JP2008285337A - Apparatus for molding lens - Google Patents

Apparatus for molding lens Download PDF

Info

Publication number
JP2008285337A
JP2008285337A JP2007128923A JP2007128923A JP2008285337A JP 2008285337 A JP2008285337 A JP 2008285337A JP 2007128923 A JP2007128923 A JP 2007128923A JP 2007128923 A JP2007128923 A JP 2007128923A JP 2008285337 A JP2008285337 A JP 2008285337A
Authority
JP
Japan
Prior art keywords
molds
pair
ultrasonic
lens
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007128923A
Other languages
Japanese (ja)
Inventor
Takaaki Koyo
貴昭 古用
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2007128923A priority Critical patent/JP2008285337A/en
Publication of JP2008285337A publication Critical patent/JP2008285337A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Head (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for molding a lens, by which even the thin lens having a small ratio of the central thickness to the outward form can be molded with high precision without being broken. <P>SOLUTION: The apparatus for molding the lens is provided with: a pair of bases 13, 14 any of which has a moving means 11 and a displacement measuring means 12 for measuring the quantity of the base 13 to be displaced by the moving means 11 and which are arranged to be opposed to each other; a pair of molds 15, 16 which are placed respectively on the opposed surfaces of the bases 13, 14 to each other and any of which has a temperature measuring means 19 on the inside thereof; a heating means 18 for heating at least the pair of molds 15, 16; and a controller 20 which is connected to the displacement measuring means 12 and the temperature measuring means 19 and controls the quantity of the base 13 to be displaced by the moving means 11 or the temperature by the heating means 18. Any of molds 15, 16 has a stress measuring means consisting of an ultrasonic transmitter element 21 and an ultrasonic receiver element 22. The stress to be imposed on a vitreous material held between the pair of molds 15, 16 is measured by the stress measuring means and the measured stress is outputted to the controller 20. The lens is molded while controlling the quantity of the base 13 to be displaced by the moving means 11 or the temperature by the heating means 18 so that the measured stress does not exceed a fixed value. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、光ピックアップや撮像素子に搭載されるレンズの成形装置に関するものであり、メニスカスレンズなどの、特に外形に対して中央部の厚みが薄い薄肉レンズの成形装置に関するものである。   The present invention relates to a molding apparatus for a lens mounted on an optical pickup or an image pickup device, and more particularly to a molding apparatus for a thin lens such as a meniscus lens, in which the thickness of the central portion is particularly thin with respect to the outer shape.

CDやMDなどの光記録・再生用のピックアップ装置、デジタルカメラや携帯電話に搭載される撮像装置には、耐熱、耐衝撃性などの使用環境を考慮してガラスレンズが用いられている。これらの機器の小型化・薄型化に対応するため、搭載されるガラスレンズとして、非球面レンズが要求されている。   Glass lenses are used in optical recording / reproducing pickup devices such as CDs and MDs, and imaging devices mounted on digital cameras and mobile phones in consideration of usage environments such as heat resistance and impact resistance. In order to cope with the reduction in size and thickness of these devices, an aspheric lens is required as a glass lens to be mounted.

このような、小型の非球面レンズは、重量や外形などを規定した硝材を加熱して軟化させた後、非球面形状を形成した一対の金型で成形することでその形状を転写していた。   Such a small aspherical lens had its shape transferred by a pair of molds having an aspherical shape after heating and softening a glass material that defines the weight and outer shape. .

図4は、従来のレンズの成形装置における要部断面図を示している。まず初めに、非球面を形成した成形面1a、2aを有する一対の金型1、2それぞれを、スリーブ3、4に挿入固定した後、ダイプレート5、6を介して加圧部7、8とボルト9で締結し、加圧部7、8と金型1、2とを一体固定する。そして、成形部1a、2a間に硝材10を挟持した後、少なくともガラス転移温度(Tg)以上に昇温して一定時間維持し、硝材10を軟化させ、加圧部7、8により互いに加圧することで成形を行う。最後に金型1、2を徐冷した後、成形した硝材10をレンズとして取り出すものである。   FIG. 4 is a cross-sectional view of a main part in a conventional lens molding apparatus. First, a pair of molds 1 and 2 having molding surfaces 1a and 2a formed with aspherical surfaces are inserted and fixed to sleeves 3 and 4, respectively, and then pressed parts 7 and 8 through die plates 5 and 6, respectively. The bolts 9 are fastened together, and the pressurizing portions 7 and 8 and the dies 1 and 2 are fixed integrally. After the glass material 10 is sandwiched between the molding parts 1a and 2a, the glass material 10 is heated to at least the glass transition temperature (Tg) and maintained for a certain period of time to soften the glass material 10 and pressurize each other by the pressurizing parts 7 and 8. The molding is done. Finally, after the molds 1 and 2 are gradually cooled, the molded glass material 10 is taken out as a lens.

