JP2008281359A - Neutron detector and its manufacturing method - Google Patents

Neutron detector and its manufacturing method Download PDF

Info

Publication number
JP2008281359A
JP2008281359A JP2007123628A JP2007123628A JP2008281359A JP 2008281359 A JP2008281359 A JP 2008281359A JP 2007123628 A JP2007123628 A JP 2007123628A JP 2007123628 A JP2007123628 A JP 2007123628A JP 2008281359 A JP2008281359 A JP 2008281359A
Authority
JP
Japan
Prior art keywords
metal plate
neutron
sensitive material
material film
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007123628A
Other languages
Japanese (ja)
Inventor
Yutaka Tanaka
豊 田中
Yasushi Goto
泰志 後藤
Kazuo Hayashi
林  和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Canon Electron Tubes and Devices Co Ltd
Original Assignee
Toshiba Corp
Toshiba Electron Tubes and Devices Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Electron Tubes and Devices Co Ltd filed Critical Toshiba Corp
Priority to JP2007123628A priority Critical patent/JP2008281359A/en
Publication of JP2008281359A publication Critical patent/JP2008281359A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a neutron detector capable of coping with miniaturization. <P>SOLUTION: A neutron-sensitive material film 24 is formed on the inner circumferential surface of a cylindrical metal plate 23. The metal plate 23 is cut open along a cutting line which is axially continuous between both ends and cylindrical formed. The metal plate 23 is inserted into a cylindrical cathode 22 and connected electrically thereto to be used as a cathode. Since the neutron-sensitive material film 24 can be formed easily on the metal plate 23 regardless of the diameter of the metal plate 23 in a used state as the cathode for using in a detector body 13, allowing the neutron detector to cope with miniaturization. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えば発電用原子炉などにて中性子を検出する中性子検出器およびその製造方法に関する。   The present invention relates to a neutron detector that detects neutrons, for example, in a power generation nuclear reactor, and a method for manufacturing the same.

従来、例えば原子力発電所の発電用原子炉などからの中性子を検出するときに、中性子検出器が用いられる。   Conventionally, a neutron detector is used to detect neutrons from, for example, a nuclear power plant nuclear reactor.

ここで、一般に、放射線がガス中を通過するとき、放射線とガスとの相互作用によりガスを構成する原子あるいは分子を電離しイオン対を生成する。このため、ガス中に電圧を印加することにより、イオン対の+イオンは陰極に、電子は陽極に誘導され、電極に到達したときに回路に電流が流れるので、この出力信号を測定することにより放射線を検出可能である。   Here, generally, when radiation passes through a gas, ions or atoms constituting the gas are ionized by the interaction between the radiation and the gas to generate ion pairs. For this reason, by applying a voltage in the gas, + ions of the ion pair are induced to the cathode and electrons are induced to the anode, and current flows through the circuit when it reaches the electrode. Radiation can be detected.

しかしながら、中性子は電荷を有さないため、直接物質と相互作用をして電離作用をすることができない。そこで、上記中性子検出器は、中性子と中性子有感物質との反応により生成される荷電粒子を利用して中性子を検出する。   However, since neutrons do not have an electric charge, they cannot interact with substances directly and ionize. Therefore, the neutron detector detects neutrons using charged particles generated by the reaction between neutrons and neutron sensitive substances.

このような中性子検出器としては、例えば円筒状の筒状体である外筒の内周面に、メタライズ層などの陰極を設け、外筒の両端部に端板をそれぞれ設け、これら外筒と端板との間の空間に所定の充填ガスを充填するとともに、端板間にて外筒の中心軸に沿って陽極を挿通した比例計数管がある。   As such a neutron detector, for example, a cathode such as a metallized layer is provided on the inner peripheral surface of an outer cylinder, which is a cylindrical cylindrical body, and end plates are provided at both ends of the outer cylinder, respectively. There is a proportional counter tube in which a predetermined filling gas is filled in a space between the end plates and an anode is inserted between the end plates along the central axis of the outer cylinder.

この比例計数管は、放射線により生成されたイオン対が電極に移動する間に中性ガス分子と相互作用を起こし、さらにイオン対を生成することができるため、大きな出力電流を得ることができる。   This proportional counter can interact with neutral gas molecules while the ion pair generated by radiation moves to the electrode, and can further generate an ion pair, so that a large output current can be obtained.

代表的な比例計数管としては、ヘリウム(3He)比例計数管、あるいは、ホウ素(10B)塗布型比例計数管があり、それぞれの比例計数管においてヘリウムおよびホウ素の次の中性子反応を用いて中性子を検出している。 Typical proportional counters include helium ( 3 He) proportional counters or boron ( 10 B) -coated proportional counters, which use the next neutron reaction of helium and boron in each proportional counter. Neutron is detected.

3He+n→3H+p+0.765MeV(反応断面積:5440Barn)
10B+n→Li+α+2.310MeV(94%),2.792MeV(6%)(反応断面積:3837Barn)
3 He + n → 3 H + p + 0.765 MeV (reaction cross section: 5440 Barn)
10 B + n → Li + α + 2.310 MeV (94%), 2.792 MeV (6%) (reaction cross section: 3837 Barn)

ヘリウム比例計数管は、比例計数管内部に充填ガスとしてヘリウムガスを封入したもので、このヘリウムガス中でのトリチウム(3H)およびプロトン(p)の飛程が長いため、高い圧力のガスを封入している。このため、ヘリウム比例計数管は、ホウ素比例計数管と比較して、反応断面積が大きく、かつ、充填ガスの圧力が高いことにより、高感度となるものの、核反応により発生するエネルギが小さく、また、充填ガス圧が高いなどの理由により印荷電圧を高くする必要があることから、γ線の影響が大きいため、γ線が比較的低い場所での使用に適し、γ線が比較的高い場所での使用に適さない。 A helium proportional counter is one in which helium gas is sealed as a filling gas inside the proportional counter. Since the range of tritium ( 3 H) and proton (p) in this helium gas is long, a high pressure gas is used. Enclosed. For this reason, the helium proportional counter has a large reaction cross-sectional area and a high pressure due to the high pressure of the filling gas compared to the boron proportional counter, but the energy generated by the nuclear reaction is small. Also, since the loading voltage needs to be increased due to reasons such as a high filling gas pressure, the effect of γ rays is great, so it is suitable for use in places where γ rays are relatively low, and γ rays are relatively high. Not suitable for use on site.

一方、ホウ素比例計数管(ホウ素塗布型比例計数管)では、中性子有感物質膜として検出器の外容器内面にホウ素(10B)をコーティングしている。このホウ素比例計数管は、充填ガスを比較的自由に選ぶことができるため、最適な充填ガスを選択することにより、比較的低い印荷電圧で作動可能となる。また、充填ガスとして劣化しにくいものを選定できるため、中性子およびγ線照射に対し安定して長期間使用可能で、比較的γ線が高い場所での測定が可能となる(例えば、特許文献1参照。)。
特開2006−194625号公報(第4−5頁、図1)
On the other hand, in a boron proportional counter (boron-coated proportional counter), boron ( 10 B) is coated on the inner surface of the outer container of the detector as a neutron sensitive material film. Since this boron proportional counter can select a filling gas relatively freely, it can be operated at a relatively low loading voltage by selecting an optimum filling gas. Further, since it is possible to select a gas that does not easily deteriorate as a filling gas, it can be used stably for a long period of time with respect to neutron and γ-ray irradiation, and measurement at a place where γ-rays are relatively high is possible (for example, Patent Document 1). reference.).
JP 2006-194625 A (page 4-5, FIG. 1)

上述の中性子検出器の製造の際には、筒状体である外容器の内面に、ホウ素などをスパッタリング、あるいはめっきなどによりコーティングする。   In manufacturing the above-described neutron detector, boron or the like is coated on the inner surface of the cylindrical outer container by sputtering or plating.

この場合、外容器の内径が大きい場合には、このような膜を均一に形成することに関して問題はないものの、外容器の内径が小さいもの、例えば5mm以下の内径を有するものなどの場合に、スパッタリングでは、このスパッタリングの際に外容器の内周側に挿入される細長円筒状のターゲットの材料を作成することが容易でなく、めっきでは、電界を一様にすることが容易でないという問題点を有している。   In this case, when the inner diameter of the outer container is large, there is no problem with uniformly forming such a film, but when the outer container has a small inner diameter, for example, an inner diameter of 5 mm or less, In sputtering, it is not easy to create an elongated cylindrical target material that is inserted into the inner peripheral side of the outer container during sputtering, and in plating, it is not easy to make the electric field uniform. have.

本発明は、このような点に鑑みなされたもので、小型化に対応できる中性子検出器およびその製造方法を提供することを目的とする。   The present invention has been made in view of these points, and an object thereof is to provide a neutron detector that can cope with downsizing and a manufacturing method thereof.

本発明の中性子検出器の製造方法は、金属板の一主面に中性子有感物質膜を成膜する成膜工程と、この中性子有感物質膜を成膜した金属板を、前記中性子有感物質膜側を内周側とする筒状に加工して陰極とする筒状加工工程とを具備したものである。   The method for producing a neutron detector of the present invention includes a film forming step of forming a neutron sensitive material film on one main surface of a metal plate, and a metal plate on which the neutron sensitive material film is formed. And a cylindrical processing step in which the material film side is processed into a cylindrical shape with the inner peripheral side as a cathode to form a cathode.

また、本発明の中性子検出器は、中性子有感物質膜を内周面に備えるとともに、軸方向の両端部間に連続する連続線を備えた筒状の金属板と、前記金属板の両端部にそれぞれ位置する端板と、これら金属板と端板により区画された空間に充填された充填ガスと、前記端板間に設けられ、前記金属板内に挿通された陽極とを具備したものである。   The neutron detector of the present invention comprises a cylindrical metal plate having a neutron sensitive material film on the inner peripheral surface and a continuous line continuous between both end portions in the axial direction, and both end portions of the metal plate Each of which is provided with an end plate, a filling gas filled in a space defined by the metal plate and the end plate, and an anode provided between the end plates and inserted into the metal plate. is there.

本発明によれば、中性子有感物質膜を金属板の一主面に成膜した後、この金属板を筒状に加工して陰極とすることで、陰極とした金属板の径寸法に拘らず中性子有感物質膜を金属板に容易に成膜できるので、小型化に対応できる。   According to the present invention, after the neutron sensitive material film is formed on one main surface of the metal plate, the metal plate is processed into a cylindrical shape to form a cathode, which is related to the diameter of the metal plate as the cathode. Since a neutron sensitive material film can be easily formed on a metal plate, it can cope with downsizing.

以下、本発明の一実施の形態の中性子検出器の構成を図1ないし図4を参照して説明する。   The configuration of the neutron detector according to one embodiment of the present invention will be described below with reference to FIGS.

図1において、11は中性子検出器を示し、この中性子検出器11は、例えば発電用原子炉などにて中性子を検出するものである。   In FIG. 1, reference numeral 11 denotes a neutron detector. The neutron detector 11 detects neutrons in a power generation reactor, for example.

そして、この中性子検出器11は、円筒状の筒状体である検出器本体13を備え、この検出器本体13の両端部に端板14,14が設けられ、これら端板14のそれぞれの中央部にセラミックなどの絶縁体15が設けられ、これら絶縁体15,15間にて検出器本体13の中心軸に沿って陽極である芯線16が設けられ、検出器本体13と端板14,14とで区画された空間S内に充填ガス17が封入されている。   The neutron detector 11 includes a detector body 13 that is a cylindrical tubular body. End plates 14 and 14 are provided at both ends of the detector body 13, and the center of each of the end plates 14 is provided. An insulator 15 such as ceramic is provided in the part, and a core wire 16 serving as an anode is provided between the insulators 15 and 15 along the central axis of the detector main body 13, and the detector main body 13 and the end plates 14 and 14 are provided. A filling gas 17 is enclosed in a space S partitioned by.

検出器本体13は、筒状体としての外筒21と、例えば金属などの導電性材料により筒状に形成されて外筒21内に収容された筒状体としての陰極(カソード)22と、この陰極22内に収容された筒状の金属板23とを有し、この金属板23の内周面に、中性子有感物質膜24が成膜されている。そして、中性子検出器11は、放射線に含まれる中性子の中性子有感物質膜24内部での反応により発生するリチウム(Li)イオンとトリチウム(3H)とが、充填ガス17を電離させてイオン対を生成し、陰極22と芯線16との間の電界により加速され、芯線16近傍の強い電界で電子増倍されて電気信号を発生することで、中性子を検出可能となる。 The detector body 13 includes an outer cylinder 21 as a cylindrical body, and a cathode (cathode) 22 as a cylindrical body that is formed into a cylindrical shape by a conductive material such as metal and is accommodated in the outer cylinder 21; A cylindrical metal plate 23 accommodated in the cathode 22 is formed, and a neutron sensitive material film 24 is formed on the inner peripheral surface of the metal plate 23. Then, the neutron detector 11 ionizes the charged gas 17 by ionizing lithium (Li) ions and tritium ( 3 H) generated by the reaction of neutrons contained in radiation inside the neutron sensitive material film 24. , And is accelerated by an electric field between the cathode 22 and the core wire 16 and is multiplied by a strong electric field in the vicinity of the core wire 16 to generate an electric signal, thereby making it possible to detect neutrons.

外筒21は、例えばセラミックスなどにより形成されている。   The outer cylinder 21 is made of, for example, ceramics.

金属板23は、例えばステンレス、あるいはアルミニウムなどの金属により所定の厚みに形成され、陰極22と電気的に接続されて、陰極として作用するように構成されている。また、この金属板23は、中性子有感物質膜24を形成する際は大径の筒状に形成されており、この中性子有感物質膜24を形成した後に縮径加工されている。したがって、金属板23には、少なくとも軸方向に沿って両端部間に連続した連続線としての切断線L1(図3)が形成されている。なお、この金属板23は、中性子を通過しやすくするために、可能な限り薄く形成することが好ましい。   The metal plate 23 is formed to have a predetermined thickness using, for example, a metal such as stainless steel or aluminum, and is electrically connected to the cathode 22 so as to function as a cathode. Further, the metal plate 23 is formed in a large-diameter cylindrical shape when the neutron sensitive material film 24 is formed, and the diameter reduction processing is performed after the neutron sensitive material film 24 is formed. Accordingly, the metal plate 23 is formed with a cutting line L1 (FIG. 3) as a continuous line continuous between both end portions along at least the axial direction. The metal plate 23 is preferably formed as thin as possible in order to facilitate the passage of neutrons.

中性子有感物質膜24は、例えばホウ素(10B)により所定の厚みに形成されている。ここで、この中性子有感物質膜24は、図2に示す成膜装置であるスパッタリング装置31により金属板23の内周面に形成されている。 The neutron sensitive material film 24 is formed with a predetermined thickness by, for example, boron ( 10 B). Here, the neutron sensitive material film 24 is formed on the inner peripheral surface of the metal plate 23 by the sputtering apparatus 31 which is the film forming apparatus shown in FIG.

スパッタリング装置31は、いわゆる同軸型のものであり、陰極22よりも大きい、比較的大径の筒状に形成した金属板23を外側導体とし、この金属板23の内周側に、筒状の内側導体33が配設され、内側導体33に、ホウ素により形成したターゲット34が接続され、かつ、金属板23と内側導体33との間に、高周波(RF)電源35が接続されている。   The sputtering apparatus 31 is a so-called coaxial type, and has a metal plate 23 that is larger than the cathode 22 and formed in a relatively large-diameter cylindrical shape as an outer conductor, and on the inner peripheral side of the metal plate 23, a cylindrical shape is provided. An inner conductor 33 is disposed, a target 34 formed of boron is connected to the inner conductor 33, and a high frequency (RF) power source 35 is connected between the metal plate 23 and the inner conductor 33.

芯線16は、陰極22との間に図示しない電源が接続されて空間S内に電界を形成するとともに、中性子と、中性子有感物質膜24を構成する中性子有感物質との反応により生成される荷電粒子が芯線16に到達することで流れる電流が出力信号として中性子検出器11の外部に出力されるものである。   The core wire 16 is generated by a reaction between a neutron and a neutron sensitive material constituting the neutron sensitive material film 24 while a power source (not shown) is connected to the cathode 22 to form an electric field in the space S. The current that flows when the charged particles reach the core wire 16 is output to the outside of the neutron detector 11 as an output signal.

充填ガス17は、例えばアルゴンガスなどの希ガスであり、所定のガス圧で封入されている。   The filling gas 17 is a rare gas such as an argon gas, and is sealed at a predetermined gas pressure.

次に、上記一実施の形態の製造方法を説明する。   Next, the manufacturing method of the one embodiment will be described.

まず、図2に示すように、比較的大径の筒状に形成した金属板23を外側導体として、スパッタリング装置31によりスパッタリングして、金属板23の内周面に中性子有感物質膜24を成膜する(成膜工程)。   First, as shown in FIG. 2, a metal plate 23 formed in a cylindrical shape having a relatively large diameter is used as an outer conductor, and sputtering is performed by a sputtering apparatus 31. A neutron sensitive material film 24 is formed on the inner peripheral surface of the metal plate 23. A film is formed (film formation process).

具体的に、高周波電源35により金属板23と内側導体33との間の空間部にプラズマPを発生させるとともに、プラズマP内に、スパッタリング装置31の軸方向に磁界Mを与えて、ターゲット34からホウ素原子Aを叩き出し、このターゲット34に対向した金属板23の内周面に中性子有感物質膜24を成膜する。   Specifically, the plasma P is generated in the space between the metal plate 23 and the inner conductor 33 by the high-frequency power source 35, and the magnetic field M is applied in the axial direction of the sputtering apparatus 31 in the plasma P. Boron atoms A are knocked out, and a neutron sensitive material film 24 is formed on the inner peripheral surface of the metal plate 23 facing the target 34.

次いで、この中性子有感物質膜24を成膜した金属板23を、図3に示すように軸方向に沿う切断線L1,L1によって所定の帯状の切り落とし部PAを切り落とし、切断線L1,L1どうしを接近させるように加工して、成膜工程時よりも縮径した筒状、すなわち筒状の陰極22に挿入可能な筒状に形成し、この筒状に形成した金属板23を、陰極22に挿入して電気的に接続することで、金属板23を陰極とする(筒状加工工程)。なお、切断線L1,L1部分は、互いに溶接してもよく、この場合には、溶接線が連続線として筒状の金属板23に形成される。   Next, as shown in FIG. 3, the metal plate 23 on which the neutron sensitive material film 24 is formed is cut by a predetermined strip-shaped cut-off portion PA along the cutting lines L1 and L1 along the axial direction, and the cutting lines L1 and L1 are separated from each other. Is formed into a cylindrical shape having a diameter smaller than that at the time of the film forming process, that is, a cylindrical shape that can be inserted into the cylindrical cathode 22, and the metal plate 23 formed in this cylindrical shape is connected to the cathode 22. The metal plate 23 is used as a cathode by being inserted into and electrically connected to the tube (cylindrical processing step). The cutting lines L1 and L1 may be welded together. In this case, the welding line is formed on the cylindrical metal plate 23 as a continuous line.

この後、金属板23とともに陰極22を外筒21内に収容して(収容工程)検出器本体13を形成し、この検出器本体13の軸方向の両端部に、絶縁体15を備えた端板14をそれぞれ取り付け(端板取付工程)、かつ、両端板14,14の絶縁体15,15間に、芯線16を接続する(芯線接続工程)。   Thereafter, the cathode 22 together with the metal plate 23 is accommodated in the outer cylinder 21 (accommodating step) to form the detector body 13, and the ends of the detector body 13 provided with insulators 15 at both ends in the axial direction. Each of the plates 14 is attached (end plate attaching step), and the core wire 16 is connected between the insulators 15 of the both end plates 14 and 14 (core wire connecting step).

そして、空間S内に充填ガス17を封入し(ガス封入工程)、陰極22と芯線16との間に電源を接続して中性子検出器11を完成する。   Then, the filling gas 17 is sealed in the space S (gas filling step), and a power source is connected between the cathode 22 and the core wire 16 to complete the neutron detector 11.

上述したように、上記一実施の形態では、中性子有感物質膜24を金属板23の一主面である内周面に成膜した後、この金属板23を筒状に加工して陰極とする構成とした。   As described above, in the one embodiment, after forming the neutron sensitive material film 24 on the inner peripheral surface which is one main surface of the metal plate 23, the metal plate 23 is processed into a cylindrical shape to form a cathode and It was set as the structure to do.

具体的には、筒状の金属板23の内周面に中性子有感物質膜24を形成した後、この金属板23を軸方向の両端部間に連続する切断線L1,L1により切り開き、中性子有感物質膜24の形成時よりも縮径した筒状に加工して陰極とする構成とした。   Specifically, after forming the neutron sensitive material film 24 on the inner peripheral surface of the cylindrical metal plate 23, the metal plate 23 is opened by cutting lines L1 and L1 continuous between both end portions in the axial direction, and the neutron The cathode was processed into a cylindrical shape with a diameter smaller than that at the time of formation of the sensitive material film 24.

一般に、このような中性子検出器11の場合、検出器本体の径寸法が、例えば5mm以下などと小さくなると、スパッタリング装置31などによりスパッタリングして中性子有感物質膜24を金属板23の内周面に成膜する場合、ターゲット34の製造などが容易でなくなり、また、中性子有感物質膜24をめっきなどにより成膜する場合でも、電界を一様にすることが容易でない。   In general, in the case of such a neutron detector 11, when the diameter of the detector main body becomes small, for example, 5 mm or less, the neutron sensitive material film 24 is sputtered by the sputtering device 31 or the like to form the neutron sensitive material film 24 on the inner peripheral surface of the metal plate 23. In the case of film formation, the production of the target 34 is not easy, and even when the neutron sensitive material film 24 is formed by plating or the like, it is not easy to make the electric field uniform.

したがって、本実施の形態では、検出器本体13に用いる状態よりも予め径寸法を大きくした筒状の金属板23を中性子有感物質膜24の形成時に用いることで、検出器本体13に用いるために陰極とした状態の金属板23の径寸法に拘らず中性子有感物質膜24を金属板23に容易に成膜できるので、中性子検出器11の小型化に対応できる。   Therefore, in the present embodiment, the cylindrical metal plate 23 having a larger diameter than the state used for the detector main body 13 is used for the detector main body 13 when the neutron sensitive material film 24 is formed. In addition, the neutron sensitive material film 24 can be easily formed on the metal plate 23 regardless of the diameter of the metal plate 23 in the cathode state, so that the neutron detector 11 can be reduced in size.

なお、上記一実施の形態において、金属板23に成膜する中性子有感物質膜24として、例えばウランなどを用いることも可能である。   In the above embodiment, for example, uranium can be used as the neutron sensitive material film 24 formed on the metal plate 23.

また、金属板23は、図5に示すように、筒状加工工程にて軸方向に沿う切断線L2により切り開き、金属板23を所定の径寸法となるように渦巻状に多重に重ねるように加工したり、この多重に重ねた状態で溶接したりしてもよい。   Further, as shown in FIG. 5, the metal plate 23 is opened by a cutting line L2 along the axial direction in the cylindrical processing step so that the metal plates 23 are stacked in a spiral shape so as to have a predetermined diameter. Processing may be performed, or welding may be performed in a state of overlapping the layers.

さらに、陰極22を用いずに、金属板23自体を陰極として用いることも可能である。この場合には、中性子検出器11の径寸法を、さらに小さくすることが可能になる。   Further, it is possible to use the metal plate 23 itself as a cathode without using the cathode 22. In this case, the diameter of the neutron detector 11 can be further reduced.

そして、上記実施の形態では、金属板23を筒状としてその内周面に中性子有感物質膜24を形成したが、例えば成膜工程にて、平面状、あるいは曲面状などの金属板の一主面に中性子有感物質膜を形成し、筒状加工工程にて、この中性子有感物質膜を内周側として金属板を筒状に加工しても、上記と同様の作用効果を奏することが可能である。この場合には、平面状、あるいは曲面状の金属板の端縁部などが、それぞれ筒状とした金属板の軸方向の両端部に連続する連続線となる。   In the above embodiment, the metal plate 23 has a cylindrical shape and the neutron sensitive material film 24 is formed on the inner peripheral surface thereof. For example, in the film forming process, the metal plate 23 may be a flat or curved metal plate. Even if a neutron sensitive material film is formed on the main surface and the metal plate is processed into a cylindrical shape with the neutron sensitive material film as the inner peripheral side in the cylindrical processing step, the same effects as described above can be obtained. Is possible. In this case, the edge or the like of the planar or curved metal plate is a continuous line that continues to both ends of the cylindrical metal plate in the axial direction.

また、スパッタリング装置31の細部は、上記構成に限定されるものではない。   Further, details of the sputtering apparatus 31 are not limited to the above configuration.

本発明の一実施の形態の中性子検出器を示す説明断面図である。It is explanatory sectional drawing which shows the neutron detector of one embodiment of this invention. 同上中性子検出器の成膜工程の要部を示す斜視図である。It is a perspective view which shows the principal part of the film-forming process of a neutron detector same as the above. 同上中性子検出器の筒状加工工程の一部を示す斜視図である。It is a perspective view which shows a part of cylindrical process of a neutron detector same as the above. 同上中性子検出器の要部を示す分解斜視図である。It is a disassembled perspective view which shows the principal part of a neutron detector same as the above. 本発明の他の実施の形態の中性子検出器の筒状加工工程の一部を示す斜視図である。It is a perspective view which shows a part of cylindrical processing process of the neutron detector of other embodiment of this invention.

符号の説明Explanation of symbols

11 中性子検出器
14 端板
16 陽極である芯線
17 充填ガス
23 金属板
24 中性子有感物質膜
L1,L2 連続線としての切断線
S 空間
11 Neutron detector
14 End plate
16 Core wire as anode
17 Filling gas
23 Metal plate
24 Neutron sensitive material film
L1, L2 Cutting line as continuous line S space

Claims (6)

金属板の一主面に中性子有感物質膜を成膜する成膜工程と、
この中性子有感物質膜を成膜した金属板を、前記中性子有感物質膜側を内周側とする筒状に加工して陰極とする筒状加工工程と
を具備したことを特徴とした中性子検出器の製造方法。
A film forming process for forming a neutron sensitive material film on one main surface of the metal plate;
A neutron-sensitive material film, and a neutron-sensitive material film comprising: Manufacturing method of the detector.
成膜工程の中性子有感物質膜を、筒状の金属板の内周面に成膜し、
筒状加工工程にて、筒状の前記金属板を、軸方向の両端部間に連続する切断線により切り開き、前記成膜工程時よりも縮径した筒状に加工して陰極とする
ことを特徴とした請求項1記載の中性子検出器の製造方法。
The neutron sensitive material film of the film formation process is formed on the inner peripheral surface of the cylindrical metal plate,
In the cylindrical processing step, the cylindrical metal plate is cut by a continuous cutting line between both end portions in the axial direction, and processed into a cylindrical shape having a diameter smaller than that in the film forming step to form a cathode. 2. The method of manufacturing a neutron detector according to claim 1, wherein
成膜工程にて、中性子有感物質膜をスパッタリングにより金属板に成膜する
ことを特徴とした請求項1または2記載の中性子検出器の製造方法。
The method for producing a neutron detector according to claim 1, wherein in the film forming step, a neutron sensitive material film is formed on a metal plate by sputtering.
中性子有感物質膜をホウ素により形成した
ことを特徴とした請求項1ないし3いずれか記載の中性子検出器の製造方法。
The method for producing a neutron detector according to any one of claims 1 to 3, wherein the neutron sensitive material film is formed of boron.
中性子有感物質膜を内周面に備えるとともに、軸方向の両端部間に連続する連続線を備えた筒状の金属板と、
前記金属板の両端部にそれぞれ位置する端板と、
これら金属板と端板により区画された空間に充填された充填ガスと、
前記端板間に設けられ、前記金属板内に挿通された陽極と
を具備したことを特徴とした中性子検出器。
With a neutron sensitive material film on the inner peripheral surface, a cylindrical metal plate with a continuous line continuous between both ends in the axial direction,
End plates respectively positioned at both ends of the metal plate;
A filling gas filled in a space defined by the metal plate and the end plate;
A neutron detector comprising: an anode provided between the end plates; and an anode inserted into the metal plate.
中性子有感物質膜は、ホウ素により形成されている
ことを特徴とした請求項5記載の中性子検出器。
The neutron detector according to claim 5, wherein the neutron sensitive material film is formed of boron.
JP2007123628A 2007-05-08 2007-05-08 Neutron detector and its manufacturing method Withdrawn JP2008281359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007123628A JP2008281359A (en) 2007-05-08 2007-05-08 Neutron detector and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007123628A JP2008281359A (en) 2007-05-08 2007-05-08 Neutron detector and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2008281359A true JP2008281359A (en) 2008-11-20

Family

ID=40142308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007123628A Withdrawn JP2008281359A (en) 2007-05-08 2007-05-08 Neutron detector and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2008281359A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150109933A (en) * 2014-03-21 2015-10-02 한국원자력연구원 radiation detector
EP2908980A4 (en) * 2012-10-22 2016-08-10 Proportional Technologies Inc Fabrication boron coated straws for neutron detectors
JP2019190848A (en) * 2018-04-18 2019-10-31 キヤノン電子管デバイス株式会社 Radiation position detector

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2908980A4 (en) * 2012-10-22 2016-08-10 Proportional Technologies Inc Fabrication boron coated straws for neutron detectors
KR20150109933A (en) * 2014-03-21 2015-10-02 한국원자력연구원 radiation detector
KR101657665B1 (en) * 2014-03-21 2016-09-22 한국원자력연구원 radiation detector
JP2019190848A (en) * 2018-04-18 2019-10-31 キヤノン電子管デバイス株式会社 Radiation position detector

Similar Documents

Publication Publication Date Title
US10366795B2 (en) Long-life high-efficiency neutron generator
Goldsack et al. Multimegavolt multiaxis high-resolution flash X-ray source development for a new hydrodynamics research facility at AWE Aldermaston
CN105407621B (en) A kind of compact D D accelerators for neutron production
JPH01503020A (en) Plasma focusing device equipped with electric field distortion element
Zakaullah et al. Study of neutron emission in a low-energy plasma focus with β-source-assisted breakdown
US20070237281A1 (en) Neutron generator tube having reduced internal voltage gradients and longer lifetime
JP2008281359A (en) Neutron detector and its manufacturing method
Piejak et al. Electric field in inductively coupled gas discharges
Sohrabi Breakthroughs in 4π panorama ionology in plasma focus devices for mechanisms understanding with special regards to hydrogen ions (protons)
Baghdadi et al. Investigation of the neutron angular distribution and neutron yield on the APF plasma focus device
Sohrabi et al. Effects of anode geometry on forward wide-angle neon ion emissions in 3.5 kJ plasma focus device by novel mega-size panorama polycarbonate image detectors
Groetz et al. Conception and realization of a parallel-plate free-air ionization chamber for the absolute dosimetry of an ultrasoft X-ray beam
WO2010036422A2 (en) Plasma driven neutron/gamma generator
JP4829052B2 (en) Manufacturing method of neutron detector
JP4901624B2 (en) Film forming apparatus and film forming method
JP2009222410A (en) Radiation detector
JP2009057583A (en) Film-forming apparatus and film-forming method
JP2007314842A (en) Plasma-generating device and sputtering source using the same
Reijonen et al. Compact neutron generator development at LBNL
RU184106U1 (en) PULSE NEUTRON GENERATOR
RU2110080C1 (en) Double-section gas-filled ionization chamber
Christiansen et al. Mössbauer effect in α-Fe2O3 following the reaction56Fe (d, p) 57Fe
Cikhardt et al. Influence of an external magnetic field on the dynamics of a modified plasma focus
Das et al. Radial Characteristics of a Magnetized Plasma Column
Pillay et al. 14N+, 16Q+, and 20Ne+ ion beams for studies of charge-induced X-ray yields

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100803