JP2008280299A - Non-covalent bond polymer and molecular device - Google Patents

Non-covalent bond polymer and molecular device Download PDF

Info

Publication number
JP2008280299A
JP2008280299A JP2007126536A JP2007126536A JP2008280299A JP 2008280299 A JP2008280299 A JP 2008280299A JP 2007126536 A JP2007126536 A JP 2007126536A JP 2007126536 A JP2007126536 A JP 2007126536A JP 2008280299 A JP2008280299 A JP 2008280299A
Authority
JP
Japan
Prior art keywords
long
urea
covalently bonded
bonded polymer
polymer according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007126536A
Other languages
Japanese (ja)
Inventor
Akihiko Kanazawa
昭彦 金澤
Takehiko Nakajima
毅彦 中島
Masatoshi Matsuda
雅敏 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007126536A priority Critical patent/JP2008280299A/en
Priority to PCT/JP2008/058795 priority patent/WO2008143070A1/en
Publication of JP2008280299A publication Critical patent/JP2008280299A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/003Compounds containing elements of Groups 3 or 13 of the Periodic System without C-Metal linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C275/00Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C275/02Salts; Complexes; Addition compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C275/00Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C275/04Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to acyclic carbon atoms
    • C07C275/06Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to acyclic carbon atoms of an acyclic and saturated carbon skeleton

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new non-covalent bond polymer that has a simple chemical structure and does not require a complicated process in its synthesis and its molecular device. <P>SOLUTION: The non-covalent bond polymer is formed from a long-chain alkylurea represented by formula (wherein R<SB>1</SB>and R<SB>2</SB>are each a 10-30C long-chain alkyl group) by self-organization. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、新規な非共有結合高分子および分子デバイスに関し、さらに詳しくは長鎖アルキル尿素を含む尿素化合物から分子間相互作用に基く自己組織化を利用して形成されてなる新規な非共有結合高分子およびその分子デバイスに関する。   The present invention relates to a novel non-covalent polymer and molecular device, and more particularly, a novel non-covalent bond formed from a urea compound containing a long-chain alkyl urea by utilizing self-assembly based on intermolecular interaction. The present invention relates to a polymer and its molecular device.

近年、数ナノ〜数十ナノオーダの規則構造あるいは原子配列を制御することが検討されている。
この制御を現在の加工技術によって行うことは可能であるが、その制御は限定的である。また、加工に非常な長時間を要するか高コスト加工法が必要である。
このため、金属錯体あるいは有機化合物を自己組織化した高分子が提案されている。
そして、自己組織化した高分子が種々の機能性材料、例えば電子デバイス素子、エレクトロルミネッセンスあるいは触媒能、分光学的、磁気的又は電気化学的複合膜などの機能性材料として注目されている。
In recent years, it has been studied to control a regular structure or atomic arrangement in the order of several nanometers to several tens of nanometers.
Although this control can be performed by current processing technology, the control is limited. Further, it takes a very long time for processing or a high-cost processing method.
For this reason, a polymer in which a metal complex or an organic compound is self-organized has been proposed.
Self-assembled polymers are attracting attention as functional materials such as various functional materials such as electronic device elements, electroluminescence or catalytic ability, spectroscopic, magnetic or electrochemical composite films.

例えば、貴金属又は遷移金属と、スルホニウム基を有する高分子のスルホニウム基との相互作用の自己組織化により形成された分子膜が提案された(特許文献1)。
また、両端に親水性基を有する双頭性脂質の中に金属錯体が埋め込まれた錯体化合物構造の磁性機能、エレクトロルミネッセンス機能、導電性機能、触媒能などの金属的特性を備えたナノワイヤーが提案された(特許文献2)。
さらに、尿素誘導体分子が柱状に積み重なった強誘電性を示す柱状液晶化合物が提案された(特許文献3)。
そして、配位子骨格に多重水素結合を導入して、その自己組織化能を利用して中心金属として様々な金属イオンを取り込んで形成される有機―無機複合膜組織が中心金属の種類によって色が変わる遷移金属錯体ナノ薄膜が提案された(特許文献4)。
For example, a molecular film formed by self-assembly of interaction between a noble metal or a transition metal and a sulfonium group of a polymer having a sulfonium group has been proposed (Patent Document 1).
Also proposed is a nanowire with metallic properties such as magnetic function, electroluminescence function, conductivity function, catalytic ability, etc. of complex compound structure in which metal complex is embedded in double-headed lipids having hydrophilic groups at both ends (Patent Document 2).
Furthermore, a columnar liquid crystal compound exhibiting ferroelectricity in which urea derivative molecules are stacked in a columnar shape has been proposed (Patent Document 3).
The organic-inorganic composite film structure formed by introducing multiple hydrogen bonds into the ligand skeleton and incorporating various metal ions as the central metal by utilizing its self-organizing ability is colored depending on the type of the central metal. A transition metal complex nano-thin film has been proposed (Patent Document 4).

