JP2008280255A - Refractive index-converting material - Google Patents

Refractive index-converting material Download PDF

Info

Publication number
JP2008280255A
JP2008280255A JP2007123576A JP2007123576A JP2008280255A JP 2008280255 A JP2008280255 A JP 2008280255A JP 2007123576 A JP2007123576 A JP 2007123576A JP 2007123576 A JP2007123576 A JP 2007123576A JP 2008280255 A JP2008280255 A JP 2008280255A
Authority
JP
Japan
Prior art keywords
cyclic compound
refractive index
specific cyclic
mmol
specific
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007123576A
Other languages
Japanese (ja)
Inventor
Tatatomi Nishikubo
忠臣 西久保
Hiroto Kudo
宏人 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Kanagawa University
Original Assignee
JSR Corp
Kanagawa University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp, Kanagawa University filed Critical JSR Corp
Priority to JP2007123576A priority Critical patent/JP2008280255A/en
Publication of JP2008280255A publication Critical patent/JP2008280255A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refractive index-converting material which provides a large variation of the refractive index and can form a film with ease. <P>SOLUTION: The refractive index-converting material is produced by linking a calixarene trimer compound obtained by reacting resorcinol with 1,5-pentanedial, with a compound represented by formulas (a), (b), (c), (d) or (e) by using chlorovaleric acid chloride as a linker. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、屈折率変換材料に関するものである。   The present invention relates to a refractive index conversion material.

ノルボルナジエン(以下、「NBD」ともいう。)は、紫外線の照射により、分極率の低いクワドリシクラン(以下、「QC」ともいう。)に光原子価異性化し、また、QCは、触媒との接触および短波長の光の照射により、放熱を伴ってNBDに異性化する特性を有することから、NBD構造を有する化合物は、光エネルギーを熱エネルギーに変換して蓄積する光−熱エネルギー変換蓄積材料として注目されている(非特許文献1および非特許文献2参照。)。
また、NBD構造を有する化合物は、異性化したQC構造を有する化合物と異なる屈折率を有する、すなわち光の照射によって屈折率が変化する特性を有することから、例えば光記憶素子や光スイッチシステムに用いられる屈折率変換材料への応用が期待されている(非特許文献3参照。)。
一方、アントラセンは、特定の波長例えば365nmの光の照射により光二量化し、アントラセンの二量体は、特定の波長例えば254nmの光の照射により単量体に変化する特性を有し、アントラセンの二量体は当該単量体と異なる屈折率を有することから、アントラセン骨格を有する化合物は、光スイッチシステムなどに用いられる屈折率変換材料への応用が期待されている。
Norbornadiene (hereinafter also referred to as “NBD”) undergoes photovalence isomerization to a quadricyclane having a low polarizability (hereinafter also referred to as “QC”) by irradiation with ultraviolet rays, A compound having an NBD structure is a light-heat energy conversion storage material that converts light energy into heat energy and accumulates it because it has the property of isomerizing to NBD with heat dissipation by contact and irradiation with light of a short wavelength. (See Non-Patent Document 1 and Non-Patent Document 2).
In addition, a compound having an NBD structure has a different refractive index from that of a compound having an isomerized QC structure, that is, has a characteristic in which the refractive index changes upon irradiation with light. Application to a refractive index conversion material is expected (see Non-Patent Document 3).
On the other hand, anthracene is photodimerized by irradiation with light having a specific wavelength, for example, 365 nm, and the anthracene dimer has a property of being changed to a monomer by irradiation with light having a specific wavelength, for example, 254 nm. Since the monomer has a refractive index different from that of the monomer, the compound having an anthracene skeleton is expected to be applied to a refractive index conversion material used in an optical switch system or the like.

このような屈折率変換材料においては、容易に成膜され得るものであることが肝要である。そして、従来、NBD構造またはアントラセン骨格を有する成膜化が可能な化合物として、NBD構造またはアントラセン骨格が導入された種々のポリマーが提案されている(非特許文献4および特許文献1等参照。)。
しかしながら、成膜可能な従来の屈折率変換材料は、光照射による屈折率の変化量が十分に大きいものではない。
It is important that such a refractive index conversion material can be easily formed into a film. Conventionally, various polymers in which an NBD structure or an anthracene skeleton is introduced have been proposed as compounds capable of forming a film having an NBD structure or an anthracene skeleton (see Non-Patent Document 4 and Patent Document 1). .
However, conventional refractive index conversion materials that can be deposited are not sufficiently large in the amount of change in refractive index due to light irradiation.

T.Nishikubo et al.,Macromolecules,22,8(1989)T. Nishikubo et al., Macromolecules, 22, 8 (1989) T.Nishikubo et al.,Macromolecules,31,2789(1998)T. Nishikubo et al., Macromolecules, 31, 2789 (1998) K.Kinoshita et al.,Appl.Lett.,70,2940(1997)K. Kinoshita et al., Appl. Lett., 70, 2940 (1997) C.D.Gutsche(ED),Calixarenes,Royal Soc.Chem.(1989)C.D.Gutsche (ED), Calixarenes, Royal Soc. Chem. (1989) 特開2006−257322号公報JP 2006-257322 A

本発明は、以上のような事情に基づいてなされたものであって、その目的は、屈折率の変化量が大きく、しかも、容易に成膜することができる屈折率変換材料を提供することにある。   The present invention has been made based on the above circumstances, and an object of the present invention is to provide a refractive index conversion material that has a large amount of change in refractive index and can be easily formed into a film. is there.

本発明の屈折率変換材料は、下記一般式(1)で表される化合物からなることを特徴とする。   The refractive index conversion material of the present invention comprises a compound represented by the following general formula (1).


Figure 2008280255
Figure 2008280255

〔一般式(1)において、Xは、−(CO)(CH2 4 −、Rは、下記式(a)乃至式(e)のいずれかで表される基を示す。但し、複数あるXRのうち一部が水素原子であってもよい。〕 [In General Formula (1), X represents — (CO) (CH 2 ) 4 —, and R represents a group represented by any of the following formulas (a) to (e). However, some of the plurality of XRs may be hydrogen atoms. ]

Figure 2008280255
Figure 2008280255

本発明によれば、屈折率の変化量が大きく、しかも、容易に成膜することができる屈折率変換材料を提供することができる。   According to the present invention, it is possible to provide a refractive index conversion material that has a large amount of change in refractive index and that can be easily formed into a film.

