JP2008282669A - Flat alkaline primary battery - Google Patents

Flat alkaline primary battery Download PDF

Info

Publication number
JP2008282669A
JP2008282669A JP2007125803A JP2007125803A JP2008282669A JP 2008282669 A JP2008282669 A JP 2008282669A JP 2007125803 A JP2007125803 A JP 2007125803A JP 2007125803 A JP2007125803 A JP 2007125803A JP 2008282669 A JP2008282669 A JP 2008282669A
Authority
JP
Japan
Prior art keywords
positive electrode
plane
nickel oxyhydroxide
negative electrode
primary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007125803A
Other languages
Japanese (ja)
Inventor
Norishige Yamaguchi
典重 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2007125803A priority Critical patent/JP2008282669A/en
Publication of JP2008282669A publication Critical patent/JP2008282669A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02E60/12

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive flat alkaline primary battery having large battery capacity and superior heat resistance. <P>SOLUTION: In the alkaline primary battery 1 wherein an opening 3a of a negative electrode can 3 is fitted in an opening 2a of a positive electrode can 2 and a separator 6 is arranged at an airtight space formed by sealing the positive electrode can 2 and negative electrode can 3 via a gasket 4 and a positive electrode mixing agent 5 in which nickel oxyhydroxide is a main component is arranged at a positive electrode side and a negative electrode mixing agent 7 in which zinc alloy powder is a main component is arranged at a negative electrode side and an alkaline electrolyte is filled up in the airtight space, the nickel oxyhydroxide of the positive electrode mixing agent 5 has a half width of 0.3 to 0.7 deg./2θ on a (001) plane at a powder X-ray diffraction pattern, and has a half width of 4.0 to 10.0 deg./2θ on a (101) plane. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、扁平形アルカリ一次電池に関する。   The present invention relates to a flat alkaline primary battery.

電子腕時計、携帯用電子計算機等の小型電子機器の電源として、いわゆるボタン形又はコイン形の扁平形状のアルカリ一次電池が用いられている。この扁平形アルカリ一次電池には、正極活物質を二酸化マンガンから構成した電池や、酸化銀から構成した電池があり、これらの電池は既に広く普及している。   A so-called button-shaped or coin-shaped flat alkaline primary battery is used as a power source for small electronic devices such as electronic wrist watches and portable electronic computers. The flat alkaline primary battery includes a battery in which the positive electrode active material is made of manganese dioxide and a battery made of silver oxide. These batteries are already widely used.

正極に酸化銀を用いた電池は、正極に二酸化マンガンを用いた電池と比較し、体積エネルギー密度が高い点で優れている。また、正極活物質に酸化銀を用い、負極活物質に亜鉛を用いた場合には、電池電圧が1.56ボルト付近でほぼ一定になるため、終止電圧が1.2ボルト以上の小型電子機器の電源として好適である。   A battery using silver oxide for the positive electrode is superior to a battery using manganese dioxide for the positive electrode in that the volume energy density is high. In addition, when silver oxide is used as the positive electrode active material and zinc is used as the negative electrode active material, the battery voltage becomes almost constant around 1.56 volts, so that a small electronic device having a final voltage of 1.2 volts or more. It is suitable as a power source for

しかし、酸化銀は、電池の正極合剤として高性能であるものの、貴金属である銀が主成分であるため高価であるとともに、銀相場により価格が常に変動するため、製造原価の低減や安定を図る上で使用し難い材料である。   However, although silver oxide has high performance as a positive electrode mixture for batteries, it is expensive because silver, which is a noble metal, is the main component, and the price constantly fluctuates depending on the silver market, so it can reduce and stabilize production costs. It is a material that is difficult to use in planning.

これに対し、二酸化マンガンは、質量当たりの価格が酸化銀の200分の1程度であり、酸化銀に比べて安価である。しかし二酸化マンガンを正極活物質に用いた場合には、二酸化マンガンの放電に伴う電圧降下から、機器の駆動時間が他の電池を使用した場合に比べて極端に短くなる問題がある。   On the other hand, manganese dioxide has a price per mass that is about 1/200 of silver oxide, and is cheaper than silver oxide. However, when manganese dioxide is used as the positive electrode active material, there is a problem that the driving time of the device becomes extremely short compared to the case where other batteries are used due to the voltage drop caused by the discharge of manganese dioxide.

この問題に対し、電池の性能向上を図る目的で、正極活物質に種々の添加剤を加えることが検討されている(例えば、特許文献1参照)。また、正極活物質にオキシ水酸化ニッケルを用い、電池電圧を向上させるアルカリ電池が製造されている(例えば特許文献2及び特許文献3参照)。
特開2003−234107号公報(第2頁〜第3頁、第1図) 特開2004−6092号公報(第2頁〜第3頁、第1図) 特開2005−19349号公報(第2頁〜第4頁、第1図)
In order to improve the performance of the battery, it has been studied to add various additives to the positive electrode active material (for example, see Patent Document 1). Moreover, the alkaline battery which uses nickel oxyhydroxide as a positive electrode active material and improves battery voltage is manufactured (for example, refer patent document 2 and patent document 3).
JP 2003-234107 A (2nd to 3rd pages, FIG. 1) JP 2004-6092 A (2nd to 3rd pages, FIG. 1) Japanese Patent Laying-Open No. 2005-19349 (pages 2 to 4 and FIG. 1)

