JP2008280407A - Production method of sphere-shaped composite gel particles - Google Patents

Production method of sphere-shaped composite gel particles Download PDF

Info

Publication number
JP2008280407A
JP2008280407A JP2007124602A JP2007124602A JP2008280407A JP 2008280407 A JP2008280407 A JP 2008280407A JP 2007124602 A JP2007124602 A JP 2007124602A JP 2007124602 A JP2007124602 A JP 2007124602A JP 2008280407 A JP2008280407 A JP 2008280407A
Authority
JP
Japan
Prior art keywords
gel particles
polymer
particles
composite gel
production method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007124602A
Other languages
Japanese (ja)
Other versions
JP5085976B2 (en
Inventor
Takashi Oka
隆史 岡
Isamu Kaneda
勇 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shiseido Co Ltd
Original Assignee
Shiseido Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shiseido Co Ltd filed Critical Shiseido Co Ltd
Priority to JP2007124602A priority Critical patent/JP5085976B2/en
Publication of JP2008280407A publication Critical patent/JP2008280407A/en
Application granted granted Critical
Publication of JP5085976B2 publication Critical patent/JP5085976B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a simple production method of polymer composite gel particles having a uniform sphere shape in which a particle diameter can be controlled. <P>SOLUTION: This production method of sphere-shaped polymer composite gel particles comprises a step of producing polymer composite gel particles by mixing anionic polymers and cationic polymers in an aqueous solvent. This production method preferably further contains a step of reacting the above sphere-shaped composite gel particles with a crosslinker after the above step. This production method preferably further contains a step of purifying the above sphere-shaped composite gel particles by performing the dialysis after the above step. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明はゲル、特に製造が簡便な球状の高分子複合ゲル粒子の製造方法に関する。   The present invention relates to a method for producing a gel, particularly a spherical polymer composite gel particle that is easy to produce.

従来、高分子を用いた各種ゲル組成物が食品、医薬品、化粧品等各種分野に汎用され、さらに機能的なゲル組成物の開発が試みられている。このような生体に使用され得るゲル組成物は、生体への影響を考慮して一般に天然物ないしはその加工物から形成される。
例えば、生体適合性の高いヒアルロン酸を用いたゲルの製造方法として、エマルション中でヒアルロン酸を架橋剤であるトリメタリン酸三ナトリウム(STMP)と反応させ、ヒドロゲルを形成させる方法が報告されている(非特許文献1)。
Carbohiydrate Polymers、Vol.57、Issue 1、p.1−6、2004 第53回高分子学会年次大会要旨集(2004)
Conventionally, various gel compositions using polymers have been widely used in various fields such as foods, pharmaceuticals, and cosmetics, and further development of functional gel compositions has been attempted. The gel composition that can be used for such a living body is generally formed from a natural product or a processed product thereof in consideration of the influence on the living body.
For example, as a method for producing a gel using hyaluronic acid having high biocompatibility, a method in which hyaluronic acid is reacted with trisodium trimetaphosphate (STMP) as a crosslinking agent in an emulsion to form a hydrogel has been reported ( Non-patent document 1).
Carbohydrate Polymers, Vol. 57, Issue 1, p. 1-6, 2004 Abstracts of the 53rd Annual Meeting of the Polymer Society of Japan (2004)

しかしながら、上記技術のようにエマルション中においてゲルを形成する場合、有機溶媒の添加が必要であるが、最終的なゲルとするにはこれらを除去しなければならず、製造工程が煩雑になりがちであった。また、同製法では形成されるゲルの粒子径を制御することが難しく、所望する形態のゲルを得られないことがあった。
また、このような製造上の煩雑さを解決しうるゲルの製造方法として、カチオン性界面活性剤であるDTABにより、アニオン高分子であるカルボキシメチルセルロース(CMC)を分子集積し、pH応答性を有する球形の架橋ゲルの合成が可能であるこが開示されている(非特許文献2)。
しかしながら、この方法によるゲル組成物は生体適合性が低く、現在求められている医薬品や化粧品等への適用には不向きなものであった。
本発明は、前記従来技術の課題に鑑みなされたものであり、その目的は、粒径の制御が可能で、均一な球形を有する高分子複合ゲル粒子の簡便な製造方法を提供することにある。
However, when a gel is formed in an emulsion as in the above technique, it is necessary to add an organic solvent. However, in order to obtain a final gel, these must be removed, and the manufacturing process tends to be complicated. Met. In addition, in the production method, it is difficult to control the particle diameter of the formed gel, and the desired form of gel may not be obtained.
In addition, as a method for producing a gel that can solve such complexity of production, carboxymethyl cellulose (CMC), which is an anionic polymer, is molecularly accumulated by DTAB, which is a cationic surfactant, and has pH responsiveness. It has been disclosed that a spherical cross-linked gel can be synthesized (Non-patent Document 2).
However, the gel composition by this method has low biocompatibility, and is unsuitable for application to pharmaceuticals, cosmetics and the like that are currently required.
The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to provide a simple method for producing polymer composite gel particles having a uniform spherical shape capable of controlling the particle diameter. .

前記目的を達成するために本発明者らが鋭意検討した結果、水系溶媒中において、アニオン性高分子とカチオン性高分子とを、その静電引力を利用して凝集させて、両高分子の均一な球状複合粒子を形成せしめ、さらに該粒子を架橋剤により架橋させることにより、強固で機能的な球状ゲル粒子を容易に得ることができることを見出し、本発明を完成するに至った。
すなわち、本発明にかかる球状複合ゲル粒子の製造方法は、水系溶媒中において、アニオン性高分子とカチオン性高分子とを混合して球状複合粒子とする工程を含むことを特徴とする。
また、前記工程後、前記球状複合粒子に架橋剤を作用させる工程を含むことが好適である。
さらに、前記工程後、透析を行って前記球状複合粒子を精製する工程を含むことが好適である。
また、前記架橋剤を作用させる工程を静置条件下において行うことが好適である。
As a result of intensive studies by the present inventors in order to achieve the above object, an anionic polymer and a cationic polymer are aggregated using an electrostatic attractive force in an aqueous solvent, and both polymers are It was found that by forming uniform spherical composite particles and further crosslinking the particles with a crosslinking agent, it is possible to easily obtain strong and functional spherical gel particles, thereby completing the present invention.
That is, the method for producing spherical composite gel particles according to the present invention includes a step of mixing an anionic polymer and a cationic polymer in an aqueous solvent to form spherical composite particles.
Moreover, it is preferable that after the said process, the process of making a crosslinking agent act on the said spherical composite particle is included.
Furthermore, it is preferable to include a step of purifying the spherical composite particles by performing dialysis after the step.
In addition, it is preferable that the step of causing the crosslinking agent to act is performed under stationary conditions.

