JP2008280454A - Desulfurization agent for organosulfur compound-containing liquid state oil and method of desulfurization by using the same - Google Patents

Desulfurization agent for organosulfur compound-containing liquid state oil and method of desulfurization by using the same Download PDF

Info

Publication number
JP2008280454A
JP2008280454A JP2007126941A JP2007126941A JP2008280454A JP 2008280454 A JP2008280454 A JP 2008280454A JP 2007126941 A JP2007126941 A JP 2007126941A JP 2007126941 A JP2007126941 A JP 2007126941A JP 2008280454 A JP2008280454 A JP 2008280454A
Authority
JP
Japan
Prior art keywords
acid
oil
component
desulfurization
containing liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007126941A
Other languages
Japanese (ja)
Inventor
Kenta Inoue
健太 井上
Hirohisa Nito
浩久 仁藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adeka Corp
Original Assignee
Adeka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adeka Corp filed Critical Adeka Corp
Priority to JP2007126941A priority Critical patent/JP2008280454A/en
Publication of JP2008280454A publication Critical patent/JP2008280454A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a desulfurizing agent capable of removing an organosulfur compound contained in liquid state oil, especially a hardly decomposable organosulfur compound in a good efficiency, and a method of desulfurization by using the desulfurizing agent. <P>SOLUTION: This desulfurizing agent for the organosulfur compound-containing liquid state oil is characterized by containing a peroxyurea as a component (A), a carboxylic acid as a component (B) and an inorganic acid and/or organosulfonic acid as a component (C), and the method of desulfurization is characterized by treating the organosulfur compound-containing liquid state oil by using the desulfurizing agent. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、液状油に含まれる有機硫黄化合物を酸化脱硫するための脱硫剤及びそれを用いた脱硫方法に関する。   The present invention relates to a desulfurization agent for oxidative desulfurization of an organic sulfur compound contained in a liquid oil, and a desulfurization method using the same.

石油や石炭などの化石資源を原料とする燃料油中に含まれる硫黄化合物類は、燃焼に際して硫黄酸化物を生成し、大気環境汚染の原因となる。その主な原因として、軽油等を燃料とする自動車の排出ガス中に含まれる硫黄酸化物が挙げられ、近年の燃料油の硫黄分は50ppm以下に規制され、将来的には更なる規制の強化が見込まれている。そのため、燃料油中に含まれる硫黄化合物の脱硫技術は、積極的に開発が進められてきており、現在精油所では、触媒の存在下に水素化処理を行う水素化脱硫方法が行われている。   Sulfur compounds contained in fuel oils made from fossil resources such as oil and coal produce sulfur oxides during combustion and cause air pollution. The main cause is sulfur oxides contained in the exhaust gas of automobiles that use diesel oil as fuel. The sulfur content of fuel oil in recent years has been regulated to 50 ppm or less, and further regulations will be strengthened in the future. Is expected. Therefore, desulfurization technology for sulfur compounds contained in fuel oil has been actively developed, and at present refineries, hydrodesulfurization methods that perform hydrotreating in the presence of a catalyst are being carried out. .

ところで、このような軽油等の燃料油中には、水素化脱硫法による除去が極めて困難な有機硫黄化合物、特に硫黄原子近傍にアルキル基などの立体障害性の置換基を持つアルキル置換ジベンゾチオフェン類が含まれており、硫黄分を50ppm以下へと低減させるためには、これらの難分解性有機硫黄化合物を効果的に脱硫する必要がある。そこで、超深度脱硫の達成のためには、このような難分解性有機硫黄化合物を有効に除去することのできる、新たな脱硫技術の開発が急務とされている。   By the way, in such fuel oils such as light oils, organic sulfur compounds that are extremely difficult to remove by hydrodesulfurization, particularly alkyl-substituted dibenzothiophenes having a sterically hindered substituent such as an alkyl group near the sulfur atom. In order to reduce the sulfur content to 50 ppm or less, it is necessary to effectively desulfurize these hardly decomposable organic sulfur compounds. Therefore, in order to achieve ultra-deep desulfurization, there is an urgent need to develop a new desulfurization technique that can effectively remove such persistent organic sulfur compounds.

そこで様々な脱硫方法が考案されている。従来、脱硫の方法としては、金属系の触媒を使用することが一般的であり、現在もその方法が通常的に行われている。しかし、金属系の触媒だけを使用した場合、上記のような難分解性有機硫黄化合物を完全に脱硫するのは難しく、近年、金属系の触媒に酸化剤を併用することが考えられてきた(例えば、特許文献1,2を参照)。   Various desulfurization methods have been devised. Conventionally, as a method of desulfurization, it is common to use a metal-based catalyst, and the method is usually performed at present. However, when only a metal-based catalyst is used, it is difficult to completely desulfurize the hardly decomposable organic sulfur compound as described above. In recent years, it has been considered to use an oxidizing agent in combination with a metal-based catalyst ( For example, see Patent Documents 1 and 2).