特開2001−315254号公報JP 2001-315254 A 特開2005−255543号公報JP 2005-255543 A 特開2006− 16352号公報JP 2006-16352 A 特開2006−124349号公報JP 2006-124349 A

上記の特許文献1に具体的に記載されている分子膜はいずれも出発原料として貴金属を用いたスルホニウム化合物である。
上記の特許文献2に具体的に記載されているナノワイヤーは機能的に限定され、例えばプロトン伝導性については期待できず、出発原料の構造が複雑であり合成工程に複数工程を要するものである。
上記の特許文献3に具体的に記載されている柱状液晶化合物は機能的に限定され、例えばプロトン伝導性については記載されてなく、原子発光現象については期待できないものである。
さらに、上記の特許文献4に具体的に記載されているナノ薄膜は出発原料が複雑な構造の多環芳香族化合物である。
従って、合成が複雑な工程を必要とせずシンプルな化学構造の出発原料からの分子間相互作用に基く自己組織化を利用して形成されてなる新規な非共有結合高分子は知られていない。
All of the molecular films specifically described in Patent Document 1 are sulfonium compounds using a noble metal as a starting material.
The nanowires specifically described in the above Patent Document 2 are functionally limited, for example, proton conductivity cannot be expected, the structure of the starting material is complicated, and the synthesis process requires multiple steps. .
The columnar liquid crystal compound specifically described in Patent Document 3 is functionally limited. For example, proton conductivity is not described, and atomic emission phenomenon cannot be expected.
Furthermore, the nano thin film specifically described in the above-mentioned Patent Document 4 is a polycyclic aromatic compound having a complicated structure as a starting material.
Therefore, a novel non-covalently bonded polymer formed by utilizing self-assembly based on intermolecular interaction from a starting material having a simple chemical structure without requiring a complicated process is not known.

この発明の目的は、化学構造がシンプルで且つ合成が複雑な工程を必要としない新規な非共有結合高分子およびその分子デバイスを提供することである。   An object of the present invention is to provide a novel non-covalent polymer and a molecular device thereof that have a simple chemical structure and do not require a complicated process.

この発明は、下記式で示される長鎖アルキル尿素を含む尿素化合物から自己組織化によって形成されてなる非共有結合高分子に関する。   The present invention relates to a noncovalently bonded polymer formed by self-assembly from a urea compound containing a long-chain alkylurea represented by the following formula.

Figure 2008280299
(式中、RおよびRは炭素数10〜30の直鎖アルキル基である。)
Figure 2008280299
(In the formula, R 1 and R 2 are linear alkyl groups having 10 to 30 carbon atoms.)

また、この発明は、前記の非共有結合高分子の無水でのプロトン伝導性を利用する分子デバイスに関する。
また、この発明は、前記の非共有結合高分子の電子伝導性を利用する分子ナノワイヤに関する。
また、この発明は、前記の非共有結合高分子の原子発光現象を利用する分子デバイスに関する。
The present invention also relates to a molecular device that utilizes the anhydrous proton conductivity of the non-covalently bonded polymer.
The present invention also relates to a molecular nanowire that utilizes the electronic conductivity of the noncovalent polymer.
The present invention also relates to a molecular device that utilizes the atomic emission phenomenon of the non-covalently bonded polymer.

この発明によれば、化学構造がシンプルでかつ合成が複雑な工程を必要としない新規な非共有結合高分子およびその分子デバイス又は分子ナノワイヤを提供することができる。   According to the present invention, it is possible to provide a novel non-covalently bonded polymer and its molecular device or molecular nanowire that have a simple chemical structure and do not require a complicated process of synthesis.

この発明における好適な態様を次に示す。
1)尿素化合物が長鎖アルキル尿素のみからなる尿素化合物である前記の非共有結合高分子。
2)尿素化合物が下記式で示される希土類金属錯体である前記の非共有結合高分子。
A preferred embodiment of the present invention will be described below.
1) The noncovalently bonded polymer as described above, wherein the urea compound is a urea compound composed only of a long-chain alkylurea.
2) The non-covalently bonded polymer, wherein the urea compound is a rare earth metal complex represented by the following formula.

Figure 2008280299
Figure 2008280299

(式中、RおよびRは炭素数10〜30の長鎖アルキル基であり、Mは希土類元素、Xはハロゲン元素であり、mおよびnはモル比を示し、m+n=1である。)
3)希土類元素が、Tb、Tm又はEuである前記の非共有結合高分子。
4)前記の式においてm=0.29で、n=0.71である前記の非共有結合高分子。
(In the formula, R 1 and R 2 are long-chain alkyl groups having 10 to 30 carbon atoms, M is a rare earth element, X is a halogen element, m and n indicate a molar ratio, and m + n = 1. )
3) The noncovalent polymer described above, wherein the rare earth element is Tb, Tm, or Eu.
4) The noncovalent polymer described above, wherein m = 0.29 and n = 0.71 in the above formula.

この発明の非共有結合高分子は、前記の長鎖アルキル尿素を含む尿素化合物を自己組織化によって形成することによって得ることができる。
そして、このような長鎖アルキル尿素を含む尿素化合物としては、長鎖アルキル尿素のみからなる尿素化合物、又は前記の化学式で示される長鎖アルキル尿素−希土類金属錯体が挙げられる。
The non-covalently bonded polymer of the present invention can be obtained by forming a urea compound containing the long-chain alkylurea by self-assembly.
And as such a urea compound containing long-chain alkyl urea, the urea compound which consists only of long-chain alkyl urea, or the long-chain alkyl urea-rare earth metal complex shown by said chemical formula is mentioned.