本発明にかかる製造方法によれば、均一な球状を有し、機能性に優れた球状複合ゲル粒子を簡便に得ることができる。また、該製造方法によれば、球状複合ゲル粒子の粒径を容易に制御し得る。さらに、本発明の製造方法により得られる球状複合ゲル粒子は安全性が高く、食品、医薬品、化粧品等に広く適用することができる。   According to the production method of the present invention, spherical composite gel particles having a uniform spherical shape and excellent functionality can be easily obtained. Moreover, according to this manufacturing method, the particle size of the spherical composite gel particles can be easily controlled. Furthermore, the spherical composite gel particles obtained by the production method of the present invention are highly safe and can be widely applied to foods, pharmaceuticals, cosmetics and the like.

以下、本発明の構成をさらに詳細に説明する。
高分子の球状複合粒子の形成
本発明者らがアニオン性高分子及びカチオン性高分子の特性について検討したところ、アニオン性高分子水溶液にカチオン性高分子水溶液を加えることによって起こる相分離を利用して均一な高分子の凝集体が得られることを見出した。この凝集体は均一な球状をなし、アニオン性高分子及びカチオン性高分子の複合体からなるゲル粒子を形成するものである。
Hereinafter, the configuration of the present invention will be described in more detail.
Formation of polymer spherical composite particles The inventors of the present invention have studied the characteristics of anionic polymers and cationic polymers. Using the phase separation that occurs when an aqueous cationic polymer solution is added to an aqueous anionic polymer solution. And found that uniform polymer aggregates can be obtained. This aggregate has a uniform spherical shape and forms gel particles composed of a composite of an anionic polymer and a cationic polymer.

すなわち、本発明にかかる球状複合ゲル粒子の製造方法は、水系溶媒中においてアニオン性高分子とカチオン性高分子とを混合し、前記高分子の凝集体、すなわち球状複合ゲル粒子を形成させる工程を含む。本発明におけるゲル形成は、水系における両高分子間の静電引力を利用して分子同士を凝集させるものであるため、水系溶媒中、つまりはアニオン性高分子とカチオン性高分子の水溶液を混合することで容易に達成できる。   That is, the method for producing spherical composite gel particles according to the present invention comprises a step of mixing an anionic polymer and a cationic polymer in an aqueous solvent to form an aggregate of the polymer, that is, a spherical composite gel particle. Including. Since gel formation in the present invention agglomerates molecules using electrostatic attraction between both polymers in an aqueous system, an aqueous solution of an anionic polymer and a cationic polymer is mixed in an aqueous solvent. This can be easily achieved.

本発明にかかる製造方法に適用し得るアニオン性高分子は、分子中にアニオン基を有する高分子であれば特に制限されないが、例えば、アラビアゴム、コンドロイチン硫酸、ザンサンガム、カラギーナン、サクシノグルカン等多糖類の適用が好適である。
さらに、カルボキシビニルポリマー、アクリル酸・メタクリル酸共重合体、ポリアクリル酸、カルボキシメチルセルロース、アクリル酸・メタクリル酸アルキル共重合体等合成高分子を用いることもできる。
本発明における前記アニオン性高分子の濃度は、同時配合のカチオン性高分子との電荷比率にもよるが、水系溶媒中の反応系において0.0005〜5重量%であることが好ましい。より好ましくは0.001〜1重量%、さらに好ましくは0.05〜0.5重量%である。
The anionic polymer that can be applied to the production method according to the present invention is not particularly limited as long as it is a polymer having an anionic group in the molecule. Application of sugars is preferred.
Furthermore, synthetic polymers such as carboxyvinyl polymer, acrylic acid / methacrylic acid copolymer, polyacrylic acid, carboxymethylcellulose, acrylic acid / alkyl methacrylate copolymer, and the like can also be used.
The concentration of the anionic polymer in the present invention is preferably 0.0005 to 5% by weight in the reaction system in the aqueous solvent, although it depends on the charge ratio with the cationic polymer mixed at the same time. More preferably, it is 0.001-1 weight%, More preferably, it is 0.05-0.5 weight%.

本発明にかかる製造方法に適用し得るカチオン性高分子は、分子中にカチオン基を有する高分子であれば特に制限されない。このようなカチオン性高分子としては、例えば、ポリ(ジメチルジアリルアンモニウムハライド)型カチオン性ポリマー、ジメチルジアリルアンモニウムハライドとアクリルアミドの共重合体カチオン性ポリマー、または第4級窒素含有セルロースエーテル、またはポリエチレングリコール、エピクロルヒドリン、プロピレンアミン及び牛脂脂肪酸より得られるタロイルアミンの縮合生成物、またはビニルピロリドン・ジメチルアミノエチルメタクリレート共重合体カチオン化物等であり、ポリ(ジメチルジアリルアンモニウムハライド)型カチオン性高分子としては、マーコート100 (Merquat100)という商品名で米国メルク社(Merck &Co.Inc.) から販売されているものなどを挙げることができる。ジメチルジアリルアンモニウムハライドとアクリルアミドの共重合体型カチオン性ポリマーとしてはマーコート550(Merquat 550)[米国メルク社(Merquat &Co.,Inc.)]などを挙げることができる。ポリエチレングリコール、エピクロルヒドリン、プロピレンアミン及びタロイルアミンもしくは、ココイルアミンの縮合生成物の例としては、ポリコートH(Polyquat H)という商品名で、独ヘンケル社(Henkel
International Co.)から販売されているものなどを挙げることができる。第4級窒素含有セルロースは、ポリマーJR-400(Polymer JR-400)、ポリマーJR-125(Polymer JR-125)ポリマーJR-30M(Polymer JR-30M)という商品名で、米国ユニオンカーバイト社(Union Carbide Corp. )から販売されているものなどである。ビニルピロリドン・ジメチルアミノエチルメタクリレート共重合体カチオン化物はガフコート755 (Gafquat 755 )、ガフコート734 (Gafquat734) という商品名で米国GAF社(GAFCorp. )から販売されているもの等である。
また、カチオン化セルロース、カチオン化ヒドロキシエチルセルロース、カチオン化デンプン、カチオン化グアーガム、カチオン化ローカストビーンガム、カチオン化タマリンドガム、カチオン化フェヌクリークガム等のカチオン化多糖類も好適に使用することができる。
The cationic polymer applicable to the production method according to the present invention is not particularly limited as long as it is a polymer having a cationic group in the molecule. Examples of such cationic polymer include poly (dimethyldiallylammonium halide) type cationic polymer, dimethyldiallylammonium halide and acrylamide copolymer cationic polymer, quaternary nitrogen-containing cellulose ether, or polyethylene glycol. Is a condensation product of taroylamine obtained from epichlorohydrin, propyleneamine and beef tallow fatty acid, or a cationized vinylpyrrolidone / dimethylaminoethyl methacrylate copolymer, and the poly (dimethyldiallylammonium halide) type cationic polymer is a marcoat. Examples include those sold by Merck & Co. Inc. under the trade name 100 (Merquat100). Examples of the copolymer type cationic polymer of dimethyldiallylammonium halide and acrylamide include Merquat 550 (Merquat & Co., Inc.). An example of a condensation product of polyethylene glycol, epichlorohydrin, propyleneamine and taroylamine or cocoylamine is the product name Polyquat H, under the trade name Henkel
International Co.) can be listed. Quaternary nitrogen-containing cellulose is a product name of polymer JR-400 (Polymer JR-400), polymer JR-125 (Polymer JR-125), polymer JR-30M (Polymer JR-30M), and US Union Carbide ( Such as those sold by Union Carbide Corp.). The cationized vinylpyrrolidone / dimethylaminoethyl methacrylate copolymer is sold by GAF Corp. in the United States under the trade names of Gafquat 755 and Gafquat734.
In addition, cationized polysaccharides such as cationized cellulose, cationized hydroxyethyl cellulose, cationized starch, cationized guar gum, cationized locust bean gum, cationized tamarind gum, and cationized fenucreak gum can also be suitably used. .

