JP2008283725A - Surface acoustic wave device - Google Patents
Surface acoustic wave device Download PDFInfo
- Publication number
- JP2008283725A JP2008283725A JP2008215602A JP2008215602A JP2008283725A JP 2008283725 A JP2008283725 A JP 2008283725A JP 2008215602 A JP2008215602 A JP 2008215602A JP 2008215602 A JP2008215602 A JP 2008215602A JP 2008283725 A JP2008283725 A JP 2008283725A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- acoustic wave
- surface acoustic
- comb
- fingers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
Abstract
Description
本発明は、電気通信分野において携帯電話やセルラ電話等の移動体用通信機器に高周波素子として頻繁に使用される弾性表面波装置の電極構造に関する。 The present invention relates to an electrode structure of a surface acoustic wave device that is frequently used as a high-frequency element in mobile communication devices such as mobile phones and cellular phones in the telecommunications field.
近年、電波を利用する電子機器のフィルタ,遅延線,発信機等の構成素子として多くの弾性表面波装置が用いられている。
特に小型・軽量かつフィルタとしての急峻遮断性能が高い弾性表面波装置は、移動体通信分野において、携帯端末装置のRF段及びIF段のフィルタとして多用されるようになってきており、低損失かつ通過帯域外の遮断特性が優れた、高い減衰特性と、広い帯域幅を有する弾性表面波装置が要求されている。
In recent years, many surface acoustic wave devices have been used as constituent elements such as filters, delay lines, and transmitters of electronic devices that use radio waves.
In particular, surface acoustic wave devices that are small, lightweight, and have high steep cut-off performance as filters have come to be frequently used as RF stage and IF stage filters for mobile terminal devices in the field of mobile communication, and have low loss and There is a demand for a surface acoustic wave device having excellent attenuation characteristics outside the passband, high attenuation characteristics, and a wide bandwidth.
図15に、従来の一般的な弾性表面波共振子J1の電極パターンの平面模式図を示す。
この図に示すように、従来の弾性表面波共振子は、入力端子電極5に接続した入力用櫛歯状電極1の電極指1aと出力端子電極6に接続した出力用櫛歯状電極2の電極指2aが互いに交差するように配設させ、これら入出力端子電極間に交番電界を印加し、圧電基板上に弾性表面波を発生させ励振させる構造としている。
FIG. 15 is a schematic plan view of an electrode pattern of a conventional general surface acoustic wave resonator J1.
As shown in this figure, the conventional surface acoustic wave resonator includes an
また、上記1対の櫛歯状電極(Inter Digital Transducerのことで、以下、IDT電極という)の両端側には、空間的周期構造の電極パターンにて励振させた弾性表面波のエネルギーを閉じ込める働きを有する梯子状の反射器4を配設するのが一般的である。
Also, the energy of the surface acoustic wave excited by the electrode pattern of the spatial periodic structure is confined at both ends of the pair of comb-like electrodes (hereinafter referred to as IDT electrodes). It is common to arrange a ladder-
これまでに、弾性表面波装置には電極構成の観点から、IDT電極を梯子型(ラダー型)回路に縦続接続したもの、IDT電極を複数配設し電気信号を弾性表面波に変化し伝搬させるもの、IDT電極を伝搬方向に併設し、その共振により信号を伝搬させる縦モード結合共振器型等の構成のもの等が実用化されているが、その中でもラダー型弾性表面波装置は、低損失でかつ良好な通過帯域近傍の遮断特性を有し、高周波化による電極微細化に伴う耐電力面での信頼性も高く、非常に有望視されている。 Up to now, in the surface acoustic wave device, from the viewpoint of electrode configuration, a plurality of IDT electrodes are connected in cascade to a ladder type (ladder type) circuit, and a plurality of IDT electrodes are provided to change an electric signal into a surface acoustic wave and propagate it. In addition, a longitudinal mode coupled resonator type that has an IDT electrode in the propagation direction and propagates a signal by its resonance has been put to practical use. Among them, a ladder type surface acoustic wave device has a low loss. In addition, it has a good cutoff characteristic in the vicinity of the passband, and has high reliability in terms of power resistance accompanying the miniaturization of electrodes due to higher frequencies, which is very promising.