前記の長鎖アルキル尿素のみからなる尿素化合物としては、前記の化学式においてRおよびRが炭素数10〜30、好適には14〜30の直鎖アルキル基であり、RおよびRが異なっても良く又は同一の化合物、例えば、1,3−ジデシル尿素、1,3−ジウンデシル尿素、1,3−ジラウリル尿素、1,3−ジトリデシル尿素、1,3−ジミリスチル尿素、1,3−ジペンタデシル尿素、1,3−ジセチル尿素、1,3−ジヘプタデシル尿素、1,3−ジオクダデシルステアリル尿素、1,3−ジノナデシル尿素、1,3−ジエイコシル尿素、1,3−ジセリル尿素、1,3−ジメリシル尿素などが挙げられる。
前記の尿素化合物および長鎖アルキル尿素−希土類金属錯体において、長鎖アルキル特に直鎖の長鎖アルキル基を有することによって、規則性の高い、従って高分子でプロトン伝導性の高い高分子が得られる。
As the urea compound consisting only of the long-chain alkyl urea, in the above chemical formula, R 1 and R 2 are linear alkyl groups having 10 to 30 carbon atoms, preferably 14 to 30 carbon atoms, and R 1 and R 2 are Different or identical compounds such as 1,3-didecylurea, 1,3-diundecylurea, 1,3-dilaurylurea, 1,3-ditridecylurea, 1,3-dimyristylurea, 1,3- Dipentadecyl urea, 1,3-dicetyl urea, 1,3-diheptadecyl urea, 1,3-diocudadecyl stearyl urea, 1,3-dinondecyl urea, 1,3-diecosyl urea, 1,3-diceryl urea, 1, Examples include 3-dimelicil urea.
In the above urea compound and long-chain alkylurea-rare earth metal complex, by having a long-chain alkyl, particularly a straight-chain long-chain alkyl group, a polymer having high regularity and thus high proton conductivity can be obtained. .

また、前記の長鎖アルキル尿素−希土類金属錯体としては、前記の化学式においてRおよびRは炭素数10〜30、好適には14〜30の直鎖アルキル基であり、RおよびRが異なっても良く又は同一でもよく、Mは希土類元素、好適にはTb、Tm又はEuであり、Xはハロゲン元素、好適にはClであり、mおよびnはモル比を示し、m+n=1で、好適にはm=0.29で、n=0.71である尿素化合物が挙げられる。 Also, the long-chain alkyl urea - the rare earth metal complex, R 1 and R 2 in the above formula is a straight-chain alkyl group having 10 to 30 carbon atoms, preferably 14 to 30, R 1 and R 2 May be different or the same, M is a rare earth element, preferably Tb, Tm or Eu, X is a halogen element, preferably Cl, m and n indicate a molar ratio, and m + n = 1 Preferred examples include urea compounds in which m = 0.29 and n = 0.71.

前記の長鎖アルキル尿素は、例えば長鎖アルキルアミンを溶媒中で二酸化炭素を流通させて反応させて得られるカルバミン酸アンモニウム錯体を100〜200℃程度の温度に加熱し、脱水反応させることによって得ることができる。
また、前記の長鎖アルキル尿素−希土類金属錯体は、前記の長鎖アルキル尿素と希土類金属のハロゲン化物(III)(6水和物)とを溶媒中で反応させた後、生成物を分離することによって得ることができる。
前記の溶媒としては特に制限はなく、例えばテトラヒドロフラン(THF)、アセトン、メタノール、エタノール、アセトニトリル、あるいはこれらの混合物を挙げることができる。
The long-chain alkyl urea is obtained, for example, by dehydration by heating an ammonium carbamate complex obtained by reacting a long-chain alkylamine by flowing carbon dioxide in a solvent to a temperature of about 100 to 200 ° C. be able to.
The long-chain alkylurea-rare earth metal complex separates the product after reacting the long-chain alkylurea with the rare earth metal halide (III) (hexahydrate) in a solvent. Can be obtained.
There is no restriction | limiting in particular as said solvent, For example, tetrahydrofuran (THF), acetone, methanol, ethanol, acetonitrile, or these mixtures can be mentioned.

この発明の非共有結合高分子は、溶媒中で長鎖アルキル尿素化合物または長鎖アルキル尿素−希土類金属錯体を分子間相互作用に基く自己組織化させた後、生成物を分離することによって得ることができる。
前記の溶媒としては特に制限はなく、例えばテトラヒドロフラン(THF)、アセトン、メタノール、エタノール、アセトニトリル、あるいはこれらの混合物を挙げることができる。
The non-covalent polymer of the present invention is obtained by separating a product after self-organizing a long-chain alkylurea compound or a long-chain alkylurea-rare earth metal complex based on intermolecular interaction in a solvent. Can do.
There is no restriction | limiting in particular as said solvent, For example, tetrahydrofuran (THF), acetone, methanol, ethanol, acetonitrile, or these mixtures can be mentioned.

前記の長鎖アルキル尿素化合物又は長鎖アルキル尿素−希土類金属錯体は、溶媒に均一に分散させて自己組織化させることが好ましく、特に溶解させて自己組織化させることが好ましい。
また、前記の自己組織化は20〜100℃、1分〜24時間の範囲内で適宜選択することができる。
また、前記の分離は、抽出、濾過、洗浄、再結晶などを適宜組み合わせて行うことができる。
The long-chain alkylurea compound or the long-chain alkylurea-rare earth metal complex is preferably dispersed uniformly in a solvent and self-assembled, and particularly preferably dissolved and self-assembled.
The self-assembly can be appropriately selected within the range of 20 to 100 ° C. and 1 minute to 24 hours.
The separation can be performed by appropriately combining extraction, filtration, washing, recrystallization, and the like.