なお、この出願の発明に関する先行技術文献情報としては、例えば、特許文献1、特許文献2が知られている。
特開平8−133766号公報 特開平8−231231号公報
For example, Patent Document 1 and Patent Document 2 are known as prior art document information relating to the invention of this application.
JP-A-8-133766 JP-A-8-231231

通常、硝材10をガラス転移温度(Tg)以上に加熱した後、加圧して成形を行う。このとき、硝材10は、一対の金型1、2とともに、少なくとも400度以上に加熱されることになる。そのため、硝材10には、成形時に加圧部7、8からの圧力とともに、加熱に伴う一対の金型1、2やその周辺からの、線膨張係数の差により生じる応力が付加されることとなる。その結果、硝材10に限界値以上の応力がかかることにより、特にメニスカスレンズのようなその外形に対して中心厚みが小さい薄肉レンズを成形する際には、割れが発生しやすくなるという課題があった。   Usually, the glass material 10 is heated to a glass transition temperature (Tg) or higher and then pressed to perform molding. At this time, the glass material 10 is heated to at least 400 degrees or more together with the pair of molds 1 and 2. For this reason, the glass material 10 is subjected to stress caused by the difference in linear expansion coefficient from the pair of molds 1 and 2 and its surroundings along with the pressure from the pressurizing sections 7 and 8 at the time of molding. Become. As a result, the stress exceeding the limit value is applied to the glass material 10, so that when a thin lens having a small center thickness with respect to its outer shape such as a meniscus lens is molded, there is a problem that cracking is likely to occur. It was.

そこで本発明は、薄肉レンズであっても割れなく高精度に成形が可能な成形装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide a molding apparatus that can mold a thin lens with high accuracy without cracking.

そして上記目的を達成するために、本発明は、移動手段と、この移動手段による変位量を測定する変位測定手段とを有し、対向して設けられた一対の基台と、この基台の対向面に載置され、内部に温度測定手段を有する一対の金型と、少なくともこの一対の金型を加熱する加熱手段と、前記変位測定手段および温度測定手段と接続され、移動手段と加熱手段の変位量または温度を制御する制御装置とからなり、前記一対の金型は、超音波発振素子と超音波受信素子とからなる応力測定手段を備え、この応力測定手段により、前記一対の金型で挟持される硝材にかかる応力を測定して前記制御装置へ出力し、この応力が一定値を越えないように移動手段または加熱手段の変位量、温度を制御しながら成形を行うものである。   In order to achieve the above object, the present invention has a moving means and a displacement measuring means for measuring a displacement amount by the moving means. A pair of molds placed on opposite surfaces and having temperature measuring means inside, a heating means for heating at least the pair of molds, and connected to the displacement measuring means and the temperature measuring means, moving means and heating means The pair of molds includes a stress measuring unit including an ultrasonic oscillation element and an ultrasonic receiving element, and the pair of molds is formed by the stress measuring unit. The stress applied to the glass material sandwiched between the two is measured and output to the control device, and molding is performed while controlling the displacement amount and temperature of the moving means or heating means so that the stress does not exceed a certain value.

本発明に係るレンズの成形装置は、移動手段と、この移動手段による変位量を測定するための変位測定手段とを有する一対の基台と、硝材を成形するための一対の金型と、少なくともこの一対の金型を加熱するための加熱手段と、移動手段および加熱手段と接続され、その温度や変位量とを制御するための制御装置とから構成されている。さらにこの一対の金型には、硝材を成形する面に対向して、一方に超音波発振素子を、他方に超音波を受信するための超音波受信素子とが設けられている。成形中に、超音波発振素子から発信された超音波は、金型、硝材、金型と伝播して、他方の超音波受信素子で受信されることで、硝材中に発生している応力を測定する。そして、この測定結果を制御装置へ出力して、その応力値が一定の値を越えないように、温度または変位量を制御しながら成形を行うので、硝材に破壊応力以上の応力がかかることがなく、その結果、メニスカスレンズなどの、外形に対して中心厚みの小さい薄肉レンズであっても、割れなく高精度に成形できる効果を奏する。   A lens molding apparatus according to the present invention includes a pair of bases having a moving unit, a displacement measuring unit for measuring a displacement amount by the moving unit, a pair of molds for molding a glass material, and at least The heating means for heating the pair of molds, and a control device connected to the moving means and the heating means for controlling the temperature and the amount of displacement thereof. Further, the pair of molds are provided with an ultrasonic oscillation element on one side and an ultrasonic reception element for receiving ultrasonic waves on the other side, facing the surface on which the glass material is formed. During molding, the ultrasonic wave transmitted from the ultrasonic oscillation element propagates through the mold, the glass material, and the mold, and is received by the other ultrasonic receiving element, thereby reducing the stress generated in the glass material. taking measurement. Then, this measurement result is output to the control device, and the molding is performed while controlling the temperature or the displacement amount so that the stress value does not exceed a certain value. As a result, even a thin lens having a small center thickness with respect to the outer shape, such as a meniscus lens, can be molded with high accuracy without cracking.

以下、本発明の一実施の形態におけるレンズの成形装置について、図を用いて説明する。   Hereinafter, a lens molding apparatus according to an embodiment of the present invention will be described with reference to the drawings.