図16は、一般的なラダー型弾性表面波装置J2の電極構造を模式的に示す平面図である。
このように、圧電基板14上に、入出力端子電極5,6間に図15に示した弾性表面波共振子J1を直列及び並列に接続したものである。
この弾性表面波装置(フィルタ)の場合、比帯域幅BW/fo(BW:通過帯域幅、fo:中心周波数)は、フィルタを構成する弾性表面波共振子の共振周波数と反共振周波数の差であるΔf(=fa−fr;ただし、fa:反共振周波数、fr:共振周波数)を共振周波数で規格化したものでほぼ決定され、このΔfは圧電基板の材料定数の一つである電気機械結合係数に大きく依存するので、所望の比帯域幅を得るには、適切な電気機械結合係数を有する圧電基板及び電極膜厚を選択しフィルタを作製する必要がある。
Thus, the surface acoustic wave resonator J1 shown in FIG. 15 is connected in series and in parallel between the input /
In the case of this surface acoustic wave device (filter), the specific bandwidth BW / fo (BW: passband width, fo: center frequency) is the difference between the resonance frequency and the antiresonance frequency of the surface acoustic wave resonator constituting the filter. A certain Δf (= fa−fr; where fa: anti-resonance frequency, fr: resonance frequency) is normalized by the resonance frequency and is almost determined, and this Δf is one of the material constants of the piezoelectric substrate. Since it greatly depends on the coefficient, in order to obtain a desired specific bandwidth, it is necessary to select a piezoelectric substrate having an appropriate electromechanical coupling coefficient and an electrode film thickness to produce a filter.
近年、携帯電話システムの急激な変化に伴い、システム側の要求スペックもより厳しいものになり、広帯域でより矩形に近い肩部の急峻性を備えた弾性表面波装置が切望されている。このような弾性表面波装置の肩部の急峻性は、やはりΔfで決まるため、これに対しても適切な電気機械結合係数を有する圧電基板や基板カット方位及び電極膜厚を選択しフィルタを設計することが望ましいが、通常は最適な組み合わせが存在せず、やむを得ず一般的な圧電基板を採用しているのが実状である。 In recent years, with the rapid change of mobile phone systems, the required specifications on the system side have become stricter, and a surface acoustic wave device having a steepness of a shoulder closer to a rectangle in a wide band is desired. Since the steepness of the shoulder of such a surface acoustic wave device is also determined by Δf, a filter is designed by selecting a piezoelectric substrate having an appropriate electromechanical coupling coefficient, substrate cut orientation, and electrode film thickness. However, there is usually no optimal combination, and it is unavoidable that a general piezoelectric substrate is used.
そこで本発明は、圧電基板・カット方位及び電極膜厚を変えることなく、急峻な減衰特性を有する弾性表面波装置の電極構造を提供することを目的とする。 Accordingly, an object of the present invention is to provide an electrode structure of a surface acoustic wave device having a steep attenuation characteristic without changing the piezoelectric substrate, the cut orientation, and the electrode film thickness.
上記課題を解決するため、本発明の弾性表面波装置は、圧電基板上に、入力端子電極と、出力端子電極と、弾性表面波を発生させる励振電極とを形成した弾性表面波装置であって、前記励振電極は、櫛歯状浮き電極の電極指に、前記入力端子電極に接続された入力用櫛歯状電極の電極指、及び前記出力端子電極に接続された出力用櫛歯状電極の電極指のそれぞれが噛み合うように配設されており、前記入力用櫛歯状電極の電極指のうち前記出力用櫛歯状電極側の端部に位置する電極指と前記出力用櫛歯状電極の電極指のうち前記入力用櫛歯状電極側の端部に位置する電極指との間には、前記櫛歯状浮き電極の電極指である境界電極指が一本配置され、前記境界電極指は、一方端が前記櫛歯状浮き電極の電極指同士を接続するバスバー電極に接続されているとともに他方端が他の電極と接続されない状態とされ、前記励振電極の両端側には反射器が配置されていることを特徴とする。 In order to solve the above problems, a surface acoustic wave device according to the present invention is a surface acoustic wave device in which an input terminal electrode, an output terminal electrode, and an excitation electrode for generating surface acoustic waves are formed on a piezoelectric substrate. The excitation electrode includes an electrode finger of the comb-like floating electrode, an electrode finger of the input comb-like electrode connected to the input terminal electrode, and an output comb-like electrode connected to the output terminal electrode. Each of the electrode fingers is disposed so as to mesh with each other, and among the electrode fingers of the input comb-like electrode, an electrode finger located at an end of the output comb-like electrode side and the output comb-like electrode A boundary electrode finger, which is an electrode finger of the comb-shaped floating electrode, is disposed between the electrode fingers positioned at the end portion on the input comb-shaped electrode side of the electrode fingers, and the boundary electrode One end of the finger contacts the bus bar electrode that connects the electrode fingers of the comb-shaped floating electrode. The other end is a state of not being connected to the other electrode, at both ends of the excitation electrode is characterized in that the reflector is arranged with being.
また本発明の弾性表面波装置は、圧電基板上に、入力端子電極と、出力端子電極と、弾性表面波を発生させる励振電極とを形成した弾性表面波装置であって、前記励振電極は、櫛歯状浮き電極の電極指に、前記入力端子電極に接続された入力用櫛歯状電極の電極指、及び前記出力端子電極に接続された出力用櫛歯状電極の電極指のそれぞれが噛み合うように配設されており、前記入力用櫛歯状電極の電極指のうち前記出力用櫛歯状電極側の端部に位置する電極指と前記出力用櫛歯状電極の電極指のうち前記入力用櫛歯状電極側の端部に位置する電極指との間には、前記櫛歯状浮き電極の複数本の電極指が互いに噛み合うように配置され、前記櫛歯状浮き電極の複数本の電極指のうち、隣接する電極指同士は電気的に接続されていないことを特徴とする。 The surface acoustic wave device of the present invention is a surface acoustic wave device in which an input terminal electrode, an output terminal electrode, and an excitation electrode for generating a surface acoustic wave are formed on a piezoelectric substrate, the excitation electrode comprising: The electrode fingers of the comb-like floating electrode are connected to the electrode fingers of the input comb-like electrode connected to the input terminal electrode and the electrode fingers of the output comb-like electrode connected to the output terminal electrode. Of the electrode fingers of the input comb-shaped electrode and the electrode fingers of the output comb-shaped electrode and the electrode fingers of the output comb-shaped electrode Between the electrode fingers positioned at the end on the input comb-like electrode side, a plurality of electrode fingers of the comb-like floating electrode are arranged so as to mesh with each other, and a plurality of comb-like floating electrodes are arranged. Among the electrode fingers, adjacent electrode fingers are not electrically connected. To.
本発明の弾性表面波装置を構成する励振電極を、櫛歯状浮き電極の電極指に、入力端子電極に接続された入力用櫛歯状電極の電極指、及び出力端子電極に接続された出力用櫛歯状電極の電極指のそれぞれが噛み合うように構成したので、圧電基板・カット方位及び電極膜厚を変えることなく、急峻な減衰特性を有するラダー型弾性表面波装置(フィルタ)の電極構成を提供することができる。 The excitation electrodes constituting the surface acoustic wave device of the present invention are connected to the electrode fingers of the comb-shaped floating electrode, the electrode fingers of the comb-shaped electrode for input connected to the input terminal electrode, and the output connected to the output terminal electrode The electrode structure of the ladder type surface acoustic wave device (filter) having a steep attenuation characteristic without changing the piezoelectric substrate, the cut orientation and the electrode film thickness. Can be provided.
また、励振電極が複数に分割されていることで、印加電圧が分圧され、結果として耐電力特性に優れることになり、さらに、電極のパターニング時に焦電効果等によって発生する静電気による電極破壊も極力防止でき、信頼性の高い弾性表面波装置を提供することができる。 In addition, since the excitation electrode is divided into a plurality of parts, the applied voltage is divided, resulting in excellent power resistance characteristics. Furthermore, electrode breakdown due to static electricity generated by the pyroelectric effect during electrode patterning is also possible. A highly reliable surface acoustic wave device that can be prevented as much as possible can be provided.
以下、本発明の実施の形態を図面に基づき詳細に説明する。図1は本発明に係る弾性表面波共振子(弾性表面波装置)を構成する励振電極(以下、IDT電極)の電極構造を模式的に示す平面図である。
このように、圧電基板上に、少なくとも、入力端子電極5と、出力端子電極6と、弾性表面波を発生させるIDT電極とを形成したものであるが、IDT電極は、入力端子電極5に接続された入力用櫛歯状電極1の電極指1aと、出力端子電極6に接続された出力用櫛歯状電極2の電極指2aのそれぞれが、櫛歯状浮き電極3の電極指3aに噛み合うように配設させて構成されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a plan view schematically showing an electrode structure of excitation electrodes (hereinafter referred to as IDT electrodes) constituting a surface acoustic wave resonator (surface acoustic wave device) according to the present invention.
As described above, at least the
また、入力用櫛歯状電極1の端部に位置する電極指1bの中心と、この電極指の隣接する位置にある、櫛歯状浮き電極3の電極指3bの中心との間隔14は、1/4λの長さであることが好ましい(ただし、λ:IDT電極の周期長でほぼ弾性表面波の波長に等しい)。また、IDT電極の両端側には周期構造を持つ電極パターンで構成した反射器4を配置させた方がエネルギーの漏洩が無く好ましい。なお、入力用櫛歯状電極1の電極指のうち出力用櫛歯状電極2側の端部に位置する電極指と出力用櫛歯状電極のうち、入力用櫛歯状電極1側の端部に位置する電極指との間に配置された櫛歯状浮き電極3の電極指3bを便宜上、境界電極指とも呼ぶ。また歯状浮き電極3の電極指同士を接続する部分を便宜上、バスバー電極とも呼ぶ。
Further, the
図2に上記弾性表面波共振子におけるインピーダンスの周波数特性を示す。ここで、横軸に周波数、縦軸にインピーダンスの絶対値をとっている。この図に示すように、従来構造の弾性表面波共振子J1のインピーダンス特性11に対して、本発明の構成の弾性表面波共振子S1のインピーダンス特性10は、反共振周波数が低下し、共振周波数と反共振周波数の差であるΔfが小さく、急峻なインピーダンスの周波数特性が実現している。
FIG. 2 shows the frequency characteristics of impedance in the surface acoustic wave resonator. Here, the horizontal axis represents frequency and the vertical axis represents impedance absolute value. As shown in this figure, the
図3は、従来の弾性表面波共振子のIDT電極を、弾性表面波の伝搬方向における中央部で2分割するように、ショート電極の片方を切断する構造を示している。
なお、この構造を採用することによって、給電ポートである入出力端子電極5,6を図のように配置することも可能である。
FIG. 3 shows a structure in which one of the short electrodes is cut so that the IDT electrode of the conventional surface acoustic wave resonator is divided into two at the center in the propagation direction of the surface acoustic wave.
By adopting this structure, the input /
また、図4は同様にIDT電極を伝搬方向に対して3分割した例、図5は同様にIDT電極を伝搬方向に対して4分割した例、また、図6は同様にIDT電極を伝搬方向に対して5分割した例である。このように分割をすることで、Δfがそれぞれ変化し、より急峻なインピーダンスが得られる。なお、図示はあくまで模式的なものであり、電極指の数を正しく表現したものではなく、図示の電極指が1本の場合でも、各々分割された櫛歯状電極は必ず複数の電極指で構成されているものとする。 4 shows an example in which the IDT electrode is similarly divided into three in the propagation direction, FIG. 5 shows an example in which the IDT electrode is similarly divided into four in the propagation direction, and FIG. 6 similarly shows the IDT electrode in the propagation direction. This is an example of dividing into five. By dividing in this way, Δf changes, and a steeper impedance can be obtained. It should be noted that the illustration is merely schematic and does not represent the number of electrode fingers correctly. Even when the number of electrode fingers shown in the figure is one, each of the divided comb-like electrodes must be a plurality of electrode fingers. It shall be configured.
図7に本発明に係る弾性表面波共振子のIDT電極の分割数における、櫛歯状浮き電極の電極指と入出力用櫛歯状電極の電極指の組み合わせの数(以下、IDT対数という)とΔfとの関係を示す。図中の横軸にはIDT対数を示し、縦軸にはΔfを示す。図中の曲線は、従来のIDT電極の場合と、本発明に係るIDT電極の2分割、3分割した場合を示している。このように、Δfは従来の場合に比べ1/2、1/3になることが判明した。 FIG. 7 shows the number of combinations of comb-shaped floating electrode electrode fingers and input / output comb-shaped electrode finger fingers (hereinafter referred to as IDT logarithm) in the number of IDT electrode divisions of the surface acoustic wave resonator according to the present invention. And Δf. In the figure, the horizontal axis indicates the IDT logarithm, and the vertical axis indicates Δf. The curve in the figure shows the case of the conventional IDT electrode and the case of the IDT electrode according to the present invention divided into two and three parts. Thus, it has been found that Δf is 1/2 and 1/3 compared to the conventional case.
このように、IDT電極を分割することでΔfが減少するが、その理由について以下に説明する。IDT電極は、共振・反共振点以外の周波数領域では、通常キャパシタンスとして振舞う。これはIDT電極の持つ櫛歯状電極が、対向する2つの電極を持つコンデンサと等価であるためである。ここで、ショート電極の片側に一箇所切れ目を入れ、IDT電極を2つに分割する場合を考えると、分割前の容量に対して直列に容量が増えていくことになり、端子間で見た場合に容量は逆に減少し、この静電容量に依存した反共振周波数が低周波側に移動することで、Δfは小さくなる。 As described above, Δf decreases by dividing the IDT electrode. The reason will be described below. The IDT electrode normally behaves as a capacitance in a frequency region other than the resonance / antiresonance point. This is because the comb-like electrode of the IDT electrode is equivalent to a capacitor having two opposing electrodes. Here, considering a case where one short cut is made on one side of the short electrode and the IDT electrode is divided into two, the capacitance increases in series with respect to the capacitance before the division, and is seen between the terminals. In this case, the capacitance decreases conversely, and the antiresonance frequency depending on the capacitance moves to the low frequency side, so that Δf becomes small.
図8は、本発明の弾性表面波共振子S1を直列共振子に使用し、従来構成を並列共振子に使用し、それぞれ入出力端子電極5,6と接地端子電極7に接続させた場合のラダー型弾性表面波フィルタS2の電極構成を模式的に示したものである。このフィルタS2の周波数特性を図11に示す。通過帯域の高域側の遮断特性において、従来の特性13に比べて非常に急峻な特性12が実現される。
FIG. 8 shows the case where the surface acoustic wave resonator S1 of the present invention is used as a series resonator and the conventional configuration is used as a parallel resonator and is connected to the input /
図9は、本発明の弾性表面波共振子S1を並列共振子に使用し、従来構成の弾性表面波共振子を直列共振子に使用し、それぞれ入出力端子電極5,6と接地端子電極7に接続させた場合のラダー型弾性表面波フィルタS3の構成の上面図である。このフィルタの周波数特性を図12に示す。通過帯域の低域側の遮断特性において、従来の特性13に比べて非常に急峻な特性12が実現できる。図8は、本発明の弾性表面波共振子S1を直並列共振子に使用し、それぞれ入出力端子電極5,6と接地端子電極7に接続させた場合のラダー型弾性表面波フィルタS4の構成の上面図である。このフィルタの周波数特性を図13に示す。通過帯域の高域側・低域側の両方の遮断特性において、従来の特性13に比べて非常に急峻な特性12が実現できる。これらの発明を用いることにより、帯域近傍の減衰量のより大きいフィルタを実現できる。
In FIG. 9, the surface acoustic wave resonator S1 of the present invention is used as a parallel resonator, and a conventional surface acoustic wave resonator is used as a series resonator. It is a top view of the structure of ladder type surface acoustic wave filter S3 at the time of making it connect to. The frequency characteristics of this filter are shown in FIG. In the cut-off characteristic on the low band side of the pass band, a characteristic 12 that is very steep compared to the conventional characteristic 13 can be realized. FIG. 8 shows the configuration of a ladder-type surface acoustic wave filter S4 when the surface acoustic wave resonator S1 of the present invention is used as a series-parallel resonator and connected to the input /
また、本発明によれば、IDT電極が複数に分割されていることで、印加電圧が分圧され、結果として耐電力特性に優れた弾性表面波装置を作製することができる。
また同様に、電極のパターニング時に焦電効果等によって発生する静電気による電極破壊も、電圧が分圧されるという理由で、発生しにくくなる。
Further, according to the present invention, the IDT electrode is divided into a plurality of parts, whereby the applied voltage is divided, and as a result, a surface acoustic wave device having excellent power durability can be manufactured.
Similarly, electrode breakdown due to static electricity generated by the pyroelectric effect during electrode patterning is less likely to occur because the voltage is divided.
次に、図14に本発明に係る共振子S1における間隔14(図1を参照)が変化した場合の共振子のインピーダンス特性を示す。図1の本発明の弾性表面波共振子における間隔14の適正範囲は、図14(a)に間隔14が3/4λの場合、図14(b)に間隔14が5/8λの場合、図14(c)に間隔14が1/2λの場合、及び図14(d)に間隔14が3/8λの場合のそれぞれについて示すが、特に間隔14は7/16λ〜9/16λが好適でありリップルが減少することが判明した。さらに、間隔14が1/2λではリップルが全くなくなり、最適であることが判明した。そして、間隔14が7/16λ〜9/16λの範囲以外で弾性表面波共振子を作製すると、図14(a),(b),(d)のように、共振点と反共振点との間にリップルが発生し、弾性表面波装置のフィルタ特性に悪影響を及ぼすことが判明した。
Next, FIG. 14 shows the impedance characteristics of the resonator when the interval 14 (see FIG. 1) in the resonator S1 according to the present invention is changed. The appropriate range of the
また、上記実施の形態では入力用櫛歯状電極の電極指が端部になる場合を示したが、出力用櫛歯状電極の電極指が端部なる場合も同様であり、図14と同じ結果が得られ、好適範囲及び最適値は等しい。 In the above embodiment, the case where the electrode finger of the input comb-like electrode is the end is shown, but the same applies to the case where the electrode finger of the output comb-like electrode is the end, which is the same as FIG. The result is obtained and the preferred range and the optimum value are equal.
以下に、本発明のより具体的な実施例について説明する。 Hereinafter, more specific examples of the present invention will be described.
ラダー型弾性表面波装置を構成する弾性表面波共振子は、IDT電極の対数(電極指本数の1/2)が40〜120対、電極指と電極指の交差幅が10〜30λ(λ:弾性表面波の波長に相当)で、λは直列と並列で違えてあるが、概略2μmとした。ここで、反射電極本数は直列共振子、並列共振子とも20本である。フィルタ構成の例は図8,9,10に示す通りである。図8では直列共振子が2個、並列共振子が3個で構成される2.5段π型で、直列共振子に本発明に係る弾性表面波共振子を用いた例である。また、図9は並列共振子に本発明に係る弾性表面波共振子を用いた例であり、図10は直並列共振子に本発明に係る弾性表面波共振子を用いた例である。 In the surface acoustic wave resonator constituting the ladder type surface acoustic wave device, the number of pairs of IDT electrodes (1/2 of the number of electrode fingers) is 40 to 120 pairs, and the intersection width between the electrode fingers and the electrode fingers is 10 to 30λ (λ: (Corresponding to the wavelength of the surface acoustic wave), λ is different in series and parallel, but is approximately 2 μm. Here, the number of reflective electrodes is 20 for both the series resonator and the parallel resonator. Examples of the filter configuration are as shown in FIGS. FIG. 8 shows an example in which the surface acoustic wave resonator according to the present invention is used as a series resonator, which is a 2.5-stage π type composed of two series resonators and three parallel resonators. FIG. 9 shows an example in which the surface acoustic wave resonator according to the present invention is used as a parallel resonator, and FIG. 10 shows an example in which the surface acoustic wave resonator according to the present invention is used in a series-parallel resonator.
次に、本発明に係るラダー型弾性表面波装置を試作した実施例を説明する。 Next, an example in which a ladder-type surface acoustic wave device according to the present invention is prototyped will be described.
42°YカットLiTaO3単結晶基板上に、Al(98wt%)−Cu(2wt%)合金による微細電極パターンを形成した。パターン作製には、縮小投影露光機(ステッパー)、およびRIE(Reactive Ion Etching)装置によりフォトリソグラフィを行なった。
A fine electrode pattern made of an Al (98 wt%)-Cu (2 wt%) alloy was formed on a 42 ° Y-
まず、基板材料をアセトン・IPA等によって超音波洗浄し、有機成分を落とした。
次にクリーンオーブンによって充分に基板乾燥を行なった後、電極の成膜を行なった。
電極成膜には、スパッタリング装置を使用し、Al−Cu合金を成膜した。電極膜厚は約2000Åとした。次にレジストを約0.5μm厚みにスピンコートし、縮小投影露光装置(ステッパー)により、所望のパターニングを行なった。ステッパーには、パターニングの原版となるレチクルが必要であるが、これは、ステッパー自身の光学系にて像を1/5に縮小投影するため、実際のパターンの5倍のサイズでかまわない。このため、逆に従来のコンタクトアライナーに比べると、5倍の解像度が得られる。
First, the substrate material was subjected to ultrasonic cleaning with acetone / IPA or the like to remove organic components.
Next, the substrate was sufficiently dried by a clean oven, and then an electrode was formed.
For electrode film formation, a sputtering apparatus was used to form an Al—Cu alloy film. The electrode film thickness was about 2000 mm. Next, a resist was spin-coated to a thickness of about 0.5 μm, and desired patterning was performed by a reduction projection exposure apparatus (stepper). The stepper requires a reticle as a patterning original, but this may be 5 times the size of the actual pattern because the image is reduced to 1/5 by the optical system of the stepper itself. For this reason, on the contrary, 5 times the resolution can be obtained as compared with the conventional contact aligner.
次に、現像装置にて不要部分のレジストをアルカリ現像液で溶解させ、所望パターンを表出した後、RIE装置により、Al−Cu合金から成る電極のエッチングを行ない、パターンニングを終了した。 Next, an unnecessary portion of the resist was dissolved with an alkaline developer by a developing device to reveal a desired pattern, and then an electrode made of an Al—Cu alloy was etched by the RIE device to complete the patterning.
この後、保護膜を作製する。SiO2 をスパッタリング装置にて成膜し、その後、フォトリソグラフィによってレジストのパターニングを行ない、RIE装置等でワイヤーボンディング用窓開け部のエッチングを行ない、保護膜パターンを完成した。 Thereafter, a protective film is produced. SiO 2 was deposited by a sputtering apparatus, and then resist was patterned by photolithography, and a wire bonding window opening portion was etched by an RIE apparatus or the like to complete a protective film pattern.
次に、基板をダイシング線に沿ってダイシングし、チップごとに分割した。そして、各チップをダイボンド装置にてピックアップし、Si樹脂を主成分とする樹脂でSMDパッケージ内に接着した。この後約160℃の温度において乾燥・硬化した。SMDパッケージは3mm角の積層構造のものを用いた。次に、30μφAuワイヤーをSMDパッケージのパッド部とチップ上のAlパッド上にボールボンディングした後、リッドをパッケージにかぶせ、封止機にて溶接封止して完成した。なお、チップ上の接地用電極パターンは各々分離して配線し、Auボールボンディングにてパッケージ上のグランドパッドにボンディングした。 Next, the substrate was diced along dicing lines and divided into chips. Then, each chip was picked up by a die bonding apparatus, and adhered to the SMD package with a resin mainly composed of Si resin. Thereafter, it was dried and cured at a temperature of about 160 ° C. The SMD package used was a 3 mm square laminate structure. Next, a 30 μφ Au wire was ball-bonded on the pad portion of the SMD package and the Al pad on the chip, and then the lid was placed on the package and completed by welding and sealing with a sealing machine. The ground electrode patterns on the chip were separated and wired, and bonded to the ground pads on the package by Au ball bonding.