この発明の非共有結合高分子は、前記の長鎖アルキル尿素化合物又は長鎖アルキル尿素−希土類金属錯体が自己組織化によって高分子化された高分子化合物である。
この場合、前躯体化合物の長鎖アルキル尿素化合物のみからなる場合、低分子化合物が水素結合による分子間相互作用で柱状に重なって自己組織化して、高分子を形成すると考えられる。
また、長鎖アルキル尿素−希土類金属錯体の場合は、ハロゲン化希土類を中心にして、その上に長鎖アルキル尿素が螺旋状に重なって自己組織化して、高分子を形成すると考えられる。
The non-covalently bonded polymer of the present invention is a polymer compound obtained by polymerizing the long-chain alkylurea compound or the long-chain alkylurea-rare earth metal complex by self-assembly.
In this case, when the precursor compound is composed only of the long-chain alkylurea compound, it is considered that the low-molecular compound overlaps in a columnar shape due to intermolecular interaction due to hydrogen bonding and self-assembles to form a polymer.
In the case of a long-chain alkylurea-rare earth metal complex, it is considered that a long-chain alkylurea is spirally overlapped on the rare earth halide and self-assembles to form a polymer.

この発明の非共有結合高分子は、その構造から水素結合ネットワークによると考えられる無水状態でのプロトン伝導性を有し、その性質を利用した分子デバイスとしての可能性がある。
また、この発明の長鎖アルキル尿素−希土類金属錯体から導かれる非共有結合高分子は、その構造から中心配列金属による電子伝導性を有すると考えられ、その性質を利用した分子ナノワイヤとしての可能性がある。
また、この発明の長鎖アルキル尿素−希土類金属錯体から導かれる非共有結合高分子は、原子発光現象を示すので、その原子発光現象を利用した分子デバイスとしての可能性がある。
そして、前記の場合、中心金属の違いにより発光波長を変化させることが可能であり、2種以上の中心金属を組み合わせて、その違いによる原子発光現象を利用した分子デバイスとしての可能性がある。
The non-covalently bonded polymer of the present invention has proton conductivity in an anhydrous state which is considered to be due to a hydrogen bond network from its structure, and has a possibility as a molecular device utilizing the property.
In addition, the noncovalent polymer derived from the long-chain alkylurea-rare earth metal complex of the present invention is considered to have electronic conductivity due to the centrally arranged metal because of its structure, and it can be used as a molecular nanowire utilizing its properties. There is.
In addition, since the non-covalently bonded polymer derived from the long-chain alkylurea-rare earth metal complex of the present invention exhibits an atomic luminescence phenomenon, there is a possibility as a molecular device utilizing the atomic luminescence phenomenon.
In the above case, the emission wavelength can be changed depending on the difference in the central metal, and there is a possibility as a molecular device using an atomic emission phenomenon by combining two or more central metals.

実施例1
n−オクタデシルアミン(東京化成工業株式会社)2.0g(7.4mmol)にエタノール200mlを加え、二酸化炭素を流しながら0℃で12時間攪拌した。その後、反応液に白色の沈殿物が析出したので濾過を行った。残部の固形物をエタノール中に加えて室温で攪拌し、再び濾過を行った後エタノールで数回洗浄した。生成物を真空ポンプを用いて減圧乾燥を行い、中間生成物のカルバミン酸アンモニウム錯体(収量2.0g、収率93%)を得た。このカルバミン酸アンモニウム錯体をオートクレーブ中(CO雰囲気)、160℃で融解させて、24時間脱水反応、次いで自己組織化させることによって、1,3−ジオクタデシル尿素が自己組織化した生成物(収量1.2g、収率62%)を得た。
Example 1
200 g of ethanol was added to 2.0 g (7.4 mmol) of n-octadecylamine (Tokyo Chemical Industry Co., Ltd.), and the mixture was stirred at 0 ° C. for 12 hours while flowing carbon dioxide. Thereafter, since a white precipitate was deposited in the reaction solution, filtration was performed. The remaining solid was added to ethanol, stirred at room temperature, filtered again, and washed several times with ethanol. The product was dried under reduced pressure using a vacuum pump to obtain an intermediate product, ammonium carbamate complex (yield 2.0 g, yield 93%). This ammonium carbamate complex was melted in an autoclave (CO 2 atmosphere) at 160 ° C., dehydrated for 24 hours, and then self-assembled to yield a product in which 1,3-dioctadecylurea was self-assembled (yield) 1.2 g, yield 62%).

この生成物を同定するため元素分析、赤外吸収スペクトル測定を行った。
元素分析の結果、理論値と実測値とがほぼ近似した値を示した。
元素分析結果を次に示す。
元素分析結果
計算値(測定値)(%)
C 78.65(78.70)
H 13.56(14.23)
N 4.96(4.86)
この結果から、生成物は目的とする下記の化学式で示される化合物が自己組織化した高分子と考えられる。
Elemental analysis and infrared absorption spectrum measurement were performed to identify this product.
As a result of elemental analysis, a theoretical value and an actual measurement value were approximately approximated.
The results of elemental analysis are shown below.
Elemental analysis result Calculated value (measured value) (%)
C 78.65 (78.70)
H 13.56 (14.23)
N 4.96 (4.86)
From this result, the product is considered to be a polymer in which the target compound represented by the following chemical formula is self-assembled.

