JP2008280753A - Steel floor slab and method of producing it - Google Patents

Steel floor slab and method of producing it Download PDF

Info

Publication number
JP2008280753A
JP2008280753A JP2007126024A JP2007126024A JP2008280753A JP 2008280753 A JP2008280753 A JP 2008280753A JP 2007126024 A JP2007126024 A JP 2007126024A JP 2007126024 A JP2007126024 A JP 2007126024A JP 2008280753 A JP2008280753 A JP 2008280753A
Authority
JP
Japan
Prior art keywords
rib
ribs
horizontal
vertical
web
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007126024A
Other languages
Japanese (ja)
Other versions
JP4823966B2 (en
Inventor
Noriyoshi Tominaga
知徳 冨永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007126024A priority Critical patent/JP4823966B2/en
Publication of JP2008280753A publication Critical patent/JP2008280753A/en
Application granted granted Critical
Publication of JP4823966B2 publication Critical patent/JP4823966B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel floor slab whose horizontal ribs can be spaced apart by large spans, while preventing fatigue cracks at welded parts, and minimizing cost increases, and a method of manufacturing the steel floor slab. <P>SOLUTION: A plurality of cutouts 3C are formed in each horizontal rib 3, and the webs 4A of vertical ribs 4 are passed through the cutouts 3C, so that the horizontal ribs 3 can be produced continuously on one steel floor slab, and so that the webs 4A of the vertical ribs 4 can also be produced continuously without the vertical ribs 4 being cut at intersections with the horizontal ribs 3. The cutouts 3C in the horizontal ribs 3 are inserted from cutouts 4C cut in the flanges 4B of the vertical ribs 4, and the webs 3A, 4A of the horizontal ribs 3 and the vertical ribs 4 are welded and integrated together, whereby the man hours, the number of welded portions, and the welding length required for production can be reduced and manufacturing costs can be reduced. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、鋼床版および鋼床版の製造方法に関し、詳しくは、主桁に支持される複数の横リブと、この横リブに交差して支持される複数の縦リブと、これらの横リブおよび縦リブの上側に溶接固定されるデッキプレートとを備え、道路橋等における路盤支持構造として用いられる鋼床版、およびその製造方法に関する。   The present invention relates to a steel deck and a method for manufacturing a steel deck, and more specifically, a plurality of horizontal ribs supported by a main girder, a plurality of vertical ribs supported by crossing the horizontal ribs, and the horizontal ribs. The present invention relates to a steel deck slab comprising a rib and a deck plate fixed to the upper side of a longitudinal rib by welding and used as a roadbed support structure in a road bridge or the like, and a method for manufacturing the same.

従来、道路橋等に用いられる鋼床版の構造として、横リブ(横桁)に切り欠きを設けるとともに、この切り欠きに縦リブを挿通して横リブと縦リブとを交差させ、この交差部において切り欠きに沿って横リブと縦リブとを溶接接合するとともに、横リブと縦リブの上側にデッキプレートを溶接固定したものが一般的である(非特許文献1の第5章参照)。
このような鋼床版に用いられる縦リブとしては、断面U字形のUリブや、上下に延びる平板状の平板リブ、上下に延びる板状の下端部に拡大部を有した断面形状のバルブプレートリブ(バルブリブ)などがあり、これらの縦リブの断面形状に応じて横リブの切り欠き形状および溶接位置が規定されている。すなわち、縦リブがUリブの場合には、Uリブの左右側面に沿った一対の側端縁およびUリブの下面に沿った下端縁がスカラップで連続した切り欠き形状とされ、この切り欠きの一対の側端縁部分とUリブの左右側面とが片面隅肉溶接で接合されるようになっている。一方、平板リブやバルブリブの場合には、上下に延びて下端部にスカラップを有し縦溝状で、かつ平板リブの平板部やバルブリブの拡大部が挿通可能な幅寸法を有した切り欠き形状とされ、この切り欠きの一方の側端縁部分と平板リブやバルブリブの平板部側面とが片面隅肉溶接で接合されるようになっている。なお、非特許文献1においては、対象とする横リブ間隔(スパン)が2.5m以下とされており、スパンが3mを超えるものは対象範囲外になっている。
Conventionally, as a structure of steel floor slabs used for road bridges, etc., a notch is provided in a horizontal rib (horizontal girder), and a vertical rib is inserted into this notch to cross the horizontal rib and the vertical rib. In general, the horizontal rib and the vertical rib are welded and joined along the notch at the portion, and the deck plate is welded and fixed to the upper side of the horizontal rib and the vertical rib (see Chapter 5 of Non-Patent Document 1). .
Vertical ribs used in such steel slabs include U-shaped U-shaped ribs, flat plate-like ribs extending vertically, and a cross-sectional valve plate having an enlarged portion at the lower end of the plate extending vertically There are ribs (valve ribs) and the like, and the notch shape and welding position of the horizontal rib are defined according to the cross-sectional shape of these vertical ribs. That is, when the vertical rib is a U-rib, a pair of side end edges along the left and right side surfaces of the U-rib and a lower end edge along the lower surface of the U-rib have a notch shape that is continuous with scallops. The pair of side edge portions and the left and right side surfaces of the U rib are joined by single-sided fillet welding. On the other hand, in the case of flat ribs and valve ribs, a notch shape that extends vertically and has a scallop at the lower end and has a longitudinal groove shape, and has a width dimension through which the flat plate portion of the flat plate rib and the enlarged portion of the valve rib can be inserted. Thus, one side edge portion of the notch and the flat plate side surface of the flat plate rib or valve rib are joined by single-sided fillet welding. In Non-Patent Document 1, the target lateral rib interval (span) is 2.5 m or less, and those whose span exceeds 3 m are out of the target range.

一方、鋼床版の構造として、縦リブに逆T字形断面を有したCT形鋼を用いたものが提案されている(特許文献1参照)。
特許文献1に記載された鋼床版では、主桁に架設した横リブとしてのH形鋼の上面に縦リブとしてのCT形鋼を載置して支持させ、このCT形鋼のウェブ上端縁とデッキプレート(16mm以上の厚さ寸法を有した鋼板)とが両面隅肉溶接で接合されるようになっている。この鋼床版の構造は、道路橋等などの架け替えの際の施工の容易さや工期短縮を図るために考案されたもので、H形鋼(横リブ)にCT形鋼(縦リブ)を載置することから、鋼床版全体の高さ寸法が大きくなってしまうという欠点を有している。逆に、鋼床版全体の高さ寸法を所定寸法以下に抑えるためには、横リブや縦リブの部材高さ寸法が小さくなり、部材強度の限界によって横リブ間隔が広くできないという不都合も生じる。そこで、横リブにも逆T字形断面を有したCT形鋼を用い、このCT形鋼のウェブに縦リブを溶接接合する構造が考えられ、この場合には、隣接する横リブの間隔寸法(スパン)に応じた長さ寸法の縦リブを用意し、一対の横リブのウェブ側面に縦リブの長手方向両端部を溶接接合することとなる。
On the other hand, as a structure of a steel slab, one using a CT section steel having an inverted T-shaped cross section in a longitudinal rib has been proposed (see Patent Document 1).
In the steel slab described in Patent Document 1, CT shape steel as vertical rib is placed and supported on the upper surface of H shape steel as horizontal rib installed on the main girder, and the upper edge of the web of this CT shape steel is supported. And a deck plate (steel plate having a thickness of 16 mm or more) are joined by double-sided fillet welding. This steel slab structure was devised for ease of construction and shortening the construction period when replacing road bridges, etc. CT section steel (vertical rib) is used for H section steel (lateral rib). Since it mounts, it has the fault that the height dimension of the whole steel deck will become large. On the other hand, in order to keep the height dimension of the entire steel slab below a predetermined dimension, the member height dimension of the transverse ribs and longitudinal ribs is reduced, and there is a disadvantage that the transverse rib interval cannot be widened due to the limit of the member strength. . Therefore, it is conceivable to use a CT shape steel having an inverted T-shaped cross section for the transverse rib, and weld the longitudinal rib to the web of this CT shape steel. In this case, the interval dimension ( Longitudinal ribs having lengths corresponding to the span) are prepared, and both longitudinal ends of the longitudinal ribs are welded to the web side surfaces of the pair of transverse ribs.

ところで、道路橋等の路盤上(デッキプレート上)を車両が通行した際において、横リブに対する荷重位置(前輪および後輪の位置)の関係によって、横リブと縦リブとの接合部に発生する応力についての研究がなされている(非特許文献2のFig.26、Fig.27等参照)。この文献によれば、横リブと縦リブとの接合部に発生する応力は、荷重位置が横リブから離れるほど大きくなり、横リブ間の中央近傍で最大になるという知見が開示されている。ただし、非特許文献2に記載された研究データは、隣接する横リブ間隔(スパン)が2.75mのものであり、スパンが3mを超える場合のデータは開示されていない。
また、鋼床版に作用する車輪からの動荷重によってデッキプレート、縦リブ、横リブ等の溶接接合部に発生する疲労き裂についても、既存道路橋の調査を実施した報告がなされている(非特許文献3の図1および表2参照)。この文献によれば、縦リブとデッキプレートとの溶接部や、縦リブ同士の突き合わせ溶接部、縦リブと横リブとの交差部などに疲労き裂の発生が見られ、特に、縦リブ(Uリブ、バルブリブ)と横リブとの交差部における疲労き裂が多数見られることが開示されている。
By the way, when a vehicle passes on a roadbed (on a deck plate) such as a road bridge, it occurs at the joint between the horizontal rib and the vertical rib due to the relationship of the load position (front wheel and rear wheel positions) with respect to the horizontal rib. Studies on stress have been made (see Fig. 26, Fig. 27, etc. in Non-Patent Document 2). According to this document, it is disclosed that the stress generated at the joint between the horizontal rib and the vertical rib increases as the load position moves away from the horizontal rib and becomes maximum near the center between the horizontal ribs. However, the research data described in Non-Patent Document 2 has an interval between adjacent lateral ribs (span) of 2.75 m, and does not disclose data when the span exceeds 3 m.
In addition, there has been a report on the investigation of existing road bridges for fatigue cracks that occur in welded joints such as deck plates, vertical ribs, and horizontal ribs due to dynamic loads from wheels acting on steel decks ( (See FIG. 1 and Table 2 of Non-Patent Document 3). According to this document, fatigue cracks are observed at the welded portion between the longitudinal rib and the deck plate, the butt welded portion between the longitudinal ribs, the intersecting portion between the longitudinal rib and the transverse rib, and in particular, the longitudinal rib ( It is disclosed that many fatigue cracks are observed at the intersections between U ribs and valve ribs) and lateral ribs.

特開平11−50416号公報Japanese Patent Laid-Open No. 11-50416 鋼道路橋の疲労設計指針(社団法人日本道路協会)平成14年3月発行Fatigue design guidelines for steel road bridges (Japan Road Association) issued in March 2002 INTERNATIONAL INSTITUTE OF WELDING XIII-1973-03、「Identification of thecause of fatigue damage in an orthotropic steel bridge deck structure with box girder 」(S.Suganuma and others.)INTERNATIONAL INSTITUTE OF WELDING XIII-1973-03, “Identification of the cause of fatigue damage in an orthotropic steel bridge deck structure with box girder” (S.Suganuma and others.) 土木学会第61回年次学術講演会(平成18年9月)、1067〜1068頁、「阪神高速道路における鋼床版の疲労損傷状況報告」(高田、他)Japan Society of Civil Engineers 61st Annual Lecture (September 2006), pages 1067-1068, "Fatigue damage report of steel slab on Hanshin Expressway" (Takada, et al.)