本発明の屈折率変換材料は、上記一般式(1)で表される化合物(以下、「特定の環状化合物」という。)からなるものである。
本発明の屈折率変換材料を構成する特定の環状化合物は、例えば下記式(2)で表される環状化合物(以下、「原料環状化合物」という。)とクロロ吉草酸クロリドとを、適宜の溶媒中において塩基の存在下に反応させることにより、下記式(3)で表される環状化合物(以下、「中間体環状化合物」という。)を合成し、得られた中間体化合物と、4−フェニルアゾフェノール、1−アントラセンカルボン酸、trans−桂皮酸、2−アントラセンカルボン酸または9−アントラセンカルボン酸(以下、これらを総称して「機能付与化合物」という。)とを、適宜の溶媒中において脱塩化水素剤の存在下に反応させることにより、製造することができる。
ここで、原料環状化合物は、レゾルシノールと1,5−ペンタンジアールとを反応させることによって得ることができ、具体的な合成方法としては、例えばH.Kudo,R.Hayashi,K.Mitani,T.Yokozawa,N.C.Kasuga,T.Nishikubo.Angew,Chem,lnt,Ed.,45,7948-7952(2006) に記載されている方法を利用することができる。
The refractive index conversion material of the present invention comprises a compound represented by the above general formula (1) (hereinafter referred to as “specific cyclic compound”).
The specific cyclic compound constituting the refractive index conversion material of the present invention is, for example, a cyclic compound represented by the following formula (2) (hereinafter referred to as “raw material cyclic compound”) and chlorovaleric acid chloride in an appropriate solvent. In the presence of a base to synthesize a cyclic compound represented by the following formula (3) (hereinafter referred to as “intermediate cyclic compound”), and the obtained intermediate compound and 4-phenyl Azophenol, 1-anthracene carboxylic acid, trans-cinnamic acid, 2-anthracene carboxylic acid or 9-anthracene carboxylic acid (hereinafter collectively referred to as “function-imparting compounds”) are removed in an appropriate solvent. It can manufacture by making it react in presence of a hydrogen chloride agent.
Here, the raw material cyclic compound can be obtained by reacting resorcinol and 1,5-pentane dial, and as a specific synthesis method, for example, H. Kudo, R. Hayashi, K. Mitani, T The method described in Yokozawa, NC Kasuga, T. Nishikubo. Angew, Chem, lnt, Ed., 45, 7948-7952 (2006) can be used.

Figure 2008280255
Figure 2008280255

Figure 2008280255
Figure 2008280255

〔式(3)において、R1 は、−(CO)(CH2 4 Clである。〕 In [formula (3), R 1 is - (CO) (CH 2) 4 Cl. ]

中間体環状化合物の合成工程において、溶媒としては、テトラヒドロフラン、ジメチルスルホキシド、1−メチル−2−ピロリドン、ジメチルアセトアミド、クロロホルム、トリエチルアミン、ピリジンなどを用いることができる。
また、塩基としては、ピリジン、N,N−ジメチルアミノピリジン、トリエチルアミン、1,8−ジアザビシクロ[5.4.0]−7−ウンデセンなどを用いることができる。
ここで、トリエチルアミンおよびピリジンは、塩基および溶媒の両方に用いることができる。
反応温度は、例えば0〜60℃であり、反応時間は2〜48時間である。
原料環状化合物とクロロ吉草酸クロリドとの割合は、例えば原料環状化合物における水酸基1当量に対し、クロロ吉草酸クロリド1.1〜6.0当量である。
また、塩基の使用割合は、例えば原料環状化合物における水酸基1当量に対し1.1〜10.0当量である。
In the synthesis step of the intermediate cyclic compound, tetrahydrofuran, dimethyl sulfoxide, 1-methyl-2-pyrrolidone, dimethylacetamide, chloroform, triethylamine, pyridine and the like can be used as the solvent.
As the base, pyridine, N, N-dimethylaminopyridine, triethylamine, 1,8-diazabicyclo [5.4.0] -7-undecene and the like can be used.
Here, triethylamine and pyridine can be used for both base and solvent.
The reaction temperature is, for example, 0 to 60 ° C., and the reaction time is 2 to 48 hours.
The ratio of the raw material cyclic compound to chlorovaleric acid chloride is, for example, 1.1 to 6.0 equivalents of chlorovaleric acid chloride per 1 equivalent of hydroxyl group in the raw material cyclic compound.
Moreover, the usage-amount of a base is 1.1-10.0 equivalent with respect to 1 equivalent of hydroxyl groups in a raw material cyclic compound, for example.

特定の環状化合物の合成工程において、溶媒としては、1−メチル−2−ピロリドンなどを用いることができる。
また、脱塩化水素剤としては、例えば1,8−ジアザビシクロ[5.4.0]−7−ウンデセン(以下、「DBU」という。)を用いることができる。
反応温度は、例えば0〜60℃であり、反応時間は2〜48時間である。
中間体環状化合物と機能付与化合物との割合は、例えば原料環状化合物における官能基1当量に対し、機能付与化合物1.0〜10.0当量である。
また、脱塩化水素剤の使用割合は、例えば中間体環状化合物における水酸基1当量に対し1.1〜6.0当量である。
In the step of synthesizing a specific cyclic compound, 1-methyl-2-pyrrolidone or the like can be used as a solvent.
As the dehydrochlorinating agent, for example, 1,8-diazabicyclo [5.4.0] -7-undecene (hereinafter referred to as “DBU”) can be used.
The reaction temperature is, for example, 0 to 60 ° C., and the reaction time is 2 to 48 hours.
The ratio of the intermediate cyclic compound and the function-imparting compound is, for example, 1.0 to 10.0 equivalents of the function-imparting compound with respect to 1 equivalent of the functional group in the raw material cyclic compound.
Moreover, the usage-amount of a dehydrochlorinating agent is 1.1-6.0 equivalent with respect to 1 equivalent of hydroxyl groups in an intermediate | middle cyclic compound, for example.

本発明の屈折率変換材料は、上記式(a)乃至式(e)のいずれかで表される基を有するため、後述する実施例から明らかなように、いずれも特定の波長の光を受けることによって屈折率が変化する特性を有し、かつ、屈折率の変化量が大きいもきであり、しかも、容易に成膜することが可能なものである。従って、本発明の屈折率変換材料は、光記憶素子や光スイッチシステムなどに用いられる屈折率変換材料として極めて有用である。   Since the refractive index conversion material of the present invention has a group represented by any of the above formulas (a) to (e), all receive light of a specific wavelength, as will be apparent from the examples described later. Thus, the refractive index changes and the amount of change in the refractive index is large, and the film can be easily formed. Therefore, the refractive index conversion material of the present invention is extremely useful as a refractive index conversion material used for an optical storage element, an optical switch system, and the like.

以下、本発明の具体的な実施例について説明するが、本発明はこれらに限定されるものではない。   Hereinafter, specific examples of the present invention will be described, but the present invention is not limited thereto.

以下の実施例において、原料および溶媒等として下記のものを使用した。
(1)レゾルシノール、グルタルアルデヒド、エタノールおよび12N塩酸(HCl)としては、市販品をそのまま用いた。
(2)テトラブチルアンモニウムブロミド(TBAB)としては、酢酸エチルを用いて2回再結晶したものを用いた。
(3)1−アントラセンカルボン酸、2−アントラセンカルボン酸、9−アントラセンカルボン酸、4−フェニルアゾフェノールおよびtrans−桂皮酸としては、市販品をそのまま用いた。
(4)1−メチル−2−ピロリドン(NMP)、ピリジンおよびDBUとしては、水素化カルシウムを用いて予備乾燥を行った後、水素化カルシウム(CaH2 )の存在下において蒸留精製したものを用いた。
(5)テトラヒドロフランとしては、ナトリウムワイヤーを用いて予備乾燥を行った後、ナトリウムワイヤーの存在下に蒸留精製したものを用いた。
In the following examples, the following materials and solvents were used.
(1) Commercially available products were used as resorcinol, glutaraldehyde, ethanol and 12N hydrochloric acid (HCl).
(2) Tetrabutylammonium bromide (TBAB) was recrystallized twice using ethyl acetate.
(3) As 1-anthracenecarboxylic acid, 2-anthracenecarboxylic acid, 9-anthracenecarboxylic acid, 4-phenylazophenol and trans-cinnamic acid, commercially available products were used as they were.
(4) As 1-methyl-2-pyrrolidone (NMP), pyridine, and DBU, those that have been pre-dried with calcium hydride and then purified by distillation in the presence of calcium hydride (CaH 2 ) are used. It was.
(5) As tetrahydrofuran, what was preliminarily dried using sodium wire and then purified by distillation in the presence of sodium wire was used.