図1は、本発明のレンズの成形装置を説明する構成図である。特に発明のポイントである金型近傍は、断面図で示している。   FIG. 1 is a configuration diagram illustrating a lens molding apparatus according to the present invention. In particular, the vicinity of the mold, which is the point of the invention, is shown in a sectional view.

本実施例のレンズの成形装置は、移動手段11と、この移動手段11による変位量を測定するための変位測定手段12とを備えた基台13上に、固定された基台14を一定の間隔で対向して設けている。そしてこれら両基台13、14の対向面13a、14a上に金型15、16を、それぞれの成形面15a、16aどうしが対向するように載置、固定されている。このように、両基台13、14上に載置された金型15、16は、各成形面15a、16aが上下に対をなして、その硝材17を挟持する。また、少なくとも金型15、16の周囲には、カーボンヒータやセラミックヒータ、または電磁加熱式などの加熱手段18を設け、金型15、16とともに硝材17を一定の温度に加熱する。成形面15a、16aに挟持された硝材17は、加熱手段18により一定温度に加熱された後、移動手段11により加圧されて、成形面15a、16aに倣った形状のレンズに成形されるものである。   In the lens molding apparatus of this embodiment, a fixed base 14 is fixed on a base 13 having a moving means 11 and a displacement measuring means 12 for measuring a displacement amount by the moving means 11. They are provided facing each other at intervals. The molds 15 and 16 are placed and fixed on the opposing surfaces 13a and 14a of the bases 13 and 14 so that the molding surfaces 15a and 16a face each other. As described above, the molds 15 and 16 placed on the bases 13 and 14 sandwich the glass material 17 with the molding surfaces 15a and 16a paired vertically. A heating means 18 such as a carbon heater, a ceramic heater, or an electromagnetic heating type is provided at least around the molds 15 and 16, and the glass material 17 is heated to a certain temperature together with the molds 15 and 16. The glass material 17 sandwiched between the molding surfaces 15a and 16a is heated to a constant temperature by the heating means 18 and then pressurized by the moving means 11 to be molded into a lens having a shape following the molding surfaces 15a and 16a. It is.

また、上記の金型15、16の少なくとも一方には、熱電対などからなる温度測定手段19を有し、変位測定手段12、移動手段11、加熱手段18とともに制御装置20に接続されている。制御装置20は、主に加熱温度、加圧、そしてこれらの保持時間などからなる成形プロファイルを記憶し、温度測定手段19および変位測定手段12からの出力信号を監視しながら、設定された成形プロファイルに沿って上記移動手段11および加熱手段18の温度や変位量を制御するものである。   Further, at least one of the molds 15 and 16 has a temperature measuring means 19 made of a thermocouple or the like, and is connected to the control device 20 together with the displacement measuring means 12, the moving means 11 and the heating means 18. The control device 20 stores a molding profile mainly composed of heating temperature, pressurization, and holding time thereof, and monitors the output signals from the temperature measuring means 19 and the displacement measuring means 12 while setting the molding profile. The temperature and displacement of the moving means 11 and the heating means 18 are controlled along the lines.

さらに、各金型15、16には、成形面15a、16aの直下に、一方には超音波発振素子21が、他方には超音波受信素子22がそれぞれ接続されている。これらの超音波発振素子21および超音波受信素子22は、成形時に金型15、16が300〜800℃と高温になることから、断熱材23を介して金型15、16に接続されており、さらに、断熱材23の一部を含めてペルチェ素子などからなる冷却手段24で覆うことで、金型15、16および加熱手段18からの輻射熱の影響を最小限に抑えている。   Furthermore, the ultrasonic oscillating element 21 is connected to one of the molds 15 and 16 directly below the molding surfaces 15a and 16a, and the ultrasonic receiving element 22 is connected to the other. The ultrasonic oscillating element 21 and the ultrasonic receiving element 22 are connected to the molds 15 and 16 via the heat insulating material 23 because the molds 15 and 16 are as high as 300 to 800 ° C. during molding. Further, by covering a part of the heat insulating material 23 with the cooling means 24 composed of a Peltier element or the like, the influence of radiant heat from the molds 15 and 16 and the heating means 18 is minimized.

断熱材23としては、少なくとも金型15、16よりも熱伝導性の低い材料を選択すればよい。金型15、16として炭化珪素(SiC)や超硬(WC)、グラッシーカーボンなどを用いる場合、断熱材23としては、例えばガリウム砒素、窒化ガリウム、サファイア、窒化ホウ素などを選択する。   As the heat insulating material 23, a material having lower thermal conductivity than at least the molds 15 and 16 may be selected. When silicon carbide (SiC), carbide (WC), glassy carbon or the like is used as the molds 15 and 16, for example, gallium arsenide, gallium nitride, sapphire, boron nitride or the like is selected as the heat insulating material 23.

また、超音波発振素子21および超音波受信素子22に用いる素子としては、その使用時の温度を考慮して、高いキュリー点温度を持ち高温下でも圧電特性を失いにくい無機圧電材料、例えばチタン酸ジルコニア鉛リチウムや窒化アルミニウムなどを選択する。   In addition, as an element used for the ultrasonic oscillation element 21 and the ultrasonic reception element 22, an inorganic piezoelectric material having a high Curie point temperature and hardly losing piezoelectric characteristics even at a high temperature, for example, titanic acid, in consideration of the temperature at the time of use. Select zirconia lead lithium or aluminum nitride.