本発明における前記カチオン性高分子の濃度は、同時配合のアニオン性高分子との電荷比率にもよるが、水系溶媒中の反応系において0.0005〜5重量%であることが好ましい。より好ましくは0.001〜1重量%、さらに好ましくは0.05〜0.5重量%である。   The concentration of the cationic polymer in the present invention is preferably 0.0005 to 5% by weight in the reaction system in the aqueous solvent, although it depends on the charge ratio with the anionic polymer mixed at the same time. More preferably, it is 0.001-1 weight%, More preferably, it is 0.05-0.5 weight%.

本発明にかかる製造方法は、前記アニオン性高分子及びカチオン性高分子の水系溶媒中における電荷比率によって、生成する球状ゲル粒子の大きさを制御することができる。すなわち、アニオン性高分子の有するアニオン基とカチオン性高分子の有するカチオン基の比率により、両高分子が凝集する起動力となる静電引力を調節することができるため、前記凝集によって形成される球状ゲル粒子の大きさが制御される。したがって、アニオン性高分子とカチオン性高分子の電荷が中性となる濃度では、静電引力が最も小さくなるため粒子径が小さくなる。
本発明にかかる製造方法において、アニオン性高分子のアニオン基に対し、カチオン性高分子のカチオン基の電荷比率は0.1〜10倍であることが好適である。
The production method according to the present invention can control the size of the produced spherical gel particles by the charge ratio of the anionic polymer and the cationic polymer in an aqueous solvent. That is, since the electrostatic attractive force that serves as the starting force for aggregating both polymers can be adjusted by the ratio of the anionic group of the anionic polymer to the cationic group of the cationic polymer, it is formed by the aggregation. The size of the spherical gel particles is controlled. Therefore, at a concentration at which the charge of the anionic polymer and the cationic polymer is neutral, the electrostatic attraction becomes the smallest and the particle size becomes small.
In the production method according to the present invention, the charge ratio of the cationic group of the cationic polymer to the anionic group of the anionic polymer is preferably 0.1 to 10 times.

球状複合ゲル粒子の架橋
また、本発明にかかる球状複合架橋ゲル粒子の製造方法においては、上記の工程によりアニオン性高分子及びカチオン性高分子の球状複合ゲル粒子を形成した後、さらに架橋剤を添加して前記粒子を架橋させ、強固なゲル粒子とすることができる。架橋剤の添加は、球状粒子を形成した系をそのまま使用することができる。系から球状粒子を分離して別途架橋剤と反応させてもよいが、生産効率上同じ系を用いることが好ましい。
Crosslinking of spherical composite gel particles In addition, in the method for producing spherical composite crosslinked gel particles according to the present invention, after forming the spherical composite gel particles of the anionic polymer and the cationic polymer by the above steps, a crosslinking agent is further added. The particles can be added to crosslink the particles to form strong gel particles. For the addition of the crosslinking agent, a system in which spherical particles are formed can be used as it is. Although spherical particles may be separated from the system and reacted separately with a crosslinking agent, it is preferable to use the same system in terms of production efficiency.

本発明に用いる架橋剤は、球状複合ゲル粒子を構成する高分子鎖間を化学結合によって架橋し得るものであれば、どのようなものを用いても構わない。
架橋剤としては、例えば、アニオン性高分子の有するカルボキシル基、水酸基、アセトアミド基といった反応性官能基と反応して共有結合を形成し得る官能基を2以上有する多官能性化合物を用いることができる。本発明に適用可能な架橋剤としては、具体的には、1,3−ブタジエンジエポキシド、1,2,7,8−ジエポキシオクタン、1,5−ヘキサジエンジエポキシド等のアルキルジエポキシ体、エチレングリコールジグリシジルエーテル、1,4−ブタンジオールジグリシジルエーテル、ビスフェノールAジグリシジルエーテル等のジグリシジルエーテル体、ジビニルスルホン、エピクロルヒドリン等が挙げられる。これらの中でも、特にジビニルスルホン、1,4−ブタンジオール・ジグリシジルエーテル、及びエチレングリコール・ジグリシジルエーテルを好適に用いることができる。また、本発明においては、2種以上の架橋剤を適宜組み合わせて用いても構わない。
Any crosslinking agent may be used as long as it can crosslink between the polymer chains constituting the spherical composite gel particles by chemical bonding.
As the cross-linking agent, for example, a polyfunctional compound having two or more functional groups capable of forming a covalent bond by reacting with a reactive functional group such as a carboxyl group, a hydroxyl group, or an acetamide group possessed by an anionic polymer can be used. . Specific examples of the crosslinking agent applicable to the present invention include alkyl diepoxy compounds such as 1,3-butadiene diepoxide, 1,2,7,8-diepoxyoctane, 1,5-hexadiene diepoxide, Examples include diglycidyl ethers such as ethylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, and bisphenol A diglycidyl ether, divinyl sulfone, and epichlorohydrin. Among these, divinyl sulfone, 1,4-butanediol diglycidyl ether, and ethylene glycol diglycidyl ether can be preferably used. Moreover, in this invention, you may use in combination of 2 or more types of crosslinking agents suitably.

前記架橋剤の濃度は用いる架橋剤の種類にもよるが、アニオン性高分子及びカチオン性高分子を含む系において0.000001〜5重量%であることが好ましい。より好ましくは0.00001〜0.5重量%、さらに好ましくは0.0001〜0.05重量%である。
架橋剤の濃度が高くなるに伴い、球状複合ゲル粒子の粒子径が大きくなる。これは、架橋剤の濃度が高いほど系中の高分子の架橋率が上昇し、より大きな粒子を形成するためであると考えられる。したがって、本発明においては、架橋剤の濃度によって形成する球状複合ゲル粒子の粒子径を制御することも可能である。ただし、架橋剤の濃度が高すぎると、粒子が大きくなりすぎて球状を維持することができなくなり、沈殿を生じることがあるため好ましくない。
The concentration of the crosslinking agent is preferably 0.000001 to 5% by weight in a system containing an anionic polymer and a cationic polymer, although it depends on the type of the crosslinking agent used. More preferably, it is 0.00001 to 0.5 weight%, More preferably, it is 0.0001 to 0.05 weight%.
As the concentration of the crosslinking agent increases, the particle diameter of the spherical composite gel particles increases. This is considered to be because the higher the concentration of the cross-linking agent, the higher the cross-linking rate of the polymer in the system, thereby forming larger particles. Therefore, in the present invention, it is also possible to control the particle diameter of the spherical composite gel particles formed by the concentration of the crosslinking agent. However, if the concentration of the cross-linking agent is too high, the particles become too large to maintain a spherical shape, which is not preferable because precipitation may occur.

本発明にかかる球状複合架橋ゲル粒子の製造方法においては、前記高分子と、前記架橋剤と、水とを含む混合物を、酸又はアルカリ条件下で混合し、前記高分子の有する反応性官能基と前記架橋剤とを反応させることによって、前記高分子の複合ゲル粒子を構成する高分子鎖間を化学結合により架橋し、架橋した球状架橋複合ゲル粒子を生成する。
なお、本発明においては、架橋反応時の高分子鎖の反応性を高める目的で、塩酸、硫酸等の酸、水酸化ナトリウム、水酸化カリウム等の塩基、あるいはリン酸塩、4級アンモニウム塩等の適当な緩衝液により混合物のpHを適宜調整し、酸又はアルカリ条件下で攪拌混合を行なう。具体的には、例えば、酸条件下においてはpH1〜5、アルカリ条件下においてはpH10〜14となるように混合物のpHを調整することが好適である。架橋反応を前述の球状粒子の形成と同じ系を用いて行う場合は、粒子を形成する工程において系のpH調整を行ってもよい。すなわち、水系溶媒中へアニオン性高分子およびカチオン性高分子に加え、酸や塩基等を溶解し、pHを調整しておくことも可能である。
In the method for producing a spherical composite crosslinked gel particle according to the present invention, a mixture containing the polymer, the crosslinking agent, and water is mixed under acid or alkaline conditions, and the reactive functional group of the polymer is included. Are reacted with the cross-linking agent to cross-link the polymer chains constituting the polymer composite gel particles by chemical bonds, thereby generating cross-linked spherical cross-linked composite gel particles.
In the present invention, for the purpose of increasing the reactivity of the polymer chain during the crosslinking reaction, acids such as hydrochloric acid and sulfuric acid, bases such as sodium hydroxide and potassium hydroxide, phosphates, quaternary ammonium salts, etc. The pH of the mixture is appropriately adjusted with an appropriate buffer solution, and the mixture is stirred and mixed under acid or alkaline conditions. Specifically, for example, it is preferable to adjust the pH of the mixture so that the pH is 1 to 5 under acid conditions and the pH is 10 to 14 under alkaline conditions. When the crosslinking reaction is performed using the same system as that for forming the spherical particles, the pH of the system may be adjusted in the step of forming the particles. That is, it is possible to adjust the pH by dissolving an acid, a base, or the like in addition to an anionic polymer and a cationic polymer in an aqueous solvent.

また、本発明にかかる製造方法においては、上記架橋反応を静置条件下で行うことが好適である。通常の高分子の架橋技術においては、架橋反応を均一に進めるため攪拌条件下で系に架橋剤を添加することが多いが、本発明による球状複合ゲル粒子の場合、攪拌条件下で架橋剤を添加すると沈殿物を析出することがある。これは、攪拌により球状複合ゲル粒子と架橋剤の反応頻度および前記粒子同士の衝突頻度が増大し、粒子内のみならず、粒子間においても架橋反応が起こり、粒子が凝集・沈殿するためであると考えられる。一方、静止した状態で架橋反応を緩やかに進行させれば、前記のような粒子間の架橋を抑え、粒子内のみを架橋することができるため、均一な球状架橋複合ゲル粒子の分散液を得ることができる。   Moreover, in the manufacturing method concerning this invention, it is suitable to perform the said crosslinking reaction on stationary conditions. In ordinary polymer cross-linking techniques, a cross-linking agent is often added to the system under stirring conditions in order to promote the cross-linking reaction uniformly. In the case of the spherical composite gel particles according to the present invention, the cross-linking agent is added under stirring conditions. Addition may cause precipitation. This is because the reaction frequency between the spherical composite gel particles and the crosslinking agent and the collision frequency between the particles increase by stirring, and the crosslinking reaction occurs not only within the particles but also between the particles, and the particles aggregate and precipitate. it is conceivable that. On the other hand, if the cross-linking reaction is allowed to proceed slowly in a stationary state, it is possible to suppress cross-linking between particles as described above and to cross-link only within the particles, thereby obtaining a uniform dispersion of spherical cross-linked composite gel particles. be able to.

本発明にかかる製造方法において、架橋反応を行う時間は架橋剤の種類や濃度に応じて適宜調整すればよい。すなわち、架橋剤濃度が高い場合、架橋時間を長くすると球状複合ゲル粒子間で架橋が進行してしまい、沈殿が生じることがある。一方、架橋剤の濃度が低い場合、架橋時間が短いと架橋反応が十分に進行しないが、架橋時間を長くすれば球状架橋複合ゲル粒子を得ることができる。   In the production method according to the present invention, the time for performing the crosslinking reaction may be appropriately adjusted according to the type and concentration of the crosslinking agent. That is, when the concentration of the cross-linking agent is high, if the cross-linking time is increased, the cross-linking proceeds between the spherical composite gel particles, and precipitation may occur. On the other hand, when the concentration of the crosslinking agent is low, the crosslinking reaction does not proceed sufficiently if the crosslinking time is short, but if the crosslinking time is lengthened, spherical crosslinked composite gel particles can be obtained.

球状複合ゲル粒子の精製
本発明にかかる球状複合ゲル粒子の製造方法においては、上記の工程により高分子複合体からなる球状粒子を架橋した後、さらにその分散系を透析して球状複合架橋ゲル粒子を精製することが好適である。
透析により系に残存した架橋剤等を容易に除去し、ゲル粒子のみを得ることができる。
In the production method of the spherical composite gel particles according to the purification invention spherical composite gel particles, after crosslinked spherical particles made of a polymer complex by the above process, further dialyzed spherical composite crosslinked gel particles that dispersion Is preferably purified.
It is possible to easily remove the crosslinking agent remaining in the system by dialysis and obtain only gel particles.

上記した本発明にかかる製造方法により得られる球状複合架橋ゲル粒子は、均一な球状粒子をなし、耐塩性やpH応答性を有する等機能的に優れたものである。
また、本発明にかかる球状複合架橋ゲル粒子の製造において、上記した成分の他にも、予め、通常、医薬品、化粧料等に用いられる成分を、本発明の目的及び効果に影響が出ない範囲で適宜配合しても構わない。もしくは、得られた球状複合架橋ゲル粒子を食品・医薬品・化粧品等の各種製品へ配合することもできる。
The spherical composite cross-linked gel particles obtained by the production method according to the present invention described above are excellent in terms of functionality such as uniform spherical particles, salt resistance and pH responsiveness.
In addition, in the production of the spherical composite crosslinked gel particles according to the present invention, in addition to the above-described components, components that are usually used in medicines, cosmetics and the like in advance do not affect the purpose and effect of the present invention. May be blended as appropriate. Alternatively, the obtained spherical composite crosslinked gel particles can be blended into various products such as foods, pharmaceuticals, and cosmetics.

本発明にかかる製造方法により得られる球状複合架橋ゲル粒子は、その特性を利用して、pH応答性素材、耐塩性素材、保湿剤として使用することができる。また、本発明のゲルを単層膜とし、皮膚や毛髪のコーティング剤として使用することも可能である。
さらに、生体適合性の高い高分子を使用した場合、前記ゲルの生体内で代謝をうけにくく、耐塩性やpH応答性を有することを利用して、美容整形におけるしわのばし、陥凹および豊胸用の注入剤、高い生体内滞留性、潤滑作用および薬理効果を示す変形性関節症治療薬(関節内注入剤)、高い保湿作用、涙液内滞留性および薬理効果を示すドライアイ点眼薬、胃潰瘍の予防・治療薬、花粉症予防剤、口腔内乾燥防止剤等への使用が期待できる。
本発明による球状複合ゲル粒子の形成は、上記したようにアニオン性高分子とカチオン性高分子の静電相互作用を利用したものであるため、製品中におけるゲル粒子の安定性を考慮するならば、本発明によって球状複合ゲル粒子を製造後、各種製品へ前記ゲル粒子を配合することが好ましい。すなわち、製品へ単に成分としてアニオン性高分子及びカチオン性高分子を配合しても、製品中の他の成分による静電相互作用の影響を受けてしまい、ゲル粒子が安定して生成されないことがある。
The spherical composite crosslinked gel particles obtained by the production method according to the present invention can be used as a pH-responsive material, a salt-resistant material, and a humectant by utilizing the characteristics. In addition, the gel of the present invention can be used as a single layer film and used as a coating agent for skin and hair.
Furthermore, when a polymer with high biocompatibility is used, the gel is difficult to be metabolized in vivo and has salt resistance and pH responsiveness, so that wrinkles, depressions and breast augmentation in cosmetic surgery are performed. Infusions for use, therapeutic agents for osteoarthritis (intra-articular injections) that exhibit high in vivo retention, lubrication and pharmacological effects, dry eye drops that exhibit high moisturizing action, retention in tears and pharmacological effects, Expected to be used for preventive and therapeutic agents for gastric ulcer, hay fever preventive agent, anti-oral dry agent and the like.
Since the formation of the spherical composite gel particles according to the present invention utilizes the electrostatic interaction between the anionic polymer and the cationic polymer as described above, if the stability of the gel particles in the product is taken into consideration It is preferable to blend the gel particles into various products after producing the spherical composite gel particles according to the present invention. That is, even if an anionic polymer and a cationic polymer are simply added to the product as a component, the gel particles may not be stably generated due to the influence of electrostatic interaction due to other components in the product. is there.

また、ゲル粒子の球状内が疎水性であることを利用し、疎水性薬剤またはカチオン性薬剤を粒子内に内包し、ドラッグデリバリーシステム(DDS)のキャリアーとしての利用他、ゲル組成物の応用が可能なあらゆる分野において使用することができる。
以下、本発明の実施例を示して、本発明について更に詳しく説明するが、本発明はこれに限定されるものではない。
Also, utilizing the hydrophobic nature of the gel particles, encapsulating hydrophobic drugs or cationic drugs in the particles, and using them as carriers for drug delivery systems (DDS), gel compositions can be applied. It can be used in all possible fields.
EXAMPLES Hereinafter, although the Example of this invention is shown and this invention is demonstrated in more detail, this invention is not limited to this.

下記表1に示すアニオン性高分子及びカチオン性高分子の組合わせにより、球状複合ゲル粒子の形成を試みた。すなわち、下記の方法にしたがって製造した架橋反応後の高分子分散液について、下記評価基準によりゲル粒子生成の有無を評価した。結果を表1に示す。   An attempt was made to form spherical composite gel particles by combining anionic polymers and cationic polymers shown in Table 1 below. That is, the presence or absence of gel particle generation was evaluated according to the following evaluation criteria for the polymer dispersion after the crosslinking reaction produced according to the following method. The results are shown in Table 1.