また、測定装置としては、下記のものを使用した。
(1)赤外分光光度計(IR):日本分光(株)製「FT−IR420型」および日本バイオラッド ラボラトリーズ(株)製「Real time−IR FTS 3000型」(検出器:Mercury Cadmium Tallied)
(2)核磁気共鳴装置( 1H−NMR):日本電子(株)製「JNM−ECA−500型」(500MHz)および「JNM−ECA−600型」(600MHz)
(3)元素分析装置(EA):パーキンエルマンジャパン(株)製「PE2400 Series II CHNS/O Analyzer」
(4)示差走査熱量計(DSC):セイコーインスツルメンツ(株)製「Seiko Instruments EXSTAR 6000/DSC 6200」(測定条件:窒素気流下,昇温速度10℃/min)
(5)熱天秤・示差熱分析装置(TG/DTA):セイコーインスツルメンツ(株)製「Seiko Instruments EXSTAR 6000/TG/DTA6200」(測定条件:窒素気流下,昇温速度10℃/min,開放アルミニウムパン)
(6)光照射装置:HOYA−SCHOTT製「UV LIGHT SOURCE EX250」(光源:250W 超高圧水銀ランプ)
(7)光量計:ウシオ電機(株)製紫外線積算光量計「UIT−150−A」
(8)スピンコーター:ミカサ製「スピンコーター1H−D7」(設定プログラム:加速度:Acc=22,回転数:R=2000−4000,回転時間:T=25sec)
(9)エリプソメーター:横尻光学工業所製「DHA−OLX/S4」
(10)500W−キセノンランプ:ウシオ電機(株)「UXL−500 D−O」
Moreover, the following were used as a measuring apparatus.
(1) Infrared spectrophotometer (IR): “FT-IR420 type” manufactured by JASCO Corporation and “Real time-IR FTS 3000 type” manufactured by Nippon Bio-Rad Laboratories Co., Ltd. (detector: Mercury Cadmium Talled)
(2) Nuclear magnetic resonance apparatus ( 1 H-NMR): “JNM-ECA-500 type” (500 MHz) and “JNM-ECA-600 type” (600 MHz) manufactured by JEOL Ltd.
(3) Elemental analyzer (EA): “PE2400 Series II CHNS / O Analyzer” manufactured by PerkinElman Japan Co., Ltd.
(4) Differential scanning calorimeter (DSC): “Seiko Instruments EXSTAR 6000 / DSC 6200” manufactured by Seiko Instruments Inc. (measurement conditions: heating rate 10 ° C./min under nitrogen stream)
(5) Thermobalance / differential thermal analyzer (TG / DTA): “Seiko Instruments EXSTAR 6000 / TG / DTA6200” manufactured by Seiko Instruments Inc. (measurement conditions: 10 ° C./min heating rate under nitrogen stream, open aluminum Bread)
(6) Light irradiation device: “UV LIGHT SOURCE EX250” manufactured by HOYA-SCHOTT (light source: 250 W super high pressure mercury lamp)
(7) Light meter: UV integrated light meter “UIT-150-A” manufactured by USHIO INC.
(8) Spin coater: “Spin coater 1H-D7” manufactured by Mikasa (setting program: acceleration: Acc = 22, rotation speed: R = 2000-4000, rotation time: T = 25 sec)
(9) Ellipsometer: “DHA-OLX / S4” manufactured by Yokojiri Optical Industry
(10) 500W-xenon lamp: USHIO INC. "UXL-500 D-O"

〈中間体環状化合物の合成〉
50mL三口フラスコに、原料環状化合物0.21g(0.13mmol,OH当量3.0mmol)およびピリジン0.710g(8.98mmol)を入れて懸濁させ、脱水テトラヒドロフラン3mLを加えて氷冷し、クロロ吉草酸クロリド1.0g(8.98mmol)を窒素雰囲気下に滴下し、24時間攪拌した。その後、反応液を酢酸エチルで希釈し、炭酸水素ナトリウム水溶液で2回、水道水で1回洗浄した後、1N塩酸水溶液で2回洗浄し、更に水道水で1回洗浄して有機層を中性にし、無水硫酸マグネシウムを用いて乾燥させた。乾燥剤をろ別した後濃縮し、良溶媒として酢酸エチル、貧溶媒としてn−ヘキサンを用いて再沈精製を行い、次いで、良溶媒として酢酸エチル、貧溶媒としてメタノールを用いて2回再沈精製を行い、沈殿物を回収して60℃で減圧乾燥させることにより、白色の粉末固体を得た。
IR分析および 1H−NMR分析の結果から、得られた生成物は、下記式(イ)で表される環状化合物であると同定された。収量は0.18g(32%)であり、クロロブチル残基の導入率は100%であった。得られた環状化合物を「中間体環状化合物(イ)」とする。
<Synthesis of Intermediate Cyclic Compound>
In a 50 mL three-necked flask, 0.21 g (0.13 mmol, OH equivalent: 3.0 mmol) of a raw material cyclic compound and 0.710 g (8.98 mmol) of pyridine are suspended, and 3 mL of dehydrated tetrahydrofuran is added and ice-cooled. 1.0 g (8.98 mmol) of valeric chloride was added dropwise under a nitrogen atmosphere and stirred for 24 hours. Then, the reaction solution is diluted with ethyl acetate, washed twice with an aqueous sodium hydrogen carbonate solution and once with tap water, then twice with 1N hydrochloric acid aqueous solution, and further washed once with tap water, so that the organic layer is kept in the middle. And dried with anhydrous magnesium sulfate. The desiccant is filtered off and concentrated, and reprecipitation purification is performed using ethyl acetate as a good solvent and n-hexane as a poor solvent, and then reprecipitation twice using ethyl acetate as a good solvent and methanol as a poor solvent. Purification was performed, and the precipitate was collected and dried under reduced pressure at 60 ° C. to obtain a white powder solid.
From the results of IR analysis and 1 H-NMR analysis, the obtained product was identified as a cyclic compound represented by the following formula (I). The yield was 0.18 g (32%), and the introduction rate of chlorobutyl residues was 100%. The obtained cyclic compound is referred to as “intermediate cyclic compound (a)”.