前記非特許文献2に記載されているように(同文献のFig.22等参照)、道路橋における鋼床版のデッキプレート上を車両が走行すると、デッキプレートに作用する動荷重により、デッキプレート、縦リブ(Uリブ)、横リブの変形が繰り返される。このような繰り返しの変形を受けると、デッキプレートと縦リブや横リブとの溶接部、縦リブと横リブとの溶接部に疲労き裂が発生する可能性が高い。そして、縦リブがUリブから構成されている場合には、このUリブの外側からしかデッキプレートに溶接できないことから、ルート側の疲労強度が低くなってしまう。
また、前記非特許文献2によれば、荷重位置が横リブ間の中央近傍の場合に横リブと縦リブとの接合部に発生する応力が最大になることから、横リブ間隔が広くなるほど、横リブと縦リブとの接合部での発生応力が増大し、接合部位置での溶接部に疲労き裂が発生する可能性が一層高くなってしまう。
このような横リブと縦リブとの接合部における発生応力を低減させる方法としては、縦リブや横リブの部材高さ寸法を大きくすることが考えられるものの、従来の縦リブとして用いられるUリブや平板リブ、バルブリブは、その板厚や部材高さ寸法の製造サイズが限られ、特に平板リブでは座屈防止のために自由端の突出長が制限されるために高さ寸法が大きくできない。従って、非特許文献1で規定された2.5mを超えて横リブ間隔を拡大することが困難である。
As described in Non-Patent Document 2 (see Fig. 22 etc. of the same document), when a vehicle travels on a deck plate of a steel deck on a road bridge, the deck plate is subjected to a dynamic load acting on the deck plate. The deformation of the vertical rib (U rib) and the horizontal rib is repeated. When subjected to such repeated deformation, there is a high possibility that fatigue cracks are generated in the welded portion between the deck plate and the vertical rib or the horizontal rib, and the welded portion between the vertical rib and the horizontal rib. And when the vertical rib is comprised from U rib, since it can weld to a deck plate only from the outer side of this U rib, the fatigue strength by the side of a root will become low.
Further, according to Non-Patent Document 2, since the stress generated at the joint between the horizontal rib and the vertical rib is maximized when the load position is near the center between the horizontal ribs, the wider the horizontal rib interval, The stress generated at the joint between the horizontal rib and the vertical rib increases, and the possibility of fatigue cracks occurring at the weld at the joint position is further increased.
U ribs used as conventional vertical ribs can be considered as a method for reducing the stress generated at the joint between the horizontal ribs and the vertical ribs, although the height of the vertical ribs and the horizontal ribs can be increased. Further, the manufacturing size of the plate thickness and member height dimension of the flat plate rib and the valve rib is limited. In particular, the flat size of the flat plate rib cannot be increased because the protrusion length of the free end is limited to prevent buckling. Therefore, it is difficult to increase the lateral rib interval beyond 2.5 m defined in Non-Patent Document 1.

一方、前記特許文献1の鋼床版に基づいて、横リブの側面(ウェブ)に縦リブの長手方向両端部を溶接接合する構造を採用したとすると、以下のような問題が生じる。
すなわち、横リブの間隔寸法であるスパンごとに縦リブが切断され、この縦リブ全ての両端部を横リブの側面に溶接することとなるため、溶接箇所数が膨大になるとともに、部材数も多数になることから、部材数量および加工手間が増加して製造コストが大幅に増大してしまう。さらに、縦リブの両端部を横リブの側面に突き合わせた状態でこれらを溶接することから、この溶接部の溶接精度を確保することが困難になり、疲労強度の低下を招く原因になりやすい。そして、このような溶接部の箇所数が膨大であるために、溶接欠陥が発生する可能性も高まり、この点からも溶接部に疲労き裂が発生しやすくなってしまう。
On the other hand, based on the steel slab of Patent Document 1, if the structure in which both longitudinal ends of the longitudinal rib are welded to the side surface (web) of the lateral rib is employed, the following problems arise.
That is, the vertical ribs are cut for each span, which is the interval dimension of the horizontal ribs, and both ends of the vertical ribs are welded to the side surfaces of the horizontal ribs. Since the number becomes large, the number of members and the processing effort increase, and the manufacturing cost increases significantly. Furthermore, since these are welded in a state in which both end portions of the vertical rib are butted against the side surfaces of the horizontal rib, it becomes difficult to ensure the welding accuracy of the welded portion, which is likely to cause a decrease in fatigue strength. And since the number of places of such a welding part is enormous, possibility that a welding defect will generate | occur | produce will also increase and a fatigue crack will become easy to generate | occur | produce in a welding part also from this point.

本発明の目的は、溶接部の疲労き裂を防止しかつコスト増加を最小限に抑えて横リブ間隔の大スパン化が可能な鋼床版および鋼床版の製造方法を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a steel deck and a method for manufacturing a steel deck that can prevent a fatigue crack in a weld and minimize the increase in cost and increase the span between transverse ribs. .

本発明の請求項1に記載の鋼床版は、主桁に支持される複数の横リブと、この横リブに交差して支持される複数の縦リブと、これらの横リブおよび縦リブの上側に溶接固定されるデッキプレートとを備えた鋼床版であって、前記横リブは、上下に延びるウェブを少なくとも有し、このウェブには、上方に開口して下方に延びる複数の切り欠きが形成され、前記縦リブは、上下に延びるウェブと、このウェブの下端部に連続するフランジとから略逆T字形または略L字形の断面を有し、前記横リブの切り欠きに対応した位置の前記フランジが切り欠かれて形成され、前記横リブの切り欠きに前記縦リブのウェブが挿通された状態で、当該横リブおよび縦リブのウェブ同士が前記切り欠きに沿って溶接接合されていることを特徴とする。   The steel deck according to claim 1 of the present invention includes a plurality of horizontal ribs supported by the main girder, a plurality of vertical ribs supported by crossing the horizontal ribs, and the horizontal ribs and the vertical ribs. A steel slab comprising a deck plate welded and fixed to the upper side, wherein the lateral rib has at least a web extending vertically, and the web has a plurality of notches that open upward and extend downward. The vertical rib has a substantially inverted T-shaped or L-shaped cross section from a vertically extending web and a flange continuous to the lower end of the web, and a position corresponding to the notch of the horizontal rib. The flanges are cut and formed, and the webs of the horizontal ribs and the longitudinal ribs are welded together along the notches in a state where the webs of the longitudinal ribs are inserted into the notches of the lateral ribs. It is characterized by being.

以上の本発明によれば、横リブに複数の切り欠きを形成し、これらの切り欠きに縦リブを挿通することで、横リブを1枚ものの通しで製作できるとともに、縦リブに関しても横リブとの交差部で切断されずに、縦リブのウェブを通しで製作することができる。そして、フランジを切り欠いた縦リブを横リブの切り欠きに挿通して互いに交差させ、この交差部において互いのウェブ同士を溶接することで一体に接合でき、製作に要する工数や溶接箇所数(溶接長さ)を削減することができるとともに、部材数量の増加を抑制することができる。
また、縦リブのフランジを切り欠いたことで、横リブに設ける切り欠きの幅寸法を縦リブのフランジ幅とは無関係に設定することができる。従って、横リブの切り欠きの幅寸法を縦リブのウェブを挿通させるのに必要な最小限の寸法に設定することで、横リブとデッキプレートとの溶接部における発生応力を低減することができる。さらに、縦リブのウェブ上端縁とデッキプレートとを両面隅肉溶接で接合することで、縦リブとデッキプレートとの溶接部における疲労損傷も防止できる。
また、縦リブとして略逆T字形または略L字形の断面を有した鋼材を用いたことで、従来のUリブや平板リブ、バルブリブ等のような部材高さ寸法の制約がなくなり、縦リブの高さ寸法を適宜設定することで、横リブとの溶接接合長さを確保することができ、縦リブと横リブとの溶接部における疲労損傷も防止できる。さらに、縦リブの高さ寸法を大きくすることで横リブ同士の間隔寸法を長くすることができ、このような横リブ間隔の大スパン化によって、部材数を削減することができるとともに、溶接箇所の削減により疲労き裂の発生可能性を低減させることができる。
According to the present invention as described above, a plurality of notches are formed in the horizontal ribs, and the vertical ribs are inserted into these notches, so that the horizontal rib can be manufactured through a single piece. It is possible to manufacture through a web of vertical ribs without being cut at the intersection with. And the vertical rib which notched the flange was inserted in the notch of the horizontal rib, and it mutually crossed, and it can join together by welding each other's webs in this intersection, and the man-hour and number of welding locations ( (Welding length) can be reduced, and an increase in the number of members can be suppressed.
Further, by notching the flange of the vertical rib, the width dimension of the notch provided in the horizontal rib can be set regardless of the flange width of the vertical rib. Therefore, by setting the width dimension of the notch of the lateral rib to the minimum dimension necessary for inserting the web of the longitudinal rib, it is possible to reduce the generated stress in the welded portion between the lateral rib and the deck plate. . Furthermore, the fatigue damage in the welding part of a vertical rib and a deck plate can also be prevented by joining the web upper end edge of a vertical rib and a deck plate by double-sided fillet welding.
Further, by using a steel material having a substantially inverted T-shaped or substantially L-shaped cross section as the vertical rib, there is no restriction on the height of members such as conventional U ribs, flat ribs, valve ribs, etc. By appropriately setting the height dimension, it is possible to secure the welded joint length with the lateral rib, and it is possible to prevent fatigue damage at the welded portion between the longitudinal rib and the lateral rib. Furthermore, by increasing the height dimension of the vertical ribs, the distance between the horizontal ribs can be lengthened, and by increasing the span between the horizontal ribs, the number of members can be reduced, and the welding location can be reduced. By reducing this, the possibility of occurrence of fatigue cracks can be reduced.

この際、本発明の鋼床版では、前記横リブ同士の間隔が3m以上かつ8m以下の範囲に設定されていることが好ましい。
ここで、横リブ同士の間隔(横リブのスパン)を8m以下に設定したのは、大型車両の前後輪間隔が8m程度であることから、横リブの1スパン内に前後輪の両方が位置しないようにするためであり、このような条件下であれば、横リブや縦リブ、デッキプレート、これらの溶接接合部に発生する応力は、前記非特許文献2等で報告されたものから大きく乖離することがなく、前述した本発明の作用効果を得ることができる。
さらに、本発明の鋼床版では、前記横リブの切り欠きの幅寸法が前記縦リブのフランジの幅寸法よりも小さく設定されていることが好ましい。
また、本発明の鋼床版では、前記横リブの切り欠きの下端部には、前記縦リブのフランジよりも大きな幅寸法を有した幅広のスカラップが形成され、前記切り欠かれた縦リブのフランジ同士が前記スカラップに挿通された添え板を介して連結されていてもよい。
さらに、本発明の鋼床版では、前記横リブのウェブと前記縦リブのフランジとが添え板を介して接合されていてもよい。
このように添え板を介して縦リブのフランジ同士あるいは横リブのウェブと縦リブのフランジとを連結すれば、縦リブや横リブに発生する応力が添え板により分散されて、前記各溶接部の疲労寿命を向上させることができる。ここで、縦リブや横リブと添え板との接合は、溶接によるものでもよく、またボルト−ナット接合によるものでもよい。
At this time, in the steel slab of the present invention, it is preferable that the interval between the lateral ribs is set in a range of 3 m or more and 8 m or less.
Here, the distance between the horizontal ribs (the span of the horizontal ribs) is set to 8 m or less because the distance between the front and rear wheels of a large vehicle is about 8 m, so both the front and rear wheels are located within one span of the horizontal ribs. Under such conditions, the stresses generated in the transverse ribs, the longitudinal ribs, the deck plate, and their welded joints are significantly larger than those reported in Non-Patent Document 2 and the like. The above-described effects of the present invention can be obtained without any deviation.
Furthermore, in the steel slab of the present invention, it is preferable that the width dimension of the notch of the horizontal rib is set smaller than the width dimension of the flange of the vertical rib.
Further, in the steel slab of the present invention, a wide scallop having a larger width dimension than the flange of the vertical rib is formed at the lower end portion of the notch of the horizontal rib, and the notch of the vertical rib notched is formed. The flanges may be connected to each other through an attachment plate inserted through the scallop.
Furthermore, in the steel slab of the present invention, the web of the horizontal rib and the flange of the vertical rib may be joined via an attachment plate.
If the flanges of the longitudinal ribs or the webs of the lateral ribs and the flanges of the longitudinal ribs are connected to each other through the attachment plate in this way, the stress generated in the longitudinal ribs and the transverse ribs is dispersed by the attachment plate, and the welds The fatigue life of can be improved. Here, the joining of the longitudinal ribs or the transverse ribs and the accessory plate may be by welding or by bolt-nut joining.