しかし、こうした酸化剤を使用する方法はある程度の効果はあるものの、難分解性有機硫黄化合物は分解されにくく、また、特許文献1のように溶剤を使用すると溶剤処理のための処理時間増及びコスト増をまねくため、更に効率の良い脱硫方法が求められていた。   However, although the method using such an oxidant is effective to some extent, the hard-to-decompose organic sulfur compound is difficult to be decomposed. When a solvent is used as in Patent Document 1, the processing time and cost for solvent treatment are increased. In order to increase the number, a more efficient desulfurization method has been demanded.

特開2001−354978号公報JP 2001-354978 A 特開2002−322483号公報Japanese Patent Application Laid-Open No. 2002-322483

従って、本発明が解決しようとする課題は、液状油に含まれる有機硫黄化合物、特に難分解性有機硫黄化合物を効率よく除去することのできる脱硫剤、及びその脱硫剤を用いた脱硫方法を提供することにある。   Accordingly, the problem to be solved by the present invention is to provide a desulfurization agent that can efficiently remove organic sulfur compounds, particularly hardly decomposable organic sulfur compounds, contained in liquid oil, and a desulfurization method using the desulfurization agent. There is to do.

そこで本発明者等鋭意検討し、難分解性有機硫黄化合物も効率よく除去できる脱硫剤を見出し、本発明に至った。即ち、(A)成分として過酸化尿素、(B)成分としてカルボン酸及び(C)成分として無機酸及び/又は有機スルホン酸を含有することを特徴とする有機硫黄化合物含有液状油の脱硫剤である。   Accordingly, the present inventors have intensively studied and found a desulfurizing agent that can efficiently remove a hardly-decomposable organic sulfur compound, and have reached the present invention. That is, a desulfurizing agent for liquid oil containing an organic sulfur compound comprising urea peroxide as component (A), carboxylic acid as component (B), and inorganic acid and / or organic sulfonic acid as component (C). is there.

本発明の効果は、液状油に含まれる有機硫黄化合物、特に難分解性有機硫黄化合物を効率よく除去することのできる脱硫剤、及びその脱硫剤を用いた脱硫方法を提供したことにある。   The effect of the present invention is to provide a desulfurizing agent capable of efficiently removing an organic sulfur compound contained in a liquid oil, particularly a hardly decomposable organic sulfur compound, and a desulfurization method using the desulfurizing agent.

以下、本発明をその好ましい実施形態に基づき詳細に説明する。
まず(A)成分について説明する。(A)成分の過酸化尿素は、尿素と過酸化水素を原料として製造するものであり、その製造方法としては、例えば、尿素1モルに対して過酸化水素を1〜3モル、好ましくは1.1〜2モル添加し、30〜80℃で1〜10時間混合させた後、冷却して過酸化尿素の結晶を析出させて分離・乾燥させればよい。過酸化水素が1モルより少ないと反応速度が遅くなり、更に未反応の尿素が大量に残存してしまう場合があり、過酸化水素が3モルより多いと未反応の過酸化水素が大量に残存してしまう場合がある。また、原料として使用する過酸化水素は通常水溶液の状態で流通しているが、過酸化水素の濃度の低いものを使用すると反応系内に水が大量に入ってしまい、過酸化尿素が析出しにくくなるので、50質量%以上の高濃度の過酸化水素水を使用するのが好ましい。
Hereinafter, the present invention will be described in detail based on preferred embodiments thereof.
First, the component (A) will be described. The component (A) urea peroxide is produced using urea and hydrogen peroxide as raw materials. The production method thereof is, for example, 1 to 3 moles of hydrogen peroxide per mole of urea, preferably 1 Add 1 to 2 moles, mix at 30 to 80 ° C. for 1 to 10 hours, cool, precipitate urea peroxide crystals, separate and dry. If the amount of hydrogen peroxide is less than 1 mole, the reaction rate becomes slow, and a large amount of unreacted urea may remain. If the amount of hydrogen peroxide exceeds 3 moles, a large amount of unreacted hydrogen peroxide remains. May end up. In addition, hydrogen peroxide used as a raw material usually circulates in the form of an aqueous solution. However, if a low concentration of hydrogen peroxide is used, a large amount of water enters the reaction system, and urea peroxide is precipitated. Since it becomes difficult, it is preferable to use a hydrogen peroxide solution having a high concentration of 50% by mass or more.

