanger 16 can be preferentially used for heating the refrigerant, and the heating capacity can be effectively improved. And since the cooling water after passing the refrigerant | coolant heating heat exchanger 16 is still maintaining high temperature, the exhaust gas heat exchanger 19 and the engine 1 can be warmed with the high temperature cooling water. In this way, the heat applied to the cooling water in the exhaust heat exchanger 14 can be used for heating the refrigerant, heating the exhaust gas heat exchanger 19, and heating the engine 1.

冷却水循環路17の冷却水の温度が冷却水第1所定温度(例えば20℃)以下である又は外気温度が外気第1所定温度(例えば10℃)以下である場合にエンジン1を始動させるときには、排熱熱交換器14にて冷却水に加えられた熱を冷媒の加熱に優先的に利用できるので、ヒートポンプ暖房の立ち上がりを早めることができる。
暖房能力が不足するとき、及び、外気温度が外気第2所定温度(例えば2℃)未満のときにも、排熱熱交換器14にて冷却水に加えられた熱を冷媒の加熱に優先的に利用できるので、得られる暖房能力を高めることができ、得られる暖房能力が要求されている暖房能力よりも不足することを抑制できる。しかも、排熱熱交換器14にて冷却水を加熱することにより、冷媒加熱用熱交換器16において冷却水を冷媒の加熱に利用しても、冷却水の温度が下がり過ぎるのを防止できる。
冷媒回路6の冷媒については、図2と同様であるので説明は省略する。
When the engine 1 is started when the temperature of the cooling water in the cooling water circulation path 17 is equal to or lower than the cooling water first predetermined temperature (for example, 20 ° C.) or the outside air temperature is equal to or lower than the first outdoor temperature (for example, 10 ° C.), Since the heat added to the cooling water in the exhaust heat exchanger 14 can be used preferentially for the heating of the refrigerant, the start-up of the heat pump heating can be accelerated.
Even when the heating capacity is insufficient and when the outside air temperature is lower than the outside second predetermined temperature (for example, 2 ° C.), the heat added to the cooling water in the exhaust heat exchanger 14 is preferential to the heating of the refrigerant. Therefore, the obtained heating capacity can be increased, and the obtained heating capacity can be suppressed from being deficient as compared with the required heating capacity. In addition, by heating the cooling water in the exhaust heat exchanger 14, even if the cooling water is used for heating the refrigerant in the refrigerant heating heat exchanger 16, it is possible to prevent the temperature of the cooling water from being excessively lowered.
The refrigerant in the refrigerant circuit 6 is the same as that in FIG.

運転制御装置58は、上述の各運転に加えて、給湯路49から給湯する給湯運転、浴槽43の湯張りを行う湯張り運転、浴槽43の浴槽水を加熱する追焚き運転、暖房端末44での暖房を行う温水暖房運転の夫々を行うべく、排熱利用装置7の作動を制御するように構成されている。   In addition to the above-described operations, the operation control device 58 includes a hot water supply operation for supplying hot water from the hot water supply passage 49, a hot water operation for performing hot water filling of the bathtub 43, a reheating operation for heating the bathtub water of the bathtub 43, and a heating terminal 44. It is configured to control the operation of the exhaust heat utilization device 7 so as to perform each of the hot water heating operations for performing the heating.

給湯運転では、運転制御装置58が、ミキシングバルブ51の開度を調整することにより、貯湯タンク27の上部から取り出した貯湯水に分岐給水路50からの水を混合させて給湯設定温度として給湯路49にて給湯するようにしている。
湯張り運転では、運転制御装置58が、ミキシングバルブ51の開度を調整するとともに湯張り弁54を開弁して、貯湯タンク27の上部から取り出した貯湯水に分岐給水路50からの水を混合させて風呂設定温度とした湯水を湯張り路53及び風呂循環路39にて浴槽43に供給するようにしている。
運転制御装置58は、給湯運転及び湯張り運転において、第1〜第4貯湯水調整弁33,35,37,48の開閉状態を制御して、貯湯水を補助熱源機32を通過させる形態で貯湯水循環路28にて循環させるとともに、補助熱源機32を作動させて、補助熱源機32にて加熱された貯湯水を給湯や湯張りに利用できるようにしている。このようにして、給湯運転や湯張り運転において得られる熱量が要求されている熱量よりも不足するときには、補助熱源機32にて加熱された貯湯水を利用することにより、得られる熱量が要求されている熱量よりも不足することを抑制できる。例えば、給湯運転及び湯張り運転では、貯湯タンク27の上部に貯湯されている貯湯水の温度が給湯設定温度よりも所定温度だけ高い温度よりも低いときに、補助熱源機32にて加熱された貯湯水を給湯や湯張りに利用している。
In the hot water supply operation, the operation control device 58 adjusts the opening degree of the mixing valve 51 to mix the hot water stored in the hot water storage tank 27 with the water from the branch water supply channel 50 to obtain the hot water supply temperature. At 49, hot water is supplied.
In the hot water filling operation, the operation control device 58 adjusts the opening degree of the mixing valve 51 and opens the hot water filling valve 54 so that the hot water stored in the hot water storage tank 27 is supplied with water from the branch water supply channel 50. Hot and cold water that has been mixed and set to a bath set temperature is supplied to the bathtub 43 through the hot water filling passage 53 and the bath circulation passage 39.
In the hot water supply operation and the hot water filling operation, the operation control device 58 controls the open / closed states of the first to fourth hot water storage regulating valves 33, 35, 37, and 48 and allows the hot water to pass through the auxiliary heat source device 32. The hot water is circulated in the hot water circulation circuit 28 and the auxiliary heat source device 32 is operated so that the hot water heated by the auxiliary heat source device 32 can be used for hot water supply or hot water filling. In this way, when the amount of heat obtained in the hot water supply operation or hot water filling operation is less than the required amount of heat, the amount of heat obtained is required by using the hot water stored in the auxiliary heat source unit 32. It can be suppressed that the amount of heat is insufficient. For example, in the hot water supply operation and the hot water filling operation, the hot water stored in the upper part of the hot water storage tank 27 is heated by the auxiliary heat source device 32 when the temperature of the hot water stored is lower than the predetermined temperature higher than the hot water supply set temperature. Hot water is used for hot water supply and hot water filling.