一方、本発明の請求項6に記載の鋼床版の製造方法は、主桁に支持される複数の横リブと、この横リブに交差して支持される複数の縦リブと、これらの横リブおよび縦リブの上側に溶接固定されるデッキプレートとを備えた鋼床版の製造方法であって、前記横リブは、上下に延びるウェブを少なくとも有し、前記縦リブは、上下に延びるウェブと、このウェブの下端部に連続するフランジとから略逆T字形または略L字形の断面を有してそれぞれ形成されたものであり、前記横リブのウェブに上方に開口して下方に延びる複数の切り欠きを形成し、前記横リブの切り欠きに対応した位置の前記縦リブのフランジを切り欠いてから、前記横リブの切り欠きに前記縦リブのウェブを挿通し、当該横リブおよび縦リブのウェブ同士を前記切り欠きに沿って溶接接合することを特徴とする。
このような構成によれば、前述と同様に、横リブと縦リブとの組み立てに要する工数や溶接箇所数(溶接長さ)を削減することができるとともに、縦リブと横リブとの溶接部や、縦リブおよび横リブとデッキプレートとの溶接部における疲労損傷を防止することができる。
On the other hand, the method for producing a steel slab according to claim 6 of the present invention includes a plurality of horizontal ribs supported by the main girder, a plurality of vertical ribs supported by crossing the horizontal ribs, and the horizontal ribs. A method of manufacturing a steel slab comprising a rib and a deck plate welded and fixed to the upper side of the vertical rib, wherein the horizontal rib has at least a web extending vertically, and the vertical rib is a web extending vertically And a flange continuous with the lower end of the web, each having a substantially inverted T-shaped or substantially L-shaped cross section, each having a plurality of openings that open upward in the web of the lateral rib and extend downward. A notch is formed, and a flange of the longitudinal rib is cut out at a position corresponding to the notch of the transverse rib, and then the web of the longitudinal rib is inserted into the notch of the transverse rib, and the transverse rib and the longitudinal rib are inserted. Ribbed webs in the notch Characterized by welding I.
According to such a configuration, as described above, it is possible to reduce the number of man-hours and the number of welds (welding length) required for assembling the horizontal ribs and the vertical ribs, and to weld the vertical ribs and the horizontal ribs. In addition, it is possible to prevent fatigue damage in the welded portion between the vertical rib and the horizontal rib and the deck plate.

この際、本発明の鋼床版の製造方法では、前記横リブの切り欠きを形成する際に、その切り欠きの下端部に前記縦リブのフランジよりも大きな幅寸法を有した幅広のスカラップを形成しておき、前記横リブの切り欠きに前記縦リブのウェブを挿通してから、前記切り欠かれた縦リブのフランジ同士を前記スカラップに挿通した添え板を介して連結することが好ましい。
さらに、本発明の鋼床版の製造方法では、前記横リブの切り欠きに前記縦リブのウェブを挿通してから、前記横リブのウェブと前記縦リブのフランジとを添え板を介して接合してもよい。
このような構成によれば、縦リブと横リブとの溶接部や、縦リブおよび横リブとデッキプレートとの溶接部等に発生する応力を添え板により分散させることができ、各溶接部の疲労寿命を向上させることができる。
In this case, in the method for producing a steel slab of the present invention, when forming the notch of the horizontal rib, a wide scallop having a width dimension larger than the flange of the vertical rib is formed at the lower end of the notch. Preferably, the web of the vertical rib is inserted into the notch of the horizontal rib, and the flanges of the notched vertical rib are connected to each other via an attachment plate inserted into the scallop.
Further, in the method for manufacturing a steel slab according to the present invention, the web of the vertical rib is inserted into the notch of the horizontal rib, and then the web of the horizontal rib and the flange of the vertical rib are joined via an attachment plate. May be.
According to such a configuration, the stress generated in the welded portion between the vertical rib and the horizontal rib, the welded portion between the vertical rib and the horizontal rib and the deck plate, and the like can be dispersed by the attachment plate. The fatigue life can be improved.

以上のような本発明の鋼床版および鋼床版の製造方法によれば、横リブおよび縦リブとデッキプレートとの溶接部や縦リブと横リブとの溶接部における疲労き裂を防止して疲労寿命を向上させることができるとともに、縦リブの部材高さ寸法を大きく設定することによって横リブ間隔の大スパン化することができ、部材数量や製造工数の削減を図ってコスト増加を抑えることができる。   According to the steel slab and the manufacturing method of the steel slab of the present invention as described above, fatigue cracks are prevented in the welded portion between the transverse rib and the longitudinal rib and the deck plate and the welded portion between the longitudinal rib and the transverse rib. In addition to improving the fatigue life, it is possible to increase the span between the horizontal ribs by setting the vertical height of the member height of the vertical ribs, thereby reducing the number of members and manufacturing man-hours, thereby reducing the cost increase. be able to.

以下、本発明の実施形態を図面に基づいて説明する。
図1は、本発明の実施形態に係る鋼床版1を用いた道路橋の一部を示す斜視図である。 図1において、道路橋は、図示しない基礎や支柱からなる下部工と、支柱間に渡って架設される鋼製の主桁2と、一対の主桁2間に支持される中間部の鋼床版1および主桁2の両側方に支持される片持ち状の鋼床版1とを有して構成されている。そして、鋼床版1は、主桁2に支持される複数の横リブ3と、この横リブ3に交差して支持される複数の縦リブ4と、これらの横リブ3および縦リブ4の上側に溶接固定されるデッキプレート5とを備えて構成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a perspective view showing a part of a road bridge using a steel deck 1 according to an embodiment of the present invention. In FIG. 1, the road bridge is composed of a substructure consisting of a foundation and a pillar (not shown), a steel main girder 2 installed between the pillars, and an intermediate steel floor supported between the pair of main girder 2. A plate 1 and a cantilevered steel floor plate 1 supported on both sides of the main girder 2 are provided. The steel deck 1 includes a plurality of horizontal ribs 3 supported by the main girder 2, a plurality of vertical ribs 4 supported so as to intersect the horizontal ribs 3, and the horizontal ribs 3 and the vertical ribs 4. The deck plate 5 is fixed to the upper side by welding.

図2は、鋼床版1における横リブ3および縦リブ4の組立前の状態を示す斜視図である。図3は、横リブ3および縦リブ4を一体化した状態を示す斜視図である。図4は、鋼床版1を縦リブ4側方から見た断面図である。
図2および図3において、鋼床版1の横リブ3は、上下に延びるウェブ3Aと、このウェブ3Aの下端部に一体化されたフランジ3Bとを有した略逆T字形に形成されており、横リブ3のウェブ3Aには、上方に開口して下方に延びる複数の切り欠き3Cが形成されている。また、縦リブ4は、上下に延びるウェブ4Aと、このウェブ4Aの下端部に連続するフランジ4Bとから略逆T字形(または略L字形)の断面を有して形成されている。この縦リブ4のフランジ4Bは、横リブ3の切り欠き3Cに対応した位置おいて切り欠かれ、この切り欠かれた切欠部4Cを挟んで左右に分割されている。
FIG. 2 is a perspective view showing a state before assembly of the horizontal rib 3 and the vertical rib 4 in the steel deck 1. FIG. 3 is a perspective view showing a state in which the horizontal rib 3 and the vertical rib 4 are integrated. FIG. 4 is a cross-sectional view of the steel deck 1 viewed from the side of the vertical rib 4.
2 and 3, the horizontal rib 3 of the steel slab 1 is formed in a substantially inverted T shape having a web 3A extending vertically and a flange 3B integrated with the lower end of the web 3A. The web 3A of the lateral rib 3 is formed with a plurality of cutouts 3C that open upward and extend downward. Further, the vertical rib 4 is formed to have a substantially inverted T-shaped (or substantially L-shaped) cross section from a web 4A extending vertically and a flange 4B continuous to the lower end portion of the web 4A. The flange 4B of the vertical rib 4 is cut out at a position corresponding to the cutout 3C of the horizontal rib 3, and is divided into left and right sides with the cutout portion 4C interposed therebetween.

そして、縦リブ4は、その切欠部4Cの位置からウェブ4Aが横リブ3の切り欠き3Cに挿通され、この挿通された状態で横リブ3および縦リブ4のウェブ3A,4A同士が切り欠き3Cに沿って片面隅肉溶接され(溶接部W1)、この溶接接合により横リブ3と縦リブ4とが一体化されている。さらに、図4に示すように、横リブ3および縦リブ4のウェブ3A,4A上端縁と、デッキプレート5の下面とが両面隅肉溶接され(溶接部W2,W3)、この溶接接合により横リブ3および縦リブ4とデッキプレート5とが一体化されている。   The vertical rib 4 has the web 4A inserted into the notch 3C of the horizontal rib 3 from the position of the notch 4C, and the web 3A and 4A of the horizontal rib 3 and the vertical rib 4 are notched in this inserted state. Single-sided fillet welding is performed along 3C (welded portion W1), and the transverse rib 3 and the longitudinal rib 4 are integrated by this welding joint. Further, as shown in FIG. 4, the upper edges of the webs 3A, 4A of the horizontal rib 3 and the vertical rib 4 and the bottom surface of the deck plate 5 are welded on both sides (welded portions W2, W3). The rib 3 and the vertical rib 4 and the deck plate 5 are integrated.

横リブ3の切り欠き3Cは、縦リブ4のウェブ4Aの板厚よりも所定寸法(例えば、15〜35mm)だけ大きく、かつ縦リブ4のフランジ4Bの幅寸法よりも十分に小さな幅寸法を有した溝状に形成されている。そして、切り欠き3Cの下端部には、スカラップ3Dが形成されている。また、縦リブ4と横リブ3とは、縦リブ4のウェブ4Aの一方の側面が切り欠き3Cの一方の端縁に近接し、ウェブ4Aの他方の側面が切り欠き3Cの他方の端縁から前記所定寸法と略同一距離だけ離れた状態で、縦リブ4のウェブ4Aにおける一方の側面と横リブ3のウェブ3Aとが切り欠き3Cの一方の端縁に沿って溶接接合されている。   The notch 3C of the horizontal rib 3 has a width dimension that is larger than the plate thickness of the web 4A of the vertical rib 4 by a predetermined dimension (for example, 15 to 35 mm) and sufficiently smaller than the width dimension of the flange 4B of the vertical rib 4. It has a groove shape. And the scallop 3D is formed in the lower end part of the notch 3C. The vertical rib 4 and the horizontal rib 3 are such that one side surface of the web 4A of the vertical rib 4 is close to one end edge of the notch 3C, and the other side surface of the web 4A is the other end edge of the notch 3C. The side surface of the web 4A of the vertical rib 4 and the web 3A of the horizontal rib 3 are welded together along one edge of the cutout 3C in a state of being approximately the same distance as the predetermined dimension.