ところが、オキシ水酸化ニッケルを用いたアルカリ電池は、オキシ水酸化ニッケルの単位質量当たりの理論電気容量が292mAh/gであり、二酸化マンガンの理論電気容量308mAh/g(マンガン1価当たり)よりも小さいため、容量を向上させることが困難である。また、オキシ水酸化ニッケルは、材料自身の特性として、酸化銀や二酸化マンガンより熱安定性が低いため、電池としての耐熱性が低下する問題もある。   However, the alkaline battery using nickel oxyhydroxide has a theoretical electric capacity per unit mass of nickel oxyhydroxide of 292 mAh / g, which is smaller than the theoretical electric capacity of manganese dioxide of 308 mAh / g (per manganese value). Therefore, it is difficult to improve the capacity. In addition, since nickel oxyhydroxide has lower thermal stability than silver oxide or manganese dioxide as a characteristic of the material itself, there is also a problem that heat resistance as a battery is lowered.

本発明は、上記問題点を鑑みてなされたものであり、その目的は、安価で電池容量が大きく、耐熱性にも優れた扁平形アルカリ一次電池を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a flat alkaline primary battery that is inexpensive, has a large battery capacity, and is excellent in heat resistance.

上記問題点を解決するために、請求項1に記載の発明は、正極缶の開口部に負極缶の開口部を嵌合し、前記正極缶と前記負極缶とをガスケットを介して密封して形成された密閉空間にセパレータを配置するとともに、前記セパレータを挟んで、正極側にオキシ水酸化ニッケルを主成分とした正極合剤を配置し、負極側に亜鉛合金粉末を主成分とした負極合
剤を配置し、該密閉空間にアルカリ電解質を充填した扁平形アルカリ一次電池であって、前記正極合剤のオキシ水酸化ニッケルは、粉末X線回折パターンにおける面の半値幅が0.3〜0.7deg./2θであり、且つ面の半値幅が4.0〜10.0deg./2θであることを要旨とする。
In order to solve the above problems, the invention according to claim 1 is characterized in that the opening of the negative electrode can is fitted into the opening of the positive electrode can, and the positive electrode can and the negative electrode can are sealed through a gasket. A separator is disposed in the formed sealed space, a positive electrode mixture mainly composed of nickel oxyhydroxide is disposed on the positive electrode side with the separator interposed therebetween, and a negative electrode compound mainly composed of zinc alloy powder is disposed on the negative electrode side. A flat alkaline primary battery in which an agent is arranged and the sealed space is filled with an alkaline electrolyte, and the nickel oxyhydroxide of the positive electrode mixture has a half width of the surface in the powder X-ray diffraction pattern of 0.3 to 0 .7 deg. / 2θ, and the half width of the surface is 4.0 to 10.0 deg. The point is that it is / 2θ.

請求項2に記載の発明は、請求項1に記載の扁平形アルカリ一次電池において、前記正極合剤のオキシ水酸化ニッケルの面に帰属するピーク強度は、面に帰属するピーク強度の5倍以上7倍以下であることを要旨とする。   The invention according to claim 2 is the flat alkaline primary battery according to claim 1, wherein the peak intensity attributed to the nickel oxyhydroxide surface of the positive electrode mixture is at least 5 times the peak intensity attributed to the surface. The gist is that it is 7 times or less.

請求項1に記載の発明によれば、扁平形アルカリ一次電池の正極活物質はオキシ水酸化ニッケルを主成分とし、このオキシ水酸化ニッケル粉末のX線回折パターンにおける(001)面の半値幅は、0.3deg./2θ以上、0.7deg./2θ以下とし、(101)面の半値幅を、4.0deg./2θ以上、10.0deg./2θ以下である。このため、オキシ水酸化ニッケル粉末の粒径を大きくして充填量を増加させることができるので、放電容量を向上することができる。このため、正極活物質に高価な材料を用いることなく、安価で信頼性の高い扁平形アルカリ一次電池を提供することができる。   According to the first aspect of the present invention, the positive electrode active material of the flat alkaline primary battery is mainly composed of nickel oxyhydroxide, and the half width of the (001) plane in the X-ray diffraction pattern of the nickel oxyhydroxide powder is 0.3 deg. / 2θ or more, 0.7 deg. / 2θ or less, and the half width of the (101) plane is 4.0 deg. / 2θ or more, 10.0 deg. / 2θ or less. For this reason, since the filling amount can be increased by increasing the particle size of the nickel oxyhydroxide powder, the discharge capacity can be improved. Therefore, an inexpensive and highly reliable flat alkaline primary battery can be provided without using an expensive material for the positive electrode active material.

請求項2に記載の発明によれば、負極合剤としてのオキシ水酸化ニッケルの(001)面に帰属するピーク強度は、(101)面に帰属されるピーク強度の5倍以上7倍以下である。このため、放電容量が高く、耐熱性に優れた扁平形アルカリ一次電池を提供することができる。   According to the invention described in claim 2, the peak intensity attributed to the (001) plane of nickel oxyhydroxide as the negative electrode mixture is not less than 5 times and not more than 7 times the peak intensity attributed to the (101) plane. is there. For this reason, a flat alkaline primary battery having a high discharge capacity and excellent heat resistance can be provided.