図11,12,13は、本発明を用いてフィルタを作製した場合の、周波数電気特性の例である。図11は図8の直列共振子に本発明の弾性表面波共振子を用いた構成による弾性表面波装置の電気特性であり、図12は図9の並列共振子に本発明の弾性表面波共振子を用いた構成による弾性表面波装置の電気特性であり、また、図13は図10の直並列共振子に本発明の弾性表面波共振子を用いた構成による弾性表面波装置の電気特性である。実際の測定にはネットワークアナライザを用いて、電力の通過特性の電気測定を行った。 11, 12, and 13 are examples of frequency electrical characteristics when a filter is manufactured using the present invention. FIG. 11 shows the electrical characteristics of the surface acoustic wave device in which the surface acoustic wave resonator of the present invention is used for the series resonator of FIG. 8, and FIG. 12 shows the surface acoustic wave resonance of the present invention for the parallel resonator of FIG. FIG. 13 shows the electrical characteristics of the surface acoustic wave device having the configuration using the surface acoustic wave device of the present invention in the series-parallel resonator of FIG. is there. In the actual measurement, a network analyzer was used to conduct electrical measurement of the power transmission characteristics.
これら図に示すように、例えば通過帯域の高域側近傍に減衰量を大きくとる場合、図8のような構成であると、図11の特性12に示すように良好な電気特性が得られた。
また、通過帯域の低域側近傍に減衰量を大きくとる場合、図9のような構成であると、図12の特性12に示すように良好な電気特性が得られた。さらに、通過帯域の高低域側近傍に減衰量を大きくとる場合、図10のような構成であると、図13の特性12に示すように最適な電気特性が得られた。
As shown in these figures, for example, when a large attenuation is taken near the high band side of the pass band, good electrical characteristics are obtained as shown by characteristic 12 in FIG. 11 when the configuration is as shown in FIG. .
Further, when the amount of attenuation is large in the vicinity of the low band side of the pass band, good electrical characteristics can be obtained as shown by the characteristic 12 in FIG. Furthermore, in the case where the amount of attenuation is large in the vicinity of the high and low frequencies of the pass band, the configuration as shown in FIG. 10 provides optimum electrical characteristics as shown by the characteristic 12 in FIG.
1:入力用櫛歯状電極
1a:入力用櫛歯状電極の電極指
1b:入力用櫛歯状電極の電極指の端部
2:出力用櫛歯状電極
2a:出力用櫛歯状電極の電極指
3:櫛歯状浮き電極
3a:櫛歯状浮き電極の電極指
3b:櫛歯状浮き電極の電極指の端部
4:反射器
5:入力端子電極
6:出力端子電極
7:接地端子電極
8:直列弾性表面波共振子
9:並列弾性表面波共振子
10:本発明の弾性表面波共振子のインピーダンス特性例
11:従来の弾性表面波共振子のインピーダンス特性例
12:本発明の弾性表面波装置の電気特性例
13:従来の弾性表面波装置の電気特性例
14:圧電基板
S1:本発明に係る弾性表面波共振子(弾性表面波装置)
S2〜S4:本発明に係る弾性表面波装置
1: Input comb-
S2 to S4: Surface acoustic wave device according to the present invention
Claims (2)
前記励振電極は、櫛歯状浮き電極の電極指に、前記入力端子電極に接続された入力用櫛歯状電極の電極指、及び前記出力端子電極に接続された出力用櫛歯状電極の電極指のそれぞれが噛み合うように配設されており、
前記入力用櫛歯状電極の電極指のうち前記出力用櫛歯状電極側の端部に位置する電極指と前記出力用櫛歯状電極の電極指のうち前記入力用櫛歯状電極側の端部に位置する電極指との間には、前記櫛歯状浮き電極の電極指である境界電極指が一本配置され、
前記境界電極指は、一方端が前記櫛歯状浮き電極の電極指同士を接続するバスバー電極に接続されているとともに他方端が他の電極と接続されない状態とされ、
前記励振電極の両端側には反射器が配置されていることを特徴とする弾性表面波装置。 A surface acoustic wave device in which an input terminal electrode, an output terminal electrode, and an excitation electrode for generating a surface acoustic wave are formed on a piezoelectric substrate,
The excitation electrode includes an electrode finger of a comb-like floating electrode, an electrode finger of an input comb-like electrode connected to the input terminal electrode, and an electrode of an output comb-like electrode connected to the output terminal electrode Each of the fingers is arranged to engage,
Of the electrode fingers of the input comb-like electrode, the electrode fingers located at the end on the output comb-like electrode side and of the electrode fingers of the output comb-like electrode on the input comb-like electrode side Between the electrode fingers located at the end, one boundary electrode finger that is an electrode finger of the comb-shaped floating electrode is arranged,
The boundary electrode finger is in a state where one end is connected to the bus bar electrode connecting the electrode fingers of the comb-shaped floating electrode and the other end is not connected to the other electrode,
A surface acoustic wave device in which reflectors are arranged on both ends of the excitation electrode.
前記励振電極は、櫛歯状浮き電極の電極指に、前記入力端子電極に接続された入力用櫛歯状電極の電極指、及び前記出力端子電極に接続された出力用櫛歯状電極の電極指のそれぞれが噛み合うように配設されており、
前記入力用櫛歯状電極の電極指のうち前記出力用櫛歯状電極側の端部に位置する電極指と前記出力用櫛歯状電極の電極指のうち前記入力用櫛歯状電極側の端部に位置する電極指との間には、前記櫛歯状浮き電極の複数本の電極指が互いに噛み合うように配置され、
前記櫛歯状浮き電極の複数本の電極指のうち、隣接する電極指同士は電気的に接続されていないことを特徴とする弾性表面波装置。 A surface acoustic wave device in which an input terminal electrode, an output terminal electrode, and an excitation electrode for generating a surface acoustic wave are formed on a piezoelectric substrate,
The excitation electrode includes an electrode finger of a comb-like floating electrode, an electrode finger of an input comb-like electrode connected to the input terminal electrode, and an electrode of an output comb-like electrode connected to the output terminal electrode Each of the fingers is arranged to engage,
Of the electrode fingers of the input comb-like electrode, the electrode fingers located at the end on the output comb-like electrode side and of the electrode fingers of the output comb-like electrode on the input comb-like electrode side Between the electrode fingers located at the ends, the plurality of electrode fingers of the comb-shaped floating electrode are arranged so as to mesh with each other,
Of the plurality of electrode fingers of the comb-shaped floating electrode, adjacent electrode fingers are not electrically connected to each other, and the surface acoustic wave device is characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008215602A JP4799596B2 (en) | 2008-08-25 | 2008-08-25 | Surface acoustic wave device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008215602A JP4799596B2 (en) | 2008-08-25 | 2008-08-25 | Surface acoustic wave device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP36667599A Division JP2001185980A (en) | 1999-12-24 | 1999-12-24 | Surface acoustic wave device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008283725A true JP2008283725A (en) | 2008-11-20 |
JP4799596B2 JP4799596B2 (en) | 2011-10-26 |
Family
ID=40144098
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008215602A Expired - Lifetime JP4799596B2 (en) | 2008-08-25 | 2008-08-25 | Surface acoustic wave device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4799596B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5848675B2 (en) | 2012-07-03 | 2016-01-27 | 太陽誘電株式会社 | Duplexer |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01120110A (en) * | 1987-11-02 | 1989-05-12 | Toyo Commun Equip Co Ltd | Love wave type surface wave resonator |
JPH01194603A (en) * | 1988-01-29 | 1989-08-04 | Hitachi Ltd | Elastic surface wave filter |
JPH08242140A (en) * | 1994-12-23 | 1996-09-17 | Advanced Saw Prod Sa | Saw filter |
-
2008
- 2008-08-25 JP JP2008215602A patent/JP4799596B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01120110A (en) * | 1987-11-02 | 1989-05-12 | Toyo Commun Equip Co Ltd | Love wave type surface wave resonator |
JPH01194603A (en) * | 1988-01-29 | 1989-08-04 | Hitachi Ltd | Elastic surface wave filter |
JPH08242140A (en) * | 1994-12-23 | 1996-09-17 | Advanced Saw Prod Sa | Saw filter |
Also Published As
Publication number | Publication date |
---|---|
JP4799596B2 (en) | 2011-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109600125B (en) | Filter | |
US7728699B2 (en) | Acoustic wave filter | |
JP2008109413A (en) | Elastic wave device and filter | |
JP2008109413A5 (en) | ||
KR100290803B1 (en) | Surface acoustic wave device | |
JP6760480B2 (en) | Extractor | |
JP4738164B2 (en) | Surface acoustic wave device and communication device | |
JP4637600B2 (en) | Surface acoustic wave element and communication apparatus | |
JP4817917B2 (en) | Surface acoustic wave resonator, surface acoustic wave filter, surface acoustic wave duplexer, and communication apparatus | |
JP5340112B2 (en) | Surface acoustic wave device | |
JP4377525B2 (en) | Surface acoustic wave filter | |
JP2002299997A (en) | Surface acoustic wave filter | |
JP3792409B2 (en) | Surface acoustic wave filter | |
JP2008035220A (en) | Surface acoustic wave device and communication equipment | |
JP4023730B2 (en) | Surface acoustic wave device and duplexer | |
JP4480490B2 (en) | Surface acoustic wave device and communication device using the same | |
JP4183165B2 (en) | Surface acoustic wave resonator and ladder type surface acoustic wave filter using the same | |
JP4799596B2 (en) | Surface acoustic wave device | |
JP2000312126A (en) | Surface acoustic wave unit | |
JPH11186867A (en) | Surface acoustic wave device | |
JP4671820B2 (en) | Surface acoustic wave device | |
JP5094933B2 (en) | Surface acoustic wave element and communication device | |
JP4817875B2 (en) | Duplexer and communication device | |
JP2001185980A (en) | Surface acoustic wave device | |
JP2005278154A (en) | One-directional surface acoustic wave transducer and surface acoustic wave device using it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080904 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110315 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110512 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110607 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110615 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110705 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110802 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140812 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4799596 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
EXPY | Cancellation because of completion of term |