このような鋼床版1の組立手順としては、先ず、図2に示すように、横リブ3のウェブ3Aに複数の切り欠き3Cを形成しておくとともに、縦リブ4のフランジ4Bを切り欠かいて切欠部4Cを形成しておく。次に、フランジ4Bを上にした複数の縦リブ4を、図示しない多電極溶接装置に設置したデッキプレート5上に位置決めし、多電極溶接装置の複数の溶接電極(トーチ)を用いて縦リブ4の4Aの上端縁とデッキプレート5とを両面隅肉溶接して接合する(溶接部W3)。次に、これらの縦リブ4上方から切り欠き3Cを下に向けた横リブ3を吊り込み、切り欠き3Cを縦リブ4の切欠部4Cから挿通する。この際、切り欠き3Cの幅寸法が前記所定寸法だけ縦リブ4のウェブ4Aの板厚よりも大きく設定されていることで、横リブ3の切り欠き3Cと縦リブ4のウェブ4Aとの干渉が回避でき、スムーズに横リブ3をセットできるようになっている。以上のように縦リブ4および横リブ3を位置決めした状態で、多電極溶接装置を用いて横リブ3のウェブ3A上端縁とデッキプレート5とを両面隅肉溶接接合してから(溶接部W2)、図3に示すように、溶接部W1を溶接して横リブ3と縦リブ4とを接合する。   As an assembly procedure of such a steel floor slab 1, first, as shown in FIG. 2, a plurality of notches 3C are formed in the web 3A of the lateral rib 3 and the flange 4B of the longitudinal rib 4 is notched. The notch 4C is formed. Next, the plurality of vertical ribs 4 with the flange 4B facing up are positioned on a deck plate 5 installed in a multi-electrode welding apparatus (not shown), and the vertical ribs are used by using a plurality of welding electrodes (torches) of the multi-electrode welding apparatus. 4 4A upper end edge and the deck plate 5 are joined by double-sided fillet welding (welded portion W3). Next, the horizontal rib 3 with the notch 3C facing downward is suspended from above the vertical rib 4 and the notch 3C is inserted from the notch 4C of the vertical rib 4. At this time, the width dimension of the notch 3C is set larger than the plate thickness of the web 4A of the vertical rib 4 by the predetermined dimension, so that the notch 3C of the horizontal rib 3 and the web 4A of the vertical rib 4 interfere with each other. Can be avoided, and the horizontal rib 3 can be set smoothly. After positioning the vertical rib 4 and the horizontal rib 3 as described above, the web 3A upper edge of the horizontal rib 3 and the deck plate 5 are welded to both sides by using a multi-electrode welding apparatus (welded portion W2). 3), the welded portion W1 is welded to join the horizontal rib 3 and the vertical rib 4 as shown in FIG.

以上の鋼床版1によれば、横リブ3に複数の切り欠き3Cが形成され、これらの切り欠き3Cに縦リブ4のウェブ4Aを挿通することで、横リブ3を1枚ものの通しで製作できるとともに、縦リブ4に関しても横リブ3との交差部で切断されずに、縦リブ4のウェブ4Aを通しで製作することができる。そして、縦リブ4のフランジ4Bを切り欠いた切欠部4Cから横リブ3の切り欠き3Cを挿通し、横リブ3および縦リブ4の互いのウェブ3A,4A同士を溶接して一体化することで、製作に要する工数や溶接箇所数(溶接長さ)を削減することができる。   According to the steel plate 1 described above, a plurality of cutouts 3C are formed in the horizontal ribs 3, and the web 4A of the vertical ribs 4 is inserted into these cutouts 3C, so that a single piece of the horizontal rib 3 can be passed through. The vertical rib 4 can be manufactured through the web 4 </ b> A of the vertical rib 4 without being cut at the intersection with the horizontal rib 3. And the notch 3C of the horizontal rib 3 is inserted from the notch part 4C which notched the flange 4B of the vertical rib 4, and the mutual webs 3A and 4A of the horizontal rib 3 and the vertical rib 4 are welded and integrated. Thus, the man-hours required for production and the number of welding points (welding length) can be reduced.

また、縦リブ4のフランジ3Bが切り欠かれているので、横リブ3の切り欠き3Cの幅寸法を、縦リブ4のウェブ4Aを挿通させつつ、設置の際のクリアランスを確保した最小限の寸法に設定することができる。従って、横リブ3のウェブ3A上端縁とデッキプレート5との溶接されない部分の幅を最小限にして溶接長さが確保でき、横リブ3とデッキプレート5との溶接部における疲労損傷が防止できる。さらに、横リブ3および縦リブ4のウェブ3A,4A上端縁とデッキプレート5とを両面隅肉溶接で接合することで、この溶接部W2,W3における疲労損傷も防止できる。   In addition, since the flange 3B of the vertical rib 4 is cut out, the width dimension of the cutout 3C of the horizontal rib 3 is kept to the minimum while ensuring the clearance during installation while inserting the web 4A of the vertical rib 4 Can be set to dimensions. Accordingly, the width of the portion of the lateral rib 3 that is not welded to the upper end edge of the web 3A and the deck plate 5 can be minimized to ensure the welding length, and fatigue damage at the welded portion between the lateral rib 3 and the deck plate 5 can be prevented. . Furthermore, by joining the web 3A, 4A upper end edge of the horizontal rib 3 and the vertical rib 4 and the deck plate 5 by double-sided fillet welding, fatigue damage in the welded portions W2, W3 can be prevented.

また、縦リブ4として略逆T字形や略L字形の断面を有した鋼材を用いたことで、従来のUリブや平板リブ、バルブリブ等のような部材高さ寸法の制約がなくなり、縦リブ4を大きな高さ寸法に設定することで、溶接部W1の長さ寸法を十分に確保して疲労損傷を防止することができるとともに、横リブ3同士の間隔寸法(スパン)を長くすることができる。このような横リブ3,3間隔の大スパン化によって、部材数を削減することができるとともに、溶接箇所の削減により疲労き裂の発生可能性を低減させることができる。   Further, by using a steel material having a substantially inverted T-shaped or substantially L-shaped cross section as the vertical rib 4, there is no restriction on the height of members such as conventional U ribs, flat ribs, valve ribs, etc. By setting 4 to a large height dimension, the length dimension of the welded portion W1 can be sufficiently secured to prevent fatigue damage, and the distance dimension (span) between the lateral ribs 3 can be increased. it can. By increasing the span between the lateral ribs 3 and 3, the number of members can be reduced, and the possibility of occurrence of fatigue cracks can be reduced by reducing the number of welds.

なお、本実施形態における鋼床版1は、以上の形態に限らず、以下の図5〜図9に示すような各種の形態が適用可能である。
図5〜図9は、それぞれ本実施形態における鋼床版1の変形例を示す断面図である。
図5において、縦リブ4の切欠部4Cを挟んで分割されたフランジ4B,4B同士は、添え板6Aによって連結されている。この添え板6Aは、フランジ4Bと略同一の幅寸法を有した板材であり、横リブ3のスカラップ3Dに挿通されて横リブ3のウェブ3Aの左右両側に跨って配置されている。この場合、横リブ3のスカラップ3Dは、添え板6Aを挿通可能な幅寸法、つまり縦リブ4のフランジ4Bよりも大きな幅寸法を有した幅広に形成されている。そして、添え板6Aの両端部と各フランジ4B,4Bとは、溶接接合によって連結されている。
In addition, the steel deck 1 in this embodiment is not limited to the above form, and various forms as shown in FIGS. 5 to 9 below can be applied.
5-9 is sectional drawing which shows the modification of the steel deck 1 in this embodiment, respectively.
In FIG. 5, the flanges 4B and 4B divided across the notch 4C of the vertical rib 4 are connected to each other by an attachment plate 6A. The attachment plate 6A is a plate material having substantially the same width as the flange 4B, and is inserted over the left and right sides of the web 3A of the horizontal rib 3 by being inserted into the scallop 3D of the horizontal rib 3. In this case, the scallop 3D of the lateral rib 3 is formed to be wide with a width dimension that allows insertion of the accessory plate 6A, that is, a width dimension larger than the flange 4B of the longitudinal rib 4. Then, both end portions of the attachment plate 6A and the flanges 4B and 4B are connected by welding.

図6において、縦リブ4の切欠部4Cを挟んで分割されたフランジ4B,4B同士は、一対の添え板6B,6Bと、ボルト7A、ナット7Bによって連結されている。これらの添え板6B,6Bは、フランジ4Bを上下から挟んで配置される板材であり、横リブ3のスカラップ3Dに挿通されて横リブ3のウェブ3Aの左右両側に跨って配置されている。この場合にも、横リブ3のスカラップ3Dは、添え板6B,6Bを挿通可能な幅寸法を有した幅広に形成されている。そして、添え板6B,6Bの両端部と各フランジ4B,4Bとは、ボルト7Aおよびナット7Bを緊結することで連結されている。   In FIG. 6, the flanges 4B and 4B divided across the notch 4C of the vertical rib 4 are connected to each other by a pair of accessory plates 6B and 6B, a bolt 7A, and a nut 7B. These attachment plates 6B and 6B are plate members arranged with the flange 4B sandwiched from above and below, and are inserted across the left and right sides of the web 3A of the horizontal rib 3 through the scallop 3D of the horizontal rib 3. Also in this case, the scallop 3D of the lateral rib 3 is formed wide with a width dimension capable of being inserted through the accessory plates 6B and 6B. Then, both end portions of the attachment plates 6B and 6B and the flanges 4B and 4B are connected by fastening bolts 7A and nuts 7B.

図7において、縦リブ4の切欠部4Cを挟んで分割された各フランジ4B,4Bと横リブ3のウェブ3Aとは、一対の添え板6Cによって連結されている。この添え板6Cは、フランジ4Bと略同一の幅寸法を有して全体L字形に形成された鋼材であり、縦リブ4のフランジ4B下面と横リブ3のウェブ3A側面とに当接して配置されている。そして、フランジ4Bおよびウェブ3Aの各々に添え板6Cを溶接接合することで、これらのフランジ4Bとウェブ3Aとが連結されている。この場合には、図5、図6のように、横リブ3のスカラップ3Dを幅広に形成する必要はない。
また、図8において、縦リブ4のフランジ4Bと横リブ3のウェブ3Aとは、図7と同様の添え板6Cとボルト7A、ナット7Bとによって連結されている。
In FIG. 7, the flanges 4B and 4B divided across the notch 4C of the vertical rib 4 and the web 3A of the horizontal rib 3 are connected by a pair of auxiliary plates 6C. This splicing plate 6C is a steel material having a substantially the same width dimension as the flange 4B and formed in an L shape as a whole, and is disposed in contact with the lower surface of the flange 4B of the vertical rib 4 and the side surface of the web 3A of the horizontal rib 3. Has been. The flange 4B and the web 3A are connected to each other by welding the splicing plate 6C to each of the flange 4B and the web 3A. In this case, it is not necessary to form the scallop 3D of the lateral rib 3 wide as shown in FIGS.
Further, in FIG. 8, the flange 4B of the vertical rib 4 and the web 3A of the horizontal rib 3 are connected by the same attachment plate 6C, bolt 7A and nut 7B as in FIG.