次に、(B)成分のカルボン酸とは、カルボニル基を持つ化合物であれば特に限定されず、例えば、ギ酸、酢酸、プロピオン酸、ブタン酸(酪酸)、ペンタン酸(吉草酸)、イソペンタン酸(イソ吉草酸)、ヘキサン酸(カプロン酸)、ヘプタン酸、イソヘプタン酸、オクタン酸(カプリル酸)、2−エチルヘキサン酸、イソオクタン酸、ノナン酸(ペラルゴン酸)、イソノナン酸、デカン酸(カプリン酸)、イソデカン酸、ウンデカン酸、イソウンデカン酸、ドデカン酸(ラウリン酸)、イソドデカン酸、トリデカン酸、イソトリデカン酸、テトラデカン酸(ミリスチン酸)、ヘキサデカン酸(パルミチン酸)、オクタデカン酸(ステアリン酸)、イソステアリン酸等の脂肪族カルボン酸;安息香酸、フタル酸、イソフタル酸、テレフタル酸、ヘミメリット酸、トリメリット酸、ピロメリット酸、トルイル酸、サリチル酸等の芳香族カルボン酸;モノフルオロ酢酸、ジフルオロ酢酸、トリフルオロ酢酸等のフルオロ酢酸が挙げられる。これらのカルボン酸の中でも、処理後の精製が容易なことや、添加量が少量ですむことから、分子量の小さなカルボン酸である、ギ酸、酢酸、プロピオン酸、フルオロ酢酸が好ましく、ギ酸、酢酸、トリフルオロ酢酸がより好ましい。   Next, the carboxylic acid of component (B) is not particularly limited as long as it is a compound having a carbonyl group. For example, formic acid, acetic acid, propionic acid, butanoic acid (butyric acid), pentanoic acid (valeric acid), isopentanoic acid (Isovaleric acid), hexanoic acid (caproic acid), heptanoic acid, isoheptanoic acid, octanoic acid (caprylic acid), 2-ethylhexanoic acid, isooctanoic acid, nonanoic acid (pelargonic acid), isononanoic acid, decanoic acid (capric acid) ), Isodecanoic acid, undecanoic acid, isoundecanoic acid, dodecanoic acid (lauric acid), isododecanoic acid, tridecanoic acid, isotridecanoic acid, tetradecanoic acid (myristic acid), hexadecanoic acid (palmitic acid), octadecanoic acid (stearic acid), isostearic acid Aliphatic carboxylic acids such as acids; benzoic acid, phthalic acid, isophthalic acid, terephthalic , Hemimellitic acid, trimellitic acid, pyromellitic acid, toluic acid, aromatic carboxylic acids such as salicylic acid; monofluoroacetic acid, difluoro acetic acid, trifluoroacetic acid, such as trifluoroacetic acid. Among these carboxylic acids, formic acid, acetic acid, propionic acid, and fluoroacetic acid, which are low molecular weight carboxylic acids, are preferable because purification after treatment is easy and the addition amount is small. Formic acid, acetic acid, Trifluoroacetic acid is more preferred.

(C)成分の無機酸及び有機スルホン酸について説明する。まず、無機酸とは、例えば、塩酸、硫酸、硝酸、リン酸、ポリリン酸、亜リン酸、青酸、臭酸、よう素酸、亜硝酸、炭酸、硼酸等が挙げられる。これらの中でも取り扱いが容易で安価なことから、硫酸、硝酸、リン酸を使用することが好ましい。また、有機スルホン酸としては、例えば、ナフタレン−α−スルホン酸、ナフタレン−β−スルホン酸、パラトルエンスルホン酸、メタンスルホン酸、ベンゼンスルホン酸、イセチオン酸等が挙げられる。これらの中でも、添加量が少なく、反応終了時の精製が容易である比較的分子量の小さなメタンスルホン酸、イセチオン酸を使用することが好ましい。上記の無機酸及び有機スルホン酸は、それぞれ単独で使用しても併用してもよいが、取り扱いが容易で効果が高いので、無機酸を使用することが好ましい。   (C) The inorganic acid and organic sulfonic acid of a component are demonstrated. First, examples of the inorganic acid include hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, polyphosphoric acid, phosphorous acid, hydrocyanic acid, odorous acid, iodine acid, nitrous acid, carbonic acid, and boric acid. Of these, sulfuric acid, nitric acid, and phosphoric acid are preferably used because they are easy to handle and inexpensive. Examples of the organic sulfonic acid include naphthalene-α-sulfonic acid, naphthalene-β-sulfonic acid, paratoluenesulfonic acid, methanesulfonic acid, benzenesulfonic acid, and isethionic acid. Among these, it is preferable to use methanesulfonic acid or isethionic acid having a relatively small molecular weight, which is small in addition amount and easy to purify at the end of the reaction. The above inorganic acid and organic sulfonic acid may be used alone or in combination, but it is preferable to use an inorganic acid because it is easy to handle and highly effective.

上記の(A)〜(C)成分は任意の割合で配合して使用すればよいが、脱硫の効果をより高めるため、(A)成分100質量部に対して、(B)成分10〜1500質量部が好ましく、50〜500質量部がより好ましい。また(C)成分は、(A)成分100質量部に対して、1〜300質量部が好ましく、5〜50質量部がより好ましい。   The above components (A) to (C) may be blended and used at an arbitrary ratio, but in order to further enhance the effect of desulfurization, (B) components 10 to 1500 are used with respect to 100 parts by mass of component (A). A mass part is preferable and 50-500 mass parts is more preferable. Moreover, 1-300 mass parts is preferable with respect to 100 mass parts of (A) component, and (C) component is more preferable 5-50 mass parts.

本発明に用いられる液状油に特に制約はなく、硫黄化合物を含有する一般的な燃料油や潤滑油等に利用することができる。こうした燃料油や潤滑油としては、例えば、ガソリン、軽油、重油、灯油、ジェット燃料、液化天然ガス、アルコール、LPG、ナフサ、アスファルト油、オイルサンド油、石炭液化油、シェルオイル、廃プラスチック油、バイオフューエル、GTL、パラフィン系鉱油、ナフテン系鉱油あるいはこれらを精製した精製鉱油類を用いることができる。これらの中でも、燃焼時の硫黄酸化物が問題となる燃料油が好ましく、ガソリン、軽油、灯油がより好ましい。   There is no restriction | limiting in particular in the liquid oil used for this invention, It can utilize for general fuel oil, lubricating oil, etc. containing a sulfur compound. Examples of such fuel oil and lubricating oil include gasoline, light oil, heavy oil, kerosene, jet fuel, liquefied natural gas, alcohol, LPG, naphtha, asphalt oil, oil sand oil, coal liquefied oil, shell oil, waste plastic oil, Biofuel, GTL, paraffinic mineral oil, naphthenic mineral oil, or refined mineral oil obtained by refining these can be used. Among these, fuel oils in which sulfur oxides during combustion are a problem are preferable, and gasoline, light oil, and kerosene are more preferable.

これらの液状油には、主に原料由来の有機硫黄化合物が含まれるが、こうした有機硫黄化合物としては、例えば、チオール類、チオエーテル類、チオフェノール類、チオアニソール類、チオフェン類、ベンゾチオフェン類、ジベンゾチオフェン類等が挙げられる。こうした有機硫黄化合物の中でも、骨格中に硫黄原子を含有する複素環化合物、特に硫黄原子周辺にアルキル基などの置換基を持つジベンゾチオフェン類は、通常の水素化脱硫方法では立体障害の影響により分解することが困難な化合物であるが、本発明ではこのような難分解性有機硫黄化合物でも容易に酸化させて除去することができる。   These liquid oils mainly contain organic sulfur compounds derived from raw materials. Examples of such organic sulfur compounds include thiols, thioethers, thiophenols, thioanisoles, thiophenes, benzothiophenes, And dibenzothiophenes. Among these organic sulfur compounds, heterocyclic compounds containing a sulfur atom in the skeleton, especially dibenzothiophenes having a substituent such as an alkyl group around the sulfur atom, are decomposed by the effects of steric hindrance in ordinary hydrodesulfurization methods. In the present invention, even such a hardly decomposable organic sulfur compound can be easily oxidized and removed.

本発明の脱硫方法は、本発明の脱硫剤と液状油とを接触させるものであるが、接触方法としては、例えば、吸着塔に本発明の脱硫剤を充填して液状油を流通させる方法、本発明の脱硫剤を内部に固定したタンクなどの容器に液状油を入れて静置又は撹拌する方法、タンクなどの容器に液状油と本発明の脱硫剤を入れて反応後に脱硫剤を除去する方法等が挙げられる。これら脱硫時の反応温度は、−40〜100℃が好ましく、−20℃〜80℃がより好ましい。反応温度が−40℃より低いと燃料油の流動性が低下し、反応がスムーズに進まない場合があり、100℃より高いと過酸化尿素の分解反応が優先的に進行する場合があるため好ましくない。また、反応時の圧力は常圧〜1MPaの範囲であるのが好ましい。また本発明の脱硫剤と液状油とを接触させる時間は、1〜20時間が好ましく、3〜15時間がより好ましい。1時間より短いと有機硫黄化合物の酸化反応が完全に終了しない場合があり、20時間を超える接触は反応率がほとんど変わらないため経済的な損失が大きくなる場合があるため好ましくない。   The desulfurization method of the present invention is a method in which the desulfurization agent of the present invention and liquid oil are brought into contact with each other. Examples of the contact method include a method in which the desulfurization agent of the present invention is filled in an adsorption tower and the liquid oil is circulated. A method in which liquid oil is placed in a container such as a tank in which the desulfurizing agent of the present invention is fixed and left standing or stirring, and the liquid oil and the desulfurizing agent of the present invention are placed in a container such as a tank to remove the desulfurizing agent after the reaction. Methods and the like. The reaction temperature at the time of desulfurization is preferably -40 to 100 ° C, and more preferably -20 to 80 ° C. When the reaction temperature is lower than −40 ° C., the fluidity of the fuel oil is lowered, and the reaction may not proceed smoothly. When the reaction temperature is higher than 100 ° C., the decomposition reaction of urea peroxide may proceed preferentially. Absent. The pressure during the reaction is preferably in the range of normal pressure to 1 MPa. Moreover, 1-20 hours are preferable and, as for the time which makes the desulfurization agent of this invention and liquid oil contact, 3-15 hours are more preferable. If it is shorter than 1 hour, the oxidation reaction of the organic sulfur compound may not be completed completely, and contact exceeding 20 hours is not preferable because the reaction rate is hardly changed and economical loss may be increased.

有機硫黄化合物の酸化反応が進むと、本発明の脱硫剤の(A)成分である過酸化尿素に含有している過酸化水素が減少していく。過酸化水素が完全になくなってしまうと、(A)成分の酸化剤としての性能がなくなってしまうため、精製できる液状油の量には限界がある。そのため、液状油中の有機硫黄化合物の量にもよるが、通常、本発明の脱硫剤1質量部に対して、液状油は2000質量部以下が好ましく、1000質量部以下がより好ましい。   As the oxidation reaction of the organic sulfur compound proceeds, hydrogen peroxide contained in urea peroxide, which is the component (A) of the desulfurization agent of the present invention, decreases. If hydrogen peroxide is completely eliminated, the performance of the component (A) as an oxidant is lost, so the amount of liquid oil that can be refined is limited. Therefore, although depending on the amount of the organic sulfur compound in the liquid oil, the liquid oil is usually preferably 2000 parts by mass or less and more preferably 1000 parts by mass or less with respect to 1 part by mass of the desulfurization agent of the present invention.

酸化反応により生成した有機硫黄酸化物や(B)成分及び(C)成分を処理するには、抽出、吸着、蒸留等の各種分離操作を用いて除去すればよい。吸着操作の吸着剤には、例えば、シリカゲル、ゼオライト、モレキュラシーブ、活性白土、イオン交換樹脂、吸着樹脂、粘度鉱物、活性炭等、分子極性吸着や分子篩い作用のある剤を挙げることができる。また、上記処理操作に加えて蒸留精製することにより、該有機硫黄酸化物は完全に除去することができる。なお、(A)成分については、固体として残留するので、ろ過や蒸留等によって簡単に除去することができる。   In order to treat the organic sulfur oxide generated by the oxidation reaction, the component (B), and the component (C), they may be removed using various separation operations such as extraction, adsorption, and distillation. Examples of the adsorbent for the adsorption operation include silica polar particles, zeolites, molecular sieves, activated clay, ion exchange resins, adsorbent resins, viscous minerals, activated carbon, and the like, which have molecular polar adsorption or molecular sieving action. In addition to the above treatment operation, the organic sulfur oxide can be completely removed by purification by distillation. Since the component (A) remains as a solid, it can be easily removed by filtration, distillation, or the like.

以下本発明を実施例により、具体的に説明する。尚、以下の実施例等において%及びppmは特に記載が無い限り質量基準である。なお、実施例及び比較例中の有効過酸化水素とは過酸化尿素に占める過酸化水素の割合である。
<分析方法>
モデル硫黄化合物として、難分解性の4,6−ジメチルジベンゾチオフェンを使用し、高速液体クロマトグラフィー(HPLC)によって、4,6−ジメチルジベンゾチオフェンの分解率を確認した。また液中の硫黄濃度は、高周波誘導結合プラズマ(ICP)発光分析装置にて硫黄分を確認した。結果を表1に記した。なお、両分析機器の詳細は以下の通りである。
(HPLC分析方法)
カラム :ODSカラム(LUNA 5C18 RS,φ4.6mm×250mm)
溶離液 :アセトニトリル/水=75/25
流速 :1.0mL/min
検出器 :UV、325nm
カラムオーブン温度 :40℃
(ICP(Inductively Coupled Plasma)発光分析の分析方法)
分析使用機器:島津製作所製 ICPS−8100
分析方法:内部標準補正法(希釈溶媒キシレン)
Hereinafter, the present invention will be specifically described by way of examples. In the following examples and the like,% and ppm are based on mass unless otherwise specified. In addition, the effective hydrogen peroxide in an Example and a comparative example is the ratio of the hydrogen peroxide which occupies for urea peroxide.
<Analysis method>
As the model sulfur compound, hardly decomposed 4,6-dimethyldibenzothiophene was used, and the decomposition rate of 4,6-dimethyldibenzothiophene was confirmed by high performance liquid chromatography (HPLC). The sulfur concentration in the liquid was confirmed by the sulfur content using a high frequency inductively coupled plasma (ICP) emission spectrometer. The results are shown in Table 1. The details of both analytical instruments are as follows.
(HPLC analysis method)
Column: ODS column (LUNA 5C18 RS, φ4.6mm × 250mm)
Eluent: acetonitrile / water = 75/25
Flow rate: 1.0 mL / min
Detector: UV, 325nm
Column oven temperature: 40 ° C
(Analysis method of ICP (Inductively Coupled Plasma) emission analysis)
Analytical instrument: ICPS-8100 manufactured by Shimadzu Corporation
Analysis method: Internal standard correction method (diluted solvent xylene)

<実施例1>
モデル軽油(4,6−ジメチルジベンゾチオフェン含有オクタン:全硫黄成分50ppm)500mlに過酸化尿素(有効過酸化水素:36.1%)0.185g、トリフルオロ酢酸0.35g及び硫酸(89質量%)0.08gを加え40℃で4時間撹拌した後、HPLC分析によって残留する4,6−ジメチルジベンゾチオフェンの濃度を調べた。その後、得られたモデル軽油を蒸留精製し、液中の全硫黄濃度をICPを使用して調べた。
<Example 1>
Model light oil (4,6-dimethyldibenzothiophene-containing octane: total sulfur component 50 ppm) to 500 ml of urea peroxide (effective hydrogen peroxide: 36.1%) 0.185 g, trifluoroacetic acid 0.35 g and sulfuric acid (89% by mass) After adding 0.08 g and stirring at 40 ° C. for 4 hours, the concentration of 4,6-dimethyldibenzothiophene remaining was examined by HPLC analysis. Thereafter, the obtained model light oil was purified by distillation, and the total sulfur concentration in the liquid was examined using ICP.

<実施例2>
モデル軽油(4,6−ジメチルジベンゾチオフェン含有オクタン:全硫黄成分50ppm)500mlに過酸化尿素(有効過酸化水素:36.1%)0.185g、ギ酸0.6g及び硫酸(89質量%)0.08gを加え40℃で7時間撹拌した後、HPLC分析によって残留する4,6−ジメチルジベンゾチオフェンの濃度を調べた。その後、得られたモデル軽油を蒸留精製し、液中の全硫黄濃度をICPを使用して調べた。
<Example 2>
Model light oil (4,6-dimethyldibenzothiophene-containing octane: total sulfur component 50 ppm) to 500 ml of urea peroxide (effective hydrogen peroxide: 36.1%) 0.185 g, formic acid 0.6 g and sulfuric acid (89 mass%) 0 After adding 0.08 g and stirring at 40 ° C. for 7 hours, the concentration of 4,6-dimethyldibenzothiophene remaining was examined by HPLC analysis. Thereafter, the obtained model light oil was purified by distillation, and the total sulfur concentration in the liquid was examined using ICP.

<実施例3>
市販の軽油(全硫黄成分:350ppm)500mlに過酸化尿素(有効過酸化水素:36.1%)1.34g、ギ酸0.6g及び硫酸(89質量%)0.08gを加え40℃で10時間撹拌した。その後、得られた軽油中にシリカゲル10gを加え27℃で1時間攪拌した後、シリカゲルを濾過除去して蒸留精製し、液中の全硫黄濃度をICPを使用して調べた。
<Example 3>
To 500 ml of commercially available light oil (total sulfur component: 350 ppm), 1.34 g of urea peroxide (effective hydrogen peroxide: 36.1%), 0.6 g of formic acid and 0.08 g of sulfuric acid (89% by mass) were added, and the mixture was heated at 40 ° C. Stir for hours. Thereafter, 10 g of silica gel was added to the obtained light oil and stirred at 27 ° C. for 1 hour. The silica gel was removed by filtration and purified by distillation. The total sulfur concentration in the liquid was examined using ICP.

<実施例4>
モデル軽油(4,6−ジメチルジベンゾチオフェン含有オクタン:全硫黄成分50ppm)500mlに過酸化尿素(有効過酸化水素:36.1%)0.185g、トリフルオロ酢酸0.35g及びイセチオン酸0.01gを加え40℃で4時間撹拌した後、HPLC分析によって残留する4,6−ジメチルジベンゾチオフェンの濃度を調べた。その後、得られたモデル軽油を蒸留精製し、液中の全硫黄濃度をICPを使用して調べた。
<Example 4>
Model light oil (4,6-dimethyldibenzothiophene-containing octane: total sulfur component 50 ppm) to 500 ml of urea peroxide (effective hydrogen peroxide: 36.1%) 0.185 g, trifluoroacetic acid 0.35 g and isethionic acid 0.01 g After stirring at 40 ° C. for 4 hours, the concentration of 4,6-dimethyldibenzothiophene remaining was examined by HPLC analysis. Thereafter, the obtained model light oil was purified by distillation, and the total sulfur concentration in the liquid was examined using ICP.

<比較例1>
モデル軽油(4,6−ジメチルジベンゾチオフェン含有オクタン:全硫黄成分50ppm)500mlに大過剰の過酸化尿素(有効過酸化水素:36.1%)1.11gを加え、40℃で10時間撹拌した後、HPLC分析によって残留する4,6−ジメチルジベンゾチオフェンの濃度を調べた。
<Comparative Example 1>
1.11 g of a large excess of urea peroxide (effective hydrogen peroxide: 36.1%) was added to 500 ml of model light oil (4,6-dimethyldibenzothiophene-containing octane: total sulfur component 50 ppm), and the mixture was stirred at 40 ° C. for 10 hours. Thereafter, the concentration of 4,6-dimethyldibenzothiophene remaining was examined by HPLC analysis.

<比較例2>
モデル軽油(4,6−ジメチルジベンゾチオフェン含有オクタン:全硫黄成分50ppm)500mlに過酸化尿素(有効過酸化水素:36.1%)0.185g、ギ酸0.6gを加え40℃で7時間撹拌した後、HPLC分析によって残留する4,6−ジメチルジベンゾチオフェンの濃度を調べた。その後、得られたモデル軽油を蒸留精製し、液中の全硫黄濃度をICPを使用して調べた。
<Comparative example 2>
0.185 g of urea peroxide (effective hydrogen peroxide: 36.1%) and 0.6 g of formic acid were added to 500 ml of model light oil (4,6-dimethyldibenzothiophene-containing octane: total sulfur component 50 ppm) and stirred at 40 ° C. for 7 hours. After that, the concentration of 4,6-dimethyldibenzothiophene remaining was examined by HPLC analysis. Thereafter, the obtained model light oil was purified by distillation, and the total sulfur concentration in the liquid was examined using ICP.

<比較例3>
モデル軽油(4,6−ジメチルジベンゾチオフェン含有オクタン:全硫黄成分50ppm)500mlに35.6%の過酸化水素水0.19g、トリフルオロ酢酸0.35gを加え40℃で4時間撹拌した後、HPLC分析によって残留する4,6−ジメチルジベンゾチオフェンの濃度を調べた。その後、得られたモデル軽油を蒸留精製し、液中の全硫黄濃度をICPを使用して調べた。
<Comparative Example 3>
After adding 0.19 g of 35.6% hydrogen peroxide water and 0.35 g of trifluoroacetic acid to 500 ml of model light oil (4,6-dimethyldibenzothiophene-containing octane: total sulfur component 50 ppm), the mixture was stirred at 40 ° C. for 4 hours, The residual 4,6-dimethyldibenzothiophene concentration was determined by HPLC analysis. Thereafter, the obtained model light oil was purified by distillation, and the total sulfur concentration in the liquid was examined using ICP.

<比較例4>
モデル軽油(4,6−ジメチルジベンゾチオフェン含有オクタン:全硫黄成分50ppm)500mlに過硫酸カリウム(硫黄原子に対して1.11当量)0.4g、トリフルオロ酢酸0.35g及び硫酸(89質量%)0.08gを加え40℃で4時間撹拌した後、HPLC分析によって残留する4,6−ジメチルジベンゾチオフェンの濃度を調べた。その後、得られたモデル軽油を蒸留精製し、液中の全硫黄濃度をICPを使用して調べた。
<Comparative Example 4>
Model light oil (4,6-dimethyldibenzothiophene-containing octane: total sulfur component 50 ppm) to 500 ml of potassium persulfate (1.11 equivalent to sulfur atom) 0.4 g, 0.35 g of trifluoroacetic acid and sulfuric acid (89% by mass) After adding 0.08 g and stirring at 40 ° C. for 4 hours, the concentration of 4,6-dimethyldibenzothiophene remaining was examined by HPLC analysis. Thereafter, the obtained model light oil was purified by distillation, and the total sulfur concentration in the liquid was examined using ICP.

Figure 2008280454
Figure 2008280454

上記結果から、本発明の脱硫剤及び脱硫方法を用いると、液状油に含まれる有機硫黄化合物、特に難分解性有機硫黄化合物を効率よく除去することができることがわかる。   From the above results, it can be seen that when the desulfurization agent and the desulfurization method of the present invention are used, the organic sulfur compound, particularly the hardly decomposable organic sulfur compound, contained in the liquid oil can be efficiently removed.

Claims (6)

(A)成分として過酸化尿素、(B)成分としてカルボン酸及び(C)成分として無機酸及び/又は有機スルホン酸を含有することを特徴とする有機硫黄化合物含有液状油用脱硫剤。   An organic sulfur compound-containing liquid oil desulfurization agent comprising urea peroxide as component (A), carboxylic acid as component (B), and inorganic acid and / or organic sulfonic acid as component (C). 前記(B)成分が、ギ酸、酢酸、及びトリフルオロ酢酸から選択される少なくとも1種であることを特徴とする請求項1に記載の脱硫剤。   The desulfurizing agent according to claim 1, wherein the component (B) is at least one selected from formic acid, acetic acid, and trifluoroacetic acid. 前記(C)成分が、メタンスルホン酸、イセチオン酸、リン酸、硝酸、及び硫酸から選択される少なくとも1種であることを特徴とする請求項1又は2に記載の脱硫剤。   The desulfurizing agent according to claim 1 or 2, wherein the component (C) is at least one selected from methanesulfonic acid, isethionic acid, phosphoric acid, nitric acid, and sulfuric acid. 前記(A)成分100質量部に対して、前記(B)成分を10〜1500質量部、前記(C)成分を1〜300質量部含有することを特徴とする請求項1〜3のいずれか一項に記載の脱硫剤。   The component (A) contains 10 to 1500 parts by mass of the component (B) and 1 to 300 parts by mass of the component (C) with respect to 100 parts by mass of the component (A). The desulfurization agent according to one item. 請求項1〜4のいずれか一項に記載の脱硫剤で有機硫黄化合物含有液状油を処理することを特徴とする脱硫方法。   An organic sulfur compound-containing liquid oil is treated with the desulfurizing agent according to any one of claims 1 to 4. 前記有機硫黄化合物含有液状油が、ガソリン、軽油、重油、灯油、ジェット燃料、液化天然ガス、アルコール、LPG、ナフサ、アスファルト油、オイルサンド油、石炭液化油、シェルオイル、廃プラスチック油、バイオフューエル、GTL、パラフィン系鉱油、ナフテン系鉱油から選択される少なくとも1種であることを特徴とする請求項5に記載の脱硫方法。   The organic sulfur compound-containing liquid oil is gasoline, light oil, heavy oil, kerosene, jet fuel, liquefied natural gas, alcohol, LPG, naphtha, asphalt oil, oil sand oil, coal liquefied oil, shell oil, waste plastic oil, biofuel The desulfurization method according to claim 5, wherein the desulfurization method is at least one selected from GTL, paraffinic mineral oil, and naphthenic mineral oil.
JP2007126941A 2007-05-11 2007-05-11 Desulfurization agent for organosulfur compound-containing liquid state oil and method of desulfurization by using the same Pending JP2008280454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007126941A JP2008280454A (en) 2007-05-11 2007-05-11 Desulfurization agent for organosulfur compound-containing liquid state oil and method of desulfurization by using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007126941A JP2008280454A (en) 2007-05-11 2007-05-11 Desulfurization agent for organosulfur compound-containing liquid state oil and method of desulfurization by using the same

Publications (1)

Publication Number Publication Date
JP2008280454A true JP2008280454A (en) 2008-11-20

Family

ID=40141540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007126941A Pending JP2008280454A (en) 2007-05-11 2007-05-11 Desulfurization agent for organosulfur compound-containing liquid state oil and method of desulfurization by using the same

Country Status (1)

Country Link
JP (1) JP2008280454A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5634615B2 (en) * 2011-09-30 2014-12-03 富士フイルム株式会社 Lens and lens molding method
JP2019531366A (en) * 2016-08-05 2019-10-31 ネステ オサケ ユキチュア ユルキネン Purification of feedstock by heat treatment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5634615B2 (en) * 2011-09-30 2014-12-03 富士フイルム株式会社 Lens and lens molding method
JP2019531366A (en) * 2016-08-05 2019-10-31 ネステ オサケ ユキチュア ユルキネン Purification of feedstock by heat treatment

Similar Documents

Publication Publication Date Title
Yu et al. Diesel fuel desulfurization with hydrogen peroxide promoted by formic acid and catalyzed by activated carbon
EP3441442B1 (en) A process for the reduction of the sulphur content of fuels
US7758745B2 (en) Diesel desulfurization method
JP4290547B2 (en) Oxygenation process of components for refinery blends of transportation fuels
JP2006525401A (en) Extraction oxidation method of pollutants from feed hydrocarbon stream
US6027636A (en) Sulfur removal from hydrocarbon fluids by mixing with organo mercaptan and contacting with hydrotalcite-like materials, alumina, bayerite or brucite
CA2900548C (en) Low viscosity metal-based hydrogen sulfide scavengers
MX2013003135A (en) Reaction system and products therefrom.
JP2007297639A (en) Transportation fuel
JP2004536159A (en) Integrated preparation of blended components for refinery transportation fuels
JP2008280454A (en) Desulfurization agent for organosulfur compound-containing liquid state oil and method of desulfurization by using the same
EA016758B1 (en) Method of scavenging mercaptans from hydrocarbons
Mohammadi Ionic liquids for desulfurization
JP2001354978A (en) Process for oxidizing and desulfurizing fuel oil
JP3697503B2 (en) Method for oxidizing organic sulfur compounds contained in fuel oil and method for oxidative desulfurization of fuel oil
EP1713885B1 (en) Hydrocarbons having reduced levels of mercaptans and method and composition useful for preparing same
AU2002245281A1 (en) Transportation fuels
CN109207195B (en) Light circulating oil ultrasonic catalytic oxidation extraction desulfurization process
CA2573470C (en) Method for reducing the level of elemental sulfur and total sulfur in hydrocarbon streams
JP2010215737A (en) Method of purifying hydrocarbon oil by desulfurization or denitrification
CN104073286B (en) A kind of photoxidation removes the method for fuel oil medium sulphide content
Majid et al. EXTRACTIVE DESULFURIZATION OF FUEL OIL USING GLYCOL-BASED DEEP EUTECTIC SOLVENT MEDIATED BY HYDROGEN PEROXIDE AND GRAPHENE OXIDE
WO2011039649A2 (en) A process for producing low sulfur and high cetane number petroleum fuel
Ahmed et al. Optimization of the Oxidative Desulphurization of Residual Oil Using Hydrogen Peroxide
JP3940795B2 (en) Method for oxidative desulfurization of fuel oil