Figure 2008280255
〔式(イ)において、R1 は、−(CO)(CH2 4 Clである。〕
Figure 2008280255
[In Formula (A), R 1 is — (CO) (CH 2 ) 4 Cl. ]

また、中間体環状化合物(イ)のIR分析および 1H−NMR分析の結果を下記に示し、IRスペクトル図を図1に、 1H−NMRスペクトル図を図2に示す。
○IR(KRS,cm-1):2943,2868(νC−H),1776(γC=O ester),1610,1494(νC=C aromatic ),1273,1123(γC−O−C ether)
1H−NMR(500MHz,DMSO−d6 ,TMS);δ(ppm)
1.66〜1.98(m,44.0H,Ha ,Hb ,Hg ,Hh ),
2.16〜2.41(m,16.0H,Hi ),
3.66〜4.02(m,20.0H,Hc ,Hf
7.12(br,8.0H,Hd ,He
Further, the results of IR analysis and 1 H-NMR analysis of the intermediate cyclic compound (A) are shown below, the IR spectrum diagram is shown in FIG. 1, and the 1 H-NMR spectrum diagram is shown in FIG.
○ IR (KRS, cm −1 ): 2943, 2868 (νC—H), 1776 (γC═O ester), 1610, 1494 (νC = C aromatic), 1273, 1123 (γC—O—C ether)
1 H-NMR (500 MHz, DMSO-d 6 , TMS); δ (ppm)
1.66~1.98 (m, 44.0H, H a , H b, H g, H h),
2.16 to 2.41 (m, 16.0H, H i ),
3.66~4.02 (m, 20.0H, H c , H f)
7.12 (br, 8.0H, H d , H e)

〈実施例1〉
5mLナスフラスコに、中間体環状化合物(イ)0.20g(0.04mmol,官能基当量1.1mmol)、4−フェニルアゾフェノール0.63g(3.2mmol)および溶媒として1−メチル−2−ピロリドン1mLを入れて完全に溶解させた。その後、DBU0.49ml(3.3mmol)を氷冷しながらゆっくり滴下し、80℃で48時間攪拌した。その後、反応液を酢酸エチルで希釈し、1N塩酸水溶液で2回、飽和重曹水で2回、水道水で1回抽出操作を行い、無水硫酸マグネシウムを用いて乾燥させた。乾燥剤をろ別した後濃縮し、良溶媒として酢酸エチル、貧溶媒としてエーテルを用いて再沈精製を行い単離した。メンブランを用いて固体を回収し、室温で24時間減圧乾燥させることにより、茶褐色の固体を得た。
IR分析および 1H−NMR分析の結果から、得られた生成物は、下記式(ロ)で表される環状化合物であると同定された。収量は0.08g(24%)であり、4−フェニルアゾフェノール残基の導入率は79%であった。得られた環状化合物を「特定の環状化合物(ロ)」とする。
<Example 1>
In a 5 mL eggplant flask, 0.20 g (0.04 mmol, functional group equivalent 1.1 mmol) of the intermediate cyclic compound (i), 0.63 g (3.2 mmol) of 4-phenylazophenol, and 1-methyl-2- 1 mL of pyrrolidone was added and completely dissolved. Thereafter, 0.49 ml (3.3 mmol) of DBU was slowly added dropwise while cooling with ice, followed by stirring at 80 ° C. for 48 hours. Thereafter, the reaction solution was diluted with ethyl acetate, extracted twice with 1N hydrochloric acid aqueous solution, twice with saturated aqueous sodium hydrogen carbonate, and once with tap water, and dried over anhydrous magnesium sulfate. The desiccant was filtered off and concentrated, and isolated by reprecipitation purification using ethyl acetate as a good solvent and ether as a poor solvent. The solid was collected using a membrane and dried under reduced pressure at room temperature for 24 hours to obtain a brown solid.
From the results of IR analysis and 1 H-NMR analysis, the obtained product was identified as a cyclic compound represented by the following formula (B). The yield was 0.08 g (24%), and the introduction rate of 4-phenylazophenol residue was 79%. Let the obtained cyclic compound be "a specific cyclic compound (b)."

Figure 2008280255
Figure 2008280255

〔(ロ)において、Xは、−(CO)(CH2 4 −、R2 は、上記式(a)で表される基を示す。〕 [In (b), X represents — (CO) (CH 2 ) 4 —, and R 2 represents a group represented by the above formula (a). ]

また、特定の環状化合物(ロ)のIR分析および 1H−NMR分析の結果を下記に示し、IRスペクトル図を図3に、 1H−NMRスペクトル図を図4に示す。
○IR(KRS,cm-1):1753(γC=O ester),1599,1499(νC=C aromatic ),1250,1140(γPh−O−C)
1H−NMR(500MHz,DMSO−d6 ,TMS);δ(ppm)
1.80〜2.19(m,49.9H,Ha ,Hb ,Hf ,Hg ,Hh ),
3.07〜4.06(m,20.0H,Hc ,Hi ),
5.98(br,8.0H,Hd ,He
6.82〜8.33(m,56.8H aromatic H n azobenzenzene )
The results of IR analysis and 1 H-NMR analysis of the specific cyclic compound (B) are shown below, the IR spectrum diagram is shown in FIG. 3, and the 1 H-NMR spectrum diagram is shown in FIG.
○ IR (KRS, cm −1 ): 1753 (γC═O ester), 1599, 1499 (νC = C aromatic), 1250, 1140 (γPh—O—C)
1 H-NMR (500 MHz, DMSO-d 6 , TMS); δ (ppm)
1.80~2.19 (m, 49.9H, H a , H b, H f, H g, H h),
3.07~4.06 (m, 20.0H, H c , H i),
5.98 (br, 8.0H, H d , H e)
6.82 to 8.33 (m, 56.8H aromatic H n azobenzenzene)

〈実施例2〉
5mLナスフラスコに、中間体環状化合物(イ)0.20g(0.04mmol,官能基当量1.1mmol)、1−アントラセンカルボン酸0.70g(3.2mmol)および溶媒として1−メチル−2−ピロリドン1mLを入れて完全に溶解させた。その後、DBU0.49ml(3.3mmol)を氷冷しながらゆっくり滴下し、80℃で48時間攪拌した。その後、反応液を酢酸エチルで希釈し、1N塩酸水溶液で2回、飽和重曹水で2回、水道水で1回抽出操作を行い、無水硫酸マグネシウムを用いて乾燥させた。乾燥剤をろ別した後濃縮し、良溶媒として酢酸エチル、貧溶媒としてエーテルを用いて再沈精製を行い単離した。メンブランを用いて固体を回収し、室温で24時間減圧乾燥させることにより、乳白色の固体を得た。
IR分析および 1H−NMR分析の結果から、得られた生成物は、下記式(ハ)で表される環状化合物であると同定された。収量は0.22g(56%)であり、1−アントラセン残基の導入率は87%であった。得られた環状化合物を「特定の環状化合物(ハ)」とする。
<Example 2>
In a 5 mL eggplant flask, 0.20 g (0.04 mmol, functional group equivalent 1.1 mmol) of the intermediate cyclic compound (i), 0.70 g (3.2 mmol) of 1-anthracenecarboxylic acid, and 1-methyl-2- 1 mL of pyrrolidone was added and completely dissolved. Thereafter, 0.49 ml (3.3 mmol) of DBU was slowly added dropwise while cooling with ice, followed by stirring at 80 ° C. for 48 hours. Thereafter, the reaction solution was diluted with ethyl acetate, extracted twice with 1N hydrochloric acid aqueous solution, twice with saturated aqueous sodium hydrogen carbonate, and once with tap water, and dried over anhydrous magnesium sulfate. The desiccant was filtered off and concentrated, and isolated by reprecipitation purification using ethyl acetate as a good solvent and ether as a poor solvent. The solid was collected using a membrane and dried under reduced pressure at room temperature for 24 hours to obtain a milky white solid.
From the results of IR analysis and 1 H-NMR analysis, the obtained product was identified as a cyclic compound represented by the following formula (C). The yield was 0.22 g (56%), and the introduction rate of 1-anthracene residue was 87%. Let the obtained cyclic compound be a "specific cyclic compound (C)."

Figure 2008280255
Figure 2008280255

〔(ハ)において、Xは、−(CO)(CH2 4 −、R3 は、上記式(b)で表される基を示す。〕 [In (c), X represents — (CO) (CH 2 ) 4 —, and R 3 represents a group represented by the above formula (b). ]

また、特定の環状化合物(ハ)のIR分析および 1H−NMR分析の結果を下記に示し、IRスペクトル図を図5に、 1H−NMRスペクトル図を図6に示す。
○IR(KRS,cm-1):1754(γC=O ester),1712(γC=O ester of Anthracene),1625,1495(νC=C aromatic ),1219,1148(γPh−O−C)
1H−NMR(500MHz,DMSO−d6 ,TMS);δ(ppm)
1.18〜2.36(m,53.7H,Ha ,Hb ,Hf ,Hg ,Hh ),
4.36(m,20.0H,Hc ,Hi ),
6.53(br,8.0H,Hd ,He
7.41〜8.84(m,62.6H aromatic H n anthracene)
The results of IR analysis and 1 H-NMR analysis of the specific cyclic compound (C) are shown below, the IR spectrum diagram is shown in FIG. 5, and the 1 H-NMR spectrum diagram is shown in FIG.
IR (KRS, cm −1 ): 1754 (γC═O ester), 1712 (γC═O ester of Anthracene), 1625, 1495 (νC = C aromatic), 1219, 1148 (γPh—O—C)
1 H-NMR (500 MHz, DMSO-d 6 , TMS); δ (ppm)
1.18~2.36 (m, 53.7H, H a , H b, H f, H g, H h),
4.36 (m, 20.0 H, H c , H i ),
6.53 (br, 8.0H, H d , H e)
7.41-8.84 (m, 62.6H aromatic H nthracene)

〈実施例3〉
5mLナスフラスコに、中間体環状化合物(イ)0.20g(0.04mmol,官能基当量1.1mmol)、2−アントラセンカルボン酸0.70g(3.2mmol)および溶媒として1−メチル−2−ピロリドン1mLを入れて完全に溶解させた。その後、DBU0.49ml(3.3mmol)を氷冷しながらゆっくり滴下し、80℃で48時間攪拌した。その後、反応液を酢酸エチルで希釈し、1N塩酸水溶液で2回、飽和重曹水で2回、水道水で1回抽出操作を行い、無水硫酸マグネシウムを用いて乾燥させた。乾燥剤をろ別した後濃縮し、良溶媒として酢酸エチル、貧溶媒としてエーテルを用いて再沈精製を行い単離した。メンブランを用いて固体を回収し、室温で24時間減圧乾燥させることにより、黄褐色の固体を得た。
IR分析および 1H−NMR分析の結果から、得られた生成物は、下記式(ニ)で表される環状化合物であると同定された。収量は0.25g(64%)であり、2−アントラセン残基の導入率は81%であった。得られた環状化合物を「特定の環状化合物(ニ)」とする。
<Example 3>
Into a 5 mL eggplant flask, 0.20 g (0.04 mmol, functional group equivalent 1.1 mmol) of the intermediate cyclic compound (i), 0.70 g (3.2 mmol) of 2-anthracenecarboxylic acid and 1-methyl-2-2 as a solvent were used. 1 mL of pyrrolidone was added and completely dissolved. Thereafter, 0.49 ml (3.3 mmol) of DBU was slowly added dropwise while cooling with ice, followed by stirring at 80 ° C. for 48 hours. Thereafter, the reaction solution was diluted with ethyl acetate, extracted twice with 1N hydrochloric acid aqueous solution, twice with saturated aqueous sodium hydrogen carbonate, and once with tap water, and dried over anhydrous magnesium sulfate. The desiccant was filtered off and concentrated, and isolated by reprecipitation purification using ethyl acetate as a good solvent and ether as a poor solvent. The solid was recovered using a membrane and dried under reduced pressure at room temperature for 24 hours to obtain a tan solid.
From the results of IR analysis and 1 H-NMR analysis, the obtained product was identified as a cyclic compound represented by the following formula (d). The yield was 0.25 g (64%), and the introduction rate of 2-anthracene residue was 81%. Let the obtained cyclic compound be "a specific cyclic compound (d)."

Figure 2008280255
Figure 2008280255

〔(ニ)において、Xは、−(CO)(CH2 4 −、R4 は、上記式(c)で表される基を示す。〕 [In (d), X represents — (CO) (CH 2 ) 4 —, and R 4 represents a group represented by the above formula (c). ]

また、特定の環状化合物(ニ)のIR分析および 1H−NMR分析の結果を下記に示し、 1H−NMRスペクトル図を図7に示す。
○IR(KRS,cm-1):1756(γC=O ester of pentyl group),1709(γC=O ester of Anthracene),1615,1494(νC=C aromatic ),1221,1154(γPh−O−C)
1H−NMR(500MHz,DMSO−d6 ,TMS);δ(ppm)
0.82〜2.67(m,42.7H,Ha ,Hb ,Hf ,Hg ,Hh ),
4.25(m,20.0H,Hc ,Hi ),
6.79(br,8.0H,Hd ,He
7.34〜9.27(m,46.1H aromatic H n anthracene)
The results of IR analysis and 1 H-NMR analysis of the specific cyclic compound (d) are shown below, and the 1 H-NMR spectrum is shown in FIG.
IR (KRS, cm −1 ): 1756 (γC = O ester of pentyl group), 1709 (γC = O ester of Anthracene), 1615, 1494 (νC = C aromatic), 1221, 1154 (γPh—O—C )
1 H-NMR (500 MHz, DMSO-d 6 , TMS); δ (ppm)
0.82~2.67 (m, 42.7H, H a , H b, H f, H g, H h),
4.25 (m, 20.0 H, H c , H i ),
6.79 (br, 8.0H, H d , H e)
7.34-9.27 (m, 46.1H aromatic H nthracene)