図9において、分割された縦リブ4のフランジ4B,4B同士は、図5と同様の添え板6Aによって連結されるとともに、縦リブ4のフランジ4Bと横リブ3のウェブ3Aとは、図7と同様の添え板6Cによって連結されている。この場合には、図5、図6と同様に、横リブ3のスカラップ3Dは、添え板6Aを挿通可能な幅寸法を有した幅広に形成されている。
以上の図5〜図9に示したように、添え板6A,6Bを用いて縦リブ4のフランジ4B,4B同士を連結したり、添え板6Cを用いて縦リブ4のフランジ4Bと横リブ3のウェブ3Aとを連結することで、横リブ3および縦リブ4のウェブ3A,4A同士の溶接部W1に発生する応力を分散させることができ、溶接部W1の疲労寿命を向上させることができる。
In FIG. 9, the flanges 4B and 4B of the divided vertical ribs 4 are connected to each other by an attachment plate 6A similar to FIG. 5, and the flange 4B of the vertical ribs 4 and the web 3A of the horizontal ribs 3 are as shown in FIG. It is connected by the same attaching plate 6C. In this case, as in FIGS. 5 and 6, the scallop 3D of the lateral rib 3 is formed wide with a width dimension capable of inserting the accessory plate 6A.
As shown in FIGS. 5 to 9, the flanges 4B and 4B of the vertical rib 4 are connected to each other using the auxiliary plates 6A and 6B, or the flange 4B and the horizontal rib of the vertical rib 4 are connected to each other using the auxiliary plate 6C. By connecting the three webs 3A, the stress generated in the welds W1 between the webs 3A and 4A of the horizontal ribs 3 and the vertical ribs 4 can be dispersed, and the fatigue life of the welds W1 can be improved. it can.

以上の鋼床版1において、各部寸法や設計仕様としては、以下のように設定されることが望ましい。
すなわち、デッキプレート5としては、板厚寸法Tが16〜19mmの範囲に設定され、縦リブ4としては、高さ寸法Hが350〜700mmの範囲に設定され、かつフランジ4Bの幅寸法が200mm程度に設定されていることが好ましい。また、縦リブ4同士の間隔寸法L1が400〜500mmの範囲に設定され、横リブ3同士の間隔寸法(横リブスパン)L2が3000〜8000mm(3m以上かつ8m以下)の範囲に設定されていることが好ましい。ここで、例えば、デッキプレート5、横リブ3および縦リブ4の板厚寸法Tを18mmに設定し、縦リブ4の高さ寸法Hを500mmに設定し、縦リブ4同士の間隔寸法L1を450mmに設定し、横リブ3同士の間隔寸法(横リブスパン)L2を4000mmに設定した場合でも、横リブ3と縦リブ4との交差部つまり溶接部W1位置に過大な応力が発生しないようになっている。すなわち、溶接部W1位置の発生応力が4kgf/mm2(40MPa)程度以下となるように、上述の各部寸法が設定されることが好ましい。
In the steel slab 1 described above, it is desirable that the dimensions and design specifications are set as follows.
That is, the thickness T of the deck plate 5 is set in the range of 16 to 19 mm, the height H of the longitudinal rib 4 is set in the range of 350 to 700 mm, and the width of the flange 4B is 200 mm. It is preferable that the degree is set. Further, the interval dimension L1 between the vertical ribs 4 is set in a range of 400 to 500 mm, and the interval dimension (lateral rib span) L2 between the horizontal ribs 3 is set in a range of 3000 to 8000 mm (3 m or more and 8 m or less). It is preferable. Here, for example, the plate thickness dimension T of the deck plate 5, the horizontal rib 3 and the vertical rib 4 is set to 18 mm, the height dimension H of the vertical rib 4 is set to 500 mm, and the distance dimension L1 between the vertical ribs 4 is set. Even when the distance between the horizontal ribs 3 (horizontal rib span) L2 is set to 4000 mm when the distance is set to 450 mm, excessive stress is not generated at the intersection of the horizontal rib 3 and the vertical rib 4, that is, at the position of the welded portion W1. It has become. That is, it is preferable that the dimensions of the respective parts described above are set so that the generated stress at the position of the welded part W1 is about 4 kgf / mm 2 (40 MPa) or less.

また、縦リブ4の高さ寸法Hおよび縦リブ4同士の間隔寸法L1としては、縦リブ4の間隔部分に多電極溶接機のトーチが入るように設定されることが好ましく、例えば、縦リブ4の高さ寸法Hを580mm以下、かつ間隔寸法L1を450mm程度に設定しておけば、溶接作業を自動で実施する上で問題が生じない。さらに、縦リブ4同士の間隔寸法L1としては、縦リブ4同士の間隔部分上方に車両の車輪が入り込まないように、つまり車輪がいずれかの縦リブ4上に位置するように設定することが好ましく、車輪としてWタイヤを対象とした場合に、縦リブ4同士の間隔寸法L1を500mm以下に設定しておけば、デッキプレート5における過大な応力の発生が防止できる。また、横リブ3同士の間隔寸法(横リブスパン)L2としては、大型車両の前後輪が同一スパン内に入り込まないように設定することが好ましく、一般的な大型車両の前後輪間隔を対象とした場合に、横リブ3同士の間隔寸法L2を8000mm以下に設定しておけば、デッキプレート5や縦リブ4、横リブ3、およびこれらの接合位置における過大な応力の発生が防止できる。   Moreover, it is preferable that the height dimension H of the vertical ribs 4 and the distance dimension L1 between the vertical ribs 4 are set so that the torch of the multi-electrode welder enters the space between the vertical ribs 4. If the height dimension H of 4 is set to 580 mm or less and the distance dimension L1 is set to about 450 mm, no problem arises when the welding operation is automatically performed. Further, the distance L1 between the vertical ribs 4 is set so that the vehicle wheel does not enter above the distance between the vertical ribs 4, that is, the wheel is positioned on one of the vertical ribs 4. Preferably, when a W tire is used as a wheel, if the distance L1 between the vertical ribs 4 is set to 500 mm or less, generation of excessive stress in the deck plate 5 can be prevented. Moreover, it is preferable to set the distance dimension (lateral rib span) L2 between the lateral ribs 3 so that the front and rear wheels of the large vehicle do not enter the same span, and the distance between the front and rear wheels of a general large vehicle is targeted. In this case, if the distance L2 between the horizontal ribs 3 is set to 8000 mm or less, it is possible to prevent the generation of excessive stress at the deck plate 5, the vertical ribs 4, the horizontal ribs 3, and their joining positions.

以上のように、本発明では、構造を工夫することによって発生応力を低減している。しかしながら、製作や溶接の不具合、設計ミスなどにより、構造が狙ったものにならずに、疲労が完全には防止できない場合も生じる可能性もありうる。そのようなときに、溶接部に対してグラインダー処理やピーニングを施すことは、疲労の防止に極めて有効である。
特に、近年、使用されるようになってきた超音波を駆動源としたピーニングは、使用性に優れ、また、打撃密度が従来のピーニングなどに比較して極めて大きいために、処理部位の均一性が著しく高く、確実に溶接止端部からの疲労き裂の発生防止に有効である。中でも超音波の周波数帯が20〜60kHzで、ウエーブガイドの先端での振幅が20μm以上、ピン径が1〜6mm程度のものが、処理効率及び効果が共に高いために好適である。
そして、従来のUリブ鋼床版構造では、Uリブが閉断面となっていたために、Uリブとデッキプレートの溶接部は処理が出来なかった。これに対して、本発明の構造は開断面リブを用いており、しかも、従来のUリブ構造よりも縦リブ間隔も横リブ間隔も広がっているために、ピーニングやグラインダーを施す上でも有利であり、基本的に処理のできない部位はない。
As described above, in the present invention, the generated stress is reduced by devising the structure. However, there may be a case where fatigue is not completely prevented because the structure is not aimed, due to manufacturing or welding defects, design mistakes, and the like. In such a case, applying a grinder process or peening to the welded portion is extremely effective in preventing fatigue.
In particular, peening using ultrasound as a driving source, which has been used in recent years, is excellent in usability and has a much higher impact density than conventional peening, etc. Is extremely high, and is effective in reliably preventing the occurrence of fatigue cracks from the weld toe. Among them, the ultrasonic frequency band of 20 to 60 kHz, the amplitude at the tip of the wave guide of 20 μm or more, and the pin diameter of about 1 to 6 mm are preferable because both processing efficiency and effect are high.
In the conventional U-rib steel slab structure, since the U-rib has a closed cross section, the welded portion between the U-rib and the deck plate cannot be processed. On the other hand, the structure of the present invention uses open cross-section ribs, and the vertical rib interval and the horizontal rib interval are wider than the conventional U rib structure, which is advantageous in applying peening and grinder. There is basically no part that cannot be processed.

以下に、前記実施形態で説明した鋼床版1の設計モデル(FEM)による応力解析を実施し、溶接部W1における疲労性能を検討した例(第1〜第5実施例、第1比較例および第1参考例)について説明する。
鋼床版1の設計モデルは、図10〜図12に示すように、前記実施形態の鋼床版1をモデル化した鋼床版M1は、主桁2をモデル化した主桁M2と、横リブ3をモデル化した横リブM3と、縦リブ4をモデル化したM4と、デッキプレート5をモデル化したM5とを有して構成されたものである。そして、図10〜図12において、縦リブM4同士の間隔寸法がL1、横リブM3同士の間隔寸法(横リブスパン)がL2、縦リブM4の高さ寸法がHで示されている。
Below, the stress analysis by the design model (FEM) of the steel deck 1 demonstrated by the said embodiment was implemented, and the fatigue performance in the welding part W1 was examined (a 1st-5th Example, a 1st comparative example, and The first reference example will be described.
As shown in FIGS. 10 to 12, the design model of the steel deck 1 is a steel deck M1 that models the steel deck 1 of the embodiment, and a main girder M2 that models the main girder 2, It is configured to have a horizontal rib M3 that models the rib 3, M4 that models the vertical rib 4, and M5 that models the deck plate 5. 10 to 12, the interval dimension between the vertical ribs M4 is indicated by L1, the interval dimension between the horizontal ribs M3 (lateral rib span) is indicated by L2, and the height dimension of the vertical rib M4 is indicated by H.

〔第1実施例〕
第1実施例の設計モデルは、図11に示す鋼床版M1であって、デッキプレートM5、横リブM3および縦リブM4の板厚寸法Tを18mmに設定し、縦リブM4の高さ寸法Hを340mmに設定し、縦リブM4同士の間隔寸法L1を450mmに設定し、横リブM3同士の間隔寸法L2を3000mmに設定したものである。そして、第1実施例の設計モデルでは、前記実施形態の図4に示すように、縦リブ4のフランジ4B,4B同士が連結されず、かつ縦リブ4のフランジ4Bと横リブ3のウェブ3Aも連結されていない。
[First embodiment]
The design model of the first embodiment is a steel deck M1 shown in FIG. 11, in which the plate thickness dimension T of the deck plate M5, the lateral rib M3 and the longitudinal rib M4 is set to 18 mm, and the height dimension of the longitudinal rib M4. H is set to 340 mm, the distance L1 between the vertical ribs M4 is set to 450 mm, and the distance L2 between the horizontal ribs M3 is set to 3000 mm. And in the design model of 1st Example, as shown in FIG. 4 of the said embodiment, the flanges 4B and 4B of the vertical rib 4 are not connected, and the flange 4B of the vertical rib 4 and the web 3A of the horizontal rib 3 are connected. Are not consolidated.