Figure 2008280299
(前記の化学式において、RおよびRがn−オクチル基である。)
Figure 2008280299
(In the above chemical formula, R 1 and R 2 are n-octyl groups.)

また、赤外吸収スペクトル測定の結果、N−Hのピークが3350cm−1に、C=Oのピークが1650cm−1に、N−Hのピークが1570cm−1に、C−Nのピークが1320cm−1に見られることから、生成物は第2アミド(−NH−CO−)の典型的な会合体に帰属されるスペクトルを示し、最も強く観察されるはずのC=Oの吸収が逆に弱い吸収を示した。これは、水素結合相互作用の影響であると考えられる。 Further, the infrared absorption spectrum results of the measurement, the N-H peak 3350 cm -1, the C = O peak of 1650 cm -1, the N-H peak of 1570 cm -1, a peak of C-N is 1320cm The product shows a spectrum attributed to the typical association of the secondary amide (—NH—CO—), with the absorption of C═O that should be observed most strongly reversed. It showed weak absorption. This is believed to be due to the effect of hydrogen bonding interactions.

次いで、生成物の熱物性について明らかにするため、熱重量測定、示差走査熱量測定を行った。その結果、熱重量測定から、生成物は分解温度が165℃、融点(53℃)のみを示す結晶性化合物であることがわかった。53℃におけるエンタルピー変化およびエントロピー変化である△H、△Sは、△HKI=121kJmol−1、△SKI=371JKmol−1であった。
なお、分解温度は、N中、昇温度速度10℃/分で記録された10質量%減少温度を示す。
Subsequently, in order to clarify the thermophysical properties of the product, thermogravimetry and differential scanning calorimetry were performed. As a result, thermogravimetry revealed that the product was a crystalline compound having a decomposition temperature of 165 ° C. and a melting point (53 ° C.) only. Is enthalpy change and entropy change at 53 ℃ △ H, △ S is, △ H KI = 121kJmol -1, was △ S KI = 371JKmol -1.
The decomposition temperature indicates a 10% by mass decrease temperature recorded at a rate of temperature increase of 10 ° C./min in N 2 .

また、この生成物について高温状態から室温に急冷した場合、高温状態から室温に徐冷した場合、80℃(固体2)において無水状態でのプロトン伝導度を求めた。
結果は以下の通りであった。
プロトン伝導度
高温状態から室温に急冷 3.2x10−13S/cm
高温状態から室温に徐冷 5.6x10−13S/cm
80℃(固体2) 3.6x10−7S/cm
Further, when the product was rapidly cooled from a high temperature state to room temperature, or slowly cooled from a high temperature state to room temperature, proton conductivity in an anhydrous state was determined at 80 ° C. (solid 2).
The results were as follows.
Proton conductivity Rapid cooling from high temperature to room temperature 3.2 × 10 −13 S / cm
Slow cooling from high temperature to room temperature 5.6 × 10 −13 S / cm
80 ° C. (solid 2) 3.6 × 10 −7 S / cm

実施例2
実施例1と同様にして得られた1,3−ジオクタデシル尿素4.8g(8.6mmol)とテリビウム(III)トリクロライド6水和物[TbCl・6HO](関東化学株式会社)0.94g(3.5mmol)にTHF:EtOH=1:1の混合溶媒を1000mlを加え、40℃に加熱して溶解した。溶解後、12時間経過して、反応液に白色の沈殿物が析出したので濾過を行った、残部の固形物をエタノール中に加えて室温で攪拌し、再び濾過を行った後エタノールで数回洗浄した。最後に真空ポンプを用いて減圧乾燥し、1,3−ジオクタデシル尿素−希土類金属錯体が自己組織化した生成物(収量3.2g、収率55%)を得た。
Example 2
4.8 g (8.6 mmol) of 1,3-dioctadecylurea obtained in the same manner as in Example 1 and terbium (III) trichloride hexahydrate [TbCl 3 · 6H 2 O] (Kanto Chemical Co., Inc.) To 0.94 g (3.5 mmol), 1000 ml of a mixed solvent of THF: EtOH = 1: 1 was added and heated to 40 ° C. to dissolve. After dissolution, after 12 hours, a white precipitate was precipitated in the reaction solution, and filtration was performed. The remaining solid was added to ethanol, stirred at room temperature, filtered again, and then several times with ethanol. Washed. Finally, it was dried under reduced pressure using a vacuum pump to obtain a product (yield 3.2 g, yield 55%) in which 1,3-dioctadecylurea-rare earth metal complex was self-assembled.

この生成物を同定するため元素分析、赤外吸収スペクトル測定を行った。
元素分析結果を次に示す。
元素分析結果
計算値(測定値)(%)
C 72.94(70.79)
H 12.58(13.16)
N 4.60( 4.52)
Tb − (14.99)
Elemental analysis and infrared absorption spectrum measurement were performed to identify this product.
The results of elemental analysis are shown below.
Elemental analysis result Calculated value (measured value) (%)
C 72.94 (70.79)
H 12.58 (13.16)
N 4.60 (4.52)
Tb − (14.99)

元素分析の結果、理論値と実測値とがほぼ近似した値を示した。この結果から、生成物は目的とする前記の化学式で示される化合物が自己組織化した高分子と考えられる。   As a result of elemental analysis, a theoretical value and an actual measurement value were approximately approximated. From this result, the product is considered to be a polymer in which the target compound represented by the above chemical formula is self-assembled.

Figure 2008280299
(前記の化学式において、MがTb、XがClであり、RおよびRがn−オクチル基であり、m=0.29、n=0.71である。)
Figure 2008280299
(In the above chemical formula, M is Tb, X is Cl, R 1 and R 2 are n-octyl groups, and m = 0.29 and n = 0.71.)

また、ICP−MSの結果からTb原子の含有量が確認でき、その結果と元素分析の結果を考慮すると目的とする高分子が得られていることがわかった。また、TbClが1分子に対し2.4(前記化学式で、m=0.29、n=0.71に相当)分子配位していることがわかった。
さらに、IRスペクトルから、N−Hのピークが3450cm−1に、C=Oのピークが2050cm−1に、C−Nのピークが1610cm−1に見られ、Tbイオンに配位したことにより安定化したC=O伸縮およびC−N伸縮の吸収が、実施例1の生成物の場合と比較して高波数側にシフトしていることがわかった。すなわち、この生成物における配位結合の存在が確認された。
In addition, the content of Tb atoms can be confirmed from the results of ICP-MS, and it was found that the intended polymer was obtained in consideration of the results and the results of elemental analysis. It was also found that TbCl 3 was coordinated to 2.4 molecules per molecule (corresponding to m = 0.29 and n = 0.71 in the chemical formula).
Furthermore, from the IR spectrum, an N—H peak was observed at 3450 cm −1 , a C═O peak at 2050 cm −1 , and a C—N peak at 1610 cm −1, which was stabilized by coordination with the Tb ion. It was found that the absorption of the converted C═O stretch and C—N stretch was shifted to the high wavenumber side compared to the case of the product of Example 1. That is, the presence of coordination bonds in this product was confirmed.

続いて、得られた生成物の熱物性を明らかにするため、熱重量測定、示差走査熱量測定を行った。その結果、生成物は、分解温度が238℃であることがわかった。また、示差走査熱量測定の結果から、相転移を示す吸熱・発熱のピークが数本観察され、偏光顕微鏡観察の結果も考慮すると、112〜179℃の温度範囲で液晶性を示すことがわかった。固体から液晶相への転移温度(TKC)である112℃におけるエンタルピー変化およびエントロピー変化△HKC、△SKC値は、△HKC=34kJmol−1、△SKC=89JK−1mol−1であった。液晶相から等方相への相転移温度(TCI)である179℃におけるエンタルピー変化およびエントロピー変化△HCI、△SCI値は、△HCI=1.0kJmol−1、△SCI=2.2JK−1mol−1であった。 Subsequently, in order to clarify the thermophysical properties of the obtained product, thermogravimetry and differential scanning calorimetry were performed. As a result, the product was found to have a decomposition temperature of 238 ° C. In addition, from the results of differential scanning calorimetry, several endothermic and exothermic peaks indicating phase transition were observed, and it was found that liquid crystallinity was exhibited in the temperature range of 112 to 179 ° C., considering the results of observation with a polarizing microscope. . Enthalpy change and entropy change from the solid at 112 ° C. is a transition temperature to a liquid crystal phase (T KC) △ H KC, △ S KC value, △ H KC = 34kJmol -1, △ S KC = 89JK -1 mol -1 Met. Enthalpy change and entropy change △ H CI in a phase transition temperature to isotropic phase (T CI) is 179 ° C. a liquid crystal phase, △ S CI value, △ H CI = 1.0kJmol -1, △ S CI = 2 .2JK −1 mol −1 .

さらに、粉末X線回折測定の結果も考慮すると、液晶相はレクタンギュラー格子を有するカラムナー相を形成することがわかった。
以上の結果から、この生成物はTbCl1分子に対し1,3−ジオクタデシル尿素が2.4分子配位した、サーモトロピック液晶金属錯体であることが明らかとなった。また、112〜179℃の温度範囲でカラムナー液晶性を示すことがわかった。
Further, considering the result of the powder X-ray diffraction measurement, it was found that the liquid crystal phase forms a columnar phase having a rectangular lattice.
From the above results, it was revealed that this product was a thermotropic liquid crystal metal complex in which 2.4 molecules of 1,3-dioctadecylurea were coordinated to 1 molecule of TbCl 3 . Moreover, it turned out that columnar liquid crystallinity is shown in the temperature range of 112-179 degreeC.

また、この生成物について液晶状態から室温に急冷した場合、液晶状態から室温に徐冷した場合、70℃(Isotropic)および120℃(LC1)において無水状態でのプロトン伝導度を求めた。
結果は以下の通りであった。
プロトン伝導度
液晶状態から室温に急冷 7.1x10−13S/cm
液晶状態から室温に徐冷 3.7x10−12S/cm
70℃ 3.6x10−12S/cm
120℃ 1.4x10−6S/cm
この生成物の120℃におけるプロトン伝導度測定図を図3に示す。
In addition, when the product was rapidly cooled from the liquid crystal state to room temperature, or slowly cooled from the liquid crystal state to room temperature, proton conductivity in an anhydrous state was determined at 70 ° C. (Isotropic) and 120 ° C. (LC1).
The results were as follows.
Proton conductivity Rapid cooling from liquid crystal state to room temperature 7.1 × 10 −13 S / cm
Slow cooling from liquid crystal state to room temperature 3.7 × 10 −12 S / cm
70 ° C. 3.6 × 10 −12 S / cm
120 ° C. 1.4 × 10 −6 S / cm
A proton conductivity measurement diagram of this product at 120 ° C. is shown in FIG.

また、この生成物について、発光現象を観察した。結果をまとめて図4に示す。
発光色は緑色であった。
Moreover, the luminescence phenomenon was observed about this product. The results are summarized in FIG.
The emission color was green.

実施例3
テリビウム(III)トリクロライド6水和物[TbCl・6HO]に代えて、ユーロビウム(III)トリクロライド6水和物[TbCl・6HO]を用いた他は実施例2と同様にして生成物を得た。
これの生成物は液晶性生成物であり、中心金属の違いにより発光波長が変った。
この生成物は、化学式で示される化合物が自己組織化した高分子と考えられる。
Example 3
Instead of terbium (III) trichloride hexahydrate [TbCl 3 · 6H 2 O] , except for using the europium (III) trichloride hexahydrate [TbCl 3 · 6H 2 O] in the same manner as in Example 2 The product was obtained.
This product was a liquid crystalline product, and the emission wavelength varied depending on the difference in the central metal.
This product is considered to be a polymer in which the compound represented by the chemical formula is self-assembled.

Figure 2008280299
(前記の化学式において、MがEu、XがClであり、RおよびRがn−オクチル基であり、m=0.29、n=0.71である。)
Figure 2008280299
(In the above chemical formula, M is Eu, X is Cl, R 1 and R 2 are n-octyl groups, and m = 0.29 and n = 0.71.)

図1は、この発明の1実施態様の長鎖アルキル尿素のみからなる尿素化合物の自己組織化による非共有結合高分子化を示す模式図である。FIG. 1 is a schematic diagram showing non-covalent polymerization by self-assembly of a urea compound consisting only of a long-chain alkylurea according to one embodiment of the present invention. 図2は、この発明の1実施態様の長鎖アルキル尿素−希土類金属錯体の自己組織化による非共有結合高分子化を示す模式図である。FIG. 2 is a schematic diagram showing the formation of a noncovalent polymer by self-organization of a long-chain alkylurea-rare earth metal complex according to one embodiment of the present invention. 図3は、実施例2の生成物の120℃におけるプロトン伝導度測定図を示す。FIG. 3 shows a proton conductivity measurement diagram of the product of Example 2 at 120 ° C. 図4は、実施例2の生成物の発光現象を観察した結果である。FIG. 4 shows the result of observing the luminescence phenomenon of the product of Example 2.

Claims (8)

下記式で示される長鎖アルキル尿素を含む尿素化合物から自己組織化によって形成されてなる非共有結合高分子。
Figure 2008280299
(式中、RおよびRは炭素数10〜30の長鎖アルキル基である。)
A non-covalently bonded polymer formed by self-assembly from a urea compound containing a long-chain alkyl urea represented by the following formula.
Figure 2008280299
(In the formula, R 1 and R 2 are long-chain alkyl groups having 10 to 30 carbon atoms.)
尿素化合物が長鎖アルキル尿素のみからなる尿素化合物である請求項1に記載の非共有結合高分子。   The non-covalently bonded polymer according to claim 1, wherein the urea compound is a urea compound composed only of a long-chain alkyl urea. 尿素化合物が下記式で示される希土類金属錯体である請求項1に記載の非共有結合高分子。
Figure 2008280299
(式中、RおよびRは炭素数10〜30の長鎖アルキル基であり、Mは希土類元素、Xはハロゲン元素であり、mおよびnはモル比を示し、m+n=1である。)
The non-covalently bonded polymer according to claim 1, wherein the urea compound is a rare earth metal complex represented by the following formula.
Figure 2008280299
(In the formula, R 1 and R 2 are long-chain alkyl groups having 10 to 30 carbon atoms, M is a rare earth element, X is a halogen element, m and n indicate a molar ratio, and m + n = 1. )
希土類元素が、Tb、Tm又はEuである請求項3に記載の非共有結合高分子。   The non-covalently bonded polymer according to claim 3, wherein the rare earth element is Tb, Tm, or Eu. 前記の式においてm=0.29で、n=0.71である請求項3又は4に記載の非共有結合高分子。   5. The non-covalently bonded polymer according to claim 3, wherein m = 0.29 and n = 0.71 in the above formula. 請求項1〜5のいずれか1項に記載の非共有結合高分子の無水でのプロトン伝導性を利用する分子デバイス。   A molecular device using proton conductivity of the non-covalently bonded polymer according to any one of claims 1 to 5 in anhydrous form. 請求項1、3〜5のいずれか1項に記載の非共有結合高分子の電子伝導性を利用する分子ナノワイヤ。   The molecular nanowire using the electronic conductivity of the non-covalently-bonded polymer according to any one of claims 1 and 3-5. 請求項1、3〜5のいずれか1項に記載の非共有結合高分子の原子発光現象を利用する分子デバイス。   A molecular device that utilizes the atomic emission phenomenon of the non-covalently bonded polymer according to claim 1.
JP2007126536A 2007-05-11 2007-05-11 Non-covalent bond polymer and molecular device Pending JP2008280299A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007126536A JP2008280299A (en) 2007-05-11 2007-05-11 Non-covalent bond polymer and molecular device
PCT/JP2008/058795 WO2008143070A1 (en) 2007-05-11 2008-05-07 Non-covalently-bound polymer, and molecular device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007126536A JP2008280299A (en) 2007-05-11 2007-05-11 Non-covalent bond polymer and molecular device