〈実施例4〉
5mLナスフラスコに、中間体環状化合物(イ)0.20g(0.04mmol,官能基当量1.1mmol)、9−アントラセンカルボン酸0.70g(3.2mmol)および溶媒として1−メチル−2−ピロリドン1mLを入れて完全に溶解させた。その後、DBU0.49ml(3.3mmol)を氷冷しながらゆっくり滴下し、80℃で48時間攪拌した。その後、反応液を酢酸エチルで希釈し、1N塩酸水溶液で2回、飽和重曹水で2回、水道水で1回抽出操作を行い、無水硫酸マグネシウムを用いて乾燥させた。乾燥剤をろ別した後濃縮し、良溶媒として酢酸エチル、貧溶媒としてエーテルを用いて再沈精製を行い単離した。メンブランを用いて固体を回収し、室温で24時間減圧乾燥させることにより、乳白色の固体を得た。
IR分析および 1H−NMR分析の結果から、得られた生成物は、下記式(ホ)で表される環状化合物であると同定された。収量は0.35g(87%)であり、9−アントラセン残基の導入率は99%であった。得られた環状化合物を「特定の環状化合物(ホ)」とする。
<Example 4>
Into a 5 mL eggplant flask, 0.20 g (0.04 mmol, functional group equivalent 1.1 mmol) of the intermediate cyclic compound (i), 0.70 g (3.2 mmol) of 9-anthracenecarboxylic acid and 1-methyl-2-2 as a solvent were used. 1 mL of pyrrolidone was added and completely dissolved. Thereafter, 0.49 ml (3.3 mmol) of DBU was slowly added dropwise while cooling with ice, followed by stirring at 80 ° C. for 48 hours. Thereafter, the reaction solution was diluted with ethyl acetate, extracted twice with 1N hydrochloric acid aqueous solution, twice with saturated aqueous sodium hydrogen carbonate, and once with tap water, and dried over anhydrous magnesium sulfate. The desiccant was filtered off and concentrated, and isolated by reprecipitation purification using ethyl acetate as a good solvent and ether as a poor solvent. The solid was collected using a membrane and dried under reduced pressure at room temperature for 24 hours to obtain a milky white solid.
From the results of IR analysis and 1 H-NMR analysis, the obtained product was identified as a cyclic compound represented by the following formula (e). The yield was 0.35 g (87%), and the introduction rate of 9-anthracene residue was 99%. The obtained cyclic compound is referred to as “specific cyclic compound (e)”.

Figure 2008280255
Figure 2008280255

〔(ホ)において、Xは、−(CO)(CH2 4 −、R5 は、上記式(d)で表される基を示す。〕 [In (e), X represents — (CO) (CH 2 ) 4 —, and R 5 represents a group represented by the above formula (d). ]

また、特定の環状化合物(ホ)のIR分析および 1H−NMR分析の結果を下記に示し、IRスペクトル図を図8に、 1H−NMRスペクトル図を図9に示す。
○IR(KRS,cm-1):1758(γC=O ester),1719(γC=O ester of Anthracene),1624,1493(νC=C aromatic ),1264,1150(γPh−O−C)
1H−NMR(500MHz,DMSO−d6 ,TMS);δ(ppm)
1.56〜2.67(m,59.5H,Ha ,Hb ,Hf ,Hg ,Hh ),
4.30(m,20.0H,Hc ,Hi ),
6.75(br,8.0H,Hd ,He
7.33〜8.54(m,71.3H aromatic H n anthracene)
Further, the results of IR analysis and 1 H-NMR analysis of the specific cyclic compound (e) are shown below, the IR spectrum diagram is shown in FIG. 8, and the 1 H-NMR spectrum diagram is shown in FIG.
IR (KRS, cm −1 ): 1758 (γC═O ester), 1719 (γC = O ester of Anthracene), 1624, 1493 (νC = C aromatic), 1264, 1150 (γPh—O—C)
1 H-NMR (500 MHz, DMSO-d 6 , TMS); δ (ppm)
1.56~2.67 (m, 59.5H, H a , H b, H f, H g, H h),
4.30 (m, 20.0 H, H c , H i ),
6.75 (br, 8.0H, H d , H e)
7.33 to 8.54 (m, 71.3H aromatic H nthracene)

〈実施例5〉
5mLナスフラスコに、中間体環状化合物(イ)0.20g(0.04mmol,官能基当量1.1mmol)、trans−桂皮酸0.47g(3.2mmol)および溶媒として1−メチル−2−ピロリドン1mLを入れて完全に溶解させた。その後、DBU0.49ml(3.3mmol)を氷冷しながらゆっくり滴下し、80℃で48時間攪拌した。その後、反応液を酢酸エチルで希釈し、1N塩酸水溶液で2回、飽和重曹水で2回、水道水で1回抽出操作を行い、無水硫酸マグネシウムを用いて乾燥させた。乾燥剤をろ別した後濃縮し、良溶媒として酢酸エチル、貧溶媒としてエーテルを用いて再沈精製を行い単離した。メンブランを用いて固体を回収し、室温で24時間減圧乾燥させることにより、乳白色の固体を得た。
IR分析および 1H−NMR分析の結果から、得られた生成物は、下記式(ヘ)で表される環状化合物であると同定された。収量は0.19g(61%)であり、桂皮酸残基の導入率は99%であった。得られた環状化合物を「特定の環状化合物(ヘ)」とする。
<Example 5>
In a 5 mL eggplant flask, 0.20 g (0.04 mmol, functional group equivalent 1.1 mmol) of intermediate cyclic compound (i), 0.47 g (3.2 mmol) of trans-cinnamic acid and 1-methyl-2-pyrrolidone as a solvent 1 mL was added and completely dissolved. Thereafter, 0.49 ml (3.3 mmol) of DBU was slowly added dropwise while cooling with ice, followed by stirring at 80 ° C. for 48 hours. Thereafter, the reaction solution was diluted with ethyl acetate, extracted twice with 1N hydrochloric acid aqueous solution, twice with saturated aqueous sodium hydrogen carbonate, and once with tap water, and dried over anhydrous magnesium sulfate. The desiccant was filtered off and concentrated, and isolated by reprecipitation purification using ethyl acetate as a good solvent and ether as a poor solvent. The solid was collected using a membrane and dried under reduced pressure at room temperature for 24 hours to obtain a milky white solid.
From the results of IR analysis and 1 H-NMR analysis, the obtained product was identified as a cyclic compound represented by the following formula (f). The yield was 0.19 g (61%), and the introduction rate of cinnamic acid residues was 99%. The obtained cyclic compound is referred to as “specific cyclic compound (f)”.

Figure 2008280255
Figure 2008280255

〔(ヘ)において、Xは、−(CO)(CH2 4 −、R6 は、上記式(e)で表される基を示す。〕 [In (f), X represents — (CO) (CH 2 ) 4 —, and R 6 represents a group represented by the above formula (e). ]

また、特定の環状化合物(ヘ)のIR分析および 1H−NMR分析の結果を下記に示し、IRスペクトル図を図10に、 1H−NMRスペクトル図を図11に示す。
○IR(KRS,cm-1):1758(γC=O ester),1711(γC=O ester of cinnamete ),1636,1495(νC=C aromatic ),1203,1142(γPh−O−C)
1H−NMR(500MHz,DMSO−d6 ,TMS);δ(ppm)
0.84〜2.69(m,59.5H,Ha ,Hb ,Hf ,Hg ,Hh ),
4.12(m,20.0H,Hc ,Hi ),
6.52(br,8.0H,Hd ,He
7.33〜7.73(m,39.6H aromatic H n cinnamete )
Further, the results of IR analysis and 1 H-NMR analysis of the specific cyclic compound (f) are shown below, the IR spectrum diagram is shown in FIG. 10, and the 1 H-NMR spectrum diagram is shown in FIG.
IR (KRS, cm −1 ): 1758 (γC═O ester), 1711 (γC═O ester of cinnamete), 1636, 1495 (νC = C aromatic), 1203, 1142 (γPh—O—C)
1 H-NMR (500 MHz, DMSO-d 6 , TMS); δ (ppm)
0.84~2.69 (m, 59.5H, H a , H b, H f, H g, H h),
4.12 (m, 20.0 H, H c , H i ),
6.52 (br, 8.0H, H d , H e)
7.33 to 7.73 (m, 39.6H aromatic H n cinnamete)

〔特定の環状化合物の特性〕
(1)光反応特性:
実施例1〜実施例4に係る特定の環状化合物(ロ)〜特定の環状化合物(ホ)の各々をテトラヒドロフランに溶解し、得られた溶液の各々を、石英セルの内壁面に塗布し、室温で2時間減圧乾燥処理することにより、薄膜を形成した。ここで、各特定の環状化合物の濃度は、得られた薄膜の最大吸収波長の吸光度が0.6程度となるよう調整した。石英セル内に形成された薄膜に対して、500Wキセノンランプを用い、2mW/cm2 (313nm)の条件で、光照射時間を行うと共に、紫外分光光度計により、当該薄膜における紫外線の吸光度の経時的な変化を測定した。結果を図12〜図15に示す。
[Characteristics of specific cyclic compounds]
(1) Photoreactive characteristics:
Each of the specific cyclic compound (b) to the specific cyclic compound (e) according to Examples 1 to 4 was dissolved in tetrahydrofuran, and each of the obtained solutions was applied to the inner wall surface of the quartz cell, A thin film was formed by drying under reduced pressure for 2 hours. Here, the density | concentration of each specific cyclic compound was adjusted so that the light absorbency of the maximum absorption wavelength of the obtained thin film might be set to about 0.6. The thin film formed in the quartz cell is irradiated with light using a 500 W xenon lamp under the condition of 2 mW / cm 2 (313 nm), and the ultraviolet absorption time-lapse of the thin film is measured with an ultraviolet spectrophotometer. Changes were measured. The results are shown in FIGS.

図12の結果から、実施例1に係る特定の環状化合物(ロ)よりなる薄膜においては、フェニルアゾフェノール残基に基づく最大吸収波長357nmの紫外線の吸収が、光照射時間の経過に伴って減少することが確認された。
図13の結果から、実施例2に係る特定の環状化合物(ハ)よりなる薄膜においては、1−アントラセン残基に基づく最大吸収波長383nmの紫外線の吸収が、光照射時間の経過に伴って減少することが確認された。
図14の結果から、実施例3に係る特定の環状化合物(ニ)よりなる薄膜においては、2−アントラセン残基に基づく最大吸収波長386nmの紫外線の吸収が、光照射時間の経過に伴って減少することが確認された。また、等吸収点が確認されなかったことにより 図15の結果から、実施例4に係る特定の環状化合物(ホ)よりなる薄膜においては、9−アントラセン残基に基づく最大吸収波長365nmの紫外線の吸収が、光照射時間の経過に伴って減少することが確認された。
From the result of FIG. 12, in the thin film made of the specific cyclic compound (b) according to Example 1, the absorption of ultraviolet light having a maximum absorption wavelength of 357 nm based on the phenylazophenol residue decreases with the passage of light irradiation time. Confirmed to do.
From the results of FIG. 13, in the thin film made of the specific cyclic compound (c) according to Example 2, the absorption of ultraviolet rays having a maximum absorption wavelength of 383 nm based on the 1-anthracene residue decreases with the passage of light irradiation time. Confirmed to do.
From the results of FIG. 14, in the thin film made of the specific cyclic compound (d) according to Example 3, the absorption of ultraviolet rays having a maximum absorption wavelength of 386 nm based on the 2-anthracene residue decreases with the passage of light irradiation time. Confirmed to do. Further, since the isoabsorption point was not confirmed, from the result of FIG. 15, in the thin film made of the specific cyclic compound (e) according to Example 4, the ultraviolet ray having the maximum absorption wavelength of 365 nm based on the 9-anthracene residue was observed. It was confirmed that absorption decreased with the passage of light irradiation time.

また、最大吸収波長の吸光度の減少率から、実施例1〜実施例4に係る特定の環状化合物(ロ)〜特定の環状化合物(ホ)における光異性化反応率若しくは光二量化反応率を算出し、これを一次速度式にプロットした結果を図16〜図19に示す。
これらの結果から、特定の環状化合物(ロ)〜特定の環状化合物(ホ)における光異性化反応若しくは光二量化反応は、いずれも一次で進行していることが理解される。
Moreover, the photoisomerization reaction rate or the photodimerization reaction rate in the specific cyclic compound (b) to the specific cyclic compound (e) according to Example 1 to Example 4 is calculated from the rate of decrease in absorbance at the maximum absorption wavelength. FIG. 16 to FIG. 19 show the results of plotting this in the primary velocity equation.
From these results, it is understood that the photoisomerization reaction or the photodimerization reaction in the specific cyclic compound (b) to the specific cyclic compound (e) proceeds in the first order.

また、最大吸収波長の吸光度の減少率から、実施例1〜実施例4に係る特定の環状化合物(ロ)〜特定の環状化合物(ホ)における光異性化反応若しくは光二量化反応の反応速度定数を求めた。結果を表1に示す。   Further, from the rate of decrease in absorbance at the maximum absorption wavelength, the reaction rate constant of the photoisomerization reaction or photodimerization reaction in the specific cyclic compound (b) to the specific cyclic compound (e) according to Example 1 to Example 4 is calculated. Asked. The results are shown in Table 1.

Figure 2008280255
Figure 2008280255

(2)屈折率変化:
実施例1〜実施例5に係る特定の環状化合物(ロ)〜特定の環状化合物(ヘ)の各々をテトラヒドロフランに溶解し、得られた溶液を、スピンコーターによってシリコンウエハの表面に塗布し、2時間の減圧乾燥処理を行うことにより、厚みが約0.1μmの薄膜を形成した。得られた薄膜の各々に対して紫外線照射を行い、エリプソメーターを用い、波長632.8nmのレーザー光により、紫外線照射前後における屈折率をそれぞれ測定し、屈折率の変化量を求めた。ここで、紫外線の光源としては、500W−キセノンランプ(照度:10.0mW/cm2 (254nm)を使用した。
以上、結果を表2に示す。
(2) Refractive index change:
Each of the specific cyclic compound (b) to the specific cyclic compound (f) according to Examples 1 to 5 was dissolved in tetrahydrofuran, and the obtained solution was applied to the surface of a silicon wafer by a spin coater. A thin film having a thickness of about 0.1 μm was formed by performing vacuum drying for a period of time. Each of the obtained thin films was irradiated with ultraviolet rays, and the refractive index before and after ultraviolet irradiation was measured with an ellipsometer using a laser beam having a wavelength of 632.8 nm to determine the amount of change in the refractive index. Here, a 500 W-xenon lamp (illuminance: 10.0 mW / cm 2 (254 nm)) was used as an ultraviolet light source.
The results are shown in Table 2.

Figure 2008280255
Figure 2008280255

表2の結果から明らかなように、実施例1〜実施例5に係る特定の環状化合物(ロ)〜特定の環状化合物(ヘ)の各々は、紫外線が照射されることによって屈折率が変化する特性を有し、また、屈折率の変化量が大きいものであり、屈折率変換材料として有用なものであることが確認された。   As is clear from the results in Table 2, the refractive index of each of the specific cyclic compound (b) to the specific cyclic compound (f) according to Examples 1 to 5 changes when irradiated with ultraviolet rays. It has characteristics and has a large amount of change in refractive index, and was confirmed to be useful as a refractive index conversion material.