〔第2実施例〕
第2実施例の設計モデルは、図10に示す鋼床版M1であって、デッキプレートM5、横リブM3および縦リブM4の板厚寸法Tを18mmに設定し、縦リブM4の高さ寸法Hを500mmに設定し、縦リブM4同士の間隔寸法L1を450mmに設定し、横リブM3同士の間隔寸法L2を4000mmに設定したものである。そして、第2実施例の設計モデルでは、前記実施形態の図4に示すように、縦リブ4のフランジ4B,4B同士が連結されず、かつ縦リブ4のフランジ4Bと横リブ3のウェブ3Aも連結されていない。
[Second Embodiment]
The design model of the second embodiment is a steel deck M1 shown in FIG. 10, in which the plate thickness dimension T of the deck plate M5, the lateral rib M3 and the longitudinal rib M4 is set to 18 mm, and the height dimension of the longitudinal rib M4. H is set to 500 mm, the distance L1 between the vertical ribs M4 is set to 450 mm, and the distance L2 between the horizontal ribs M3 is set to 4000 mm. And in the design model of 2nd Example, as shown in FIG. 4 of the said embodiment, the flanges 4B and 4B of the vertical rib 4 are not connected, and the flange 4B of the vertical rib 4 and the web 3A of the horizontal rib 3 are connected. Are not consolidated.

〔第3実施例〕
第3実施例の設計モデルは、図10に示す鋼床版M1であって、デッキプレートM5、横リブM3および縦リブM4の板厚寸法Tを18mmに設定し、縦リブM4の高さ寸法Hを500mmに設定し、縦リブM4同士の間隔寸法L1を450mmに設定し、横リブM3同士の間隔寸法L2を4000mmに設定したものである。そして、第3実施例の設計モデルでは、前記実施形態の図5に示すように、縦リブ4のフランジ4B,4B同士が連結され、一方、縦リブ4のフランジ4Bと横リブ3のウェブ3Aとが連結されていない。
[Third embodiment]
The design model of the third embodiment is a steel deck M1 shown in FIG. 10, in which the plate thickness dimension T of the deck plate M5, the lateral rib M3 and the longitudinal rib M4 is set to 18 mm, and the height dimension of the longitudinal rib M4. H is set to 500 mm, the distance L1 between the vertical ribs M4 is set to 450 mm, and the distance L2 between the horizontal ribs M3 is set to 4000 mm. And in the design model of 3rd Example, as shown in FIG. 5 of the said embodiment, the flanges 4B and 4B of the vertical rib 4 are connected, while the flange 4B of the vertical rib 4 and the web 3A of the horizontal rib 3 are connected. And are not linked.

〔第4実施例〕
第4実施例の設計モデルは、図10に示す鋼床版M1であって、デッキプレートM5、横リブM3および縦リブM4の板厚寸法Tを18mmに設定し、縦リブM4の高さ寸法Hを500mmに設定し、縦リブM4同士の間隔寸法L1を450mmに設定し、横リブM3同士の間隔寸法L2を4000mmに設定したものである。そして、第4実施例の設計モデルでは、前記実施形態の図7に示すように、縦リブ4のフランジ4B,4B同士が連結されず、一方、縦リブ4のフランジ4Bと横リブ3のウェブ3Aとが連結さている。
[Fourth embodiment]
The design model of the fourth embodiment is a steel deck M1 shown in FIG. 10, in which the plate thickness dimension T of the deck plate M5, the lateral rib M3 and the longitudinal rib M4 is set to 18 mm, and the height dimension of the longitudinal rib M4. H is set to 500 mm, the distance L1 between the vertical ribs M4 is set to 450 mm, and the distance L2 between the horizontal ribs M3 is set to 4000 mm. And in the design model of 4th Example, as shown in FIG. 7 of the said embodiment, the flanges 4B and 4B of the vertical rib 4 are not connected, On the other hand, the flange 4B of the vertical rib 4 and the web of the horizontal rib 3 3A is connected.

〔第5実施例〕
第5実施例の設計モデルは、図10に示す鋼床版M1であって、デッキプレートM5、横リブM3および縦リブM4の板厚寸法Tを18mmに設定し、縦リブM4の高さ寸法Hを500mmに設定し、縦リブM4同士の間隔寸法L1を450mmに設定し、横リブM3同士の間隔寸法L2を4000mmに設定したものである。そして、第5実施例の設計モデルでは、前記実施形態の図9に示すように、縦リブ4のフランジ4B,4B同士が連結され、かつ縦リブ4のフランジ4Bと横リブ3のウェブ3Aも連結されている。
[Fifth embodiment]
The design model of the fifth embodiment is a steel deck M1 shown in FIG. 10, in which the plate thickness dimension T of the deck plate M5, the transverse rib M3 and the longitudinal rib M4 is set to 18 mm, and the height dimension of the longitudinal rib M4. H is set to 500 mm, the distance L1 between the vertical ribs M4 is set to 450 mm, and the distance L2 between the horizontal ribs M3 is set to 4000 mm. And in the design model of 5th Example, as shown in FIG. 9 of the said embodiment, the flanges 4B and 4B of the vertical rib 4 are connected, and the flange 4B of the vertical rib 4 and the web 3A of the horizontal rib 3 are also comprised. It is connected.

〔第1比較例〕
第1比較例の設計モデルは、図示しない鋼床版であって、デッキプレートの板厚寸法を12mmに設定し、縦リブとして横幅が320mmのUリブ(U320)を用い、横リブ同士の間隔寸法L2を2000mmに設定したものである。
[First Comparative Example]
The design model of the first comparative example is a steel floor slab (not shown), the deck plate thickness is set to 12 mm, U ribs (U320) having a horizontal width of 320 mm are used as vertical ribs, and the spacing between the horizontal ribs The dimension L2 is set to 2000 mm.

〔第1参考例〕
第1参考例の設計モデルは、図12に示す鋼床版M1であって、デッキプレートM5、横リブM3および縦リブM4の板厚寸法Tを18mmに設定し、縦リブM4の高さ寸法Hを190mmに設定し、縦リブM4同士の間隔寸法L1を450mmに設定し、横リブM3同士の間隔寸法L2を2000mmに設定したものである。そして、第1参考例の設計モデルでは、前記実施形態の図4に示すように、縦リブ4のフランジ4B,4B同士が連結されず、かつ縦リブ4のフランジ4Bと横リブ3のウェブ3Aも連結されていない。なお、第1参考例の設計モデルは、前述したような望ましい各部寸法や設計仕様の範囲からは逸脱するものの、本発明の技術範囲に含まれる形態である。
[First Reference Example]
The design model of the first reference example is a steel deck M1 shown in FIG. 12, in which the plate thickness dimension T of the deck plate M5, the lateral rib M3 and the longitudinal rib M4 is set to 18 mm, and the height dimension of the longitudinal rib M4. H is set to 190 mm, the distance L1 between the vertical ribs M4 is set to 450 mm, and the distance L2 between the horizontal ribs M3 is set to 2000 mm. In the design model of the first reference example, as shown in FIG. 4 of the above embodiment, the flanges 4B and 4B of the vertical rib 4 are not connected to each other, and the flange 4B of the vertical rib 4 and the web 3A of the horizontal rib 3 are used. Are not consolidated. The design model of the first reference example is a form included in the technical scope of the present invention, although it deviates from the range of the desired dimensions and design specifications as described above.

以上の第1、第2実施例および第1参考例について、応力解析を実施した結果として、縦リブM4と横リブM3との溶接部W1(図3参照)に発生する応力を図13に示す。図13において、縦軸は、デッキプレートM5からの高さ位置であり、横軸は、溶接部W1の発生応力である。また、図13において、第1参考例(横リブ間隔2000mm)の結果を黒塗り三角印(▲)で示し、第1実施例(横リブ間隔3000mm)の結果を黒塗り四角印(■)で示し、第2実施例(横リブ間隔4000mm)の結果を黒塗り菱形印(◆)で示す。
この図13から、第1参考例では、溶接部W1における発生応力が全高さ区間で3kgf/mm2 を超え、デッキプレートM5から略100mmの区間では、4kgf/mm2 を超えていることが解る。また、第1実施例では、溶接部W1における発生応力が全高さ区間で第1参考例よりも小さく、デッキプレートM5から50mm程度の区間で4kgf/mm2 を超えているものの、それ以外の区間では、4kgf/mm2 以下に収まっていることが解る。さらに、第2実施例では、溶接部W1における発生応力が全高さ区間で第1参考例よりも小さく、かつ全区間で4kgf/mm2 以下に収まっていることが解る。また、図示を省略するが、第3〜第5実施例のように、縦リブ4のフランジ4B,4B同士や、縦リブ4のフランジ4Bと横リブ3のウェブ3Aとを連結すれば、溶接部W1における発生応力が第1、第2実施例よりもさらに減少することは自明である。以上のことから、本発明の実施例では、溶接部W1の発生応力が概ね4kgf/mm2以下となり、前記設計仕様が満足できる。
FIG. 13 shows the stress generated in the welded portion W1 (see FIG. 3) between the vertical rib M4 and the horizontal rib M3 as a result of the stress analysis of the first and second examples and the first reference example. . In FIG. 13, the vertical axis represents the height position from the deck plate M5, and the horizontal axis represents the generated stress of the welded portion W1. Further, in FIG. 13, the result of the first reference example (horizontal rib interval 2000 mm) is indicated by a black triangle (▲), and the result of the first example (lateral rib interval 3000 mm) is indicated by a black square mark (■). The results of the second embodiment (lateral rib interval 4000 mm) are indicated by black diamonds (♦).
From FIG. 13, it can be seen that in the first reference example, the generated stress in the welded portion W1 exceeds 3 kgf / mm 2 in the entire height section and exceeds 4 kgf / mm 2 in the section approximately 100 mm from the deck plate M5. . Further, in the first embodiment, the generated stress in the welded portion W1 is smaller than that in the first reference example in the entire height section and exceeds 4 kgf / mm 2 in the section about 50 mm from the deck plate M5, but the other sections So it can be seen that remains below 4 kgf / mm 2. Furthermore, in the second embodiment, it can be seen that the generated stress in the welded portion W1 is smaller than that of the first reference example in the entire height section and is 4 kgf / mm 2 or less in the entire section. Although illustration is omitted, if the flanges 4B and 4B of the vertical rib 4 or the flange 4B of the vertical rib 4 and the web 3A of the horizontal rib 3 are connected as in the third to fifth embodiments, welding is performed. It is obvious that the generated stress in the portion W1 is further reduced as compared with the first and second embodiments. From the above, in the embodiment of the present invention, the generated stress of the welded portion W1 is approximately 4 kgf / mm 2 or less, and the design specifications can be satisfied.