ここで重要なのが、上記超音波発振素子21および超音波受信素子22を、各基台13、14にザグリ孔を設けることにより、断熱材23を介してそれぞれの金型15、16に懸架して接続することである。こうすることにより、超音波発振素子21から発振される振動が、基台13に吸収、拡散されて減衰されることなく、他方の超音波受信素子22へ確実に伝播させることができる。   What is important here is that the ultrasonic oscillating element 21 and the ultrasonic receiving element 22 are suspended from the molds 15 and 16 via the heat insulating material 23 by providing counterbores in the bases 13 and 14, respectively. To connect. By doing so, the vibration oscillated from the ultrasonic oscillator 21 can be reliably propagated to the other ultrasonic receiver 22 without being absorbed and diffused by the base 13 and attenuated.

次に上記のレンズの成形装置を用いた成形のフローを図2に示す。   Next, FIG. 2 shows a molding flow using the lens molding apparatus.

まず初めに、硝材17や成形するレンズの形状精度を考慮した成形条件を仮設定する(25)。この成形条件は、硝材17の加熱温度、加圧やそれらの保持時間からなる成形プロファイルである。   First, a molding condition is set in consideration of the shape accuracy of the glass material 17 and the lens to be molded (25). This molding condition is a molding profile composed of the heating temperature and pressure of the glass material 17 and the holding time thereof.

次に、硝材17と、上下に一対の金型15、16とを同軸上に配置した後、成形を開始する(26)。そして(25)で設定された仮成形条件となるように、制御装置20により、加熱手段18および移動手段11を制御する。すなわち、加熱手段18により金型15、16とともに硝材17を加熱して一定温度に保持しながら、移動手段11によって下側の基台13とともに金型15を上昇させる。こうすることにより、金型15、16で硝材17を挟持するとともに、一定の圧力で硝材17を加圧する。このとき、基台13の変位量を変位測定手段12で測定する。さらにこの加圧時に、超音波発振素子21より発振された超音波は下側の金型15を介して硝材17に伝播し、上側の金型16を介して超音波受信素子22に受信される。   Next, after the glass material 17 and the pair of upper and lower molds 15 and 16 are arranged coaxially, molding is started (26). Then, the control unit 20 controls the heating unit 18 and the moving unit 11 so as to satisfy the provisional molding conditions set in (25). That is, while the glass material 17 is heated together with the molds 15 and 16 by the heating means 18 and kept at a constant temperature, the mold 15 is raised together with the lower base 13 by the moving means 11. In this way, the glass material 17 is sandwiched between the molds 15 and 16, and the glass material 17 is pressurized with a constant pressure. At this time, the displacement measuring means 12 measures the amount of displacement of the base 13. Further, during this pressurization, the ultrasonic wave oscillated from the ultrasonic oscillation element 21 propagates to the glass material 17 through the lower mold 15 and is received by the ultrasonic reception element 22 through the upper mold 16. .

このとき重要なのが、超音波発振素子21および超音波受信素子22とを二組以上配置し、それぞれの超音波発振素子21を発振させるタイミングをずらすことである。こうすることにより、成形中に硝材17内部に発生する応力とその位置を正確に測定することが可能となる。   What is important at this time is to dispose two or more sets of the ultrasonic oscillation element 21 and the ultrasonic reception element 22 and shift the timing of oscillating each ultrasonic oscillation element 21. By doing so, it is possible to accurately measure the stress generated in the glass material 17 during molding and its position.

また、超音波発振素子21と超音波受信素子22の配置は、レンズの形状に合わせて、金型15、16の中心軸上に一組、そして同心円状に一組以上設置してもよい。こうすることにより、レンズの成形時に最大応力が発生する場所が変化した場合であっても確実かつ正確に測定することが可能となる。上記のように超音波発振素子21および超音波受信素子22を用いて、成形中の硝材17中に発生する最大応力を算出する(27)。   Further, the arrangement of the ultrasonic oscillation element 21 and the ultrasonic reception element 22 may be set on the central axis of the molds 15 and 16 according to the shape of the lens, and one or more sets concentrically. By doing so, even when the place where the maximum stress is generated at the time of molding the lens changes, it is possible to measure reliably and accurately. As described above, the maximum stress generated in the glass material 17 being molded is calculated using the ultrasonic oscillator 21 and the ultrasonic receiver 22 (27).