実施例で合成した中間体環状化合物のIRスペクトル図である。It is IR spectrum figure of the intermediate cyclic compound synthesize | combined in the Example. 実施例で合成した中間体環状化合物の 1H−NMRスペクトル図である。 1 is a 1 H-NMR spectrum diagram of an intermediate cyclic compound synthesized in an example. FIG. 実施例1に係る特定の環状化合物のIRスペクトル図である。1 is an IR spectrum diagram of a specific cyclic compound according to Example 1. FIG. 実施例1に係る特定の環状化合物の 1H−NMRスペクトル図である。1 is a 1 H-NMR spectrum of a specific cyclic compound according to Example 1. FIG. 実施例2に係る特定の環状化合物のIRスペクトル図である。2 is an IR spectrum diagram of a specific cyclic compound according to Example 2. FIG. 実施例2に係る特定の環状化合物の 1H−NMRスペクトル図である。2 is a 1 H-NMR spectrum of a specific cyclic compound according to Example 2. FIG. 実施例3に係る特定の環状化合物の 1H−NMRスペクトル図である。2 is a 1 H-NMR spectrum of a specific cyclic compound according to Example 3. FIG. 実施例4に係る特定の環状化合物のIRスペクトル図である。4 is an IR spectrum diagram of a specific cyclic compound according to Example 4. FIG. 実施例4に係る特定の環状化合物の 1H−NMRスペクトル図である。2 is a 1 H-NMR spectrum of a specific cyclic compound according to Example 4. FIG. 実施例5に係る特定の環状化合物のIRスペクトル図である。6 is an IR spectrum diagram of a specific cyclic compound according to Example 5. FIG. 実施例5に係る特定の環状化合物の 1H−NMRスペクトル図である。6 is a 1 H-NMR spectrum of a specific cyclic compound according to Example 5. FIG. 実施例1に係る特定の環状化合物の薄膜における紫外線の吸光度の変化を示す図である。It is a figure which shows the change of the light absorbency of the ultraviolet-ray in the thin film of the specific cyclic compound which concerns on Example 1. FIG. 実施例2に係る特定の環状化合物の薄膜における紫外線の吸光度の変化を示す図である。It is a figure which shows the change of the light absorbency of the ultraviolet-ray in the thin film of the specific cyclic compound which concerns on Example 2. FIG. 実施例3に係る特定の環状化合物の薄膜における紫外線の吸光度の変化を示す図である。It is a figure which shows the change of the light absorbency of the ultraviolet-ray in the thin film of the specific cyclic compound which concerns on Example 3. FIG. 実施例4に係る特定の環状化合物の薄膜における紫外線の吸光度の変化を示す図である。It is a figure which shows the change of the light absorbency of the ultraviolet-ray in the thin film of the specific cyclic compound which concerns on Example 4. FIG. 実施例1に係る特定の環状化合物の異性化反応率を一次速度式にプロットした図である。FIG. 3 is a diagram in which the isomerization reaction rate of a specific cyclic compound according to Example 1 is plotted in a first-order rate equation. 実施例2に係る特定の環状化合物の二量化反応率を一次速度式にプロットした図である。It is the figure which plotted the dimerization reaction rate of the specific cyclic compound which concerns on Example 2 to the primary rate equation. 実施例3に係る特定の環状化合物の二量化反応率を一次速度式にプロットした図である。It is the figure which plotted the dimerization reaction rate of the specific cyclic compound which concerns on Example 3 to the primary rate equation. 実施例4に係る特定の環状化合物の二量化反応率を一次速度式にプロットした図である。It is the figure which plotted the dimerization reaction rate of the specific cyclic compound which concerns on Example 4 to the primary rate equation.

Claims (1)

下記一般式(1)で表される化合物よりなることを特徴とする屈折率変換材料。
Figure 2008280255
〔一般式(1)において、Xは、−(CO)(CH2 4 −、Rは、下記式(a)乃至式(e)のいずれかで表される基を示す。但し、複数あるXRのうち一部が水素原子であってもよい。〕
Figure 2008280255
A refractive index conversion material comprising a compound represented by the following general formula (1).
Figure 2008280255
[In General Formula (1), X represents — (CO) (CH 2 ) 4 —, and R represents a group represented by any of the following formulas (a) to (e). However, some of the plurality of XRs may be hydrogen atoms. ]
Figure 2008280255
JP2007123576A 2007-05-08 2007-05-08 Refractive index-converting material Withdrawn JP2008280255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007123576A JP2008280255A (en) 2007-05-08 2007-05-08 Refractive index-converting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007123576A JP2008280255A (en) 2007-05-08 2007-05-08 Refractive index-converting material

Publications (1)

Publication Number Publication Date
JP2008280255A true JP2008280255A (en) 2008-11-20

Family

ID=40141375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007123576A Withdrawn JP2008280255A (en) 2007-05-08 2007-05-08 Refractive index-converting material

Country Status (1)

Country Link
JP (1) JP2008280255A (en)

Similar Documents

Publication Publication Date Title
EP3279181A1 (en) Mixture of polymerizable compound and method for producing same
CN108864733A (en) A kind of near-infrared carbon rhodamine fluorescent dyes and its synthetic method
JP2009263596A (en) Incompletely condensed oligosilsesquioxane and its production method
JPWO2014157674A1 (en) Compounds containing structural units derived from vinyl ether compounds
JP5803025B2 (en) Photochromic molecule
JP5082452B2 (en) NOVEL ANTHRACENE COMPOUND, PROCESS FOR PRODUCING THE SAME AND USE THEREOF
JP6927975B2 (en) Polymerizable triptycene derivative compound
JP4669720B2 (en) Calix resorcinarene derivative and method for producing the same
JP2008280255A (en) Refractive index-converting material
JP4137669B2 (en) Calix resorcinarene derivative, method for producing the same, refractive index conversion material and light-thermal energy conversion storage material
JP6912143B2 (en) 4-Pentafluorothiophenol compounds and preparation method and preparation method of pentafluorosulfur-substituted benzopyran compound
TW201012795A (en) Compound, method for producing the compound and resist composition containing the compound
Kudo et al. New large refractive-index change materials: synthesis and photochemical valence isomerization of the calixarene derivatives containing norbornadiene moieties
Maity et al. Self-assembly and nonlinear optical properties of a synthetic dipeptide
JP2008222854A (en) Novolak derivative, production method thereof and refractive index converting material
JP2012236777A (en) Indolocarbazole-containing imide compound, and intermediate for synthesizing the same, method for producing them, organic semiconductor composition, and organic solar cell element
CN105837521B (en) Bis- bromo- 1,3,4,6,8,9- hexafluoros azophenlyene of 2,7- and its crystal form and preparation method
JP4593157B2 (en) Refractive index conversion material
CN112552280A (en) High-acid-yield sulfimide photo-acid generator
Arai et al. Photoinduced large increase in the refractive index of N-2-thenoyloxyaryl-4-tert-butylphenoxyacetamide film
JP2007077024A (en) Adamantane derivative and method for producing the same
JP5616117B2 (en) Pattern formation method
JP2003306470A (en) Calixarene derivative and method for producing the same, cyclodextrin derivative and method for producing the same, and reflective index-converting material and heat storage material by photothermal energy conversion
Mames et al. Synthesis and structural characterization of exemplary silyl triptycenes
Nam et al. Synthesis and Conformational Studies of Lower Rim Cyanomethyl Substituted Calix [4] arenes

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100803