また、第1〜第5実施例および第1比較例、第1参考例について、鋼床版M1の床面積1m2当たりの溶接箇所数と溶接量とを比較したところ、第1実施例の設計モデル(横リブ間隔3000mm)では、第1比較例と比較して溶接箇所数が56%程度に減少し、溶接量がほぼ同一となり、第1参考例と比較して溶接箇所数が35%程度に減少し、溶接量が58%程度に減少することが解った。また、第2〜第5実施例の設計モデル(横リブ間隔4000mm)では、第1比較例と比較して溶接箇所数が44%程度に減少し、溶接量が96%程度に減少し、第1参考例と比較して溶接箇所数が27%程度に減少し、溶接量が56%程度に減少することが解った。また、各部材の重量を積算した床面積1m2当たりの鋼材量については、第1〜第5実施例の設計モデルの方が第1比較例や第1参考例よりも若干だけ増加するものの差は僅かであり、溶接箇所数および溶接量の減少による加工工数の低減効果が大きいことが判明した。 Moreover, about the 1st-5th Example, a 1st comparative example, and a 1st reference example, when the number of welding locations per 1 m < 2 > of floor areas of the steel deck M1 and the welding amount were compared, design of 1st Example In the model (lateral rib interval 3000 mm), the number of welds is reduced to about 56% compared to the first comparative example, the welding amount is almost the same, and the number of welds is about 35% compared to the first reference example. It was found that the welding amount was reduced to about 58%. Further, in the design models of the second to fifth examples (lateral rib interval 4000 mm), the number of welding points is reduced to about 44% and the welding amount is reduced to about 96% compared to the first comparative example. It was found that the number of welded parts was reduced to about 27% and the welding amount was reduced to about 56% compared to 1 reference example. In addition, regarding the amount of steel material per 1 m 2 of floor area obtained by integrating the weight of each member, the difference is that the design models of the first to fifth examples slightly increase more than the first comparative example and the first reference example. It was found that the effect of reducing the number of processing steps by reducing the number of welds and the amount of welding is large.

次に、前記第1、第2実施例の設計モデルに基づき、縦リブM4の高さ寸法Hと、横リブM3の間隔寸法L2との相関を検証した結果を図14に示す。図14において、縦軸は、縦リブM4の高さ寸法Hであり、横軸は、横リブM3の間隔寸法L2である。この検証においては、前記第1、第2実施例の場合と発生応力が同程度になる縦リブM4の高さ寸法Hと横リブM3の間隔寸法L2とを算出した。また、フランジ4Bを有した縦リブM4(図14中、黒塗り菱形印(◆)で示す)との比較のために、フランジを有さない板リブ(図14中、黒塗り四角印(■)で示す)を縦リブM4として用いたモデルも併せて検証した。   Next, FIG. 14 shows the result of verifying the correlation between the height dimension H of the longitudinal rib M4 and the interval dimension L2 of the lateral rib M3 based on the design models of the first and second embodiments. In FIG. 14, the vertical axis represents the height dimension H of the vertical rib M4, and the horizontal axis represents the interval dimension L2 of the horizontal rib M3. In this verification, the height dimension H of the vertical ribs M4 and the distance dimension L2 of the horizontal ribs M3 that generate the same level of stress as in the first and second examples were calculated. Further, for comparison with the vertical rib M4 having the flange 4B (indicated by a black rhombus mark (♦) in FIG. 14), a plate rib having no flange (in FIG. 14, a black square mark (■) The model using the vertical rib M4 was also verified.

この図14から、横リブM3の間隔寸法L2を例えば3000mmとするためには、板リブを用いた場合には、その高さ寸法Hが500mm以上必要になり、本実施例の縦リブM4では、その高さ寸法Hが340mmで収まることが解る。さらに、縦リブM4として板リブを用いた場合には、その自由端の突出長制限により高さ寸法Hが600mm以上にできず、このため横リブM3の間隔寸法L2としては3500mm程度が限界になる。これに対して、本実施例の縦リブM4では、その高さ寸法Hを680mm程度まで大きくすることで、横リブM3の間隔寸法L2を5000mmに拡げることが可能になる。そして、前記実施形態でも説明したように、本発明では、縦リブの高さ寸法Hの設定自由度が高く、組立性を阻害することなく容易に高さ寸法Hが大きくできることから、疲労性能を確保しかつ製造コストを抑制しつつ横リブM3の間隔寸法L2の拡大が実現できることが判明した。   From FIG. 14, in order to set the distance L2 between the horizontal ribs M3 to, for example, 3000 mm, when the plate rib is used, the height dimension H is required to be 500 mm or more. In the vertical rib M4 of this embodiment, It can be seen that the height dimension H is within 340 mm. Further, when a plate rib is used as the vertical rib M4, the height dimension H cannot be increased to 600 mm or more due to the restriction of the protruding length of the free end. Become. On the other hand, in the vertical rib M4 of the present embodiment, by increasing the height dimension H to about 680 mm, the interval dimension L2 of the horizontal rib M3 can be expanded to 5000 mm. And as demonstrated also in the said embodiment, in this invention, since the freedom degree of the height dimension H of a vertical rib is high and the height dimension H can be enlarged easily without inhibiting assembly property, fatigue performance is improved. It has been found that an increase in the distance L2 between the lateral ribs M3 can be realized while ensuring and suppressing the manufacturing cost.

次に、本実施例の設計モデルに基づき、横リブの寸法と発生応力との関係を検討した結果を図15に示す。
ここで、設計において、縦リブの高さ寸法Hは、横リブ間隔L2から決定されることとなるが、一方、仮に横リブの高さ寸法を一定とした場合に、縦リブの高さ寸法Hが大きいと、横リブに設けられる切り欠きが大きくなるために、横リブの有効断面積が低下し、横リブとデッキプレートとの溶接部での発生応力が大きくなる傾向がある。
そこで、本検討では、横リブ間隔L2が4mのモデル(縦リブの高さ寸法がH=500mm)について、横リブの高さと、そのウェブの板厚とを変化させて、その発生応力への影響を比較した。図15において、縦軸はFEMから得られる局部応力であり、従来の平均応力での表現とは異なる。図15より、評価部位(横リブとデッキプレートとの溶接部の端部)での発生応力は、横リブのウェブ板厚が大きくなるほど、また、横リブ高さ寸法が高くなるほど低下することが解る。そして、図15の縦軸は局部応力であるので、この数値のみで疲労強度が十分かどうかを判定することはできないが、例えば従来構造のバルブプレートと同程度であれば、疲労性能上ほぼ問題ないと考えられる。従って、横リブの高さ寸法や板厚は、バルブプレートリブの場合と同レベルの発生応力となるような仕様とすればよい。
Next, FIG. 15 shows the result of examining the relationship between the dimension of the lateral rib and the generated stress based on the design model of the present embodiment.
Here, in the design, the height dimension H of the vertical ribs is determined from the horizontal rib interval L2. On the other hand, if the height dimension of the horizontal ribs is constant, the height dimension of the vertical ribs. When H is large, the notch provided in the lateral rib is increased, so that the effective cross-sectional area of the lateral rib is reduced, and the generated stress tends to increase at the welded portion between the lateral rib and the deck plate.
Therefore, in this study, for the model with the horizontal rib interval L2 of 4 m (the height dimension of the vertical rib is H = 500 mm), the height of the horizontal rib and the thickness of the web are changed to adjust the stress to the generated stress. The effects were compared. In FIG. 15, the vertical axis represents local stress obtained from FEM, which is different from the conventional average stress expression. From FIG. 15, the stress generated at the evaluation site (the end of the welded portion between the lateral rib and the deck plate) decreases as the web thickness of the lateral rib increases and the height of the lateral rib increases. I understand. And since the vertical axis in FIG. 15 is local stress, it is not possible to determine whether the fatigue strength is sufficient only by this numerical value. However, for example, if it is similar to the valve plate of the conventional structure, there is almost no problem in fatigue performance. It is not considered. Therefore, the height dimension and the plate thickness of the lateral rib may be set so as to generate the same level of stress as that of the valve plate rib.

なお、本発明を実施するための最良の構成、方法などは、以上の記載で開示されているが、本発明は、これに限定されるものではない。すなわち、本発明は、主に特定の実施形態に関して特に図示され、かつ説明されているが、本発明の技術的思想および目的の範囲から逸脱することなく、以上述べた実施形態に対し、形状、材質、数量、その他の詳細な構成において、当業者が様々な変形を加えることができるものである。
従って、上記に開示した形状、材質などを限定した記載は、本発明の理解を容易にするために例示的に記載したものであり、本発明を限定するものではないから、それらの形状、材質などの限定の一部もしくは全部の限定を外した部材の名称での記載は、本発明に含まれるものである。
The best configuration, method, and the like for carrying out the present invention have been disclosed above, but the present invention is not limited to this. That is, the invention has been illustrated and described with particular reference to certain specific embodiments, but without departing from the spirit and scope of the invention, Various modifications can be made by those skilled in the art in terms of material, quantity, and other detailed configurations.
Therefore, the description limiting the shape, material, etc. disclosed above is an example for easy understanding of the present invention, and does not limit the present invention. The description by the name of the member which remove | excluded the limitation of one part or all of such restrictions is included in this invention.

本発明の実施形態に係る鋼床版を用いた道路橋を示す斜視図である。It is a perspective view showing a road bridge using a steel deck according to an embodiment of the present invention. 前記鋼床版の横リブおよび縦リブの組立前の状態を示す斜視図である。It is a perspective view which shows the state before the assembly of the horizontal rib and vertical rib of the said steel deck. 前記横リブおよび縦リブを一体化した状態を示す斜視図である。It is a perspective view which shows the state which integrated the said horizontal rib and the vertical rib. 前記鋼床版を縦リブの側方から見た断面図である。It is sectional drawing which looked at the said steel deck from the side of the vertical rib. 前記実施形態における鋼床版の変形例を示す断面図である。It is sectional drawing which shows the modification of the steel deck in the said embodiment. 前記実施形態における鋼床版の変形例を示す断面図である。It is sectional drawing which shows the modification of the steel deck in the said embodiment. 前記実施形態における鋼床版の変形例を示す断面図である。It is sectional drawing which shows the modification of the steel deck in the said embodiment. 前記実施形態における鋼床版の変形例を示す断面図である。It is sectional drawing which shows the modification of the steel deck in the said embodiment. 前記実施形態における鋼床版の変形例を示す断面図である。It is sectional drawing which shows the modification of the steel deck in the said embodiment. 本発明の実施例に係る鋼床版の設計モデルを示す斜視図である。It is a perspective view which shows the design model of the steel deck according to the Example of this invention. 本発明の実施例に係る鋼床版の設計モデルを示す斜視図である。It is a perspective view which shows the design model of the steel deck according to the Example of this invention. 本発明の実施例に係る鋼床版の設計モデルを示す斜視図である。It is a perspective view which shows the design model of the steel deck according to the Example of this invention. 本発明の実施例における発生応力を示すグラフである。It is a graph which shows the generated stress in the Example of this invention. 本発明の実施例における縦リブ高さ寸法と横リブ間隔寸法との相関を示すグラフである。It is a graph which shows the correlation with the height dimension of a vertical rib and the horizontal rib space | interval dimension in the Example of this invention. 本発明の実施例における横リブの寸法と発生応力との関係を示すグラフである。It is a graph which shows the relationship between the dimension of a horizontal rib and the generated stress in the Example of this invention.

符号の説明Explanation of symbols

1…鋼床版、2…主桁、3…横リブ、3A…ウェブ、3B…フランジ、3C…切り欠き、3D…スカラップ、4…縦リブ、4A…ウェブ、4B…フランジ、4C…切欠部、5…デッキプレート、6A〜6C…添え板、7A…ボルト、7B…ナット、H…縦リブの高さ寸法、L1…縦リブの間隔寸法、L2…横リブの間隔寸法、T…板厚寸法、W1,W2,W3…溶接部。   DESCRIPTION OF SYMBOLS 1 ... Steel deck, 2 ... Main girder, 3 ... Horizontal rib, 3A ... Web, 3B ... Flange, 3C ... Notch, 3D ... Scallop, 4 ... Vertical rib, 4A ... Web, 4B ... Flange, 4C ... Notch 5 ... Deck plate, 6A-6C ... Saddle plate, 7A ... Bolt, 7B ... Nut, H ... Vertical rib height dimension, L1 ... Vertical rib spacing dimension, L2 ... Horizontal rib spacing dimension, T ... Thickness Dimensions, W1, W2, W3 ... welds.