以下、本発明を具体化した一実施形態を説明する。
図1は、扁平形(ボタン形)のアルカリ一次電池1の断面図を示す。扁平形アルカリ一次電池1は、有底円筒状の正極缶2及び有蓋円筒状の負極缶3を有している。正極缶2は、銅板にニッケルメッキを施した構成であって、正極端子を兼ねている。一方、負極缶3は、外表面層、金属層及び集電体層の3層から構成されるクラッド材をプレス加工することより形成される。外表面層は、ニッケルからなり、金属層はステンレススチール(SUS)から形成されている。また、集電体層は銅から形成されている。
Hereinafter, an embodiment embodying the present invention will be described.
FIG. 1 shows a cross-sectional view of a flat (button-shaped) alkaline primary battery 1. The flat alkaline primary battery 1 includes a bottomed cylindrical positive electrode can 2 and a covered cylindrical negative electrode can 3. The positive electrode can 2 has a structure in which nickel plating is applied to a copper plate, and also serves as a positive electrode terminal. On the other hand, the negative electrode can 3 is formed by pressing a clad material composed of three layers of an outer surface layer, a metal layer, and a current collector layer. The outer surface layer is made of nickel, and the metal layer is made of stainless steel (SUS). The current collector layer is made of copper.

負極缶3は、その円形の開口部3aが折り返されている。また、その開口部3aには、ナイロン等からなる環状のガスケット4が装着されている。
正極缶2は、その開口部2a側から、ガスケット4を装着した負極缶3を嵌合し、該開口部2aをかしめることで、負極缶3と連結されている。このように正極缶2及び負極缶3を連結させることにより、正極缶2及び負極缶3の間に密閉空間が形成される。
The negative electrode can 3 has its circular opening 3a folded back. An annular gasket 4 made of nylon or the like is attached to the opening 3a.
The positive electrode can 2 is connected to the negative electrode can 3 by fitting the negative electrode can 3 fitted with the gasket 4 from the opening 2a side and caulking the opening 2a. By connecting the positive electrode can 2 and the negative electrode can 3 in this manner, a sealed space is formed between the positive electrode can 2 and the negative electrode can 3.

この密閉空間には、正極合剤5、セパレータ6、負極合剤7が収容されている。正極合剤5及び負極合剤7は、セパレータ6を挟んで正極缶2側及び負極缶3側にそれぞれ収容されている。セパレータ6は、微多孔膜6aと不織布6bの2層構造のシートを、円形状に打ち抜いて形成されている。また、この密閉空間には、アルカリ電解液が充填されている。   In this sealed space, a positive electrode mixture 5, a separator 6, and a negative electrode mixture 7 are accommodated. The positive electrode mixture 5 and the negative electrode mixture 7 are respectively accommodated on the positive electrode can 2 side and the negative electrode can 3 side with the separator 6 interposed therebetween. The separator 6 is formed by punching a sheet having a two-layer structure of a microporous membrane 6a and a nonwoven fabric 6b into a circular shape. The sealed space is filled with an alkaline electrolyte.

正極合剤5は、正極活物質としてオキシ水酸化ニッケル、導電剤としてグラファイト、結着剤としてポリアクリル酸ソーダ、電解液として40%水酸化カリウムが用いられ、これらを混合し、ペレット状に打錠して形成されている。   The positive electrode mixture 5 is made of nickel oxyhydroxide as a positive electrode active material, graphite as a conductive agent, sodium polyacrylate as a binder, and 40% potassium hydroxide as an electrolytic solution. It is formed as a lock.

図2に、CuKα線を線源とした粉末X線回折装置により測定を行った場合のオキシ水酸化ニッケル粉末の粉末X線回折パターンの代表例を示す。2θ=17.5〜20.0°
付近に(001)面のピークがみられ、2θ=33.8〜44.7°付近には(101)面のピークがみられる。この(001)面のピークの半値幅は、0.3deg./2θ以上0.7deg./2θ以下であることが好ましい。即ち、半値幅を0.7deg./2θ以下とすることにより、オキシ水酸化ニッケルの粒子径が大きくなり、電池内への充填量を増やすことができるので、放電容量を大きくすることができる。また、半値幅が0.3deg./2θ未満のオキシ水酸化ニッケルを製造することは工業的に難しい。
FIG. 2 shows a typical example of a powder X-ray diffraction pattern of a nickel oxyhydroxide powder when measured with a powder X-ray diffractometer using CuKα rays as a radiation source. 2θ = 17.5-20.0 °
A peak on the (001) plane is observed in the vicinity, and a peak on the (101) plane is observed in the vicinity of 2θ = 33.8 to 44.7 °. The half width of this (001) plane peak is 0.3 deg. / 2θ or more and 0.7 deg. / 2θ or less is preferable. That is, the half width is 0.7 deg. By setting it to / 2θ or less, the particle diameter of the nickel oxyhydroxide is increased, and the filling amount into the battery can be increased, so that the discharge capacity can be increased. Further, the half width is 0.3 deg. It is industrially difficult to produce nickel oxyhydroxide less than / 2θ.