<球状複合架橋ゲル粒子の製造例>
製造方法
50mlサンプル管に、終濃度として0.25重量%アニオン性高分子水溶液、1.6重量%水酸化ナトリウム、濃度調整用の蒸留水を加え混合した。これに攪拌条件の下終濃度として0.25重量%カチオン性高分子水溶液を加えて5分間攪拌し分子集積/相分離させた。さらに架橋剤としてジビニルスルホン(DVS)を加え、系内が均一になる程度攪拌したら攪拌を止め、静置条件の下架橋反応を行った。架橋反応は、1M塩酸を添加して系内のpHを中性〜弱酸性にすることで停止させ、架橋した球状複合ゲル粒子の分散液を得た。その後、前記分散液を遠心分離及び透析に供し、架橋した球状複合ゲル粒子を精製した。
<Production example of spherical composite crosslinked gel particles>
Production Method A 0.25 wt% aqueous anionic polymer solution, 1.6 wt% sodium hydroxide and distilled water for adjusting the concentration were added to a 50 ml sample tube and mixed. To this was added a 0.25 wt% cationic polymer aqueous solution as the final concentration under stirring conditions, and the mixture was stirred for 5 minutes for molecular accumulation / phase separation. Further, divinyl sulfone (DVS) was added as a cross-linking agent. After stirring to such an extent that the inside of the system became uniform, stirring was stopped and a cross-linking reaction was carried out under standing conditions. The crosslinking reaction was stopped by adding 1M hydrochloric acid to make the pH in the system neutral to weakly acidic, and a dispersion of crosslinked spherical composite gel particles was obtained. Thereafter, the dispersion was subjected to centrifugation and dialysis to purify the crosslinked spherical composite gel particles.

評価基準
○:沈殿の見られない均一なゲル粒子の分散液であった。
△:繊維状沈殿が浮遊した分散液であった。
×:ゲル粒子が生成しなかった。
Evaluation criteria ( circle): It was the dispersion liquid of the uniform gel particle in which precipitation was not seen.
(Triangle | delta): It was the dispersion liquid which fibrous precipitation floated.
X: Gel particles were not generated.

(表1)
*1 マーコート100(メルク社製):ポリN,N’−ジメチル−3,5−メチレンピペリジウム塩化物溶液
*2 カチオン化ローカストビーンガム:塩化O−[2−ヒドロキシ−3−(トリメチルアンモニオ)プロピル]ローカストビーンガム
*3カチオン化グアーガムM:塩化O−[2−ヒドロキシ−3−(トリメチルアンモニオ)プロピル]グアーガム
*4 ポリマーJR400(ユニオンカーバイド社製):塩化O−[2−ヒドロキシ−3−(トリメチルアンモニオ)プロピル]ヒドロキシエチルセルロース
*5 マーコート550(メルク社製):塩化ジメチルジアリルアンモニウム・アクリルアミド共重合体溶液
(Table 1)
* 1 Marquat 100 (Merck): Poly N, N'-dimethyl-3,5-methylenepiperidinium chloride solution * 2 Cationized locust bean gum: O- [2-hydroxy-3- (trimethylammonio) chloride ) Propyl] locust bean gum * 3 Cationized guar gum M: Chloride O- [2-hydroxy-3- (trimethylammonio) propyl] guar gum * 4 Polymer JR400 (manufactured by Union Carbide): O- [2-hydroxy-chloride] 3- (Trimethylammonio) propyl] hydroxyethylcellulose * 5 Marquat 550 (Merck): Dimethyldiallylammonium chloride / acrylamide copolymer solution

表1に示すように、反対電荷を有する高分子を混合し、その状態で架橋することで均一な架橋した球状のゲル粒子が生成されることが分かった。また、さらに前記粒子の粒子径を測定した結果、アラビアゴム/マーコート100の組合わせにおいては24μm、コンドロイチン硫酸ナトリウム/マーコート100の組合わせにおいては4μmであった。このことから、使用するアニオン性高分子の分子量が高いほど、ゲル粒子の粒子径がやや大きくなることが推測された。これは、高分子の同士の複合体がコンパクトな分子形態をとり難いためであると考えられる。
以上の結果より、本発明の製造方法により、球状複合ゲル粒子が得られることが認められた。また、アニオン性高分子及びカチオン性高分子の組合わせによって、前記ゲル粒子の粒径制御が可能であることが示唆された。
As shown in Table 1, it was found that uniform cross-linked spherical gel particles were formed by mixing polymers having opposite charges and cross-linking in that state. Further, as a result of measuring the particle diameter of the particles, it was 24 μm in the combination of gum arabic / Mercoat 100 and 4 μm in the combination of sodium chondroitin sulfate / Mercoat 100. From this, it was presumed that the particle diameter of the gel particles slightly increased as the molecular weight of the anionic polymer used increased. This is considered to be because a complex of polymers is difficult to take a compact molecular form.
From the above results, it was confirmed that spherical composite gel particles were obtained by the production method of the present invention. Further, it was suggested that the particle size of the gel particles can be controlled by a combination of an anionic polymer and a cationic polymer.

<アニオン性高分子及びカチオン性高分子の濃度>
上記製造例におけるアラビアゴム/マーコート100の系を用い、アルカリ条件下で0.25重量%アラビアゴム水溶液中に終濃度が0.04、0.4、0.8重量%となるようにマーコート100を添加して分子集積させた後、DVSで架橋してそれぞれゲル粒子を得た。前記試験を水および生理食塩水を溶媒としてそれぞれ行い、マーコート100の各濃度におけるゲル粒子の粒子径を測定した結果を図1に示す。
<Concentration of anionic polymer and cationic polymer>
Using the system of gum arabic / merquat 100 in the above production example, the marcoat 100 was adjusted so as to have a final concentration of 0.04, 0.4, 0.8% by weight in a 0.25% by weight aqueous solution of gum arabic under alkaline conditions. Was added to cause molecular accumulation, and then crosslinked with DVS to obtain gel particles. FIG. 1 shows the results of measuring the particle diameter of gel particles at each concentration of the Marquat 100 by performing the above test using water and physiological saline as solvents.

図1に示すように、球状ゲル粒子はマーコート100の濃度によって粒子径が変化し、マーコート濃度0.4重量%において最小値を示した。これは、マーコート100とアラビアゴムの電荷が中和され、解離基による静電反発が抑制されたため、ゲル粒子が収縮したことに起因すると考えられる。このようにアニオン性高分子とカチオン性高分子の電荷比率に依存して粒子径が変化するとすれば、本試験におけるカチオン性高分子と同様に、アニオン性高分子の濃度を調節することによっても粒子径を制御することができると考えられる。   As shown in FIG. 1, the particle diameter of the spherical gel particles changed depending on the concentration of the marcoat 100, and showed a minimum value at a marcoat concentration of 0.4% by weight. This is considered to be because the gel particles contracted because the charges of the marcoat 100 and the gum arabic were neutralized and the electrostatic repulsion due to the dissociating group was suppressed. If the particle size changes depending on the charge ratio between the anionic polymer and the cationic polymer, the concentration of the anionic polymer can be adjusted by adjusting the concentration of the anionic polymer in the same manner as the cationic polymer in this test. It is considered that the particle diameter can be controlled.

また、図1によれば、ゲル粒子の生成における溶媒を生理食塩水とした場合も、水を溶媒とした場合とほぼ同様の粒子径変化を示した。
以上の結果から、本発明の製造方法において、アニオン性高分子及び/またはカチオン性高分子の電荷比率に基づく濃度調節により、球状複合ゲル粒子の粒子径の制御が可能であることが認められた。また、本発明による前記ゲル粒子は、耐塩性を有することも認められた。
Moreover, according to FIG. 1, when the solvent in the production | generation of a gel particle was used as the physiological saline, the particle diameter change substantially the same as the case where water was used as the solvent was shown.
From the above results, it was confirmed that in the production method of the present invention, the particle diameter of the spherical composite gel particles can be controlled by adjusting the concentration based on the charge ratio of the anionic polymer and / or the cationic polymer. . It was also recognized that the gel particles according to the present invention have salt resistance.

<架橋剤の濃度>
上記製造例におけるアラビアゴム/マーコート100の系において、DVSの濃度を変化させた際の球状複合架橋ゲル粒子の粒子径を測定した。結果を図2に示す。
図2に示すように、球状ゲル粒子の粒子径はDVSの濃度上昇に伴って大きくなった。これは、DVS濃度の上昇に伴い、より多くの高分子が架橋され、これに応じてより大きなゲル粒子が形成されたためであると考えられる。
以上の結果から、本発明の製造方法において、架橋剤の濃度により粒子径の制御が可能であることが認められた。
<Concentration of crosslinking agent>
In the gum arabic / mercoat 100 system in the above production example, the particle diameter of the spherical composite crosslinked gel particles when the DVS concentration was changed was measured. The results are shown in FIG.
As shown in FIG. 2, the particle size of the spherical gel particles increased with increasing DVS concentration. This is presumably because more polymer was cross-linked as the DVS concentration increased, and larger gel particles were formed accordingly.
From the above results, it was confirmed that the particle diameter can be controlled by the concentration of the crosslinking agent in the production method of the present invention.

<走査型電子顕微鏡(SEM)による粒子の観察>
本発明にかかる製造方法によって得られる球状複合ゲル粒子の形態を走査型電子顕微鏡(SEM)を用いて確認した。
すなわち、上記試験例におけるアラビアゴム/マーコート100の系より得られたゲル粒子を適当な濃度に希釈し、カバーガラス上に沈着固定した。これを白金(Pt)で真空蒸着した後、カーボンテープで試料台に固定した。これを走査型電子顕微鏡(VE8800:KEYENCE製)により適当な倍率で撮影し、粒子形態及び表面の様子を観察した。前記操作により得られた顕微鏡写真を図3に示す。
図3に示すように、本発明の製造方法によるゲル粒子は、均一な球状をなしていた。
以上の試験結果より、本発明にかかる製造方法により、機能的で粒径制御の可能な球状複合ゲル粒子を容易に得ることができることが認められた。
<Observation of particles by scanning electron microscope (SEM)>
The form of the spherical composite gel particles obtained by the production method according to the present invention was confirmed using a scanning electron microscope (SEM).
That is, the gel particles obtained from the gum arabic / Mercoat 100 system in the above test example were diluted to an appropriate concentration and deposited and fixed on the cover glass. This was vacuum-deposited with platinum (Pt) and then fixed to a sample table with carbon tape. This was photographed with a scanning electron microscope (VE8800: manufactured by KEYENCE) at an appropriate magnification, and the particle morphology and surface appearance were observed. A photomicrograph obtained by the above operation is shown in FIG.
As shown in FIG. 3, the gel particles produced by the production method of the present invention had a uniform spherical shape.
From the above test results, it was confirmed that spherical composite gel particles having functional and particle size control can be easily obtained by the production method according to the present invention.

本発明におけるカチオン性高分子の濃度による粒子径の変化を示したグラフである。It is the graph which showed the change of the particle diameter by the density | concentration of the cationic polymer in this invention. 本発明における架橋剤濃度の変化による粒子径の変化を示したグラフである。It is the graph which showed the change of the particle diameter by the change of the crosslinking agent concentration in this invention. 本発明による球状複合架橋ゲル粒子のSEM写真である。2 is a SEM photograph of spherical composite crosslinked gel particles according to the present invention.

Claims (4)

水系溶媒中において、アニオン性高分子とカチオン性高分子とを混合して球状複合粒子とする工程を含むことを特徴とする球状複合ゲル粒子の製造方法。   A method for producing spherical composite gel particles, comprising a step of mixing an anionic polymer and a cationic polymer in an aqueous solvent to form spherical composite particles. 請求項1に記載の工程後、前記球状複合粒子に架橋剤を作用させる工程を含むことを特徴とする球状複合ゲル粒子の製造方法。   After the process of Claim 1, the manufacturing method of the spherical composite gel particle characterized by including the process of making a crosslinking agent act on the said spherical composite particle. 請求項2に記載の工程後、透析を行って前記球状複合粒子を精製する工程を含むことを特徴とする球状複合ゲル粒子の製造方法。   A method for producing spherical composite gel particles, comprising the step of purifying the spherical composite particles by dialysis after the step according to claim 2. 請求項2に記載の工程を静置条件下において行うことを特徴とする球状複合ゲル粒子の製造方法。   The manufacturing method of the spherical composite gel particle characterized by performing the process of Claim 2 on stationary conditions.
JP2007124602A 2007-05-09 2007-05-09 Method for producing spherical composite gel particles Active JP5085976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007124602A JP5085976B2 (en) 2007-05-09 2007-05-09 Method for producing spherical composite gel particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007124602A JP5085976B2 (en) 2007-05-09 2007-05-09 Method for producing spherical composite gel particles

Publications (2)

Publication Number Publication Date
JP2008280407A true JP2008280407A (en) 2008-11-20
JP5085976B2 JP5085976B2 (en) 2012-11-28

Family

ID=40141497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007124602A Active JP5085976B2 (en) 2007-05-09 2007-05-09 Method for producing spherical composite gel particles

Country Status (1)

Country Link
JP (1) JP5085976B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011241193A (en) * 2010-05-20 2011-12-01 Sokei:Kk Shaping agent for dead body, and method for repairing subcutaneous degenerated part of dead body
WO2018230673A1 (en) * 2017-06-13 2018-12-20 L'oreal Composition comprising polyion complex particle and oil
WO2018230739A1 (en) * 2017-06-13 2018-12-20 L'oreal Combination of polyion complex particle and non-polymeric base having two or more dissociation constants
US20200289380A1 (en) * 2016-10-17 2020-09-17 Pola Chemical Industries, Inc. Composite particles including anionic polymer and cationic polymer or peptide, and method for producing composite particles
US11642297B2 (en) 2015-12-15 2023-05-09 L'oreal Combination of polyion complex particle and hydrophilic or water-soluble UV filter

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07238186A (en) * 1993-11-22 1995-09-12 Rhone Poulenc Special Chem Co Composition containing cation polymer and anion xanthan gum
JP2002080501A (en) * 2000-09-08 2002-03-19 Japan Science & Technology Corp Glycosaminoglycan-polycation complex for matrix of anagenesis and method for producing the same
JP2002326450A (en) * 2001-05-01 2002-11-12 Mikuni Color Ltd Material to be recorded and processing liquid for forming material to be recorded
JP2005036190A (en) * 2003-06-30 2005-02-10 Rengo Co Ltd Dispersion of polyion complex particulate and polyion complex particulate
JP2005247967A (en) * 2004-03-03 2005-09-15 National Food Research Institute Polyelectrolyte complex and its preparation process
JP2005290050A (en) * 2004-03-31 2005-10-20 Toppan Printing Co Ltd Adhesive

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07238186A (en) * 1993-11-22 1995-09-12 Rhone Poulenc Special Chem Co Composition containing cation polymer and anion xanthan gum
JP2002080501A (en) * 2000-09-08 2002-03-19 Japan Science & Technology Corp Glycosaminoglycan-polycation complex for matrix of anagenesis and method for producing the same
JP2002326450A (en) * 2001-05-01 2002-11-12 Mikuni Color Ltd Material to be recorded and processing liquid for forming material to be recorded
JP2005036190A (en) * 2003-06-30 2005-02-10 Rengo Co Ltd Dispersion of polyion complex particulate and polyion complex particulate
JP2005247967A (en) * 2004-03-03 2005-09-15 National Food Research Institute Polyelectrolyte complex and its preparation process
JP2005290050A (en) * 2004-03-31 2005-10-20 Toppan Printing Co Ltd Adhesive

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011241193A (en) * 2010-05-20 2011-12-01 Sokei:Kk Shaping agent for dead body, and method for repairing subcutaneous degenerated part of dead body
US11642297B2 (en) 2015-12-15 2023-05-09 L'oreal Combination of polyion complex particle and hydrophilic or water-soluble UV filter
US20200289380A1 (en) * 2016-10-17 2020-09-17 Pola Chemical Industries, Inc. Composite particles including anionic polymer and cationic polymer or peptide, and method for producing composite particles
WO2018230673A1 (en) * 2017-06-13 2018-12-20 L'oreal Composition comprising polyion complex particle and oil
WO2018230739A1 (en) * 2017-06-13 2018-12-20 L'oreal Combination of polyion complex particle and non-polymeric base having two or more dissociation constants
US11452676B2 (en) 2017-06-13 2022-09-27 L'oreal Combination of polyion complex particle and non-polymeric base having two or more dissociation constants
US11819564B2 (en) 2017-06-13 2023-11-21 L'oreal Composition comprising polyion complex particle and oil

Also Published As

Publication number Publication date
JP5085976B2 (en) 2012-11-28

Similar Documents

Publication Publication Date Title
Jeddi et al. Magnetic nano carboxymethyl cellulose-alginate/chitosan hydrogel beads as biodegradable devices for controlled drug delivery
Chang et al. Amphiphilic hydrogels for biomedical applications
Chen et al. Double stimuli-responsive cellulose nanocrystals reinforced electrospun PHBV composites membrane for intelligent drug release
CN106397846B (en) A kind of cross-linking hyaluronic acid sodium and the preparation method and application thereof
Pelegrini et al. Cellulose nanocrystals as a sustainable raw material: cytotoxicity and applications on healthcare technology
JP5085976B2 (en) Method for producing spherical composite gel particles
Noreen et al. A review on grafting of hydroxyethylcellulose for versatile applications
Sahiner et al. Mesoporous, degradable hyaluronic acid microparticles for sustainable drug delivery application
JPWO2009041627A1 (en) Swellable crosslinked hyaluronic acid powder and method for producing the same
BR0007985B1 (en) A process for the preparation of multi-crosslinked hyaluronic acid (ha) derivatives, multi-crosslinked ha, cross-linked ha to one or more different polymers of ha, cross-linked ha to a second polymer, product, and use of a multi-crosslinked ha derivative.
CN101254307A (en) Medicament carrying microballoons of hydrophobic nature medicament and method of preparing the same
JP2003301001A (en) Phosphorylcholine group-containing polysaccharides and method for producing the same
WO2020011240A1 (en) Preparation method for double-sensitivity cellulose-based aerogel
CN106279726A (en) Cross-linking sodium hyaluronate gel and preparation method thereof
Zhang et al. Preparation of chitosan sulfate and vesicle formation with a conventional cationic surfactant
Singh et al. Biohybrid nanogels
Madolia Preparation and evaluation of stomach specific IPN hydrogels for oral drug delivery: A review
Wang et al. Formation of composite hydrogel of carboxymethyl konjac glucomannan/gelatin for sustained release of EGCG
Vasiliu et al. Chitosan-based polyelectrolyte complex hydrogels for biomedical applications
AU2004303599B2 (en) Compositions of semi-interpenetrating polymer network
JP5271506B2 (en) Method for producing spherical hyaluronic acid gel particles
KR102566764B1 (en) Composition for moisturizing, mask-pack, cosmetics, and method for preparation thereof
JP7408217B2 (en) Method for producing polymeric microparticles, polymeric microparticles, medical compositions containing the same, beauty compositions, medical supplies, and beauty products
WO2014084319A1 (en) Cosmetic preparation
WO2021122942A1 (en) Natural origin stabilizer for oil in water emulsions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120906

R150 Certificate of patent or registration of utility model

Ref document number: 5085976

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250