Claims (8)

主桁に支持される複数の横リブと、この横リブに交差して支持される複数の縦リブと、これらの横リブおよび縦リブの上側に溶接固定されるデッキプレートとを備えた鋼床版であって、
前記横リブは、上下に延びるウェブを少なくとも有し、このウェブには、上方に開口して下方に延びる複数の切り欠きが形成され、
前記縦リブは、上下に延びるウェブと、このウェブの下端部に連続するフランジとから略逆T字形または略L字形の断面を有し、前記横リブの切り欠きに対応した位置の前記フランジが切り欠かれて形成され、
前記横リブの切り欠きに前記縦リブのウェブが挿通された状態で、当該横リブおよび縦リブのウェブ同士が前記切り欠きに沿って溶接接合されていることを特徴とする鋼床版。
A steel floor comprising a plurality of horizontal ribs supported by the main girder, a plurality of vertical ribs supported crossing the horizontal ribs, and a deck plate welded and fixed to the upper side of the horizontal ribs and the vertical ribs Version,
The lateral rib has at least a web extending vertically, and the web is formed with a plurality of notches that open upward and extend downward.
The vertical rib has a substantially inverted T-shaped or L-shaped cross section from a vertically extending web and a flange continuous to a lower end portion of the web, and the flange at a position corresponding to the notch of the lateral rib is Notched and formed,
A steel slab, wherein the web of the vertical rib is welded along the notch in a state where the web of the vertical rib is inserted into the cut of the horizontal rib.
請求項1に記載の鋼床版において、
前記横リブ同士の間隔が3m以上かつ8m以下の範囲に設定されていることを特徴とする鋼床版。
In the steel deck according to claim 1,
The steel floor slab characterized in that the interval between the lateral ribs is set in a range of 3 m or more and 8 m or less.
請求項1または請求項2に記載の鋼床版において、
前記横リブの切り欠きの幅寸法が前記縦リブのフランジの幅寸法よりも小さく設定されていることを特徴とする鋼床版。
In the steel deck according to claim 1 or 2,
A steel floor slab characterized in that the width dimension of the notch of the horizontal rib is set smaller than the width dimension of the flange of the vertical rib.
請求項1から請求項3のいずれかに記載の鋼床版において、
前記横リブの切り欠きの下端部には、前記縦リブのフランジよりも大きな幅寸法を有した幅広のスカラップが形成され、
前記切り欠かれた縦リブのフランジ同士が前記スカラップに挿通された添え板を介して連結されていることを特徴とする鋼床版。
In the steel deck according to any one of claims 1 to 3,
A wide scallop having a larger width dimension than the flange of the vertical rib is formed at the lower end of the notch of the horizontal rib,
The steel floor slab characterized in that the flanges of the cut-out vertical ribs are connected to each other through an attachment plate inserted into the scallop.
請求項1から請求項4のいずれかに記載の鋼床版において、
前記横リブのウェブと前記縦リブのフランジとが添え板を介して接合されていることを特徴とする鋼床版。
In the steel deck according to any one of claims 1 to 4,
A steel floor slab, characterized in that the web of the horizontal rib and the flange of the vertical rib are joined together via an attachment plate.
主桁に支持される複数の横リブと、この横リブに交差して支持される複数の縦リブと、これらの横リブおよび縦リブの上側に溶接固定されるデッキプレートとを備えた鋼床版の製造方法であって、
前記横リブは、上下に延びるウェブを少なくとも有し、前記縦リブは、上下に延びるウェブと、このウェブの下端部に連続するフランジとから略逆T字形または略L字形の断面を有してそれぞれ形成されたものであり、
前記横リブのウェブに上方に開口して下方に延びる複数の切り欠きを形成し、前記横リブの切り欠きに対応した位置の前記縦リブのフランジを切り欠いてから、前記横リブの切り欠きに前記縦リブのウェブを挿通し、当該横リブおよび縦リブのウェブ同士を前記切り欠きに沿って溶接接合することを特徴とする鋼床版の製造方法。
A steel floor comprising a plurality of horizontal ribs supported by the main girder, a plurality of vertical ribs supported crossing the horizontal ribs, and a deck plate welded and fixed to the upper side of the horizontal ribs and the vertical ribs A method of manufacturing a plate,
The transverse rib has at least a web extending vertically, and the longitudinal rib has a substantially inverted T-shaped or L-shaped cross section from a vertically extending web and a flange continuous with a lower end portion of the web. Each formed,
A plurality of notches are formed in the web of the horizontal ribs so as to open upward and extend downward, and the flanges of the vertical ribs at positions corresponding to the notches of the horizontal ribs are cut out. A method for producing a steel slab, wherein the web of the longitudinal rib is inserted through the web and the web of the transverse rib and the longitudinal rib are welded together along the notch.
請求項6に記載の鋼床版の製造方法において、
前記横リブの切り欠きを形成する際に、その切り欠きの下端部に前記縦リブのフランジよりも大きな幅寸法を有した幅広のスカラップを形成しておき、
前記横リブの切り欠きに前記縦リブのウェブを挿通してから、前記切り欠かれた縦リブのフランジ同士を前記スカラップに挿通した添え板を介して連結することを特徴とする鋼床版の製造方法。
In the manufacturing method of the steel deck according to claim 6,
When forming the notch of the lateral rib, a wide scallop having a width dimension larger than the flange of the vertical rib is formed at the lower end of the notch,
A steel floor slab, wherein the web of the vertical rib is inserted into the notch of the horizontal rib, and then the flanges of the notched vertical rib are connected to each other via an attachment plate inserted into the scallop. Production method.
請求項6または請求項7に記載の鋼床版の製造方法において、
前記横リブの切り欠きに前記縦リブのウェブを挿通してから、前記横リブのウェブと前記縦リブのフランジとを添え板を介して接合することを特徴とする鋼床版の製造方法。
In the manufacturing method of the steel deck according to claim 6 or 7,
A method for producing a steel slab, comprising inserting the web of the vertical rib into the notch of the horizontal rib, and then joining the web of the horizontal rib and the flange of the vertical rib through an attachment plate.
JP2007126024A 2007-05-10 2007-05-10 Steel slab and method for producing steel slab Expired - Fee Related JP4823966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007126024A JP4823966B2 (en) 2007-05-10 2007-05-10 Steel slab and method for producing steel slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007126024A JP4823966B2 (en) 2007-05-10 2007-05-10 Steel slab and method for producing steel slab

Publications (2)

Publication Number Publication Date
JP2008280753A true JP2008280753A (en) 2008-11-20
JP4823966B2 JP4823966B2 (en) 2011-11-24

Family

ID=40141804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007126024A Expired - Fee Related JP4823966B2 (en) 2007-05-10 2007-05-10 Steel slab and method for producing steel slab

Country Status (1)

Country Link
JP (1) JP4823966B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013024008A (en) * 2011-07-26 2013-02-04 Nippon Steel & Sumitomo Metal Transverse rib structure for fatigue improvement, and steel floor slab using the same
KR101776900B1 (en) 2016-12-14 2017-09-08 박상현 Modular deck assembly and manufacturing method thereof, and method for manufacturing temporary structure using the same
CN108252213A (en) * 2018-03-13 2018-07-06 长沙理工大学 Steel-UHPC composite beam

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0999388A (en) * 1995-08-02 1997-04-15 Amada Co Ltd Bracket used for connection member of column for building structure and its production as well as column for building structure having plural connection members and production of this column as weel as method for connecting connection member of column for building structure and beam member and method for connecting beam member to main beam member for building structure
JPH1150416A (en) * 1997-08-06 1999-02-23 Sho Bond Constr Co Ltd Prefabricated bridge unit and prefabricated bridge
JP2000257794A (en) * 1999-03-10 2000-09-19 Nkk Corp Deflection preventive structure
JP2001220712A (en) * 2000-02-10 2001-08-17 Sho Bond Constr Co Ltd Pre-fabricated steel base plate girder and connecting structure of the same
JP2006045833A (en) * 2004-08-03 2006-02-16 Mitsubishi Heavy Ind Ltd Steel bridge, method of reinforcing steel bridge, and method of repairing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0999388A (en) * 1995-08-02 1997-04-15 Amada Co Ltd Bracket used for connection member of column for building structure and its production as well as column for building structure having plural connection members and production of this column as weel as method for connecting connection member of column for building structure and beam member and method for connecting beam member to main beam member for building structure
JPH1150416A (en) * 1997-08-06 1999-02-23 Sho Bond Constr Co Ltd Prefabricated bridge unit and prefabricated bridge
JP2000257794A (en) * 1999-03-10 2000-09-19 Nkk Corp Deflection preventive structure
JP2001220712A (en) * 2000-02-10 2001-08-17 Sho Bond Constr Co Ltd Pre-fabricated steel base plate girder and connecting structure of the same
JP2006045833A (en) * 2004-08-03 2006-02-16 Mitsubishi Heavy Ind Ltd Steel bridge, method of reinforcing steel bridge, and method of repairing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013024008A (en) * 2011-07-26 2013-02-04 Nippon Steel & Sumitomo Metal Transverse rib structure for fatigue improvement, and steel floor slab using the same
KR101776900B1 (en) 2016-12-14 2017-09-08 박상현 Modular deck assembly and manufacturing method thereof, and method for manufacturing temporary structure using the same
WO2018110960A1 (en) * 2016-12-14 2018-06-21 박상현 Modular frame lining assembly, method for producing same, and method for producing temporary structure using same
CN108252213A (en) * 2018-03-13 2018-07-06 长沙理工大学 Steel-UHPC composite beam

Also Published As

Publication number Publication date
JP4823966B2 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
Dexter et al. Manual for repair and retrofit of fatigue cracks in steel bridges
JP6072946B1 (en) Steel deck and road bridge
JP2013245459A (en) Steel floor board and steel floor board bridge
JP4945773B2 (en) Steel slab reinforcement method
JP2008223393A (en) High fatigue enduring steel structure
JP6861431B2 (en) Steel deck instant bridge
CN111395146A (en) Steel box girder structure and method for repairing steel box girder welding seam cracking
JP4641235B2 (en) Steel slab and repair method of steel slab
JP4705607B2 (en) Steel slab and method for producing steel slab
JP4668760B2 (en) Steel bridge repair and reinforcement structure and method
JP4823966B2 (en) Steel slab and method for producing steel slab
JP2006070570A (en) Vertical rib for steel floor slab and its installation method
JP6386616B1 (en) Method for repairing and reinforcing vertical joints in steel structures, and reinforcing material for vertical joints
JP6065690B2 (en) Beam end joint structure
JP4347158B2 (en) Steel bridge, steel bridge reinforcement method and repair method
JP5682960B2 (en) Steel structure reinforcement structure and reinforcement method
KR20110098713A (en) Column-beam connection structure
JP5721687B2 (en) Steel deck and bridge
CN108316143B (en) Structure for improving connection fatigue of panel and transverse member and manufacturing method
JP2012026178A (en) Structure and method for reinforcing weld zone between steel floor slab and vertical stiffener
JP2017101514A (en) Steel floor slab, reinforcement method and manufacturing method of steel floor slab
JP5712843B2 (en) Fatigue improving structure of lateral rib and steel deck
CN212505801U (en) Steel box girder structure
JP5378324B2 (en) Steel slab rib crossing joint structure and bridge
JP2007327256A (en) Fatigue-resistant steel floor slab

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110726

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110907

R151 Written notification of patent or utility model registration

Ref document number: 4823966

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees