JP2008284506A - Catalyst for cleaning exhaust gas, its manufacturing method and method for treating exhaust gas - Google Patents

Catalyst for cleaning exhaust gas, its manufacturing method and method for treating exhaust gas Download PDF

Info

Publication number
JP2008284506A
JP2008284506A JP2007133740A JP2007133740A JP2008284506A JP 2008284506 A JP2008284506 A JP 2008284506A JP 2007133740 A JP2007133740 A JP 2007133740A JP 2007133740 A JP2007133740 A JP 2007133740A JP 2008284506 A JP2008284506 A JP 2008284506A
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
oxidation catalyst
denitration
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007133740A
Other languages
Japanese (ja)
Inventor
Naomi Imada
尚美 今田
Yasuyoshi Kato
泰良 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2007133740A priority Critical patent/JP2008284506A/en
Publication of JP2008284506A publication Critical patent/JP2008284506A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst which has both of high denitration performance and the performance of removing unreacted NH<SB>3</SB>at high temperature of 400-600°C and by which CO can also be removed. <P>SOLUTION: An oxidation catalyst layer having an oxidation catalyst component 2 is formed by depositing oxidation catalyst paste or slurry on a belt-like region which has the width of <1/2 of that of a belt-like base material 5 and extends to the longitudinal direction of the base material along one end of the base material in the width direction. A denitration catalyst layer having a denitration catalyst component 3 is formed by depositing denitration catalyst paste or slurry on the whole surface of the oxidation catalyst layer-formed base material including the surface of the oxidation catalyst layer. A projecting part 10 having the ridgeline inclining toward the longitudinal direction of the denitration catalyst layer-formed base material 7' by 0-90° angle is formed repeatedly on the base material 7' at regular intervals. The projecting part 10-formed base material is cut to obtain catalytic elements 11. The obtained catalytic elements 11 are layered successively while being alternately turned upside down. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は排ガス浄化技術に係り、特にガスタービン、ガスエンジン、ディーゼルエンジン設備などの400℃以上の高温の排ガス中に含まれるNOx、COを除去するための排ガス浄化用触媒とその製造方法及び排ガスの処理方法に関する。   TECHNICAL FIELD The present invention relates to an exhaust gas purification technology, and in particular, an exhaust gas purification catalyst for removing NOx and CO contained in a high temperature exhaust gas of 400 ° C. or higher, such as a gas turbine, a gas engine, a diesel engine facility, etc. It relates to the processing method.

電力不足を補うためや、電力使用量のピークに対応するため、ガスタービンを建設し単独で運転するいわゆるシンプルサイクルガスタービンや、産業用の小規模ガスエンジン、ディーゼルエンジンが増大している。これらに用いられる設備は都市近郊に建設されることが多く、排ガス中に含まれる有害ガスである窒素酸化物(NOx)を効率よく分解浄化することが必要である。   In order to make up for the shortage of electric power and to cope with the peak of electric power consumption, so-called simple cycle gas turbines that construct gas turbines and operate independently, small-scale gas engines for industrial use, and diesel engines are increasing. Equipment used for these is often built in the suburbs of cities, and it is necessary to efficiently decompose and purify nitrogen oxides (NOx), which are harmful gases contained in exhaust gas.

また、近年、環境規制が強化されつつあり、NOxだけでなく、排ガス中に数10ppm含まれる一酸化炭素(CO)の除去や、NOxの還元除去(脱硝)用に添加されたアンモニア(NH)のうち脱硝に利用されなかった未反応のアンモニアの流出防止などの排ガスの高度処理が必要となっている。 In recent years, environmental regulations have been strengthened, and not only NOx, but also ammonia (NH 3 ) added for removal of carbon monoxide (CO) contained in the exhaust gas by several tens of ppm and reduction removal (denitration) of NOx. ), Advanced treatment of exhaust gas such as prevention of unreacted ammonia outflow not used for denitration is required.

排ガス中のNOx及びCOの除去技術としては、特にHRSG(Heat Recovery Steam Generator 排熱回収ボイラ)などでは脱硝触媒の前段にCO除去として酸化触媒を設置してCOとNOxを除去する方法が採られている。しかしこの方法では、高価な酸化触媒を設置せねばならないことから、これを改善する触媒として、脱硝触媒に酸化機能を持たせたNOxとCOとを同時に除去できる触媒が提案されている。これらは酸化触媒を設置する必要がなく、脱硝触媒のみでNOx、COを除去することができるため、ガスエンジンやガスタービンなどといった設置スペースの限られた小規模発電施設へコンパクトな排ガス処理設備を提供することができる。また、特許文献1などには、NHを分解する機能を持たせた脱硝触媒を用い、NHをNO/NHモル比1以上に過剰に添加して脱硝率を高め、脱硝に関与しなかった未反応のNHを分解する方法などが提案されている。 As a technology for removing NOx and CO in exhaust gas, especially in HRSG (Heat Recovery Steam Generator Exhaust Heat Recovery Boiler), a method of removing CO and NOx by installing an oxidation catalyst as CO removal before the denitration catalyst is adopted. ing. However, in this method, since an expensive oxidation catalyst must be installed, as a catalyst for improving this, a catalyst capable of simultaneously removing NOx and CO having an oxidation function in a denitration catalyst has been proposed. These do not require the installation of an oxidation catalyst, and NOx and CO can be removed using only a denitration catalyst. Therefore, a compact exhaust gas treatment facility can be used for small-scale power generation facilities with limited installation space, such as gas engines and gas turbines. Can be provided. Further, like Patent Document 1, using a denitration catalyst which gave function of decomposing NH 3, increase the denitrification rate by the addition of NH 3 excess in NO / NH 3 molar ratio of 1 or more, involved in denitrification A method for decomposing unreacted NH 3 that has not been proposed has been proposed.

特開平05-146634号公報JP 05-146634 A 特開平07-016462号公報Japanese Patent Application Laid-Open No. 07-016462 特開2005-111330号公報JP 2005-111330 A 特開2004-267969号公報JP 2004-267969 A

すなわち、上述した触媒は、脱硝触媒成分中に数ppmから数10ppmの貴金属を含有する酸化触媒成分が疎らに存在することを特徴とするが、400℃以上の高温域においては、貴金属酸化触媒の酸化能が非常に高くなる。そのため、脱硝触媒中に数ppm存在しているだけでもNHがNOxに酸化される割合が多くなり、脱硝性能が低下するという問題が生じる。 That is, the above-described catalyst is characterized in that an oxidation catalyst component containing several ppm to several tens of ppm of noble metal is present sparsely in the denitration catalyst component, but in a high temperature range of 400 ° C. or higher, The oxidation ability becomes very high. Therefore, even if only a few ppm is present in the denitration catalyst, the rate at which NH 3 is oxidized to NOx increases, resulting in a problem that the denitration performance decreases.

このような酸化触媒の悪影響を防止する手段として、触媒担体に酸化触媒層を担持し、その表層に脱硝触媒層を担持した2層コート触媒が提案されている(特許文献2参照)。この方法では、排ガスは触媒表面の脱硝触媒層を通過してから酸化触媒層に到達するため、脱硝反応の残りのNHと脱硝触媒層で反応しなかったCOが酸化触媒層で酸化され、脱硝性能を低下させることなく未反応NH及びCOの酸化除去を行うことができる。しかし、この方法でも、ガス流入側に酸化触媒層が存在するため、400℃以上の酸化触媒性能が著しく高い温度領域では、NHが酸化されることは避けられず、その結果、高い脱硝率を得ることができなかった。 As a means for preventing such an adverse effect of the oxidation catalyst, a two-layer coated catalyst in which an oxidation catalyst layer is supported on a catalyst carrier and a denitration catalyst layer is supported on the surface layer has been proposed (see Patent Document 2). In this method, since the exhaust gas reaches the oxidation catalyst layer after passing through the denitration catalyst layer on the catalyst surface, the remaining NH 3 of the denitration reaction and CO that did not react in the denitration catalyst layer are oxidized in the oxidation catalyst layer, Oxidation removal of unreacted NH 3 and CO can be performed without reducing the denitration performance. However, even in this method, since the oxidation catalyst layer exists on the gas inflow side, it is inevitable that NH 3 is oxidized in a temperature range where the oxidation catalyst performance of 400 ° C. or higher is remarkably high. Could not get.

また、その他の手段として、排ガスが流入する前段側には脱硝触媒のみを担持し、その後段側に酸化触媒を担持して設置して脱硝反応の残りのNHのみを酸化除去する方法も提案されている(特許文献3、特許文献4など)。しかし、この方法は、高温域では酸化触媒の酸化活性が高いため、NOxを高脱硝率で除去するためにNH/NOモル比を1以上で運転しようとすると脱硝の残りのNHが後段の酸化触媒によって酸化されてNOxを副生するため、高い脱硝率を得ることができない。
本発明の目的は、400〜600℃といった高温度域において、高い脱硝性能と未反応NHの除去性能とを併せ持つことにより、高い脱硝性能を得ることができかつCOも除去することができるコンパクトな触媒とその製造方法とを提供することにある。
As another means, a method is also proposed in which only the denitration catalyst is supported on the front stage side where the exhaust gas flows in, and the oxidation catalyst is supported on the subsequent stage side to oxidize and remove only the remaining NH 3 of the denitration reaction. (Patent Document 3, Patent Document 4, etc.). However, in this method, since the oxidation activity of the oxidation catalyst is high in a high temperature range, if the NH 3 / NO molar ratio is attempted to be operated at 1 or more in order to remove NOx at a high denitration rate, the remaining NH 3 of the denitration is in a subsequent stage. Since it is oxidized by this oxidation catalyst and produces NOx as a by-product, a high denitration rate cannot be obtained.
The object of the present invention is to have a high denitration performance and a removal performance of unreacted NH 3 in a high temperature range of 400 to 600 ° C., so that a high denitration performance can be obtained and CO can also be removed. And a method for producing the same.

上記課題は、基材がメタルラスであり、基材表面の排ガス流れ方向下流側部分に貴金属系酸化触媒成分を含有する酸化触媒層を有し、この酸化触媒層の上面を含む基材表面全体に脱硝触媒成分層が形成されている排ガス浄化用触媒によって解決される。   The above problem is that the base material is a metal lath and has an oxidation catalyst layer containing a noble metal-based oxidation catalyst component on the downstream side portion of the base material surface in the exhaust gas flow direction. This is solved by an exhaust gas purifying catalyst in which a denitration catalyst component layer is formed.

上記排ガス浄化用触媒は、帯状の基材の幅方向一方の端部に沿って、基材幅の1/2未満の幅で基材長手方向に延びる帯状の領域に、酸化触媒ペーストもしくはスラリを担持して酸化触媒層を形成し、酸化触媒層が形成された前記帯状の基材全体に、前記酸化触媒層の表面を含めて脱硝触媒ペーストもしくはスラリを担持して脱硝触媒層を形成し、脱硝触媒層形成後の前記帯状の基材に、帯状の基材の長手方向に対してなす角度が0度より大きく90度より小さい稜線を持つ突条部を、間隔をおいて繰り返し形成し、突条部が形成された帯状の基材を切断して触媒エレメントを得、得られた触媒エレメントを、表裏を交互に逆転させて順次積層することにより、連続的に製造することが可能である。   The exhaust gas-purifying catalyst is formed by applying an oxidation catalyst paste or slurry to a band-shaped region extending in the longitudinal direction of the substrate with a width less than ½ of the substrate width along one end in the width direction of the band-shaped substrate. Forming a denitration catalyst layer by carrying a denitration catalyst paste or slurry on the entire band-shaped base material on which the oxidation catalyst layer is formed, including the surface of the oxidation catalyst layer; On the strip-shaped base material after the formation of the denitration catalyst layer, ridges having ridges with an angle formed with respect to the longitudinal direction of the strip-shaped base material of greater than 0 degrees and smaller than 90 degrees are repeatedly formed at intervals, It is possible to continuously produce the catalyst element by cutting the strip-shaped base material on which the protrusions are formed, and sequentially laminating the obtained catalyst element with the front and back alternately reversed. .

前記酸化触媒成分もしくは脱硝触媒成分の担持方法は、触媒ペーストをローラ塗布する方法でもよいし、触媒成分スラリ中に含浸してコーティングする方法でもよい。   The method for supporting the oxidation catalyst component or the denitration catalyst component may be a method in which a catalyst paste is applied by roller, or a method in which the catalyst component slurry is impregnated and coated.

基材であるメタルラスは、その表面に、不活性化膜として、予めシリカゾル、酸化チタン、ポリビニルアルコールからなる表面処理剤、もしくは過酸化チタン溶液もしくはそのゾル状物がコーティングされているものとしてもよい。   The surface of the metal lath as a base material may be preliminarily coated with a surface treatment agent made of silica sol, titanium oxide, polyvinyl alcohol, or a titanium peroxide solution or a sol-like material thereof as an inactivation film. .

上記構成によれば、触媒の排ガス流入側(ガス流れ方向上流側部分)には脱硝触媒成分のみが担持され、酸化触媒成分は担持されていないため、NOxがNに無害化され、脱硝反応に使われなかったNHのみがガス流出側(ガス流れ方向下流側部分)へと移行する。ガス流出側では、下層が酸化触媒層で上層が脱硝触媒の2層コートになっており、NHが酸化触媒と接触してNOxとなっても酸化触媒層の上層を通過するうちに脱硝触媒層内でNHとの反応によってNとなるため、後流にNOxとして流出することを防止することができる。
排ガスの処理に際しては、窒素酸化物及び一酸化炭素を含有する400〜600℃の排ガス中に本発明に係る排ガス浄化用触媒を設置し、アンモニアの存在下に排ガス中の窒素酸化物、一酸化炭素、及び未反応のアンモニアを除去する。
According to the above configuration, only the denitration catalyst component is supported on the exhaust gas inflow side (upstream portion of the gas flow direction) of the catalyst, and the oxidation catalyst component is not supported. Therefore, NOx is detoxified by N 2 and the denitration reaction is performed. Only NH 3 that was not used in the process moves to the gas outflow side (downstream part in the gas flow direction). On the gas outflow side, the lower layer is an oxidation catalyst layer and the upper layer is a two-layer coating of a denitration catalyst. Even if NH 3 comes into contact with the oxidation catalyst and becomes NOx, the denitration catalyst passes through the upper layer of the oxidation catalyst layer. Since it becomes N 2 by the reaction with NH 3 in the layer, it is possible to prevent the downstream from flowing out as NOx.
In the treatment of exhaust gas, the exhaust gas purification catalyst according to the present invention is installed in exhaust gas at 400 to 600 ° C. containing nitrogen oxides and carbon monoxide, and nitrogen oxides and monoxide in the exhaust gas are present in the presence of ammonia. Carbon and unreacted ammonia are removed.

本発明によれば、低濃度でも高い活性が得られる触媒が得られ、HRSGを持たないガスタービン排ガスや、ガスエンジン、ディーゼルエンジンなどの高温排ガス中のNOx、COを効率よく浄化できるコンパクトな脱硝装置が実現できる。   According to the present invention, a catalyst capable of obtaining high activity even at a low concentration can be obtained, and compact denitration capable of efficiently purifying NOx and CO in gas turbine exhaust gas having no HRSG and high-temperature exhaust gas such as a gas engine or diesel engine. A device can be realized.

本発明に係る触媒は、図1に示すように、メタルラス基材1表面の排ガス流出部にのみ、酸化触媒成分2を含む触媒層が担持され、酸化触媒層2上面を含めたメタルラス基材1全体に脱硝触媒成分3を含む触媒層が形成されている。
この触媒は、図2に示す基本フローに従って連続的に得ることができる。すなわち、ロールに巻かれた帯状のメタルラス基材5を巻き出しながら、別に調製した酸化触媒ペースト6を、塗布ローラを用いてラス目を埋めるように圧着して担持する。このとき、酸化触媒ペースト6は、帯状のメタルラス基材5の全面ではなく、図3に示すように、帯状の基材5の幅方向端部に沿って長手方向に延びる帯状部分に担持する。次に、酸化触媒が担持された帯状の基材(以下、酸化触媒つき帯状基材という)7全体に、別に調製した脱硝触媒ペースト8を、塗布ローラを用いて担持する。次いで、酸化触媒ペースト6及び脱硝触媒ペースト8を担持して得られた帯状の基材(以下、酸化触媒及び脱硝触媒つき帯状基材という)7′に、油圧プレス9で、スペーサにするための断面が波型、ノッチ型の突条部10を形成する。
As shown in FIG. 1, the catalyst according to the present invention carries a catalyst layer containing an oxidation catalyst component 2 only on the exhaust gas outflow portion on the surface of the metal lath substrate 1, and the metal lath substrate 1 including the upper surface of the oxidation catalyst layer 2. A catalyst layer containing the denitration catalyst component 3 is formed as a whole.
This catalyst can be obtained continuously according to the basic flow shown in FIG. That is, while the strip-shaped metal lath substrate 5 wound around the roll is unwound, a separately prepared oxidation catalyst paste 6 is pressure-bonded and supported using an application roller so as to fill the lath. At this time, the oxidation catalyst paste 6 is supported not on the entire surface of the band-shaped metal lath substrate 5 but on a band-shaped portion extending in the longitudinal direction along the end in the width direction of the band-shaped substrate 5 as shown in FIG. Next, a separately prepared denitration catalyst paste 8 is supported on the entire band-shaped substrate (hereinafter referred to as a band-shaped substrate with an oxidation catalyst) 7 on which an oxidation catalyst is supported, using an application roller. Next, a belt-like base material 7 ′ obtained by supporting the oxidation catalyst paste 6 and the denitration catalyst paste 8 (hereinafter referred to as a belt-like base material with an oxidation catalyst and a denitration catalyst) 7 ′ is used as a spacer by a hydraulic press 9. A ridge portion 10 having a corrugated and notched cross section is formed.

ここで重要なことは、突条部10を形成する際に、図3のように、酸化触媒及び脱硝触媒つき帯状基材7′の長手方向に対して0度を超え90度未満の傾斜角度θを有する稜線を持つ波状の突条部10を形成させることである。突条部10を形成した帯状の触媒を切断して触媒エレメント11を得、触媒エレメント11を、図5のごとく表裏を交互に逆転させて順次積層し、図6に示すようにユニット12に組む。図5、図6の矢印4は排ガス流れ方向を示し、エレメントの積層方向は、図6のように酸化触媒が付着した側を排ガス流出側にすることが重要である。得られたユニット12は400〜600℃で焼成される。   What is important here is that when forming the ridge 10, as shown in FIG. 3, an inclination angle of more than 0 degree and less than 90 degrees with respect to the longitudinal direction of the strip-like base material 7 ′ with the oxidation catalyst and the denitration catalyst. A wavy ridge portion 10 having a ridge line having θ is formed. The strip-shaped catalyst on which the ridges 10 are formed is cut to obtain the catalyst element 11, and the catalyst elements 11 are sequentially stacked with the front and back alternately reversed as shown in FIG. 5, and assembled into the unit 12 as shown in FIG. . The arrows 4 in FIGS. 5 and 6 indicate the flow direction of the exhaust gas, and it is important that the stacking direction of the elements is the exhaust gas outflow side on the side where the oxidation catalyst is attached as shown in FIG. The obtained unit 12 is baked at 400 to 600 ° C.

酸化触媒つき帯状基材7を得る別の方法として、基材5を束ねたものを、図7のごとく、酸化触媒スラリ13に含浸後、液切りし、ラスを目空きさせた後乾燥する方法を取ることもできる。また、脱硝触媒を担持する別の方法として、酸化触媒が付着した帯状基材を脱硝触媒スラリ槽の中に浸漬後抜出し、ローラなどで液切り後乾燥する方法を用いることもできる。
また、上記基材を予め一定長さに切断してエレメントを得、エレメントの一方の端部に酸化触媒成分2を担持・乾燥後、今度はエレメント全体に脱硝触媒成分3を担持し、突条部を形成したのち、エレメントを積層する方法や、予め基材をエレメントに切断して突条部を形成後ユニット組みし、ユニットの一方の端部を酸化触媒スラリに浸漬し乾燥後、ユニット全体を脱硝触媒スラリに浸漬し、乾燥、焼成する方法によっても図1の触媒を得ることが可能である。しかし、触媒を連続的に効率よく製造するには、帯状の基材による上述した製造方法が、短時間で効率よく触媒を製造することができる。
As another method for obtaining the band-like base material 7 with the oxidation catalyst, as shown in FIG. 7, the bundle of base materials 5 is impregnated into the oxidation catalyst slurry 13 and then drained, the lath is made empty and then dried. You can also take. Further, as another method for supporting the denitration catalyst, a method in which the belt-like substrate to which the oxidation catalyst is attached is taken out after being immersed in a denitration catalyst slurry tank, drained with a roller or the like, and then dried can be used.
In addition, the base material is cut into a predetermined length in advance to obtain an element, and after supporting and drying the oxidation catalyst component 2 on one end of the element, this time the denitration catalyst component 3 is supported on the entire element, After forming the part, the method of laminating the elements, or by cutting the base material into elements in advance and forming the protrusions, assembling the unit, immersing one end of the unit in the oxidation catalyst slurry and drying, then the entire unit The catalyst shown in FIG. 1 can also be obtained by a method in which the catalyst is immersed in a denitration catalyst slurry, dried and calcined. However, in order to produce the catalyst continuously and efficiently, the above-described production method using a band-shaped substrate can produce the catalyst efficiently in a short time.

また、メタルラス基材表面に直接酸化触媒が接触しないようにするために、基材表面に予め不活性化膜を設けてもよい。不活性化膜を形成させるための手段としては、特開平6-246176号公報記載の、ポリビニルアルコール、コロイダルシリカ、微粒チタニアからなる処理液、もしくは、特開2002−126536号公報記載の、過酸化チタン水溶液もしくはゾル状物を処理液として用い、これをメタルラス基材にコーティング後、乾燥・しかるべき条件で焼成して不溶化すると好結果を与える。
酸化触媒は、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)、ルテニウム(Ru)などの貴金属の塩類を、ゼオライト、シリカ、アルミナ、チタニアなどの担体に担持した組成物を使用することができる。貴金属の担持量は0.01〜1wt%、好ましくは0.02〜0.5wt%である。これより少ないと、COやNHの酸化を十分行うことができず、又これより多いと、酸化活性が強すぎて脱硝率の低下を招く。
担体としてゼオライトを用いた場合、貴金属はゼオライトの細孔内に担持されてゼオライト表面に現れないため、得られた貴金属担持ゼオライトが金属基材と反応して上述した酸化性能が高くなるという問題を生じない。そのため、貴金属担持ゼオライトを酸化触媒として用いると、金属基材に不活性化膜を形成させるなどの必要がない。また、酸化触媒の代わりに、酸化触媒と脱硝触媒とを任意の割合で混合したものを担持するようにしてもよい。
In order to prevent the oxidation catalyst from coming into direct contact with the metal lath substrate surface, an inactivation film may be provided on the substrate surface in advance. As a means for forming an inactivated film, a treatment liquid comprising polyvinyl alcohol, colloidal silica, fine titania described in JP-A-6-246176, or a peroxidation described in JP-A-2002-126536 is disclosed. When a titanium aqueous solution or a sol-like material is used as a treatment liquid, and this is coated on a metal lath substrate, it is dried and fired under appropriate conditions to be insolubilized to give good results.
As the oxidation catalyst, it is possible to use a composition in which a salt of a noble metal such as platinum (Pt), palladium (Pd), rhodium (Rh), ruthenium (Ru) is supported on a support such as zeolite, silica, alumina, and titania. it can. The amount of noble metal supported is 0.01 to 1 wt%, preferably 0.02 to 0.5 wt%. If it is less than this, the oxidation of CO and NH 3 cannot be carried out sufficiently, and if it is more than this, the oxidation activity is too strong and the denitration rate is lowered.
When zeolite is used as the support, the noble metal is supported in the pores of the zeolite and does not appear on the surface of the zeolite, so that the obtained noble metal-supported zeolite reacts with the metal substrate and the above-described oxidation performance is increased. Does not occur. Therefore, when noble metal-supported zeolite is used as an oxidation catalyst, there is no need to form an inactivated film on the metal substrate. Further, instead of the oxidation catalyst, a mixture of an oxidation catalyst and a denitration catalyst at an arbitrary ratio may be supported.

酸化触媒層の担持面積は、酸化触媒層中の貴金属量や、処理前の排ガス中のCO濃度、NOx濃度によっても変わるため一概には言えないが、脱硝触媒層の担持面積の半分以下にすると、脱硝反応への悪影響が生じにくい。
脱硝触媒には、Ti、W、Mo、V、Ce、Nbから選ばれる組成物などいわゆる通常の脱硝触媒成分を用いることができるが、特に、高温度域での脱硝性能に優れた特願2002-056240号公報記載の触媒(Ti、W、Ce)を用いると好結果が得られる。
本発明の触媒は、図1に示すように、メタルラス基材1表面の排ガス流れ方向下流側部分に酸化触媒成分2が担持され、酸化触媒成分2の上面を含めた基材1全体に脱硝触媒成分3が形成されていることを特徴とする。触媒のガス流れ方向の上流部から下流部に至る全域に酸化触媒成分2がある場合、例えその上層に脱硝触媒成分3があったとしても、高温域では貴金属の酸化触媒活性が高いために上流部でもNHの酸化が生じてNOxが生成し、脱硝率の低下を招く。特に、NH/NOモル比を1以上にして脱硝率を向上させようとすると、上流側ではNHが多く存在するため、酸化触媒上で酸化されてNOxとなる反応が進行する。
Since the supported area of the oxidation catalyst layer varies depending on the amount of noble metal in the oxidation catalyst layer, the CO concentration in the exhaust gas before treatment, and the NOx concentration, it cannot be generally stated, but if it is less than half the supported area of the denitration catalyst layer It is difficult to adversely affect the denitration reaction.
As the denitration catalyst, a so-called normal denitration catalyst component such as a composition selected from Ti, W, Mo, V, Ce, and Nb can be used, and in particular, Japanese Patent Application 2002 excellent in denitration performance in a high temperature range. Good results can be obtained by using the catalyst (Ti, W, Ce) described in JP-A-056240.
As shown in FIG. 1, the catalyst of the present invention has an oxidation catalyst component 2 supported on the downstream side of the surface of the metal lath substrate 1 in the exhaust gas flow direction, and the entire substrate 1 including the upper surface of the oxidation catalyst component 2 has a denitration catalyst. Component 3 is formed. When the oxidation catalyst component 2 is present in the entire region from the upstream portion to the downstream portion in the gas flow direction of the catalyst, even if the denitration catalyst component 3 is present in the upper layer, the oxidation catalyst activity of the noble metal is high in the high temperature region. Even in the area, oxidation of NH 3 occurs and NOx is generated, resulting in a decrease in the denitration rate. In particular, if the NH 3 / NO molar ratio is set to 1 or more to improve the denitration rate, a large amount of NH 3 exists on the upstream side, and therefore, a reaction that is oxidized on the oxidation catalyst to become NO x proceeds.

これに対して、本発明の触媒では、触媒のガス流入側(ガス流れ方向上流側部分)には脱硝触媒成分3のみが担持されているため、NOxがNに無害化され、脱硝反応に使われなかったNHのみがガス流出側(ガス流れ方向下流側部分)へと移行する。ガス流出側では、下層が酸化触媒層で上層が脱硝触媒層の2層コートになっており、NHが酸化触媒と接触してNOxとなっても酸化触媒層の上層を通過するうちに脱硝触媒層内でNHとの反応によってNとなるため、後流にNOxとして流出することを防止することができる。
また、図1のような触媒を製造するとき、脱硝触媒の製造法として広く実施されている押し出しハニカム成型法で製造する場合には、予め酸化触媒を押し出しハニカム成型し、これに脱硝触媒スラリをコーティングする方法で全体を2層コートすることは可能である。しかし、ハニカムの内部の、しかも後流部にのみに酸化触媒を存在させる構成を得ることは、押出しハニカム成型法で不可能である。
On the other hand, in the catalyst of the present invention, since only the denitration catalyst component 3 is supported on the gas inflow side (upstream side portion in the gas flow direction) of the catalyst, NOx is detoxified by N 2 and the denitration reaction is performed. Only NH 3 that has not been used moves to the gas outflow side (downstream portion in the gas flow direction). On the gas outflow side, the lower layer is a two-layer coating of an oxidation catalyst layer and the upper layer is a denitration catalyst layer. Even if NH 3 comes into contact with the oxidation catalyst and becomes NOx, it is removed while passing through the upper layer of the oxidation catalyst layer. Since it becomes N 2 by reaction with NH 3 in the catalyst layer, it can be prevented that it flows out as NOx in the downstream.
In addition, when manufacturing a catalyst as shown in FIG. 1, when manufacturing by the extrusion honeycomb molding method widely used as a method of manufacturing a denitration catalyst, an oxidation catalyst is extruded in advance to form a honeycomb, and a denitration catalyst slurry is added thereto. It is possible to coat the whole with two layers by the coating method. However, it is impossible to obtain a configuration in which the oxidation catalyst exists inside the honeycomb and only in the wake portion by the extrusion honeycomb molding method.

これに対し本発明では、先に述べたように、図2に示す基本フローに従って触媒を製造する。まず、帯状のメタルラス基材5に、別に調製した酸化触媒ペースト6を、塗布ローラを用いて、ラス目を埋めるように圧着して担持する。このとき、酸化触媒ペースト6は、メタルラス基材全体ではなく、図3に示すように、帯状のメタルラス基材5の幅方向の端部を含んで長手方向に延びる帯状部分に担持される。こうすることで、触媒のエレメントの一端部にのみ、酸化触媒を連続的に担持することができる。また、これとは別の酸化触媒担持方法として、不活性化膜で表面コーティングされた帯状のメタルラス基材5を束ね、これに図7のごとく、酸化触媒スラリ13に含浸後、液切りしてラスを目空きさせた後乾燥する方法を取ることもできる。   On the other hand, in the present invention, as described above, the catalyst is manufactured according to the basic flow shown in FIG. First, the separately prepared oxidation catalyst paste 6 is supported on the band-shaped metal lath substrate 5 by using a coating roller so as to fill the lath. At this time, the oxidation catalyst paste 6 is supported not on the entire metal lath substrate but on a band-like portion extending in the longitudinal direction including the end in the width direction of the band-like metal lath substrate 5 as shown in FIG. In this way, the oxidation catalyst can be continuously supported only on one end of the catalyst element. As another method for supporting an oxidation catalyst, a band-shaped metal lath base material 5 whose surface is coated with an inactivated film is bundled and impregnated in an oxidation catalyst slurry 13 as shown in FIG. It is also possible to take a method of drying after leaving the lath open.

次に、酸化触媒つき帯状基材7全体に、別に調製した脱硝触媒ペースト8を、塗布ローラを用いて担持する。得られた酸化触媒及び脱硝触媒つき帯状基材7′には、更に、油圧プレス9で、積層時にスペーサとして機能する、断面が波型、ノッチ型の突条部10が形成される。次いで帯状基材7′は、その長手方向に直交する方向の切断線で、300-1000mmの長さLに切断される。切断で得られた触媒エレメント11は、風乾後、図5のように表裏を交互に重ねてユニット12に組まれ、400〜600℃で焼成される。
ここで重要なことは、波状の突条部10を形成する際に、図4のように突条部10の稜線が帯状基材7′の長手方向に対して0度を超えて90度未満の傾斜角度θを有するように突条部10を形成することと、切断して得られた触媒エレメント11を積層してユニット12に組む際に、触媒エレメント11の表裏を交互に逆転させて順次積層することである。
Next, a separately prepared denitration catalyst paste 8 is supported on the entire belt-like substrate 7 with an oxidation catalyst using an application roller. The obtained band-like base material 7 'with the oxidation catalyst and the denitration catalyst is further formed with a corrugated section and a notch-shaped protrusion section 10 which function as a spacer during lamination by a hydraulic press 9. Next, the strip-shaped substrate 7 ′ is cut to a length L of 300 to 1000 mm along a cutting line in a direction perpendicular to the longitudinal direction. The catalyst element 11 obtained by cutting is air-dried, and then assembled into the unit 12 with the front and back alternately stacked as shown in FIG. 5 and fired at 400 to 600 ° C.
What is important here is that when forming the wavy ridge portion 10, the ridge line of the ridge portion 10 exceeds 0 degree and less than 90 degrees with respect to the longitudinal direction of the belt-like substrate 7 'as shown in FIG. When forming the protrusion 10 so as to have the inclination angle θ and stacking the catalyst elements 11 obtained by cutting into the unit 12, the front and back of the catalyst elements 11 are alternately reversed and sequentially It is to laminate.

傾斜角度θを0度、つまり突条部10の稜線が帯状基材7′の長手方向に平衡になるように突条部10を形成すると、突条部10の稜線が、酸化触媒成分2が形成されている領域と脱硝触媒成分3のみが形成されている領域の境界に平行に形成される。このため、排ガス流れ方向に対して、脱硝触媒より下流側に酸化触媒が位置するようにユニット組みを行うと、突条部10の稜線がガス流れ方向に直交するため、圧損が著しく高くなる。
一方、傾斜角度θを0度<θ<90度とした突条部を持つエレメントでは、その表裏を交互に反転させることにより、突条部10の稜線が図5に示すように互いに交叉する形状となり、交叉した突条部10でのガスの拡散による脱硝性能の向上効果が得られるため、高い脱硝性能を得ることができるという利点がある。
また、メタルラス基材1表面に不活性化膜を形成させることにより、その上に酸化触媒を担持しても、貴金属がラス基材に移動することを防止することが可能になる。
次に示すように、本発明に係る実施例の触媒と、そうでない比較例の触媒を作成し、比較した。
When the ridge portion 10 is formed so that the inclination angle θ is 0 degree, that is, the ridge line of the ridge portion 10 is balanced in the longitudinal direction of the strip-shaped substrate 7 ′, the ridge line of the ridge portion 10 is the oxidation catalyst component 2. It is formed parallel to the boundary between the formed region and the region where only the denitration catalyst component 3 is formed. For this reason, when the unit assembly is performed such that the oxidation catalyst is positioned downstream of the denitration catalyst with respect to the exhaust gas flow direction, the ridge line of the protrusion 10 is orthogonal to the gas flow direction, and the pressure loss becomes extremely high.
On the other hand, in an element having a ridge with an inclination angle θ of 0 ° <θ <90 °, the ridgelines of the ridge 10 cross each other as shown in FIG. Thus, the effect of improving the denitration performance by the diffusion of gas at the intersecting ridges 10 can be obtained, so that there is an advantage that high denitration performance can be obtained.
In addition, by forming an inactivation film on the surface of the metal lath substrate 1, it is possible to prevent the noble metal from moving to the lath substrate even if an oxidation catalyst is supported thereon.
As shown below, the catalyst of the Example which concerns on this invention, and the catalyst of the comparative example which is not so were created and compared.

1.33×10−2wt%の塩化白金酸(H[PtCl]・6HO)1Lに、モルデナイト(Zeolyst製CBV20)500gを加えて砂浴上で蒸発乾固し、空気中、500℃で2時間焼成して0.01wt%Pt担持モルデナイトを調製した。調製したモルデナイトを、ハンマーミルで150μm以下に粉砕後、得られた粉末と水及びシリカゾル(日産化学、OSゾル、濃度20wt%)とを混合して水分60wt%の酸化触媒スラリを得た。 1.33 × 10 −2 wt% of chloroplatinic acid (H 2 [PtCl 6 ] · 6H 2 O) 1 L is added with 500 g of mordenite (CBV20 manufactured by Zeolist) and evaporated to dryness in a sand bath. By baking at 500 ° C. for 2 hours, 0.01 wt% Pt-supported mordenite was prepared. The prepared mordenite was pulverized to 150 μm or less with a hammer mill, and the obtained powder was mixed with water and silica sol (Nissan Chemical, OS sol, concentration 20 wt%) to obtain an oxidation catalyst slurry having a water content of 60 wt%.

これとは別に、低温乾燥酸化チタン(ミレニアム製G5、表面積275m/g)を150kg、メタタングステン酸アンモニウム((NH)6・HW12O40・XHO、WOとして93wt%含有)51.9kg、CeOゾル(多木化学製、ニードラールU−15、CeO含有量15wt%)26.4kg、シュウ酸を7.5kg、シリカゾル(日産化学、OSゾル、濃度20wt%)50.6kg及び水とをニーダで混練して水分35wt%のペーストを得、これにアルミナシリケート系無機繊維(東芝ファイバーフラックス製)42.5kg加えて再び混練し、水分32wt%の脱硝触媒ペーストを得た。 Separately, low-temperature dry titanium oxide (G5 manufactured by Millennium, surface area 275 m 2 / g) 150 kg, ammonium metatungstate ((NH 4 ) 6 · H 2 W 12 O 40 · XH 2 O, containing 93 wt% as WO 3 ) 51 0.9 kg, CeO 2 sol (manufactured by Taki Chemical Co., Nidral U-15, CeO 2 content 15 wt%) 26.4 kg, oxalic acid 7.5 kg, silica sol (Nissan Chemical, OS sol, concentration 20 wt%) 50.6 kg Then, a paste having a water content of 35 wt% was obtained by kneading with water and a kneader, and 42.5 kg of alumina silicate inorganic fiber (manufactured by Toshiba Fiber Flux) was added thereto and kneaded again to obtain a denitration catalyst paste having a water content of 32 wt%.

厚さ0.2mm、100mm角のメタルラス基材を、酸化触媒スラリ中に1/3長さだけ浸漬して引き出し、液切りしてラス目を空けた後、風乾した。さらに100mm角の基材全面に脱硝触媒ペーストをローラで塗布し、ラス目間が脱硝触媒で埋められた触媒を得た。得られた触媒を100mm×20mm長さに切断した。   A metal lath substrate having a thickness of 0.2 mm and a 100 mm square was immersed in an oxidation catalyst slurry for 1/3 length, pulled out, drained, and air-dried. Further, a denitration catalyst paste was applied to the entire 100 mm square substrate with a roller to obtain a catalyst in which the gap between the laths was filled with the denitration catalyst. The obtained catalyst was cut into a length of 100 mm × 20 mm.

実施例1の0.01wt%Pt担持モルデナイト20kgに硝酸(60%含有)430ml、活性アルミナ8.95kg、水31kg、アルミナシリケート系無機繊維8.95kgを加えてニーダで混練し、酸化触媒ペーストを得た。得られたペーストを、厚さ0.2mm、幅100mm長さ300mmのメタルラス基材の幅33mmにローラで塗布して、幅33mmのラス目間が酸化触媒で埋められ残りの67mmはラス基材のままである触媒を得、乾燥後、実施例1と同様に基材全面に脱硝触媒ペーストをローラで塗布し、ラス目間が脱硝触媒で埋められた触媒を得た。   Add 430 ml of nitric acid (containing 60%), 8.95 kg of activated alumina, 31 kg of water, and 8.95 kg of alumina silicate-based inorganic fiber to 20 kg of 0.01 wt% Pt-supported mordenite of Example 1 and knead with a kneader to prepare an oxidation catalyst paste. Obtained. The obtained paste was applied to a width of 33 mm of a metal lath substrate having a thickness of 0.2 mm, a width of 100 mm and a length of 300 mm with a roller, and the gap between the laths having a width of 33 mm was filled with an oxidation catalyst, and the remaining 67 mm was a lath substrate. After the catalyst was dried and dried, a denitration catalyst paste was applied to the entire surface of the substrate with a roller in the same manner as in Example 1 to obtain a catalyst in which the gap between the laths was filled with the denitration catalyst.

実施例1のモルデナイトを微粒シリカ粉末(富田製薬社製、マイコンF)に変え、特開平6-246176記載の、ポリビニルアルコール、コロイダルシリカ、微粒チタニアからなる処理液で処理してラス表面に不活性化膜を形成させた以外は実施例1と同様にして触媒を調製した。
<比較例1>
実施例1の酸化触媒スラリを含浸しない以外は実施例1と同様にして触媒を調製した。
<比較例2>
実施例1の酸化触媒スラリ中にメタルラス基材全体を浸漬する以外は実施例1と同様にして触媒を調製した。
<比較例3>
実施例1のメタルラス基材に脱硝触媒ペーストをローラにより塗布した後、乾燥した。次いで、酸化触媒スラリ中に1/3長さだけ浸漬して引き出し、液切り、乾燥した後、500℃で2時間焼成して触媒を得た。得られた触媒を100mm×20mm長さに切断した。
実施例1〜3及び比較例1〜3の触媒を流通式反応管に充填し、表1に示すガス条件(1)及び(2)で500℃における脱硝率、CO酸化率及び反応管出口のNH量を測定した。得られた結果を表2に示す。
The mordenite of Example 1 is changed to fine silica powder (manufactured by Tomita Pharmaceutical Co., Ltd., microcomputer F), and treated with a treatment liquid composed of polyvinyl alcohol, colloidal silica, fine titania as described in JP-A-6-246176, and inert on the surface of the lath. A catalyst was prepared in the same manner as in Example 1 except that a chemical film was formed.
<Comparative Example 1>
A catalyst was prepared in the same manner as in Example 1 except that the oxidation catalyst slurry of Example 1 was not impregnated.
<Comparative example 2>
A catalyst was prepared in the same manner as in Example 1 except that the entire metal lath substrate was immersed in the oxidation catalyst slurry of Example 1.
<Comparative Example 3>
The denitration catalyst paste was applied to the metal lath substrate of Example 1 with a roller and then dried. Next, it was immersed in an oxidation catalyst slurry for 1/3 length, drawn, drained, dried, and calcined at 500 ° C. for 2 hours to obtain a catalyst. The obtained catalyst was cut into a length of 100 mm × 20 mm.
The catalysts of Examples 1 to 3 and Comparative Examples 1 to 3 were filled into a flow-type reaction tube, and the denitration rate, CO oxidation rate, and reaction tube outlet at 500 ° C. under gas conditions (1) and (2) shown in Table 1. The amount of NH 3 was measured. The obtained results are shown in Table 2.

Figure 2008284506
Figure 2008284506

Figure 2008284506
表2に示されるように、実施例1〜3の触媒は、高い脱硝率とCO除去率が得られており、また出口のNHの流出量も少ない。一方、酸化触媒のない比較例1の触媒では、COの除去活性はほとんど得られない。また比較例2〜3の触媒は実施例1〜3の触媒に比べてCO除去率が高く出口のNH流出量は少ないが、脱硝率が低い。特に条件(2)の、NH/NOモル比が1.4の条件にすると、この傾向が顕著になり、本発明による触媒構成で、高い脱硝率とCO酸化率及び少ないリークNHを達成できることが分かる。
Figure 2008284506
As shown in Table 2, the catalysts of Examples 1 to 3 have high denitration rates and CO removal rates, and the amount of NH 3 at the outlet is small. On the other hand, almost no CO removal activity is obtained with the catalyst of Comparative Example 1 having no oxidation catalyst. In addition, the catalysts of Comparative Examples 2 to 3 have a higher CO removal rate than the catalysts of Examples 1 to 3 and a small amount of NH 3 outflow at the outlet, but a low NOx removal rate. In particular, when the NH 3 / NO molar ratio in the condition (2) is 1.4, this tendency becomes remarkable. With the catalyst configuration according to the present invention, a high denitration rate, a CO oxidation rate, and a small leak NH 3 are achieved. I understand that I can do it.

本発明の実施の形態に係る排ガス浄化用触媒を示す断面図である。1 is a cross-sectional view showing an exhaust gas purifying catalyst according to an embodiment of the present invention. 本発明の実施の形態に係る排ガス浄化用触媒の製造手順を示す概念図である。It is a conceptual diagram which shows the manufacture procedure of the catalyst for exhaust gas purification which concerns on embodiment of this invention. 図2に示す製造手順の一部を示す概念図である。It is a conceptual diagram which shows a part of manufacturing procedure shown in FIG. 本発明の実施の形態に係る排ガス浄化用触媒を示す斜視図である。1 is a perspective view showing an exhaust gas purifying catalyst according to an embodiment of the present invention. 本発明の実施の形態に係る排ガス浄化用触媒の積層状態を示す平面図である。It is a top view which shows the lamination | stacking state of the exhaust gas purification catalyst which concerns on embodiment of this invention. 本発明の実施の形態に係る排ガス浄化用触媒の積層状態を示す斜視図である。It is a perspective view which shows the lamination | stacking state of the exhaust gas purification catalyst which concerns on embodiment of this invention. 本発明に係る排ガス浄化用触媒の製造手順の他の例を示す概念図である。It is a conceptual diagram which shows the other example of the manufacturing procedure of the catalyst for exhaust gas purification which concerns on this invention.

符号の説明Explanation of symbols

1 メタルラス基材
2 酸化触媒成分
3 脱硝触媒成分
4 ガス流れ方向を示す矢印
5 帯状のメタルラス基材
6 酸化触媒ペースト
7 酸化触媒つき帯状基材
7′ 酸化触媒及び脱硝触媒つき帯状基材
8 脱硝触媒ペースト
9 油圧プレス
10 突条部
11 触媒エレメント
12 ユニット
13 酸化触媒スラリ
DESCRIPTION OF SYMBOLS 1 Metal lath base material 2 Oxidation catalyst component 3 Denitration catalyst component 4 Arrow which shows gas flow direction 5 Band-shaped metal lath base material 6 Oxidation catalyst paste 7 Band-shaped base material 7 'with an oxidation catalyst 8 Band-shaped base material with an oxidation catalyst and a denitration catalyst 8 Denitration catalyst Paste 9 Hydraulic press 10 Projection 11 Catalyst element 12 Unit 13 Oxidation catalyst slurry

Claims (8)

基材に担持された触媒層に沿って排ガスを流過させ、該排ガスに含まれている窒素酸化物及び一酸化炭素をアンモニアの存在下で反応させてそれらの濃度を低減させる排ガス浄化用の触媒であって、前記基材としてメタルラスが用いられ、前記触媒層は、前記基材の排ガス流れ方向下流側部分に担持された貴金属系酸化触媒成分を含む酸化触媒層と、該酸化触媒層の表面を含む前記基材表面全体に担持された脱硝触媒層とを含んでなる排ガス浄化用触媒。   For exhaust gas purification, exhaust gas is allowed to flow along the catalyst layer supported on the base material, and nitrogen oxide and carbon monoxide contained in the exhaust gas are reacted in the presence of ammonia to reduce their concentration. A metal lath is used as the substrate, and the catalyst layer includes an oxidation catalyst layer including a noble metal-based oxidation catalyst component supported on a downstream portion of the substrate in the exhaust gas flow direction, and the oxidation catalyst layer. A catalyst for exhaust gas purification comprising a denitration catalyst layer supported on the entire surface of the substrate including the surface. 請求項1に記載の排ガス浄化用触媒において、前記基材には、排ガス流れ方向に対してなす角度が0度より大きく90度より小さい稜線を持つ突条部が形成されていることを特徴とする排ガス浄化用触媒。   2. The exhaust gas purifying catalyst according to claim 1, wherein the base material is formed with a ridge having a ridge line whose angle with respect to the exhaust gas flow direction is larger than 0 degree and smaller than 90 degrees. Exhaust gas purification catalyst. 請求項1又は2に記載の排ガス浄化用触媒において、前記酸化触媒層の面積は、基材の表面積の1/2未満であることを特徴とする排ガス浄化用触媒。   3. The exhaust gas purifying catalyst according to claim 1, wherein an area of the oxidation catalyst layer is less than ½ of a surface area of the base material. 請求項1乃至3のいずれかに記載の排ガス浄化用触媒において、メタルラス表面に、シリカゾル、酸化チタン、ポリビニルアルコールからなる表面処理剤、もしくは過酸化チタン溶液もしくはそのゾル状物がコーティングされていることを特徴とする排ガス浄化用触媒。   The exhaust gas purifying catalyst according to any one of claims 1 to 3, wherein the metal lath surface is coated with a surface treatment agent comprising silica sol, titanium oxide, polyvinyl alcohol, or a titanium peroxide solution or a sol-form thereof. An exhaust gas purifying catalyst characterized by. 帯状の基材の幅方向一方の端部に沿って、基材幅の1/2未満の幅で基材長手方向に延びる帯状の領域に、酸化触媒ペーストもしくはスラリを担持して酸化触媒層を形成する手順と、
酸化触媒層が形成された前記帯状の基材全体に、前記酸化触媒層の表面を含めて脱硝触媒ペーストもしくはスラリを担持して脱硝触媒層を形成する手順と、
脱硝触媒層形成後の前記帯状の基材に、帯状の基材の長手方向に対してなす角度が0度より大きく90度より小さい稜線を持つ突条部を、間隔をおいて繰り返し形成する手順と、
突条部が形成された帯状の基材を切断して触媒エレメントを得る手順と、
得られた触媒エレメントを、表裏を交互に逆転させて順次積層する手順と、
を有してなる排ガス浄化用触媒の製造方法。
An oxidation catalyst layer is supported by supporting an oxidation catalyst paste or slurry in a band-like region extending in the longitudinal direction of the substrate with a width less than ½ of the substrate width along one end in the width direction of the belt-like substrate. The procedure to form,
A procedure for forming a denitration catalyst layer by supporting a denitration catalyst paste or slurry on the entire band-shaped base material on which the oxidation catalyst layer is formed, including the surface of the oxidation catalyst layer;
A procedure for repeatedly forming ridges having ridges with an angle greater than 0 degrees and smaller than 90 degrees with respect to the longitudinal direction of the band-shaped substrate on the band-shaped substrate after the formation of the denitration catalyst layer When,
A procedure for obtaining a catalytic element by cutting a strip-shaped base material on which a protrusion is formed;
A procedure for sequentially stacking the obtained catalyst elements by alternately reversing the front and back;
A method for producing an exhaust gas purifying catalyst comprising:
請求項5に記載の排ガス浄化用触媒の製造方法において、酸化触媒成分もしくは脱硝触媒成分の担持方法が、触媒ペーストをローラ塗布するか、もしくは触媒成分スラリ中に含浸してコーティングする方法であることを特徴とする排ガス浄化用触媒の製造方法。   6. The method for producing an exhaust gas purifying catalyst according to claim 5, wherein the supporting method of the oxidation catalyst component or the denitration catalyst component is a method in which a catalyst paste is applied by roller or impregnated in a catalyst component slurry and coated. A method for producing an exhaust gas purifying catalyst. 請求項5又は6に記載の排ガス浄化用触媒の製造方法において、帯状の基材としてメタルラスを用い、該メタルラス表面に酸化触媒成分を担持する前に、メタルラス表面に予めシリカゾル、酸化チタン、ポリビニルアルコールからなる表面処理剤、もしくは過酸化チタン溶液もしくはそのゾル状物をコーティングする手順を有することを特徴とする排ガス浄化用触媒の製造方法。   7. The method for producing an exhaust gas purifying catalyst according to claim 5 or 6, wherein a metal lath is used as a belt-shaped substrate, and a silica sol, titanium oxide, polyvinyl alcohol is preliminarily formed on the surface of the metal lath before supporting the oxidation catalyst component on the surface of the metal lath. A method for producing a catalyst for exhaust gas purification, comprising a step of coating a surface treatment agent comprising: a titanium peroxide solution or a sol-form thereof. 窒素酸化物及び一酸化炭素を含有する400〜600℃の排ガス中に排ガス浄化用触媒を設置し、アンモニアの存在下に前記排ガス中の窒素酸化物、一酸化炭素を除去するとともに未反応のアンモニアを除去する排ガスの処理方法であって、排ガス浄化用触媒が請求項1乃至4のいずれかに記載の排ガス浄化用触媒である排ガスの処理方法。   An exhaust gas purifying catalyst is installed in exhaust gas at 400 to 600 ° C. containing nitrogen oxides and carbon monoxide, and in the presence of ammonia, nitrogen oxides and carbon monoxide in the exhaust gas are removed and unreacted ammonia An exhaust gas treatment method for removing exhaust gas, wherein the exhaust gas purification catalyst is the exhaust gas purification catalyst according to any one of claims 1 to 4.
JP2007133740A 2007-05-21 2007-05-21 Catalyst for cleaning exhaust gas, its manufacturing method and method for treating exhaust gas Pending JP2008284506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007133740A JP2008284506A (en) 2007-05-21 2007-05-21 Catalyst for cleaning exhaust gas, its manufacturing method and method for treating exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007133740A JP2008284506A (en) 2007-05-21 2007-05-21 Catalyst for cleaning exhaust gas, its manufacturing method and method for treating exhaust gas

Publications (1)

Publication Number Publication Date
JP2008284506A true JP2008284506A (en) 2008-11-27

Family

ID=40144733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007133740A Pending JP2008284506A (en) 2007-05-21 2007-05-21 Catalyst for cleaning exhaust gas, its manufacturing method and method for treating exhaust gas

Country Status (1)

Country Link
JP (1) JP2008284506A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012507662A (en) * 2008-11-03 2012-03-29 ビー・エイ・エス・エフ、コーポレーション Catalyst system integrating SCR and AMOX
JP2013031788A (en) * 2011-08-01 2013-02-14 Babcock Hitachi Kk Metal substrate for catalyst and denitration catalyst using the same
JP2013506787A (en) * 2009-10-02 2013-02-28 ビー・エイ・エス・エフ、コーポレーション Catalyst used for four-cycle diesel and method of using the same
EP2878360A1 (en) * 2013-11-29 2015-06-03 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification catalyst

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012507662A (en) * 2008-11-03 2012-03-29 ビー・エイ・エス・エフ、コーポレーション Catalyst system integrating SCR and AMOX
JP2016073971A (en) * 2008-11-03 2016-05-12 ビーエーエスエフ コーポレーション Integrated scr and amox catalyst systems
JP2013506787A (en) * 2009-10-02 2013-02-28 ビー・エイ・エス・エフ、コーポレーション Catalyst used for four-cycle diesel and method of using the same
JP2013031788A (en) * 2011-08-01 2013-02-14 Babcock Hitachi Kk Metal substrate for catalyst and denitration catalyst using the same
EP2878360A1 (en) * 2013-11-29 2015-06-03 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification catalyst
JP2015104695A (en) * 2013-11-29 2015-06-08 トヨタ自動車株式会社 Exhaust emission control catalyst

Similar Documents

Publication Publication Date Title
EP3027309B1 (en) Ammonia slip catalyst
WO2001028665A1 (en) Conversion of nitrogen oxides in the presence of a catalyst supported of a mesh-like structure
CA3004079C (en) Binary catalyst based selective catalytic reduction filter
JP3436567B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2007504945A (en) Multi-layered ammonia oxidation catalyst
JP2020182898A (en) Ammonia oxidation catalyst device
WO2015079721A1 (en) Exhaust gas treatment catalyst
JP2008284506A (en) Catalyst for cleaning exhaust gas, its manufacturing method and method for treating exhaust gas
KR101755468B1 (en) selective catalytic reduction on diesel particulate filter and EXHAUST GAS PROCESSING SYSTEM comprising the same
JPH10244167A (en) Catalyst structure body for purifying exhaust gas
JPH05293385A (en) Catalyst structural body and its production
JPH105591A (en) Catalyst for cleaning of waste gas and device for cleaning waste gas with same
JP2006231281A (en) Exhaust gas-treating catalyst, its manufacturing method and exhaust gas-treating method
JP2006150223A (en) Exhaust-gas cleaning filter, production method of the filter and exhaust-gas cleaning apparatus
JP3285206B2 (en) Exhaust gas purification catalyst and method for producing the same
CN108025291B (en) Honeycomb catalyst for removing nitrogen oxides in flue gas and waste gas and preparation method thereof
JP6339729B2 (en) Exhaust gas treatment device and method for producing exhaust gas treatment catalyst
US7591987B1 (en) Method and apparatus for treating ammonia-containing gas
JP4939082B2 (en) Exhaust gas treatment system
JP6182036B2 (en) Exhaust gas treatment catalyst, exhaust gas treatment device, and method for producing exhaust gas treatment catalyst
JP4864231B2 (en) Denitration catalyst structure and exhaust gas denitration method using the same
JPH09150039A (en) Apparatus and method for purifying exhaust gas
JP5875562B2 (en) Exhaust gas treatment apparatus and exhaust gas treatment method
JP4553763B2 (en) Exhaust gas purification method and purification apparatus
JP5078958B2 (en) Exhaust gas treatment catalyst, exhaust gas treatment method and exhaust gas treatment device