追焚き運転では、運転制御装置58が、貯湯水循環ポンプ31を作動させ、且つ、第1〜第4貯湯水調整弁33,35,37,48の開閉状態を制御することにより、貯湯水を風呂熱交換器34を通過させる形態で貯湯水循環路28にて循環させるとともに、補助熱源機32を作動させることにより、補助熱源機32にて加熱された貯湯水を風呂熱交換器34に供給するようにしている。また、運転制御装置58が、風呂ポンプ40の作動により浴槽43と風呂熱交換器34との間で浴槽水を循環させることにより、風呂熱交換器34にて加熱された浴槽水を浴槽43に戻すようにしている。
このとき、エンジン1が作動していれば、排熱熱交換器14において冷却水にて貯湯水を加熱することが可能である。したがって、運転制御装置58は、熱搬送流体加熱運転において追焚き運転を行うことにより、排熱熱交換器14にて加熱された貯湯水を風呂の追焚きに利用している。
In the chasing operation, the operation control device 58 operates the hot water circulating pump 31 and controls the open / closed states of the first to fourth hot water regulating valves 33, 35, 37, 48, thereby bathing the hot water. The hot water is circulated in the hot water circulation circuit 28 in a form of passing through the heat exchanger 34 and the auxiliary heat source device 32 is operated so that the hot water heated by the auxiliary heat source device 32 is supplied to the bath heat exchanger 34. I have to. Further, the operation control device 58 circulates the bath water between the bathtub 43 and the bath heat exchanger 34 by the operation of the bath pump 40, so that the bath water heated by the bath heat exchanger 34 is supplied to the bathtub 43. I try to return it.
At this time, if the engine 1 is operating, it is possible to heat the stored hot water with cooling water in the exhaust heat exchanger 14. Therefore, the operation control device 58 performs the reheating operation in the heat transfer fluid heating operation, thereby using the hot water stored in the exhaust heat exchanger 14 for reheating the bath.

温水暖房運転では、運転制御装置58が、貯湯水循環ポンプ31を作動させ、且つ、第1〜第4貯湯水調整弁33,35,37,48の開閉状態を制御することにより、貯湯水を暖房熱交換器36を通過させる形態で貯湯水循環路28にて循環させる。また、運転制御装置58が、暖房ポンプ40の作動により暖房端末44と暖房熱交換器36との間で暖房水を循環させることにより、暖房熱交換器36にて加熱された暖房水を暖房端末44に供給するようにしている。このとき、エンジン1が作動していれば、排熱熱交換器14において冷却水にて貯湯水を加熱することが可能であるので、運転制御装置58は、熱搬送流体加熱運転において温水暖房運転を行うことにより、排熱熱交換器14にて加熱された貯湯水を温水暖房に利用している。
温水暖房運転では、排熱熱交換器14において冷却水が貯湯水を加熱するだけでは得られる熱量が要求されている熱量よりも不足するときに、運転制御装置58が、第1〜第4貯湯水調整弁33,35,37,48の開閉状態を制御して、貯湯水を補助熱源機32を通過させる形態で貯湯水循環路28にて循環させるとともに、補助熱源機32を作動させて、補助熱源機32にて加熱された貯湯水を温水暖房に利用している。
In the hot water heating operation, the operation control device 58 operates the hot water circulating pump 31 and controls the open / closed states of the first to fourth hot water adjustment valves 33, 35, 37, and 48, thereby heating the hot water. It is circulated in the hot water storage circuit 28 in such a form that it passes through the heat exchanger 36. Further, the operation control device 58 circulates the heating water between the heating terminal 44 and the heating heat exchanger 36 by the operation of the heating pump 40, whereby the heating water heated by the heating heat exchanger 36 is converted into the heating terminal. 44 is supplied. At this time, if the engine 1 is operating, it is possible to heat the stored hot water with the cooling water in the exhaust heat exchanger 14, so the operation control device 58 performs the hot water heating operation in the heat transfer fluid heating operation. The hot water stored in the exhaust heat exchanger 14 is used for hot water heating.
In the hot water heating operation, when the amount of heat obtained only by heating the stored hot water in the exhaust heat exchanger 14 is less than the required amount of heat, the operation control device 58 causes the first to fourth hot water storages. The open / close state of the water regulating valves 33, 35, 37, and 48 is controlled to circulate hot water in the hot water circulating circuit 28 in a form that passes through the auxiliary heat source 32, and the auxiliary heat source 32 is operated to assist Hot water heated by the heat source device 32 is used for hot water heating.

図1では、運転制御装置58がヒートポンプ冷房運転と熱搬送流体加熱運転とを同時に行っている状態について説明したが、運転制御装置58がヒートポンプ冷房運転を単独で行うこともできる。図2では、運転制御装置58がヒートポンプ暖房運転と熱搬送流体加熱運転とを同時に行っている状態について説明したが、運転制御装置58がヒートポンプ暖房運転を単独で行うこともできる。   In FIG. 1, the state in which the operation control device 58 performs the heat pump cooling operation and the heat transfer fluid heating operation at the same time has been described. However, the operation control device 58 can perform the heat pump cooling operation alone. In FIG. 2, the state in which the operation control device 58 performs the heat pump heating operation and the heat transfer fluid heating operation at the same time has been described. However, the operation control device 58 can perform the heat pump heating operation alone.

〔別実施形態〕
(1)上記実施形態では、冷却水加熱運転において、熱搬送流体供給手段57が補助熱源機32にて加熱された貯湯水を排熱熱交換器14に供給するようにしているが、冷却水加熱運転において、熱搬送流体供給手段57が貯湯タンク27に貯湯されている貯湯水を排熱熱交換器14に供給するようにしてもよい。この場合、例えば、貯湯タンク27の上部から貯湯水を取り出して貯湯水循環路28において排熱熱交換器14よりも上流側に貯湯水を供給する貯湯水取り出し手段と、排熱熱交換器14を通過した後の貯湯水を貯湯タンク27の下部に戻す貯湯水戻し手段とを設ける。
[Another embodiment]
(1) In the above embodiment, in the cooling water heating operation, the heat carrier fluid supply means 57 supplies the hot water stored in the auxiliary heat source unit 32 to the exhaust heat exchanger 14. In the heating operation, the heat transfer fluid supply means 57 may supply the hot water stored in the hot water storage tank 27 to the exhaust heat exchanger 14. In this case, for example, the hot water storage means for taking out hot water from the upper part of the hot water storage tank 27 and supplying the hot water to the upstream side of the exhaust heat heat exchanger 14 in the hot water circulation path 28 and the exhaust heat exchanger 14 are provided. There is provided hot water return means for returning the hot water after passing to the lower part of the hot water storage tank 27.

(2)上記実施形態では、貯湯水循環路28において補助熱源機32を排熱熱交換器14よりも下流側に配置しているが、貯湯水循環路28において補助熱源機32を排熱熱交換器14よりも上流側に配置することもできる。補助熱源機32をどの位置に配置するかは適宜変更が可能である。 (2) In the above embodiment, the auxiliary heat source device 32 is disposed downstream of the exhaust heat exchanger 14 in the hot water circulation circuit 28, but the auxiliary heat source device 32 is disposed in the hot water circulation channel 28. It can also be arranged upstream of 14. The position where the auxiliary heat source device 32 is arranged can be changed as appropriate.

(3)上記実施形態では、冷却水循環ポンプ18を室外機13に備えているが、冷却水循環ポンプ18を排熱利用装置7に備えることもできる。 (3) Although the cooling water circulation pump 18 is provided in the outdoor unit 13 in the above embodiment, the cooling water circulation pump 18 may be provided in the exhaust heat utilization device 7.

(4)上記実施形態では、補助熱源機32としてガス燃焼式の給湯機を例示したが、電気ヒータを備えた電気式の給湯機を適応することもでき、その他各種の補助熱源機を適応することができる。 (4) In the above embodiment, the gas combustion type hot water heater is exemplified as the auxiliary heat source device 32. However, an electric water heater provided with an electric heater can be applied, and other various auxiliary heat source devices are also applied. be able to.