また、オキシ水酸化ニッケル粉末の粉末X線回折パターンにおける(101)面の半値幅を、4.0deg./2θ以上、10.0deg./2θ以下とすることが好ましい。即ち、メカニズムは明確ではないが、半値幅を4.0deg./2θ以上とすると、適当な結晶性の低下と構造上の歪みのため、オキシ水酸化ニッケル粉末同士の結着性が向上する。このため、正極合剤中の結着剤配合比を減らすことができるため、放電容量に優れる扁平形アルカリ一次電池1を提供できる。また、半値幅を10.0deg./2θ以下とすると、オキシ水酸化ニッケルの粒子径が大きくなり、電池内への充填量を増やすことができるので、扁平形アルカリ一次電池1の放電容量を大きくすることができる。   Further, the full width at half maximum of the (101) plane in the powder X-ray diffraction pattern of the nickel oxyhydroxide powder is 4.0 deg. / 2θ or more, 10.0 deg. It is preferable to set it to / 2θ or less. That is, although the mechanism is not clear, the half width is set to 4.0 deg. When it is set to / 2θ or more, the binding property between the nickel oxyhydroxide powders improves due to the appropriate decrease in crystallinity and structural distortion. For this reason, since the binder compounding ratio in the positive electrode mixture can be reduced, the flat alkaline primary battery 1 having excellent discharge capacity can be provided. Also, the half width is 10.0 deg. When it is set to / 2θ or less, the particle diameter of nickel oxyhydroxide is increased, and the amount of filling into the battery can be increased. Therefore, the discharge capacity of the flat alkaline primary battery 1 can be increased.

また、オキシ水酸化ニッケルの(001)面に帰属するピーク強度は、(101)面に帰属されるピーク強度の5倍以上7倍以下とすることが好ましい。(001)面のピーク強度を(101)面のピーク強度の5倍以上にすると、(001)面の結晶性が増大するため、オキシ水酸化ニッケル自身の耐熱性が向上し、耐熱性に優れる扁平形アルカリ一次電池を作製することができる。また、(001)面のピーク強度が(101)面のピーク強度の7倍を上回るよう工業的に製造することは、現在の技術では困難である。   Moreover, it is preferable that the peak intensity attributed to the (001) plane of nickel oxyhydroxide is 5 to 7 times the peak intensity attributed to the (101) plane. When the peak intensity of the (001) plane is 5 times or more than the peak intensity of the (101) plane, the crystallinity of the (001) plane increases, so that the heat resistance of the nickel oxyhydroxide itself is improved and the heat resistance is excellent. A flat alkaline primary battery can be produced. In addition, it is difficult to manufacture industrially so that the peak intensity of the (001) plane exceeds 7 times the peak intensity of the (101) plane.

負極合剤7は、負極活物質として亜鉛合金粉末、アルカリ電解液として水酸化ナトリウム水溶液、電解液の増粘剤としてカルボキシメチルセルロース、酸化亜鉛等を用いることができる。   In the negative electrode mixture 7, a zinc alloy powder can be used as the negative electrode active material, an aqueous sodium hydroxide solution can be used as the alkaline electrolyte, and carboxymethyl cellulose, zinc oxide, or the like can be used as a thickener for the electrolytic solution.

次に、正極合剤5を構成するオキシ水酸化ニッケルの粉末X線パターンを変更した実施例1〜7及び比較例1,2を作製し、検証した。表1に従って各実施例及び各比較例について説明する。
(実施例1)
扁平形アルカリ一次電池1の電池構造は、図1に示す構造とした。また、負極缶3は、ニッケル外表面層と、SUSからなる金属層と、銅からなる集電体層とを有する厚さ0.18mmの上記クラッド材を用い、このクラッド材をプレス加工により成形した。
Next, Examples 1 to 7 and Comparative Examples 1 and 2 in which the powder X-ray pattern of nickel oxyhydroxide constituting the positive electrode mixture 5 was changed were produced and verified. Each Example and each Comparative Example will be described according to Table 1.
Example 1
The battery structure of the flat alkaline primary battery 1 is the structure shown in FIG. The negative electrode can 3 is formed by pressing the clad material having a thickness of 0.18 mm having a nickel outer surface layer, a metal layer made of SUS, and a current collector layer made of copper. did.

正極合剤5は、導電剤としてのグラファイトと、正極活物質としてのオキシ水酸化ニッケルと、結着剤としてのポリアクリル酸ソーダと電解液とをブレンダーで混合し、打錠機にてペレット状に成型した。   The positive electrode mixture 5 is prepared by mixing graphite as a conductive agent, nickel oxyhydroxide as a positive electrode active material, sodium polyacrylate as a binder and an electrolytic solution with a blender, and pelletizing with a tableting machine. Molded into.

オキシ水酸化ニッケルの粉末X線回折パターンにおける(001)面の半値幅を0.5deg./2θ、(101)面の半値幅を7deg./2θとし、且つ(001)面に帰属するピーク強度が、(101)面に帰属するピーク強度の6倍とした。   The full width at half maximum of the (001) plane in the powder X-ray diffraction pattern of nickel oxyhydroxide is 0.5 deg. / 2θ, the half width of the (101) plane is 7 deg. The peak intensity attributed to the (001) plane was 6 times the peak intensity attributed to the (101) plane.

次に、正極合剤5を正極缶2内に挿入し、水酸化カリウムを含むアルカリ電解液を注入して、正極合剤5にアルカリ電解液を吸収させた。また、正極合剤5上に、微多孔膜6a及び不織布6bを有する上記セパレータ6を装填した。さらに、セパレータ6に対し、水酸化カリウムを含むアルカリ電解液を滴下して、セパレータ6にアルカリ電解液を含浸させた。   Next, the positive electrode mixture 5 was inserted into the positive electrode can 2, and an alkaline electrolyte containing potassium hydroxide was injected to cause the positive electrode mixture 5 to absorb the alkaline electrolyte. Further, the separator 6 having the microporous membrane 6a and the nonwoven fabric 6b was loaded on the positive electrode mixture 5. Further, an alkaline electrolyte containing potassium hydroxide was dropped onto the separator 6 to impregnate the separator 6 with the alkaline electrolyte.

負極合剤7は、負極活物質として亜鉛合金粉末、アルカリ電解液として水酸化ナトリウ
ム水溶液、電解液の増粘剤としてカルボキシメチルセルロース、酸化亜鉛を用い、これらを混合してジェル状の混合物を生成した。また、この混合物をペレット状に成型して負極合剤7とし、セパレータ6上に載置した。そして、予めガスケット4を負極缶3の開口部3aに装着した後、正極缶2に負極缶3を被せた。さらに、負極缶3と正極缶2とをかしめることで密封し、扁平形アルカリ一次電池1を作製した。
(実施例2)
実施例2は、実施例1と同様な構成にするものの、オキシ水酸化ニッケルの粉末X線回折パターンにおける(001)面の半値幅を、0.3deg./2θとした。
(実施例3)
実施例3は、実施例1と同様な構成にするものの、オキシ水酸化ニッケルの粉末X線回折パターンにおける(001)面の半値幅を、0.7deg./2θとした。
(実施例4)
実施例4は、実施例1と同様な構成にするものの、オキシ水酸化ニッケルの粉末X線回折パターンにおける(101)面の半値幅を、4.0deg./2θとした。
(実施例5)
実施例5は、実施例1と同様な構成にするものの、オキシ水酸化ニッケルの粉末X線回折パターンにおける(101)面の半値幅を、10.0deg./2θとした。
(実施例6)
実施例6は、実施例1と同様な構成にするものの、オキシ水酸化ニッケルの粉末X線回折パターンの(001)面に帰属するピーク強度を、(101)面に帰属するピーク強度の5倍とした。
(実施例7)
実施例7は、実施例1と同様な構成にするものの、オキシ水酸化ニッケルの粉末X線回折パターンにおける(001)面に帰属するピーク強度を、(101)面に帰属するピーク強度の7倍とした。
(実施例8)
実施例8は、は、実施例1と同様な構成にするものの、オキシ水酸化ニッケルの粉末X線回折パターンにおける(001)面の半値幅を、0.8deg./2θとした。
(実施例9)
実施例9は、実施例1と同様な構成にするものの、オキシ水酸化ニッケルの粉末X線回折パターンにおける(101)面の半値幅を、3.0deg./2θとした。
(実施例10)
実施例10は、実施例1と同様な構成にするものの、オキシ水酸化ニッケルの粉末X線回折パターンにおける(101)面の半値幅を、11.0deg./2θとした。
(実施例11)
実施例11は、実施例1と同様な構成にするものの、オキシ水酸化ニッケル粉末のX線回折パターンの(001)面に帰属するピーク強度を、(101)面に帰属するピーク強度の4倍とした。
(比較例1)
比較例1は、実施例1と同様な構成にするものの、オキシ水酸化ニッケルの粉末X線回折パターンにおける(001)面の半値幅を、0.8deg./2θとし、(101)面の半値幅を、3deg./2θとした。また、(001)面に帰属するピーク強度を(101)面に帰属するピーク強度比の4倍とした。
(比較例2)
比較例2は、実施例1と同様な構成にするものの、オキシ水酸化ニッケルの粉末X線回折パターンにおける(001)面の半値幅を、0.8deg./2θとし、(101)面の半値幅を、11.0deg./2θとした。また、(001)面に帰属するピーク強度を、(101)面に帰属するピーク強度の4倍とした。
In the negative electrode mixture 7, a zinc alloy powder was used as the negative electrode active material, an aqueous sodium hydroxide solution was used as the alkaline electrolyte, carboxymethyl cellulose and zinc oxide were used as the thickener of the electrolytic solution, and these were mixed to form a gel-like mixture. . Further, this mixture was molded into a pellet to form a negative electrode mixture 7 and placed on the separator 6. And after attaching gasket 4 to opening 3a of negative electrode can 3 beforehand, negative electrode can 3 was covered on positive electrode can 2. Further, the negative electrode can 3 and the positive electrode can 2 were sealed by caulking to produce a flat alkaline primary battery 1.
(Example 2)
Example 2 has the same configuration as that of Example 1, but the half width of the (001) plane in the powder X-ray diffraction pattern of nickel oxyhydroxide is 0.3 deg. / 2θ.
(Example 3)
Example 3 has the same configuration as that of Example 1, but the half width of the (001) plane in the powder X-ray diffraction pattern of nickel oxyhydroxide is 0.7 deg. / 2θ.
Example 4
Example 4 has the same configuration as that of Example 1, but the full width at half maximum of the (101) plane in the powder X-ray diffraction pattern of nickel oxyhydroxide is 4.0 deg. / 2θ.
(Example 5)
Example 5 has the same configuration as that of Example 1, but the half-value width of the (101) plane in the powder X-ray diffraction pattern of nickel oxyhydroxide is 10.0 deg. / 2θ.
(Example 6)
Example 6 has the same configuration as that of Example 1, but the peak intensity attributed to the (001) plane of the powder X-ray diffraction pattern of nickel oxyhydroxide is five times the peak intensity attributed to the (101) plane. It was.
(Example 7)
Example 7 has the same configuration as Example 1, but the peak intensity attributed to the (001) plane in the powder X-ray diffraction pattern of nickel oxyhydroxide is 7 times the peak intensity attributed to the (101) plane. It was.
(Example 8)
Example 8 has the same configuration as that of Example 1, but the half width of the (001) plane in the powder X-ray diffraction pattern of nickel oxyhydroxide is 0.8 deg. / 2θ.
Example 9
Example 9 has the same configuration as that of Example 1, but the full width at half maximum of the (101) plane in the powder X-ray diffraction pattern of nickel oxyhydroxide is 3.0 deg. / 2θ.
(Example 10)
Example 10 has the same configuration as that of Example 1, but the half width of the (101) plane in the powder X-ray diffraction pattern of nickel oxyhydroxide is 11.0 deg. / 2θ.
(Example 11)
Example 11 has the same configuration as that of Example 1, but the peak intensity attributed to the (001) plane of the X-ray diffraction pattern of the nickel oxyhydroxide powder is four times the peak intensity attributed to the (101) plane. It was.
(Comparative Example 1)
Comparative Example 1 has the same configuration as that of Example 1, but the half width of the (001) plane in the powder X-ray diffraction pattern of nickel oxyhydroxide is 0.8 deg. / 2θ, and the half width of the (101) plane is 3 deg. / 2θ. The peak intensity attributed to the (001) plane was set to four times the peak intensity ratio attributed to the (101) plane.
(Comparative Example 2)
Comparative Example 2 has the same configuration as that of Example 1, but the half width of the (001) plane in the powder X-ray diffraction pattern of nickel oxyhydroxide is 0.8 deg. / 2θ, and the half width of the (101) plane is 11.0 deg. / 2θ. The peak intensity attributed to the (001) plane was set to four times the peak intensity attributed to the (101) plane.

そして、上記した実施例1〜11、比較例1〜2の扁平形アルカリ一次電池1を、それ
ぞれ110個作製し、以下の検証を行った。
具体的には、110個のうち、10個の電池を温度60℃、湿度ドライの過酷環境下で保存し、100日後の扁平形アルカリ一次電池1の高さ方向(厚み方向)の膨れの有無について調べた。その評価結果を表1に示す。また、110個のうち、100個の電池を30kΩで定抵抗放電させ、終止電圧を1.2Vとした際の放電容量(mAh)を測定し、表1に示した。
Then, 110 flat alkaline primary batteries 1 of Examples 1 to 11 and Comparative Examples 1 and 2 described above were produced, respectively, and the following verification was performed.
Specifically, 10 batteries out of 110 are stored in a harsh environment of temperature 60 ° C. and humidity dry, and the presence or absence of swelling in the height direction (thickness direction) of the flat alkaline primary battery 100 after 100 days Investigated about. The evaluation results are shown in Table 1. Moreover, 100 batteries out of 110 were subjected to constant resistance discharge at 30 kΩ, and the discharge capacity (mAh) when the final voltage was 1.2 V were measured and shown in Table 1.

Figure 2008282669
表1より、実施例1〜3と実施例8とを比較した場合、オキシ水酸化ニッケルの粉末X線回折パターンにおける(001)面の半値幅を0.3〜0.7deg./2θとすることで、放電容量に優れる扁平形アルカリ一次電池1を作製できたことがわかる。
Figure 2008282669
From Table 1, when Examples 1-3 are compared with Example 8, the half-value width of the (001) plane in the powder X-ray diffraction pattern of nickel oxyhydroxide is 0.3-0.7 deg. It turns out that the flat alkaline primary battery 1 excellent in discharge capacity could be produced by setting to / 2θ.

また、実施例1及び実施例4〜5と、実施例9〜10とを比較した場合、オキシ水酸化ニッケルの粉末X線回折パターンにおける(101)面の半値幅を4.0〜10.0deg./2θとすることで、放電容量に優れる扁平形アルカリ一次電池1を作製できたことがわかる。   Moreover, when Example 1 and Examples 4-5 are compared with Examples 9-10, the half value width of the (101) plane in the powder X-ray diffraction pattern of nickel oxyhydroxide is 4.0 to 10.0 deg. . It turns out that the flat alkaline primary battery 1 excellent in discharge capacity could be produced by setting to / 2θ.

さらに、実施例1及び実施例6〜7と、実施例11とを比較した場合、オキシ水酸化ニッケルの(001)面に帰属するピーク強度が、(101)面に帰属するピーク強度の5倍以上7倍以下とすることで、耐熱性に優れる扁平形アルカリ一次電池1を作製できたことがわかる。   Furthermore, when Example 1 and Examples 6-7 are compared with Example 11, the peak intensity attributed to the (001) plane of nickel oxyhydroxide is five times the peak intensity attributed to the (101) plane. It turns out that the flat alkaline primary battery 1 excellent in heat resistance was able to be manufactured by setting it as 7 times or less above.

また、実施例1〜7と比較例1〜2とを比較した場合、(001)面の半値幅を0.3〜0.7deg./2θ、(101)面の半値幅を4.0〜10.0deg./2θ、且つ(001)面のピーク強度を(101)面のピーク強度の5〜7倍にすることで、放電
容量に優れ且つ耐熱性にも優れる扁平形アルカリ一次電池1を作製できたことがわかる。尚、実施例11で作製された電池は、数十ミリの電池の膨れが確認されたが、膨れた高さが比較例1〜2の電池で生じた数百ミリの膨れに比べて僅かであった。
Moreover, when Examples 1-7 are compared with Comparative Examples 1-2, the half-value width of the (001) plane is 0.3-0.7 deg. / 2θ, the full width at half maximum of the (101) plane is 4.0 to 10.0 deg. The flat alkaline primary battery 1 having excellent discharge capacity and excellent heat resistance could be produced by setting the peak intensity of / 2θ and the (001) plane to 5 to 7 times the peak intensity of the (101) plane. I understand. In addition, although the battery produced in Example 11 was confirmed to have a swelling of several tens of millimeters, the swollen height was slightly smaller than the hundreds of millimeters of swelling produced in the batteries of Comparative Examples 1 and 2. there were.

上記実施形態によれば、以下のような効果を得ることができる。
(1)上記実施形態では、扁平形アルカリ一次電池1の正極活物質を、オキシ水酸化ニッケルから構成した。また、このオキシ水酸化ニッケル粉末のX線回折パターンにおける(001)面の半値幅を、0.3deg./2θ以上、0.7deg./2θ以下とし、(101)面の半値幅を、4.0deg./2θ以上、10.0deg./2θ以下とした。さらに、オキシ水酸化ニッケルの(001)面に帰属するピーク強度を、(101)面に帰属されるピーク強度の5倍以上7倍以下とした。このため、オキシ水酸化ニッケル粉末の粒径を大きくして充填量を増加させることができるので、放電容量を向上することができる。加えて、適当な結晶性の低下と、結晶構造上の歪みを利用することで、粉末同士の結着性を大きくし、正極合剤5中の結着剤配合比を減らす分、オキシ水酸化ニッケルの充填量を増加させることができるため、放電容量をさらに向上することができる。これにより、正極活物質に高価な酸化銀を用いることなく、終止電圧が比較的高く設定されている小型電子機器に適した扁平形アルカリ一次電池1を作製することができる。
According to the above embodiment, the following effects can be obtained.
(1) In the said embodiment, the positive electrode active material of the flat alkaline primary battery 1 was comprised from nickel oxyhydroxide. Further, the half width of the (001) plane in the X-ray diffraction pattern of this nickel oxyhydroxide powder was 0.3 deg. / 2θ or more, 0.7 deg. / 2θ or less, and the half width of the (101) plane is 4.0 deg. / 2θ or more, 10.0 deg. / 2θ or less. Furthermore, the peak intensity attributed to the (001) plane of nickel oxyhydroxide was set to be 5 to 7 times the peak intensity attributed to the (101) plane. For this reason, since the filling amount can be increased by increasing the particle size of the nickel oxyhydroxide powder, the discharge capacity can be improved. In addition, by utilizing appropriate crystallinity reduction and distortion on the crystal structure, the binding property between the powders is increased, and the binder compounding ratio in the positive electrode mixture 5 is reduced. Since the nickel filling amount can be increased, the discharge capacity can be further improved. Thereby, the flat alkaline primary battery 1 suitable for a small electronic device having a relatively high end voltage can be produced without using expensive silver oxide as the positive electrode active material.

(2)上記実施形態では、さらに、オキシ水酸化ニッケルの(001)面に帰属するピーク強度を、(101)面に帰属されるピーク強度の5倍以上7倍以下とした。このため、耐熱性に優れる扁平形アルカリ一次電池を作製することができる。   (2) In the above embodiment, the peak intensity attributed to the (001) plane of nickel oxyhydroxide is further set to 5 times or more and 7 times or less of the peak intensity attributed to the (101) plane. For this reason, a flat alkaline primary battery excellent in heat resistance can be produced.

本実施形態の扁平形アルカリ一次電池の断面図。Sectional drawing of the flat alkaline primary battery of this embodiment. オキシ水酸化ニッケル粉末の粉末X線回折図。The powder X-ray-diffraction figure of nickel oxyhydroxide powder.

符号の説明Explanation of symbols

1…扁平形アルカリ一次電池、2…正極缶、3…負極缶、2a,3a…開口部、4…ガスケット、5…正極合剤、6…セパレータ、7…負極合剤。   DESCRIPTION OF SYMBOLS 1 ... Flat alkaline primary battery, 2 ... Positive electrode can, 3 ... Negative electrode can, 2a, 3a ... Opening, 4 ... Gasket, 5 ... Positive electrode mixture, 6 ... Separator, 7 ... Negative electrode mixture.

Claims (2)

正極缶の開口部に負極缶の開口部を嵌合し、前記正極缶と前記負極缶とをガスケットを介して密封して形成された密閉空間にセパレータを配置するとともに、前記セパレータを挟んで、正極側にオキシ水酸化ニッケルを主成分とした正極合剤を配置し、負極側に亜鉛合金粉末を主成分とした負極合剤を配置し、該密閉空間にアルカリ電解質を充填した扁平形アルカリ一次電池であって、
前記正極合剤のオキシ水酸化ニッケルは、粉末X線回折パターンにおける(001)面の半値幅が0.3〜0.7deg./2θであり、且つ(101)面の半値幅が4.0〜10.0deg./2θであることを特徴とする扁平形アルカリ一次電池。
Fit the opening of the negative electrode can into the opening of the positive electrode can, place the separator in a sealed space formed by sealing the positive electrode can and the negative electrode can through a gasket, and sandwich the separator, A flat alkaline primary in which a positive electrode mixture mainly composed of nickel oxyhydroxide is arranged on the positive electrode side, a negative electrode mixture mainly composed of zinc alloy powder is arranged on the negative electrode side, and the sealed space is filled with an alkaline electrolyte. A battery,
The nickel oxyhydroxide of the positive electrode mixture has a half-width of (001) plane in a powder X-ray diffraction pattern of 0.3 to 0.7 deg. / 2θ and the half width of the (101) plane is 4.0 to 10.0 deg. A flat alkaline primary battery characterized by being / 2θ.
請求項1に記載の扁平形アルカリ一次電池において、
前記正極合剤のオキシ水酸化ニッケルの(001)面に帰属するピーク強度は、(101)面に帰属するピーク強度の5倍以上7倍以下であることを特徴とする扁平形アルカリ一次電池。
The flat alkaline primary battery according to claim 1,
The flat alkaline primary battery, wherein the peak intensity attributed to the (001) plane of the nickel oxyhydroxide of the positive electrode mixture is 5 to 7 times the peak intensity attributed to the (101) plane.
JP2007125803A 2007-05-10 2007-05-10 Flat alkaline primary battery Pending JP2008282669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007125803A JP2008282669A (en) 2007-05-10 2007-05-10 Flat alkaline primary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007125803A JP2008282669A (en) 2007-05-10 2007-05-10 Flat alkaline primary battery

Publications (1)

Publication Number Publication Date
JP2008282669A true JP2008282669A (en) 2008-11-20

Family

ID=40143311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007125803A Pending JP2008282669A (en) 2007-05-10 2007-05-10 Flat alkaline primary battery

Country Status (1)

Country Link
JP (1) JP2008282669A (en)

Similar Documents

Publication Publication Date Title
CN104067437B (en) Zinc secondary cell
EP2782185B1 (en) Zinc-air secondary battery
JP5174283B2 (en) Lithium secondary battery
JP6570545B2 (en) Air electrode, metal-air battery and air electrode material
JP5587438B2 (en) Alkaline battery
JP2017010914A (en) Air electrode, metal-air battery, air electrode material, and method for producing air electrode material
US20090047578A1 (en) Positive electrode for alkaline battery and alkaline battery using the same
WO2018163485A1 (en) Alkaline dry-cell battery
CN113597409A (en) Positive electrode active material for secondary battery and secondary battery
JP5602313B2 (en) Alkaline battery
WO2014049966A1 (en) Cathode active material for alkaline storage battery, alkaline storage battery and alkaline storage battery cathode containing same, and nickel-hydrogen storage battery
JP2008282669A (en) Flat alkaline primary battery
JP2008210720A (en) Flat alkaline primary battery
JP6061390B2 (en) Sodium secondary battery
US20090291362A1 (en) Flat-type alkaline primary battery
JP7166705B2 (en) Method for manufacturing negative electrode for zinc battery and method for manufacturing zinc battery
JP3198891B2 (en) Positive electrode for alkaline storage battery
WO2016208770A1 (en) Air electrode material, air electrode and metal air battery
JP2010040334A (en) Alkaline primary battery and method for manufacturing alkaline primary battery
JP2008210719A (en) Flat alkaline primary battery
JP2014078393A (en) Sodium secondary battery
Banov et al. Environmentally friendly cathode materials for Li-ion batteries
JP3436059B2 (en) Nickel-hydrogen storage battery
JP2010170908A (en) Manufacturing method for flat primary battery, and flat primary battery
JP2010044907A (en) Flat-type alkaline primary battery and manufacturing method of flat-type alkaline primary battery