Publications (1)

Publication Number Publication Date
JP2008280299A true JP2008280299A (en) 2008-11-20

Family

ID=40031779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007126536A Pending JP2008280299A (en) 2007-05-11 2007-05-11 Non-covalent bond polymer and molecular device

Country Status (2)

Country Link
JP (1) JP2008280299A (en)
WO (1) WO2008143070A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012111711A (en) * 2010-11-24 2012-06-14 National Institute Of Advanced Industrial Science & Technology Method for preparing urea compound by fixing carbon dioxide

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4599552B2 (en) * 2004-07-02 2010-12-15 国立大学法人 千葉大学 Columnar liquid crystal compounds exhibiting ferroelectricity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012111711A (en) * 2010-11-24 2012-06-14 National Institute Of Advanced Industrial Science & Technology Method for preparing urea compound by fixing carbon dioxide

Also Published As

Publication number Publication date
WO2008143070A1 (en) 2008-11-27

Similar Documents

Publication Publication Date Title
Mahmoudi et al. Counter-ion influence on the coordination mode of the 2, 5-bis (4-pyridyl)-1, 3, 4-oxadiazole (bpo) ligand in mercury (II) coordination polymers,[Hg (bpo) n X 2]: X= I−, Br−, SCN−, N 3− and NO 2−; spectroscopic, thermal, fluorescence and structural studies
Ikeda et al. A circularly polarized luminescent organogel based on a Pt (II) complex possessing phenylisoxazoles
Shi et al. Synthesis and characterization of polymorphs of photoluminescent Eu (III)-(2, 5-furandicarboxylic acid, oxalic acid) MOFs
Yang et al. Enhanced emission of organic and polymeric luminogens containing 2, 4, 6-triphenylpyridine moieties: crystallization-and aggregation-enhanced emission
Utochnikova et al. Mixed-ligand terbium terephthalates: Synthesis, photophysical and thermal properties and use for luminescent terbium terephthalate thin film deposition
Brunckova et al. Preparation and characterization of isostructural lanthanide Eu/Gd/Tb metal-organic framework thin films for luminescent applications
Korkmaz et al. Synthesis and characterization of new heterometallic cyanido complexes based on [Co (CN) 6] 3− building blocks: crystal structure of [Cu 2 (N-bishydeten) 2 Co (CN) 6]· 3H 2 O having a strong antiferromagnetic exchange
Shi et al. Synthesis and crystal structure of metal-organic frameworks [Ln2 (pydc-3, 5) 3 (H2O) 9] n3nH2O (Ln= Sm, Eu, Gd, Dy; pydc-3, 5= pyridine-3, 5-dicarboxylate) along with the photoluminescent property of its europium one
Abdullah et al. Structural, mesomorphic, photoluminescence and thermoelectric studies of mononuclear and polymeric complexes of copper (ii) with 2-hexyldecanoato and 4, 4′-bipyridine ligands
RU2532926C1 (en) Method of ultrahigh-molecular weight polyethylene (uhmwpe), modified with nanosized tantalum pentoxide particles
Han et al. Adduct effects on structure and luminescence in a series of new dithiocarbamatogold (I) complexes
JP2008280299A (en) Non-covalent bond polymer and molecular device
Sanwaria et al. Non-aqueous synthesis of nano-sized aluminium (III) isopropoxide derivatives with 8-hydroxyquinoline and their sol–gel transformation to nano-sized δ-alumina
Yan et al. Syntheses, Structures, and Luminescent Properties of Two Novel Coordination Polymers with Mixed Ligands
He et al. From racemic compound to spontaneous resolution: A series of homochiral lanthanide coordination polymers constructed from presynthesized [Sb2 (tart) 2] 2− metalloligands
WO2017170934A1 (en) Novel compound and synthesis method therefor
Wang et al. Photoactive rare earth (Eu 3+, Tb 3+) hybrids with organically modified silica covalently bonded polymeric chain
JP2008280301A (en) Non-covalent bond polymer and device
Panyarat et al. A series of new microporous lanthanide frameworks [Ln (C8H3NO6)(L) 0.5 (H2O)]· 3H2O (Ln= Pr, Nd, Sm and Gd, and L= C8H4O4 or C8H4O4/C8H3NO6): Syntheses, characterization and photoluminescence properties
Kang et al. An intriguing 4d–4f heterometallic coordination polymer with 1D pseudo-nanotube architectures
Thammakan et al. Synthesis and thermal decomposition of cadmium dithiocarbamate complexes
Fan et al. Controlled synthesis, structures and properties of one-, two-, and three-dimensional lanthanide coordination polymers based on (8-quinolyloxy) acetate
Zhou et al. Effects of substitution and terminal groups for liquid-crystallinity enhanced luminescence of disubstituted polyacetylenes carrying chromophoric terphenyl pendants
Ma et al. Two novel oxovanadium–organophosphonate hybrids with a 3D supramolecular structure: synthesis, crystal structures, surface photovoltage and luminescent properties
Fan et al. Lanthanide complexes with 8-quinolinyloxyacetate (qoa): Synthesis and supramolecular assembly by hydrogen bonds