(5)上記実施形態では、冷媒回路6に切換手段としての四方弁10を設け、室内を暖房するヒートポンプ暖房運転だけではなく、室内を冷房するヒートポンプ冷房運転を行うようにしているが、室内を暖房するヒートポンプ暖房運転のみを行うものでもよい。 (5) In the above embodiment, the refrigerant circuit 6 is provided with the four-way valve 10 as switching means, and not only the heat pump heating operation for heating the room but also the heat pump cooling operation for cooling the room is performed. Only the heat pump heating operation for heating may be performed.

(6)上記実施形態において、冷却水循環手段15が、エンジン1の冷却水を排熱熱交換器14との間で循環させるとともに、排熱熱交換器14と並列状態で設け、暖房ポンプ40の作動により循環される暖房水を加熱する直接暖房用熱交換器との間でエンジン1の冷却水を循環させるように構成することもできる。この場合、冷却水循環手段15が、直接暖房用熱交換器との間でエンジン1の冷却水を循環させることにより、直接暖房用熱交換器において冷却水にて暖房水を加熱し、その加熱された暖房水を暖房端末44に供給するようにしている。このようにして、直接暖房用熱交換器において冷却水にて暖房水を直接加熱することができるので、冷却水を効率よく利用しながら、所望温度の暖房水を得ることができる。 (6) In the above embodiment, the cooling water circulation means 15 circulates the cooling water of the engine 1 between the exhaust heat exchanger 14 and is provided in parallel with the exhaust heat exchanger 14. The cooling water of the engine 1 can also be circulated with the direct heating heat exchanger that heats the heating water circulated by the operation. In this case, the cooling water circulating means 15 circulates the cooling water of the engine 1 directly with the heating heat exchanger, thereby heating the heating water with the cooling water in the direct heating heat exchanger and heating the cooling water. The heated water is supplied to the heating terminal 44. Thus, since the heating water can be directly heated with the cooling water in the direct heating heat exchanger, the heating water having a desired temperature can be obtained while efficiently using the cooling water.

(7)上記実施形態において、冷却水加熱運転の実行を指令する運転指令手段としての人為操作式の運転指令スイッチを設け、運転制御装置58が、ヒートポンプ暖房運転において、運転指令スイッチにて冷却水加熱運転の実行が指令されているときに冷却水加熱運転を行うように構成することもできる。このように、運転制御装置58が、使用者の要求に合わせて冷却水加熱運転を実行することができ、使用者の要望に応えることができる。この場合には、例えば、運転制御装置58を、冷却水循環路17の冷却水の温度が冷却水第3所定温度(例えば70℃)以上になる等によりエンジン排熱が余る状態となると、冷却水加熱運転を停止させるように構成することができる。 (7) In the embodiment described above, an operation command type operation command switch is provided as an operation command means for commanding execution of the cooling water heating operation, and the operation control device 58 is operated by the operation command switch in the heat pump heating operation. The cooling water heating operation may be performed when the execution of the heating operation is instructed. Thus, the operation control device 58 can execute the cooling water heating operation in accordance with the user's request, and can meet the user's request. In this case, for example, when the temperature of the cooling water in the cooling water circulation path 17 becomes equal to or higher than the third predetermined temperature of the cooling water (for example, 70 ° C.), the operation control device 58 causes the cooling water to become excessive. The heating operation can be stopped.

(8)上記実施形態では、運転制御装置58が、ヒートポンプ暖房運転を行う場合に、冷却水循環路17の冷却水の温度が冷却水第1所定温度(例えば20℃)以下である又は外気温度が外気第1所定温度(例えば10℃)以下である場合にエンジン1を始動させるとき、暖房能力が不足するとき、及び、外気温度が外気第2所定温度(例えば2℃)未満のときの夫々において、冷却水加熱運転を行うように構成されているが、どのようなときに冷却水加熱運転を行うかは適宜変更が可能である。例えば、運転制御装置58が、ヒートポンプ暖房運転において、冷却水循環路17の冷却水の温度が冷却水第1所定温度(例えば20℃)以下である又は外気温度が外気第1所定温度(例えば10℃)以下である場合にエンジン1を始動させるときだけ、冷却水加熱運転を行うこともできる。 (8) In the above embodiment, when the operation control device 58 performs the heat pump heating operation, the temperature of the cooling water in the cooling water circulation path 17 is equal to or lower than the cooling water first predetermined temperature (for example, 20 ° C.), or the outside air temperature is When the engine 1 is started when the outside air temperature is lower than the first predetermined temperature (for example, 10 ° C.), when the heating capacity is insufficient, and when the outside air temperature is lower than the second predetermined temperature (for example, 2 ° C.). The cooling water heating operation is configured to be performed, but when the cooling water heating operation is performed can be appropriately changed. For example, in the heat pump heating operation, when the operation control device 58 is in the heat pump heating operation, the temperature of the cooling water in the cooling water circulation path 17 is equal to or lower than the cooling water first predetermined temperature (for example, 20 ° C.) or the outside air temperature is the first predetermined temperature of the outside air (for example, 10 ° C. The cooling water heating operation can be performed only when the engine 1 is started in the following cases.

本発明は、エンジンにより駆動されて冷媒を圧縮する圧縮機、前記冷媒から放熱させる凝縮器、前記冷媒を膨張させる膨張弁、前記冷媒に吸熱させる蒸発器の順に前記冷媒を循環する冷媒回路と、前記エンジンの冷却水を排熱熱交換器との間で循環させる冷却水循環手段と、熱搬送流体を前記排熱熱交換器に供給し、前記排熱熱交換器の通過後の熱搬送流体を熱利用部に供給する熱搬送流体供給手段とが設けられ、十分な暖房能力を発揮することができる各種のエンジン駆動ヒートポンプ装置に適応できる。   The present invention is a compressor that is driven by an engine to compress refrigerant, a condenser that dissipates heat from the refrigerant, an expansion valve that expands the refrigerant, and a refrigerant circuit that circulates the refrigerant in the order of an evaporator that absorbs heat from the refrigerant; Cooling water circulation means for circulating the cooling water of the engine to and from the exhaust heat exchanger, heat supply fluid is supplied to the exhaust heat exchanger, and the heat transfer fluid after passing through the exhaust heat exchanger A heat carrier fluid supply means for supplying heat to the heat utilization unit is provided, and can be applied to various engine-driven heat pump devices capable of exhibiting sufficient heating capacity.

ヒートポンプ冷房運転と熱搬送流体加熱運転とを行っている状態におけるエンジン駆動ヒートポンプ装置の概略図Schematic of the engine-driven heat pump device in a state where the heat pump cooling operation and the heat transfer fluid heating operation are performed ヒートポンプ暖房運転と熱搬送流体加熱運転とを行っている状態におけるエンジン駆動ヒートポンプ装置の概略図Schematic of the engine-driven heat pump device in a state where the heat pump heating operation and the heat transfer fluid heating operation are performed ヒートポンプ暖房運転と冷却水加熱運転とを行っている状態におけるエンジン駆動ヒートポンプ装置の概略図Schematic of the engine-driven heat pump device in a state where the heat pump heating operation and the cooling water heating operation are performed

符号の説明Explanation of symbols

1 エンジン
2 圧縮機
3 凝縮器
4 膨張弁
5 蒸発器
6 冷媒回路
8 室内機
9 室外熱交換器
10 切換手段(四方弁)
14 排熱熱交換器
15 冷却水循環手段
16 冷媒加熱用熱交換器
27 貯湯タンク
32 補助熱源機
56 熱利用部
57 熱搬送流体供給手段
58 運転制御手段(運転制御装置)
DESCRIPTION OF SYMBOLS 1 Engine 2 Compressor 3 Condenser 4 Expansion valve 5 Evaporator 6 Refrigerant circuit 8 Indoor unit 9 Outdoor heat exchanger 10 Switching means (four-way valve)
DESCRIPTION OF SYMBOLS 14 Waste heat exchanger 15 Cooling water circulation means 16 Refrigerant heating heat exchanger 27 Hot water storage tank 32 Auxiliary heat source machine 56 Heat utilization part 57 Heat conveyance fluid supply means 58 Operation control means (operation control apparatus)

Claims (8)