次に、この算出した最大応力が、成形する硝材17の割れ発生閾値を越えているかどうかを判定する(28)。このとき、制御装置20の内部の記憶部に、予めシミュレーションや実験により求めた硝材の割れ発生閾値(破壊応力)のデータをライブラリ(29)として保存し、その値と比較することで判定する。このデータは、常温のデータのみでなく、成形時の各温度におけるデータを準備、保存しておくことで、成形時の割れの発生を防止することができる。この判定において、成形中に発生している最大応力が、ライブラリ(29)に保存している割れ発生閾値以下であれば、そのまま成形を進めて、常温まで冷却する(30)。閾値を越えている場合は、制御装置20を介して加熱手段18および移動手段11を制御して、割れ発生閾値を越えないように加熱温度または変位量を制御しながら成形を続行する(31)。   Next, it is determined whether or not the calculated maximum stress exceeds a crack occurrence threshold of the glass material 17 to be formed (28). At this time, determination is made by storing, as a library (29), data on a glass material crack occurrence threshold (fracture stress) obtained in advance by simulation or experiment in a storage unit inside the control device 20, and comparing it with the value. This data can prevent cracking during molding by preparing and storing data at each temperature during molding as well as data at room temperature. In this determination, if the maximum stress generated during the molding is equal to or less than the crack occurrence threshold stored in the library (29), the molding proceeds as it is, and it is cooled to room temperature (30). If the threshold value is exceeded, the heating means 18 and the moving means 11 are controlled via the control device 20, and the molding is continued while controlling the heating temperature or displacement so as not to exceed the crack occurrence threshold value (31). .

また上記の制御は、あらかじめ入力しておいた、温度や変位量などの成形条件と割れ発生閾値のライブラリによって成形中のワレ発生の有無を推定し、割れ発生の閾値を越えないように温度や変量を調節してもよい。この場合、応力の推定を一定間隔Δtで行い、現在の応力値をσE1、このときの割れ発生の閾値をσC1、現在から一定間隔Δtだけ遡った時点での応力値をσE0、このときの割れ発生の閾値をσC0、現在の成形条件における一定間隔Δt後の応力予測値をσE2、このときの割れ発生の閾値をσC2、現在の温度をT1、硝材17の屈伏点をTATとしたときに、
T1<TAT+70
|σE2−σC2|/|σE1−σC1|<1
0.7・σC2<(σE1−σE0)+σE1<0.9・σC2
上記の式で表される関係を満たすように温度と変位量の制御を行う。
In addition, the above control estimates the presence or absence of cracking during molding using a library of molding conditions such as temperature and displacement and crack occurrence threshold values that have been input in advance. Variables may be adjusted. In this case, the stress is estimated at a constant interval Δt, the current stress value is σ E1 , the cracking threshold at this time is σ C1 , and the stress value at the time point that is a predetermined interval Δt from the present is σ E0 , Σ C0 is the threshold value for occurrence of cracks at the time, σ E2 is the predicted stress value after a predetermined interval Δt in the current molding conditions, σ C2 is the threshold value for occurrence of cracks at this time, T 1 is the current temperature, and the yield point of the glass material 17 Is T AT
T 1 <T AT +70
| Σ E2 −σ C2 | / | σ E1 −σ C1 | <1
0.7 ・ σ C2 <(σ E1 −σ E0 ) + σ E1 <0.9 ・ σ C2
The temperature and the amount of displacement are controlled so as to satisfy the relationship represented by the above formula.

最後に常温まで冷却した後、金型15、16からレンズを取り出して成形を終了する(32)。上記の工程を繰り返し、成形したレンズの形状精度を評価して、仮成形条件を調整するものである。   Finally, after cooling to room temperature, the lens is taken out from the molds 15 and 16 to finish molding (32). The above steps are repeated to evaluate the shape accuracy of the molded lens and adjust the temporary molding conditions.

本実施例では、硝材17中に発生する応力を、超音波を用いて測定する。この超音波は、音速の異なる材料を伝播するとき、その境界で屈折または反射するため、特に断熱材23および金型15、16との接続がその測定精度に大きく影響する。以下に、断熱材23の配置について図3を用いてその詳細を説明する。   In the present embodiment, the stress generated in the glass material 17 is measured using ultrasonic waves. Since this ultrasonic wave is refracted or reflected at the boundary when propagating through materials having different sound speeds, especially the connection between the heat insulating material 23 and the molds 15 and 16 greatly affects the measurement accuracy. Below, the detail of the arrangement | positioning of the heat insulating material 23 is demonstrated using FIG.

超音波発振素子21から発振された超音波は、金型15や断熱材23などの、材料が異なりその伝播速度が変化する境界で屈折して拡散する。このときの超音波の屈折角θoutは、出射側材料の音速をvout、入射角θin、入射側材料の音速vinとすると、次の式で表現される。 The ultrasonic wave oscillated from the ultrasonic oscillation element 21 is refracted and diffused at a boundary where the material is different and the propagation speed changes, such as the mold 15 and the heat insulating material 23. The refraction angle θ out of the ultrasonic wave at this time is expressed by the following equation, where the sound speed of the emitting side material is v out , the incident angle θ in , and the sound speed v in of the incident side material.

(Sinθout)/vout=(Sinθin)/vin
この式より、音速の速い材料から遅い材料に超音波が伝播するとき、その出射角度は入射角度より小さくなることがわかる。
(Sinθ out ) / v out = (Sinθ in ) / v in
From this equation, it can be seen that when an ultrasonic wave propagates from a material having a high sound velocity to a material having a low sound velocity, the emission angle is smaller than the incident angle.

また音速voutは、伝播する材料の密度ρoutの平方根に反比例し、体積弾性率Koutの平方根に比例し、次式によって表現される。 The sound velocity v out is inversely proportional to the square root of the density ρ out of the propagating material and proportional to the square root of the bulk modulus K out and is expressed by the following equation.

out=(Kout/ρout1/2
上記の式により、伝播する材料の密度と体積弾性率から超音波の伝播速度を算出することが可能となり、この値を用いて、超音波の屈折による拡散が抑えられるように境界面の形状を決定し、測定の高精度化を図る。
v out = (K out / ρ out ) 1/2
The above formula makes it possible to calculate the propagation velocity of ultrasonic waves from the density and bulk modulus of the propagating material. Using this value, the shape of the boundary surface can be reduced so that diffusion due to ultrasonic refraction is suppressed. Decide and increase the accuracy of measurement.

なお、金型15、16と硝材17との界面での反射率Rについては、入射側の材料の密度ρout、音速voutとそれらの積である音響インピーダンスZoutと、入射側の材料の密度ρin、音速vin、音響インピーダンスZinによって次のように表現される。 The reflectance R at the interface between the molds 15 and 16 and the glass material 17 is the density ρ out of the incident side material, the acoustic velocity V out and the acoustic impedance Z out that is the product of them, and the incident side material. It is expressed as follows by density ρ in , sound velocity v in , and acoustic impedance Z in .

out=ρout・vout
in=ρin・vin
R=(Zout−Zin)/(Zin+Zout
なお、金型15、16の材料と硝材17との組み合わせによっては、金型15、16と硝材17との音響インピーダンスの差が著しく大きく、金型15、16と硝材17との間での反射率が高い場合は、上側の金型16と硝材17との界面で発生する反射波の伝播速度を下側の金型15の底面に設置された超音波発振素子21で測定することによって、高精度な測定が可能となる。また、金型15、16と断熱材23との間でも反射が発生するため、金型15、16と断熱材23との音響インピーダンスの差が小さくなるような材料を選ぶことにより、金型15、16と断熱材23との境界での反射を抑え、測定の精度を高めることが可能となる。
Z out = ρ out・ v out
Z in = ρ in · v in
R = (Z out -Z in) / (Z in + Z out)
Depending on the combination of the material of the molds 15 and 16 and the glass material 17, the difference in acoustic impedance between the molds 15 and 16 and the glass material 17 is remarkably large, and the reflection between the molds 15 and 16 and the glass material 17 is significant. When the rate is high, the propagation speed of the reflected wave generated at the interface between the upper mold 16 and the glass material 17 is measured by the ultrasonic oscillation element 21 installed on the bottom surface of the lower mold 15 to increase the rate. Accurate measurement is possible. Further, since reflection also occurs between the molds 15 and 16 and the heat insulating material 23, by selecting a material that reduces the difference in acoustic impedance between the molds 15 and 16 and the heat insulating material 23, the mold 15 , 16 and the heat insulating material 23 can be prevented from being reflected, and the measurement accuracy can be improved.

このとき、金型15、16の音速が断熱材23の音速より遅い場合は図3(a)もしくは、図3(b)のような境界の形状となり、金型15、16の音速が断熱材23の音速より速い場合は図3(c)もしくは、図3(d)のような境界の形状とすることによって、超音波の拡散を抑え、超音波発振素子21で発振した超音波を超音波受信素子22まで効率よく伝播させることが可能になる。   At this time, when the sound speed of the molds 15 and 16 is slower than the sound speed of the heat insulating material 23, the boundary shape as shown in FIG. 3A or 3B is obtained, and the sound speed of the molds 15 and 16 is the heat insulating material. When the sound speed is higher than 23, the boundary shape as shown in FIG. 3C or FIG. 3D is used to suppress the diffusion of ultrasonic waves, and the ultrasonic waves oscillated by the ultrasonic oscillator 21 are converted into ultrasonic waves. It is possible to efficiently propagate to the receiving element 22.

また、金型15、16の音響インピーダンスZMと硝材17の音響インピーダンスZGの関係をZM>ZGとすると、超音波の反射の関係式により、下側の金型15と硝材17との界面で位相が90度進む。この位相成分を、超音波受信素子22で受けた位相成分から差し引くことによって、硝材17で起こった位相変化量を測定することが可能となり、音弾性法によって硝材17内部で発生していた応力を測定することが可能になる。 If the relationship between the acoustic impedance Z M of the molds 15 and 16 and the acoustic impedance Z G of the glass material 17 is Z M > Z G , the lower mold 15 and the glass material 17 are The phase advances 90 degrees at the interface. By subtracting this phase component from the phase component received by the ultrasonic receiving element 22, it is possible to measure the amount of phase change that has occurred in the glass material 17, and the stress generated in the glass material 17 by the acoustoelastic method can be measured. It becomes possible to measure.

上記の実施例は、超音波発振素子21を複数設けて、各々の発振のタイミングをずらした例であるが、発振位相の異なる超音波発振素子21を複数設けても同様の効果が得られる。   The above embodiment is an example in which a plurality of ultrasonic oscillators 21 are provided and the timing of each oscillation is shifted, but the same effect can be obtained by providing a plurality of ultrasonic oscillators 21 having different oscillation phases.

上述した成形装置を用いて成形することにより、外形に対して中心部が薄いメニスカスレンズなどの薄肉レンズを、割れや欠けを発生させることなく、高い精度で成形することが可能となる。   By molding using the above-described molding apparatus, it is possible to mold a thin lens such as a meniscus lens having a thin center portion with respect to the outer shape with high accuracy without causing cracks or chipping.

本発明に係るレンズの成形装置は、移動手段と、この移動手段による変位量を測定するための変位測定手段とを有する一対の基台と、硝材を成形するための一対の金型と、少なくともこの一対の金型を加熱するための加熱手段と、移動手段および加熱手段と接続されて、その温度や変位量とを制御するための制御装置とから構成されている。さらにこの一対の金型には、硝材を成形する面に対向して、一方に超音波発振素子を、他方に超音波を受信するための超音波受信素子とが設けられている。成形中に、超音波発振素子から発信された超音波は、金型、硝材、金型と伝播して、他方の超音波受信素子で受信されることで、硝材中に発生している応力を測定する。そして、この測定結果を制御装置へ出力して、その応力値が一定の値を越えないように、温度または変位量を制御しながら成形を行うので、硝材に破壊応力以上の応力がかかることがなく、その結果、メニスカスレンズなどの、外形に対して中心厚みの小さい薄肉レンズであっても、割れなく高精度に成形できる効果を奏するので、メニスカスレンズなどの、特に外形に対して中央部の厚みが薄い薄肉レンズの成形装置に有用である。   A lens molding apparatus according to the present invention includes a pair of bases having a moving unit, a displacement measuring unit for measuring a displacement amount by the moving unit, a pair of molds for molding a glass material, and at least The heating means for heating the pair of molds, and a control device connected to the moving means and the heating means for controlling the temperature and the amount of displacement thereof. Further, the pair of molds are provided with an ultrasonic oscillation element on one side and an ultrasonic reception element for receiving ultrasonic waves on the other side, facing the surface on which the glass material is formed. During molding, the ultrasonic wave transmitted from the ultrasonic oscillation element propagates through the mold, the glass material, and the mold, and is received by the other ultrasonic receiving element, thereby reducing the stress generated in the glass material. taking measurement. Then, this measurement result is output to the control device, and the molding is performed while controlling the temperature or the displacement amount so that the stress value does not exceed a certain value. As a result, even a thin lens having a small center thickness with respect to the outer shape, such as a meniscus lens, has the effect of being able to be molded with high precision without cracking. This is useful for an apparatus for forming a thin lens having a small thickness.

本発明の一実施の形態を説明するレンズの成形装置の構成図1 is a configuration diagram of a lens molding apparatus for explaining an embodiment of the present invention. 同装置を用いた成形方法を説明するフロー図Flow chart explaining the molding method using the same device (a)〜(d)は、金型と断熱材との接続を説明する断面図(A)-(d) is sectional drawing explaining the connection of a metal mold | die and a heat insulating material 従来のレンズの成形装置を説明する要部断面図Cross-sectional view of relevant parts for explaining a conventional lens molding apparatus

符号の説明Explanation of symbols

11 移動手段
12 変位測定手段
13 基台
14 基台
15 金型
16 金型
17 硝材
18 加熱手段
19 温度測定手段
20 制御装置
21 超音波発振素子
22 超音波受信素子
23 断熱材
24 冷却手段
DESCRIPTION OF SYMBOLS 11 Moving means 12 Displacement measuring means 13 Base 14 Base 15 Mold 16 Mold 17 Glass material 18 Heating means 19 Temperature measuring means 20 Control device 21 Ultrasonic oscillation element 22 Ultrasonic receiving element 23 Heat insulating material 24 Cooling means

Claims (5)

移動手段と、この移動手段による変位量を測定する変位測定手段とを有し、対向して設けられた一対の基台と、この基台の対向面に載置され、内部に温度測定手段を有する一対の金型と、少なくともこの一対の金型を加熱する加熱手段と、前記変位測定手段および温度測定手段と接続され、移動手段と加熱手段の変位量または温度を制御する制御装置とからなり、前記一対の金型は、超音波発振素子と超音波受信素子とからなる応力測定手段を備え、この応力測定手段により、前記一対の金型で挟持される硝材にかかる応力を測定して前記制御装置へ出力し、この応力が一定値を越えないように移動手段または加熱手段の変位量、温度を制御しながら成形を行うレンズの成形装置。 A moving means and a displacement measuring means for measuring the amount of displacement by the moving means; a pair of bases provided opposite to each other; and placed on opposing surfaces of the base; A pair of molds, a heating unit that heats at least the pair of molds, and a control unit that is connected to the displacement measuring unit and the temperature measuring unit and controls the displacement amount or temperature of the moving unit and the heating unit. The pair of molds includes a stress measurement unit including an ultrasonic oscillation element and an ultrasonic reception element, and the stress measurement unit measures the stress applied to the glass material sandwiched between the pair of molds. A lens molding apparatus that performs molding while controlling the amount of displacement and temperature of the moving means or heating means so that the stress does not exceed a certain value. 超音波発振素子および超音波受信素子は、冷却手段を有する断熱材を介して金型に接続されている請求項1に記載のレンズの成形装置。 The lens molding apparatus according to claim 1, wherein the ultrasonic oscillation element and the ultrasonic reception element are connected to a mold through a heat insulating material having a cooling means. 超音波発振素子および超音波受信素子は、成形面に対向する金型の面に断熱材を介して懸架された請求項2に記載のレンズの成形装置。 The lens molding apparatus according to claim 2, wherein the ultrasonic oscillation element and the ultrasonic reception element are suspended via a heat insulating material on a surface of a mold facing the molding surface. 超音波発振素子および超音波受信素子は、同心円状に複数組設けた請求項3に記載のレンズの成形装置。 4. The lens molding apparatus according to claim 3, wherein a plurality of sets of the ultrasonic oscillation element and the ultrasonic reception element are provided concentrically. 超音波発振素子は、それぞれ位相が異なるものから構成した請求項4に記載のレンズの成形装置。 The lens shaping apparatus according to claim 4, wherein each of the ultrasonic oscillation elements has a phase different from each other.
JP2007128923A 2007-05-15 2007-05-15 Apparatus for molding lens Pending JP2008285337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007128923A JP2008285337A (en) 2007-05-15 2007-05-15 Apparatus for molding lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007128923A JP2008285337A (en) 2007-05-15 2007-05-15 Apparatus for molding lens

Publications (1)

Publication Number Publication Date
JP2008285337A true JP2008285337A (en) 2008-11-27

Family

ID=40145441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007128923A Pending JP2008285337A (en) 2007-05-15 2007-05-15 Apparatus for molding lens

Country Status (1)

Country Link
JP (1) JP2008285337A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101317365B1 (en) * 2011-12-30 2013-10-11 한국광기술원 Method of manufacturing microlens
CN104529136A (en) * 2014-12-26 2015-04-22 湖南大学 Ultrasonic vibration precision mold-pressing molding device for optical element having complex microstructure
CN109678323A (en) * 2019-03-08 2019-04-26 长沙理工大学 A kind of electromagnetism auxiliary precision hot pressing forming method of small-bore optical glass device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101317365B1 (en) * 2011-12-30 2013-10-11 한국광기술원 Method of manufacturing microlens
CN104529136A (en) * 2014-12-26 2015-04-22 湖南大学 Ultrasonic vibration precision mold-pressing molding device for optical element having complex microstructure
CN109678323A (en) * 2019-03-08 2019-04-26 长沙理工大学 A kind of electromagnetism auxiliary precision hot pressing forming method of small-bore optical glass device
CN109678323B (en) * 2019-03-08 2021-10-15 长沙理工大学 Electromagnetic auxiliary precise hot-press molding method for small-caliber optical glass element

Similar Documents

Publication Publication Date Title
US8801277B2 (en) Ultrasonic temperature measurement device
US20160153938A1 (en) Waveguide technique for the simultaneous measurement of temperature dependent properties of materials
JP2008285337A (en) Apparatus for molding lens
TW201135199A (en) Wafer-type temperature sensor and manufacturing method thereof
CN106796203B (en) Sheet forming apparatus, system for measuring thickness of sheet, and method for determining interface
JP2012013512A (en) Method and device for measuring residual thickness of fused cast refractories
CN111693564B (en) Method for evaluating tightening force and method for evaluating shrinkage
JP2008070340A (en) Temperature measuring method using ultrasonic wave
Periyannan et al. Robust ultrasonic waveguide based distributed temperature sensing
JP6000355B2 (en) Method for structuring flat substrate made of glassy material and optical element
EP2507417B1 (en) Device for monitoring the progress of crystallization of a bath of molten material in a directional solidification process employing ultrasound
JP6234316B2 (en) Optical element manufacturing equipment
JP2008115043A (en) Apparatus and method for molding glass optical element
US8997523B2 (en) Method of manufacturing glass molding
Fletcher et al. Effect of stress and temperature on the optical properties of silicon nitride membranes at 1,550 nm
JP5906037B2 (en) Manufacturing method of optical components
US20190074818A1 (en) Transmit-receive delay element apparatus, method, and applications
CN102684058B (en) Two-frequency laser frequency regulator and control method thereof
Shiari et al. Numerical prediction of stress evolution during blowtorch reflow of fused silica micro-shell resonators
JP2007110371A (en) Ultrasonic sensor for high temperature
JP2004198116A (en) Bragg grating system optical waveguide type sensor and its manufacturing method
US11778911B2 (en) Method, electronic apparatus, and system for defect detection
JP2023543383A (en) Measuring sensors, systems and methods, and casting machines
JP2009005383A (en) Ultrasonic wave transmitting/receiving apparatus
JP2008303092A (en) Lens forming device