エンジンにより駆動されて冷媒を圧縮する圧縮機、前記冷媒から放熱させる凝縮器、前記冷媒を膨張させる膨張弁、前記冷媒に吸熱させる蒸発器の順に前記冷媒を循環する冷媒回路と、
前記エンジンの冷却水を排熱熱交換器との間で循環させる冷却水循環手段と、
熱搬送流体を前記排熱熱交換器に供給し、前記排熱熱交換器の通過後の熱搬送流体を熱利用部に供給する熱搬送流体供給手段と、
前記排熱熱交換器において前記冷却水循環手段にて循環される冷却水にて前記熱搬送流体供給手段にて供給される熱搬送流体を加熱すべく、前記冷却水循環手段及び前記熱搬送流体供給手段の夫々の作動を制御する熱搬送流体加熱運転を行う運転制御手段とが設けられているエンジン駆動ヒートポンプ装置であって、
前記熱搬送流体供給手段により前記熱利用部に供給される熱搬送流体を加熱可能な補助熱源機、又は、前記排熱熱交換器の通過後の熱搬送流体を貯留する貯湯タンクが設けられ、
前記熱搬送流体供給手段が、前記補助熱源機にて加熱された熱搬送流体又は前記貯湯タンクに貯留された熱搬送流体を前記排熱熱交換器に供給するように構成され、
前記運転制御手段が、前記排熱熱交換器において前記熱搬送流体供給手段により供給される前記熱搬送流体にて前記冷却水循環手段にて循環される冷却水を加熱すべく、前記冷却水循環手段及び前記熱搬送流体供給手段の夫々の作動を制御する冷却水加熱運転を行うように構成されているエンジン駆動ヒートポンプ装置。
A compressor driven by the engine to compress the refrigerant, a condenser that dissipates heat from the refrigerant, an expansion valve that expands the refrigerant, and a refrigerant circuit that circulates the refrigerant in the order of the evaporator that absorbs heat from the refrigerant;
A cooling water circulating means for circulating the cooling water of the engine to and from the exhaust heat exchanger;
A heat transfer fluid supply means for supplying a heat transfer fluid to the exhaust heat exchanger, and supplying the heat transfer fluid after passing through the exhaust heat exchanger to a heat utilization unit;
The cooling water circulation means and the heat carrier fluid supply means for heating the heat carrier fluid supplied by the heat carrier fluid supply means with the cooling water circulated by the cooling water circulation means in the exhaust heat exchanger. An engine-driven heat pump device provided with an operation control means for performing a heat carrier fluid heating operation for controlling the operation of each of
An auxiliary heat source device capable of heating the heat transfer fluid supplied to the heat utilization unit by the heat transfer fluid supply means, or a hot water storage tank for storing the heat transfer fluid after passing through the exhaust heat exchanger,
The heat carrier fluid supply means is configured to supply the heat carrier fluid heated by the auxiliary heat source device or the heat carrier fluid stored in the hot water storage tank to the exhaust heat exchanger.
In order to heat the cooling water circulated in the cooling water circulation means with the heat carrier fluid supplied by the heat carrier fluid supply means in the exhaust heat exchanger, the operation control means, An engine-driven heat pump device configured to perform a cooling water heating operation for controlling each operation of the heat transfer fluid supply means.
前記冷却水循環手段が、前記冷媒回路の冷媒を加熱する冷媒加熱用熱交換器を通過させる状態で冷却水を循環させるように構成され、
前記冷媒加熱用熱交換器は、前記冷媒回路において、前記蒸発器と前記圧縮機との間における冷媒を加熱するように配設されている請求項1に記載のエンジン駆動ヒートポンプ装置。
The cooling water circulation means is configured to circulate cooling water in a state of passing through a refrigerant heating heat exchanger that heats the refrigerant in the refrigerant circuit;
The engine-driven heat pump device according to claim 1, wherein the refrigerant heating heat exchanger is disposed in the refrigerant circuit so as to heat a refrigerant between the evaporator and the compressor.
前記冷却水循環手段が、前記エンジン、前記排熱熱交換器、前記冷媒加熱用熱交換器の順に冷却水を通過させる状態で冷却水を循環させるように構成されている請求項2に記載のエンジン駆動ヒートポンプ装置。   The engine according to claim 2, wherein the cooling water circulation means is configured to circulate the cooling water in a state in which the cooling water is passed in the order of the engine, the exhaust heat exchanger, and the refrigerant heating heat exchanger. Drive heat pump device. 前記凝縮器が、冷媒と室内の空気との間で熱交換可能な室内機にて構成され、
前記蒸発器が、冷媒と室外の外気との間で熱交換可能な室外熱交換器にて構成され、
前記運転制御手段が、前記室内を暖房するヒートポンプ暖房運転において、前記エンジンを始動させるときに前記冷却水加熱運転を行うように構成されている請求項2又は3に記載のエンジン駆動ヒートポンプ装置。
The condenser is configured by an indoor unit capable of exchanging heat between the refrigerant and indoor air,
The evaporator is composed of an outdoor heat exchanger capable of exchanging heat between the refrigerant and the outdoor air,
4. The engine-driven heat pump device according to claim 2, wherein the operation control unit is configured to perform the cooling water heating operation when starting the engine in a heat pump heating operation for heating the room. 5.
前記凝縮器が、冷媒と室内の空気との間で熱交換可能な室内機にて構成され、
前記蒸発器が、冷媒と室外の外気との間で熱交換可能な室外熱交換器にて構成され、
前記運転制御手段が、前記室内を暖房するヒートポンプ暖房運転において、暖房能力が不足するときに前記冷却水加熱運転を行うように構成されている請求項2〜4の何れか1項に記載のエンジン駆動ヒートポンプ装置。
The condenser is configured by an indoor unit capable of exchanging heat between the refrigerant and indoor air,
The evaporator is composed of an outdoor heat exchanger capable of exchanging heat between the refrigerant and the outdoor air,
The engine according to any one of claims 2 to 4, wherein the operation control means is configured to perform the cooling water heating operation when a heating capacity is insufficient in a heat pump heating operation for heating the room. Drive heat pump device.
前記凝縮器が、冷媒と室内の空気との間で熱交換可能な室内機にて構成され、
前記蒸発器が、冷媒と室外の外気との間で熱交換可能な室外熱交換器にて構成され、
前記運転制御手段が、前記室内を暖房するヒートポンプ暖房運転において、外気温度が所定温度未満であるときに前記冷却水加熱運転を行うように構成されている請求項2〜5の何れか1項に記載のエンジン駆動ヒートポンプ装置。
The condenser is configured by an indoor unit capable of exchanging heat between the refrigerant and indoor air,
The evaporator is composed of an outdoor heat exchanger capable of exchanging heat between the refrigerant and the outdoor air,
6. The heat pump heating operation for heating the room, wherein the operation control means is configured to perform the cooling water heating operation when an outside air temperature is lower than a predetermined temperature. The engine-driven heat pump device described.
前記冷却水加熱運転の実行を指令する運転指令手段が設けられ、
前記凝縮器が、冷媒と室内の空気との間で熱交換可能な室内機にて構成され、
前記蒸発器が、冷媒と室外の外気との間で熱交換可能な室外熱交換器にて構成され、
前記運転制御手段が、前記室内を暖房するヒートポンプ暖房運転において、前記運転指令手段にて前記冷却水加熱運転の実行が指令されているときに前記冷却水加熱運転を行うように構成されている請求項2〜6の何れか1項に記載のエンジン駆動ヒートポンプ装置。
An operation command means for commanding execution of the cooling water heating operation is provided,
The condenser is configured by an indoor unit capable of exchanging heat between the refrigerant and indoor air,
The evaporator is composed of an outdoor heat exchanger capable of exchanging heat between the refrigerant and the outdoor air,
In the heat pump heating operation for heating the room, the operation control unit is configured to perform the cooling water heating operation when the operation command unit instructs the execution of the cooling water heating operation. Item 7. The engine-driven heat pump device according to any one of Items 2 to 6.
冷媒回路に、冷媒と室内の空気との間で熱交換可能な室内機と、冷媒と室外の外気との間で熱交換可能な室外熱交換器と、前記室内機を前記凝縮器として機能させ且つ前記室外熱交換器を前記蒸発器として機能させる暖房状態と前記室内機を前記蒸発器として機能させ且つ前記室外熱交換器を前記凝縮器として機能させる冷房状態とに冷媒の通流状態を切換自在な切換手段とが設けられ、
前記冷媒加熱用熱交換器は、前記冷媒回路において、前記室外熱交換器と前記圧縮機との間に配設され、
前記運転制御手段が、前記切換手段を前記暖房状態に切り換えるヒートポンプ暖房運転と前記切換手段を前記冷房状態に切り換える前記ヒートポンプ冷房運転とを択一的に行うように構成されている請求項2〜7の何れか1項に記載のエンジン駆動ヒートポンプ装置。
The refrigerant circuit causes an indoor unit capable of exchanging heat between the refrigerant and indoor air, an outdoor heat exchanger capable of exchanging heat between the refrigerant and outdoor outdoor air, and the indoor unit to function as the condenser. The refrigerant flow state is switched between a heating state in which the outdoor heat exchanger functions as the evaporator and a cooling state in which the indoor unit functions as the evaporator and the outdoor heat exchanger functions as the condenser. Flexible switching means,
The refrigerant heating heat exchanger is disposed between the outdoor heat exchanger and the compressor in the refrigerant circuit,
The operation control means is configured to selectively perform a heat pump heating operation for switching the switching means to the heating state and a heat pump cooling operation for switching the switching means to the cooling state. The engine-driven heat pump device according to any one of the above.
JP2007132042A 2007-05-17 2007-05-17 Engine-driven heat pump device Expired - Fee Related JP4990677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007132042A JP4990677B2 (en) 2007-05-17 2007-05-17 Engine-driven heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007132042A JP4990677B2 (en) 2007-05-17 2007-05-17 Engine-driven heat pump device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011270473A Division JP5255687B2 (en) 2011-12-09 2011-12-09 Engine-driven heat pump device

Publications (2)

Publication Number Publication Date
JP2008286476A true JP2008286476A (en) 2008-11-27
JP4990677B2 JP4990677B2 (en) 2012-08-01

Family

ID=40146358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007132042A Expired - Fee Related JP4990677B2 (en) 2007-05-17 2007-05-17 Engine-driven heat pump device

Country Status (1)

Country Link
JP (1) JP4990677B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133610A (en) * 2008-12-03 2010-06-17 Sharp Corp Heat pump water heater system
JP2011185571A (en) * 2010-03-10 2011-09-22 Osaka Gas Co Ltd Heat pump system
WO2014084343A1 (en) * 2012-11-30 2014-06-05 サンデン株式会社 Vehicle air-conditioning device
JP2014119205A (en) * 2012-12-18 2014-06-30 Yanmar Co Ltd Engine driven heat pump
JP2014219169A (en) * 2013-05-10 2014-11-20 本田技研工業株式会社 Cogeneration device
JP6095749B1 (en) * 2015-11-02 2017-03-15 三菱電機株式会社 Hot water system
CN107621094A (en) * 2017-09-29 2018-01-23 中国科学院广州能源研究所 A kind of oil gas dual-fuel cool and thermal power air-conditioning heat pump device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0914801A (en) * 1995-06-30 1997-01-17 Tokyo Gas Co Ltd Frosting preventive device in engine waste heat recovering type gas engine driving heat pump
JP2003075021A (en) * 2001-08-31 2003-03-12 Mitsubishi Heavy Ind Ltd Gas heat pump type air conditioning system, engine cooling water heating device, and operating method for the gas heat pump type air conditioning system
JP3746471B2 (en) * 2002-07-02 2006-02-15 三洋電機株式会社 Engine-driven heat pump type air conditioner equipped with hot water supply / heating unit and operation control method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0914801A (en) * 1995-06-30 1997-01-17 Tokyo Gas Co Ltd Frosting preventive device in engine waste heat recovering type gas engine driving heat pump
JP2003075021A (en) * 2001-08-31 2003-03-12 Mitsubishi Heavy Ind Ltd Gas heat pump type air conditioning system, engine cooling water heating device, and operating method for the gas heat pump type air conditioning system
JP3746471B2 (en) * 2002-07-02 2006-02-15 三洋電機株式会社 Engine-driven heat pump type air conditioner equipped with hot water supply / heating unit and operation control method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133610A (en) * 2008-12-03 2010-06-17 Sharp Corp Heat pump water heater system
JP2011185571A (en) * 2010-03-10 2011-09-22 Osaka Gas Co Ltd Heat pump system
US10112458B2 (en) 2012-11-30 2018-10-30 Sanden Holdings Corporation Vehicle air-conditioning device
WO2014084343A1 (en) * 2012-11-30 2014-06-05 サンデン株式会社 Vehicle air-conditioning device
US10155430B2 (en) 2012-11-30 2018-12-18 Sanden Holdings Corporation Vehicle air-conditioning device
US10131207B2 (en) 2012-11-30 2018-11-20 Sanden Holdings Corporation Vehicle air-conditioning device
US10131208B2 (en) 2012-11-30 2018-11-20 Sanden Holdings Corporation Vehicle air-conditioning device
JP2014119205A (en) * 2012-12-18 2014-06-30 Yanmar Co Ltd Engine driven heat pump
JP2014219169A (en) * 2013-05-10 2014-11-20 本田技研工業株式会社 Cogeneration device
JP2017089903A (en) * 2015-11-02 2017-05-25 三菱電機株式会社 Hot water supply system
JP6095749B1 (en) * 2015-11-02 2017-03-15 三菱電機株式会社 Hot water system
CN107621094A (en) * 2017-09-29 2018-01-23 中国科学院广州能源研究所 A kind of oil gas dual-fuel cool and thermal power air-conditioning heat pump device
CN107621094B (en) * 2017-09-29 2024-03-08 中国科学院广州能源研究所 Oil-gas dual-fuel cold-hot electric air conditioner heat pump device

Also Published As

Publication number Publication date
JP4990677B2 (en) 2012-08-01

Similar Documents

Publication Publication Date Title
JP5255687B2 (en) Engine-driven heat pump device
JP6855281B2 (en) Vehicle air conditioner
JP6692845B2 (en) Vehicle heat circulation system
JP4990677B2 (en) Engine-driven heat pump device
KR101758179B1 (en) Heat pump type speed heating apparatus
JP2005263200A (en) Air conditioner for vehicle
JP2008185245A (en) Compression type heat pump device, operation method of the same, and cogeneration system
JP6000373B2 (en) Air conditioner
US10611212B2 (en) Air conditioner for vehicle
JP2008032376A (en) Heat pump liquid heating air conditioner or apparatus
CN113370739B (en) Vehicle-mounted temperature regulating system
JP3986180B2 (en) Hot water storage hot water source
KR20190105219A (en) Heat pump system
KR101178945B1 (en) Heat Pump System Using Dual Heat Sources for Electric Vehicle
JP2017190075A (en) Air conditioner for vehicle
WO2017163659A1 (en) Air conditioner for vehicle
JP4049460B2 (en) Hot water storage hot water source
JP6065606B2 (en) Heat pump water heater
JP2013032883A (en) Heat pump water heater system
JP2006336949A (en) Heat storage type air conditioner
JP4194213B2 (en) Hot water storage hot water source
JP2020041770A (en) Heat pump type hot water supply air conditioning device
JP2016068790A (en) Vehicle air conditioner
JP3957414B2 (en) Hot water storage hot water source
JP3888790B2 (en) Water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120502

R150 Certificate of patent or registration of utility model

Ref document number: 4990677

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees