JP2008280229A - Manufacturing process of surface-modified silicon dioxide particles and polishing liquid - Google Patents

Manufacturing process of surface-modified silicon dioxide particles and polishing liquid Download PDF

Info

Publication number
JP2008280229A
JP2008280229A JP2007153921A JP2007153921A JP2008280229A JP 2008280229 A JP2008280229 A JP 2008280229A JP 2007153921 A JP2007153921 A JP 2007153921A JP 2007153921 A JP2007153921 A JP 2007153921A JP 2008280229 A JP2008280229 A JP 2008280229A
Authority
JP
Japan
Prior art keywords
silicon dioxide
dioxide particles
polishing
polishing liquid
modified silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007153921A
Other languages
Japanese (ja)
Inventor
Takashi Sakurada
剛史 桜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2007153921A priority Critical patent/JP2008280229A/en
Publication of JP2008280229A publication Critical patent/JP2008280229A/en
Pending legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Silicon Compounds (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polishing liquid which controls the occurrence of dishing and erosion and forms a highly flat polished surface and a method for preparing particles for the polishing liquid. <P>SOLUTION: The manufacturing process of the surface-modified silicon dioxide particles comprises reacting silicon dioxide particles with potassium aluminate in water, to bind aluminate ions to the surface of the silicon dioxide particles. The polishing liquid contains the surface-modified silicon dioxide particles prepared by the process above, an acid, an oxidant and water. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、表面修飾二酸化ケイ素粒子の製造法及び該製造方法で得られる表面修飾二酸化ケイ素粒子を含む研磨液に関する。   The present invention relates to a method for producing surface-modified silicon dioxide particles and a polishing liquid containing the surface-modified silicon dioxide particles obtained by the production method.

近年、半導体デバイスの高集積化、高性能化に伴って新たな微細加工技術が開発されている。化学機械研磨(以下、CMPと記す。)法もその一つであり、LSI製造工程、特に多層配線形成工程における層間絶縁膜の平坦化、金属プラグ形成、埋め込み配線形成において頻繁に利用される技術である(特許文献1参照)。   In recent years, new microfabrication techniques have been developed along with higher integration and higher performance of semiconductor devices. A chemical mechanical polishing (hereinafter referred to as CMP) method is one of them, and a technique frequently used in the planarization of an interlayer insulating film, the formation of a metal plug, and the formation of a buried wiring in an LSI manufacturing process, particularly a multilayer wiring forming process. (See Patent Document 1).

また、最近は半導体デバイスを高性能化するために、配線材料となる導電性物質として銅および銅合金の利用が試みられている。しかし、銅または銅合金は従来のアルミニウム合金配線の形成で頻繁に用いられたドライエッチング法による微細加工が困難である。そこで、あらかじめ溝を形成してある絶縁膜上に銅または銅合金の薄膜を堆積して埋め込み、溝部以外の前記薄膜をCMPにより除去して埋め込み配線を形成する、いわゆるダマシン法が主に採用されている(特許文献2参照)。   Recently, in order to improve the performance of semiconductor devices, attempts have been made to use copper and copper alloys as conductive materials serving as wiring materials. However, it is difficult to finely process copper or a copper alloy by a dry etching method frequently used in the formation of a conventional aluminum alloy wiring. Therefore, a so-called damascene method is mainly employed, in which a thin film of copper or a copper alloy is deposited and embedded on an insulating film in which a groove is formed in advance, and the thin film other than the groove is removed by CMP to form a buried wiring. (See Patent Document 2).

CMPで用いられる研磨液には多くの場合、粒子が含有されており、研磨に寄与している。粒子には二酸化ケイ素、アルミナ、セリア等の無機物粒子やポリスチレン等の有機物粒子が使用されており、二酸化ケイ素が特に多く用いられている。   In many cases, the polishing liquid used in CMP contains particles and contributes to polishing. As particles, inorganic particles such as silicon dioxide, alumina and ceria, and organic particles such as polystyrene are used, and silicon dioxide is particularly often used.

二酸化ケイ素の粒子であるコロイダルシリカやフュームドシリカは水に容易に分散するが、酸性領域では分散安定性が悪くなることがある。そのためコロイダルシリカに塩基性塩化アルミニウムを反応させて分散性を向上させる方法が知られている。(特許文献3参照)。しかし、この方法では塩化物イオンが微量ながらも残存するので、半導体デバイスの配線形成工程での適用は困難である。   Colloidal silica and fumed silica, which are silicon dioxide particles, are easily dispersed in water, but dispersion stability may be deteriorated in an acidic region. Therefore, a method is known in which dispersibility is improved by reacting colloidal silica with basic aluminum chloride. (See Patent Document 3). However, in this method, since a small amount of chloride ions remain, it is difficult to apply in the wiring formation process of the semiconductor device.

CMPによる研磨速度を高める方法として研磨液に酸化金属溶解剤を添加することが有効とされている。粒子によって削り取られた金属酸化物を研磨液に溶解(以下、エッチングと記す。)させてしまうと粒子による削り取りの効果が増すためであると解釈される。酸化金属溶解剤の添加によりCMPによる研磨速度は向上するが、一方、凹部の金属膜表面の酸化層もエッチングされて金属膜表面が露出すると、酸化剤によって金属膜表面がさらに酸化され、これが繰り返されると凹部の金属膜のエッチングが進行してしまう。このため研磨後に埋め込まれた金属配線の表面中央部分が皿のように窪む現象(以下、ディッシングと記す。)が発生し、平坦性が悪化する。   As a method for increasing the polishing rate by CMP, it is effective to add a metal oxide dissolving agent to the polishing liquid. If the metal oxide scraped by the particles is dissolved in the polishing liquid (hereinafter referred to as etching), it is interpreted that the effect of scraping by the particles is increased. Although the polishing rate by CMP is improved by adding a metal oxide solubilizer, on the other hand, when the oxide layer on the metal film surface in the recess is also etched to expose the metal film surface, the metal film surface is further oxidized by the oxidant, and this is repeated. As a result, the etching of the metal film in the recesses proceeds. For this reason, a phenomenon occurs in which the central portion of the surface of the metal wiring embedded after polishing is depressed like a dish (hereinafter referred to as dishing), and the flatness deteriorates.

これを防ぐために、さらに研磨液に保護膜形成剤が添加される。保護膜形成剤は金属膜表面の酸化層上に保護膜を形成し、酸化層の研磨液中への溶解を防止するものである。この保護膜は粒子により容易に削り取ることが可能で、CMPによる研磨速度を低下させないことが望まれる。銅または銅合金のディッシングや研磨中の腐食を抑制し、信頼性の高い半導体デバイスの配線を形成するために、グリシン等のアミノ酢酸又はアミド硫酸からなる酸化金属溶解剤及び保護膜形成剤としてベンゾトリアゾールを含有する研磨液を用いる方法が知られている(特許文献4参照)。   In order to prevent this, a protective film forming agent is further added to the polishing liquid. The protective film forming agent forms a protective film on the oxide layer on the surface of the metal film and prevents dissolution of the oxide layer in the polishing liquid. This protective film can be easily scraped off by particles, and it is desirable not to decrease the polishing rate by CMP. In order to suppress corrosion during dishing or polishing of copper or copper alloy, and to form highly reliable semiconductor device wiring, a metal oxide dissolving agent composed of aminoacetic acid or amidosulfuric acid such as glycine and benzoic acid as a protective film forming agent A method using a polishing liquid containing triazole is known (see Patent Document 4).

銅または銅合金等のダマシン配線形成やタングステン等のプラグ配線形成等の金属埋め込み形成においては、埋め込み部分以外に形成される層間絶縁膜である二酸化ケイ素膜の研磨速度も大きい場合には、層間絶縁膜ごと配線の厚みが薄くなる現象(以下、エロージョンと記す。)が発生し、平坦性が悪化する。その結果、配線抵抗の増加が生じてしまうので、エロージョンは可能な限り小さくすることが要求される。   In metal embedding formation such as damascene wiring formation such as copper or copper alloy and plug wiring formation such as tungsten, interlayer insulation is used when the polishing rate of the silicon dioxide film which is an interlayer insulating film formed other than the embedded portion is high. The phenomenon that the thickness of the wiring becomes thin with the film (hereinafter referred to as erosion) occurs, and the flatness deteriorates. As a result, the wiring resistance increases, so that erosion is required to be as small as possible.

一方、銅或いは銅合金等の配線部用金属の下層には、層間絶縁膜中への銅拡散防止や密着性向上のためのバリア導体層(以下、バリア層という。)として、例えばタンタル、タンタル合金、窒化タンタル等のタンタル化合物等の層が形成される。したがって、銅或いは銅合金を埋め込む配線部以外では、露出したバリア層をCMPにより取り除く必要がある。しかし、これらのバリア層の導体は、銅或いは銅合金に比べ硬度が高いために、銅或いは銅合金用の研磨材料を組み合わせても十分な研磨速度が得られず、かつ平坦性が悪くなる場合が多い。そこで、配線部用金属を研磨する第1工程と、バリア層を研磨する第2工程からなる2段研磨方法が検討されている。   On the other hand, as a barrier conductor layer (hereinafter referred to as a barrier layer) for preventing copper diffusion into the interlayer insulating film and improving adhesion, for example, tantalum or tantalum is provided below the metal for wiring part such as copper or copper alloy. A layer of an alloy, a tantalum compound such as tantalum nitride, or the like is formed. Therefore, it is necessary to remove the exposed barrier layer by CMP except for the wiring portion in which copper or a copper alloy is embedded. However, the conductors of these barrier layers are harder than copper or copper alloy, so even if a polishing material for copper or copper alloy is combined, a sufficient polishing rate cannot be obtained, and the flatness deteriorates. There are many. In view of this, a two-step polishing method comprising a first step of polishing the wiring portion metal and a second step of polishing the barrier layer has been studied.

上記2段研磨方法のうち、バリア層を研磨する第2工程において、平坦化のため、層間絶縁膜、例えば二酸化ケイ素、またLow−k(低誘電率)膜であるオルガノシリケートグラスや全芳香環系Low−k膜の研磨を要求される場合がある。その場合、CMP研磨液組成によっては、ディッシング及びエロージョンが発生し平坦性が悪化する場合があり、配線抵抗が増加する等の問題が生じる。
米国特許第4944836号 特開平2−278822号公報 特許第2677646号 特開平8−83780号公報
Among the above two-stage polishing methods, in the second step of polishing the barrier layer, an interlayer insulating film, for example, silicon dioxide, organosilicate glass which is a low-k (low dielectric constant) film or a wholly aromatic ring is used for planarization. There is a case where polishing of the system Low-k film is required. In that case, depending on the composition of the CMP polishing liquid, dishing and erosion may occur and the flatness may be deteriorated, resulting in problems such as increased wiring resistance.
U.S. Pat. No. 4,944,836 JP-A-2-278822 Japanese Patent No. 2767646 JP-A-8-83780

本発明は、上記問題点に鑑み、ディッシング及びエロージョンを抑制し、被研磨面の平坦性が高い研磨液及び該研磨液に用いられる研磨粒子の製造法を提供するものである。 In view of the above problems, the present invention provides a polishing liquid that suppresses dishing and erosion and has a highly flat surface to be polished, and a method for producing abrasive particles used in the polishing liquid.

本発明は、(1)二酸化ケイ素粒子とアルミン酸カリウムを水中で反応させて二酸化ケイ素粒子の表面にアルミン酸イオンを結合させることを特徴とする表面修飾二酸化ケイ素粒子の製造法に関する。   The present invention relates to (1) a method for producing surface-modified silicon dioxide particles characterized in that silicon dioxide particles and potassium aluminate are reacted in water to bind aluminate ions to the surface of the silicon dioxide particles.

また、本発明は、(2)前記表面修飾二酸化ケイ素粒子のゼータ電位が、反応前の二酸化ケイ素粒子のゼータ電位より負の方向に変位することを特徴とする前記(1)記載の表面修飾二酸化ケイ素粒子の製造法に関する。   Further, the present invention provides (2) the surface-modified silicon dioxide according to (1), wherein the zeta potential of the surface-modified silicon dioxide particles is displaced in a negative direction from the zeta potential of the silicon dioxide particles before the reaction. The present invention relates to a method for producing silicon particles.

また、本発明は、(3)前記(1)又は(2)に記載の方法で得られた表面修飾二酸化ケイ素粒子、酸、酸化剤及び水を含有してなることを特徴とする研磨液に関する。   The present invention also relates to (3) a polishing liquid comprising surface-modified silicon dioxide particles obtained by the method described in (1) or (2) above, an acid, an oxidizing agent, and water. .

また、本発明は、(4)さらに金属の防食剤を含有してなる前記(3)記載の研磨液に関する。   The present invention also relates to (4) the polishing liquid according to (3), further comprising a metal anticorrosive.

また、本発明は、(5)被研磨対象が絶縁膜及び金属膜であることを特徴とする前記(3)又は(4)記載の研磨液に関する。   The present invention also relates to (5) the polishing liquid according to (3) or (4) above, wherein the object to be polished is an insulating film and a metal film.

本発明により、ディッシング及びエロージョンを抑制し、被研磨面の平坦性が高い研磨液及び該研磨液に用いられる粒子の製造法を提供することが可能となる。   According to the present invention, it is possible to provide a polishing liquid that suppresses dishing and erosion and has a highly flat surface to be polished, and a method for producing particles used in the polishing liquid.

本発明の表面修飾二酸化ケイ素粒子の製造法は、二酸化ケイ素粒子とアルミン酸カリウムを水中で反応させて二酸化ケイ素粒子の表面にアルミン酸イオンを結合させることを特徴とする。   The method for producing surface-modified silicon dioxide particles of the present invention is characterized in that silicon dioxide particles and potassium aluminate are reacted in water to bind aluminate ions to the surface of the silicon dioxide particles.

本発明で用いられる二酸化ケイ素粒子は、例えば、フュームドシリカまたはコロイダルシリカなどが挙げられる。フュームドシリカは、四塩化ケイ素などの揮発性ケイ素化合物を原料とし、酸素バーナーによる1000℃以上の高温下で気相加水分解する方法で得ることができる。コロイダルシリカは、例えば、テトラエトキシシランなどのシリコンアルコキシドから加水分解縮合して合成するゾルゲル法、塩化ケイ素などを気相中で酸素および水素と反応させるヒュームド法、珪酸ナトリウムのイオン交換による製造方法などにより得ることができる。更に、二酸化ケイ素粒子としては、表面修飾した二酸化ケイ素粒子、複合粒子化した二酸化ケイ素粒子等も使用することが出来る。表面修飾した二酸化ケイ素粒子とは、アルミニウム、チタン、ジルコニウム等の金属やそれらの酸化物を直接あるいはカップリング剤を介して、二酸化ケイ素粒子表面に吸着および/又は結合させたものや、シランカップリング剤やチタンカップリング剤などを結合させたものを指す。複合粒子化した二酸化ケイ素粒子とは、重合体粒子等の非金属粒子と二酸化ケイ素粒子とを吸着および/又は結合させたものを指す。これらの二酸化ケイ素粒子は、単独で又は2種以上を混合して用いてもよい。これらの二酸化ケイ素粒子の中でも、研磨傷の発生が少なく、安定性が高いという観点でコロイダルシリカが好ましい。また、二酸化ケイ素粒子は、半導体デバイスの研磨に用いる場合は、不純物を含有しないことが好ましく、特に、鉄や銅等の重金属イオン、ナトリウムイオンやハロゲン化物を含有しないことが好ましい。   Examples of the silicon dioxide particles used in the present invention include fumed silica or colloidal silica. Fumed silica can be obtained by vapor phase hydrolysis using a volatile silicon compound such as silicon tetrachloride as a raw material at a high temperature of 1000 ° C. or higher using an oxygen burner. Colloidal silica is, for example, a sol-gel method synthesized by hydrolytic condensation from silicon alkoxides such as tetraethoxysilane, a fumed method in which silicon chloride is reacted with oxygen and hydrogen in the gas phase, a method for producing sodium silicate by ion exchange, etc. Can be obtained. Further, as the silicon dioxide particles, surface-modified silicon dioxide particles, composite silicon dioxide particles, and the like can be used. Surface-modified silicon dioxide particles include those obtained by adsorbing and / or bonding metals such as aluminum, titanium and zirconium and their oxides directly or via a coupling agent to the surface of silicon dioxide particles, and silane couplings. It refers to a combination of an agent or titanium coupling agent. The compounded silicon dioxide particles refer to particles obtained by adsorbing and / or bonding non-metal particles such as polymer particles and silicon dioxide particles. These silicon dioxide particles may be used alone or in admixture of two or more. Among these silicon dioxide particles, colloidal silica is preferable from the viewpoint of less generation of polishing scratches and high stability. Further, when used for polishing semiconductor devices, the silicon dioxide particles preferably do not contain impurities, and in particular, do not contain heavy metal ions such as iron or copper, sodium ions, or halides.

二酸化ケイ素粒子の平均粒径は200nm以下であることが好ましく、5nm〜100nmであることがより好ましい。前記平均粒径が200nmを超える場合は、研磨傷が発生しやすい傾向にある。
本発明の方法では、二酸化ケイ素粒子とアルミン酸カリウムを水中で反応させて二酸化ケイ粒子の表面にアルミン酸イオンを結合させて表面修飾二酸化ケイ素粒子を得る。具体的には、二酸化ケイ素粒子とアルミン酸カリウムとを固体状態で攪拌混合した後、水を添加してアルミン酸カリウムを溶解させさらに撹拌混合する方法、アルミン酸カリウムの水溶液中に二酸化ケイ素粒子を添加し攪拌混合する方法、二酸化ケイ素粒子を水に分散させたものとアルミン酸カリウムの水溶液とを攪拌混合する方法等を挙げることができる。これらの中でも、二酸化ケイ素粒子を水に分散させたものとアルミン酸カリウムの水溶液とを混合し攪拌する方法が好ましい。二酸化ケイ素粒子を水に分散させる場合二酸化ケイ素粒子と水の配合比率に制限はなく、通常、水100gに対し二酸化ケイ素粒子0.1〜50gを分散させる。また、アルミン酸カリウムの水溶液中のアルミン酸カリウムの濃度にも制限はなく、通常、0.001〜20重量%である。
The average particle diameter of the silicon dioxide particles is preferably 200 nm or less, and more preferably 5 nm to 100 nm. When the average particle diameter exceeds 200 nm, polishing flaws tend to occur.
In the method of the present invention, surface-modified silicon dioxide particles are obtained by reacting silicon dioxide particles and potassium aluminate in water to bind aluminate ions to the surface of the silica dioxide particles. Specifically, a method of stirring and mixing silicon dioxide particles and potassium aluminate in a solid state, then adding water to dissolve potassium aluminate and further stirring and mixing, silicon dioxide particles in an aqueous solution of potassium aluminate Examples thereof include a method of adding and stirring and mixing, a method of stirring and mixing a dispersion of silicon dioxide particles in water and an aqueous solution of potassium aluminate. Among these, a method in which silicon dioxide particles dispersed in water and an aqueous solution of potassium aluminate are mixed and stirred is preferable. When the silicon dioxide particles are dispersed in water, the mixing ratio of the silicon dioxide particles and water is not limited, and usually 0.1 to 50 g of silicon dioxide particles are dispersed per 100 g of water. Moreover, there is no restriction | limiting also in the density | concentration of the potassium aluminate in the aqueous solution of potassium aluminate, and it is 0.001 to 20 weight% normally.

二酸化ケイ素粒子に対するアルミン酸カリウムの配合比率は、適宜選択されるが、二酸化ケイ素粒子100gに対してアルミン酸カリウムが0.01g〜5gであることが好ましく、0.01g〜2gであることがより好ましく、0.01g〜0.5gであることがさらに好ましい。前記アルミン酸カリウムの配合量が0.01g未満では平坦性を向上する効果が得られ難くい傾向にあり、5g超では絶縁膜の研磨速度が低下する傾向にある。   The mixing ratio of potassium aluminate to silicon dioxide particles is appropriately selected, but potassium aluminate is preferably 0.01 g to 5 g, more preferably 0.01 g to 2 g based on 100 g of silicon dioxide particles. Preferably, it is 0.01g-0.5g. If the amount of potassium aluminate is less than 0.01 g, the effect of improving flatness tends to be difficult to obtain, and if it exceeds 5 g, the polishing rate of the insulating film tends to decrease.

攪拌方法は、反応系が均一になれば特に制限はく、攪拌羽による攪拌、ローラーにより反応容器自体を回転させることによる攪拌、手や振盪機で反応容器を振り混ぜる攪拌、スターラーと回転子による攪拌等が挙げられる。撹拌時間は反応系が均一になれば特に制限はないが、通常、1〜30分である。撹拌時の温度も特に制限はないが、温度が高い方が二酸化ケイ素粒子の表面にアルミン酸イオンを結合させるのに要する時間が短縮される傾向にあり、20〜60℃が好ましい。   The stirring method is not particularly limited as long as the reaction system becomes uniform, stirring by a stirring blade, stirring by rotating the reaction container itself with a roller, stirring by shaking the reaction container with a hand or a shaker, using a stirrer and a rotor Stirring and the like can be mentioned. The stirring time is not particularly limited as long as the reaction system becomes uniform, but is usually 1 to 30 minutes. The temperature at the time of stirring is not particularly limited, but the higher the temperature, the shorter the time required for bonding aluminate ions to the surface of the silicon dioxide particles, and 20 to 60 ° C is preferable.

また、撹拌混合後は、二酸化ケイ素粒子の表面にアルミン酸イオンを確実に結合させる為に、反応系を静置することが好ましい。静置時間は5〜96時間が好ましく、12〜36時間がより好ましい。静置時の温度は特に制限はないが、20〜60℃が好ましい。   Further, after stirring and mixing, it is preferable that the reaction system is allowed to stand in order to surely bind aluminate ions to the surface of the silicon dioxide particles. The standing time is preferably 5 to 96 hours, more preferably 12 to 36 hours. Although the temperature at the time of stationary does not have a restriction | limiting in particular, 20-60 degreeC is preferable.

二酸化ケイ素粒子の表面へのアルミン酸イオンの結合は、分散中の表面修飾二酸化ケイ素粒子のゼータ電位を測定することで確認できる。二酸化ケイ素粒子の表面にアルミン酸イオンが結合すると、アルミン酸イオンは負電荷を持つので、表面修飾二酸化ケイ素粒子のゼータ電位は、反応前の二酸化ケイ素粒子のゼータ電位より負の方向に変位する。本発明において、ゼータ電位とは、電気泳動の原理によって、分散液の表面修飾二酸化ケイ素粒子に外部から電場をかけた時に、その表面修飾二酸化ケイ素粒子の泳動速度から求められる電位をいう。ゼータ電位の測定装置としては、例えば、「ゼータサイザー3000HSA」(マルバーン社製)が挙げられる。   Binding of aluminate ions to the surface of the silicon dioxide particles can be confirmed by measuring the zeta potential of the surface-modified silicon dioxide particles being dispersed. When aluminate ions are bonded to the surface of the silicon dioxide particles, the aluminate ions have a negative charge, so the zeta potential of the surface-modified silicon dioxide particles is shifted in a negative direction from the zeta potential of the silicon dioxide particles before the reaction. In the present invention, the zeta potential refers to a potential obtained from the migration speed of the surface-modified silicon dioxide particles when an electric field is applied to the surface-modified silicon dioxide particles of the dispersion by the principle of electrophoresis. Examples of the zeta potential measuring device include “Zeta Sizer 3000HSA” (manufactured by Malvern).

本発明の研磨液は、上記本発明の方法で得られた表面修飾二酸化ケイ素粒子、酸、酸化剤及び水を含有することを特徴とする。
表面修飾二酸化ケイ素粒子の配合量は、研磨液中の全成分の総量100gに対して、0.1〜25gとすることが好ましく、0.5〜20gとすることがより好ましく、1〜16gとすることが特に好ましい。前記表面修飾二酸化ケイ素粒子の配合量が0.1g未満では研磨速度が低下する傾向にあり、25gを超えると研磨キズが多く発生する傾向にある。
The polishing liquid of the present invention contains the surface-modified silicon dioxide particles obtained by the method of the present invention, an acid, an oxidizing agent, and water.
The compounding amount of the surface-modified silicon dioxide particles is preferably 0.1 to 25 g, more preferably 0.5 to 20 g, and more preferably 1 to 16 g with respect to 100 g of the total amount of all components in the polishing liquid. It is particularly preferable to do this. If the amount of the surface-modified silicon dioxide particles is less than 0.1 g, the polishing rate tends to decrease, and if it exceeds 25 g, many polishing scratches tend to occur.

本発明における酸は、特に制限はないが、例えば、有機酸、有機酸エステル、有機酸のアンモニウム塩、無機酸、無機酸のアンモニウム塩類などが挙げられる。これらの中では、実用的な研磨速度を維持しつつ、エッチング速度を効果的に抑制できるという点でマロン酸、リンゴ酸、酒石酸、クエン酸、サリチル酸、コハク酸、アジピン酸、乳酸、グルタル酸、グリコール酸、グルコン酸、イタコン酸、リン酸などが好適である。これらは1種類単独で、もしくは2種類以上混合して用いることができる。   The acid in the present invention is not particularly limited, and examples thereof include organic acids, organic acid esters, ammonium salts of organic acids, inorganic acids, and ammonium salts of inorganic acids. Among these, malonic acid, malic acid, tartaric acid, citric acid, salicylic acid, succinic acid, adipic acid, lactic acid, glutaric acid, in that the etching rate can be effectively suppressed while maintaining a practical polishing rate. Glycolic acid, gluconic acid, itaconic acid, phosphoric acid and the like are suitable. These may be used alone or in combination of two or more.

酸の配合量は、研磨液中の全成分の総量100gに対して、0.001〜10gとすることが好ましく、0.005〜5gとすることがより好ましく、0.01〜2gとすることが特に好ましい。前記酸の配合量が0.001g未満では、研磨速度が低下する傾向があり、10gを超えるとエッチングの抑制が困難となり研磨面に荒れが生じる傾向がある。   The blending amount of the acid is preferably 0.001 to 10 g, more preferably 0.005 to 5 g, and more preferably 0.01 to 2 g with respect to 100 g of the total amount of all components in the polishing liquid. Is particularly preferred. If the amount of the acid is less than 0.001 g, the polishing rate tends to decrease, and if it exceeds 10 g, it is difficult to suppress etching and the polished surface tends to be rough.

本発明における酸化剤は、過酸化水素、ペルオキソ硫酸塩、硝酸、過ヨウ素酸塩、次亜塩素酸、オゾン水等が挙げられ、その中でも過酸化水素が特に好ましい。これらは1種類単独で、もしくは2種類以上混合して用いることができる。   Examples of the oxidizing agent in the present invention include hydrogen peroxide, peroxosulfate, nitric acid, periodate, hypochlorous acid, ozone water, etc. Among them, hydrogen peroxide is particularly preferable. These may be used alone or in combination of two or more.

酸化剤の配合量は、研磨液中の全成分の総量100gに対して、0.001〜5gとすることが好ましく、0.005〜3gとすることがより好ましく、0.015〜1.5gとすることが特に好ましい。前記酸化剤の配合量が0.001g未満では、被研磨対象である金属膜の酸化が不十分で研磨速度が低下する傾向があり、5gを超えると研磨面に荒れが生じる傾向がある。   The blending amount of the oxidizing agent is preferably 0.001 to 5 g, more preferably 0.005 to 3 g, and more preferably 0.015 to 1.5 g, with respect to 100 g of the total amount of all components in the polishing liquid. It is particularly preferable that When the blending amount of the oxidizing agent is less than 0.001 g, the oxidation of the metal film to be polished is insufficient and the polishing rate tends to decrease, and when it exceeds 5 g, the polished surface tends to be rough.

なお、水の配合量は前記成分の合計量に対する残部でよく、含有されていれば特に制限はない。   In addition, the compounding quantity of water may be the remainder with respect to the total amount of the said component, and there will be no restriction | limiting in particular if it contains.

本発明の研磨液は、さらに金属の防食剤を含有することができる。金属の防食剤としては、2−メルカプトベンゾチアゾ−ル、1,2,3−トリアゾ−ル、1,2,4−トリアゾ−ル、3−アミノ−1H−1,2,4−トリアゾ−ル、ベンゾトリアゾ−ル、1−ヒドロキシベンゾトリアゾ−ル、1−ジヒドロキシプロピルベンゾトリアゾ−ル、2,3−ジカルボキシプロピルベンゾトリアゾ−ル、4−ヒドロキシベンゾトリアゾ−ル、4−カルボキシル(−1H−)ベンゾトリアゾ−ル、4−カルボキシル(−1H−)ベンゾトリアゾ−ルメチルエステル、4−カルボキシル(−1H−)ベンゾトリアゾ−ルブチルエステル、4−カルボキシル(−1H−)ベンゾトリアゾ−ルオクチルエステル、5−ヘキシルベンゾトリアゾ−ル、[1,2,3−ベンゾトリアゾリル−1−メチル][1,2,4−トリアゾリル−1−メチル][2−エチルヘキシル]アミン、トリルトリアゾ−ル、ナフトトリアゾ−ル、ビス[(1−ベンゾトリアゾリル)メチル]ホスホン酸等が挙げられる。これらのなかでも、ベンゾトリアゾールが好ましい。これらは1種類単独で、もしくは2種類以上混合して用いることができる。   The polishing liquid of the present invention can further contain a metal anticorrosive. As metal anticorrosives, 2-mercaptobenzothiazol, 1,2,3-triazole, 1,2,4-triazole, 3-amino-1H-1,2,4-triazol Benzotriazole, 1-hydroxybenzotriazole, 1-dihydroxypropylbenzotriazole, 2,3-dicarboxypropylbenzotriazole, 4-hydroxybenzotriazole, 4-carboxyl (-1H-) benzotriazole, 4-carboxyl (-1H-) benzotriazole methyl ester, 4-carboxyl (-1H-) benzotriazole butyl ester, 4-carboxyl (-1H-) benzotriazol octyl ester , 5-hexylbenzotriazol, [1,2,3-benzotriazolyl-1-methyl] [1,2,4-triazo -1-methyl] [2-ethylhexyl] amine, Torirutoriazo - le, Nafutotoriazo - le, bis [(1-benzotriazolyl) methyl] phosphonic acid. Of these, benzotriazole is preferred. These may be used alone or in combination of two or more.

金属の防食剤の配合量は、研磨液中の全成分の総量100gに対して0〜10gとすることが好ましく、0.01〜5gとすることがより好ましく、0.05〜2gとすることが特に好ましい。前記金属の防食剤の配合量が10gを超えると研磨速度が低くなる傾向がある。   The compounding amount of the metal anticorrosive is preferably 0 to 10 g, more preferably 0.01 to 5 g, and more preferably 0.05 to 2 g with respect to 100 g of the total amount of all components in the polishing liquid. Is particularly preferred. When the compounding amount of the metal anticorrosive exceeds 10 g, the polishing rate tends to be low.

本発明の研磨液は、被研磨膜が形成された基板の研磨に用いられる。被研磨対象である被研磨膜は絶縁膜及び金属膜であり、これら膜は単層でも積層でも構わない。絶縁膜としては酸化珪素絶縁膜、窒化珪素絶縁膜などが例示され、例えば、SiH又はテトラエトキシシラン(TEOS)をSi源とし、酸素又はオゾンを酸素源としたCVD法により形成されたSiO膜が挙げられる。金属膜としては、銅、アルミニウム、タングステン、タンタル、チタンなどの金属、それらの金属の合金、それら金属または金属合金の酸化物や窒化物などの化合物のいずれか1種類以上が例示される。金属膜はスパッタ法やメッキ法などの公知の方法により成膜される。 The polishing liquid of the present invention is used for polishing a substrate on which a film to be polished is formed. The film to be polished is an insulating film and a metal film, and these films may be a single layer or a stacked layer. Examples of the insulating film include a silicon oxide insulating film and a silicon nitride insulating film. For example, SiO 2 formed by a CVD method using SiH 4 or tetraethoxysilane (TEOS) as a Si source and oxygen or ozone as an oxygen source. A membrane is mentioned. Examples of the metal film include one or more kinds of metals such as copper, aluminum, tungsten, tantalum, and titanium, alloys of these metals, and compounds such as oxides and nitrides of these metals or metal alloys. The metal film is formed by a known method such as sputtering or plating.

被研磨膜の研磨はCMP研磨により行なわれ、具体的には、被研磨膜が形成された基板を研磨布に押しあて加圧し、本発明の研磨液を被研磨膜と研磨布との間に供給しながら、基板の被研磨膜と研磨布とを相対的に動かすことにより被研磨膜を研磨する。使用出来る研磨装置としては、被研磨膜を有する基板を保持するホルダーと、研磨布(パッド)を貼り付け可能で、回転数が変更可能なモータ等を取り付けてある研磨定盤とを有する一般的な研磨装置が使用できる。   Polishing of the film to be polished is performed by CMP polishing. Specifically, the substrate on which the film to be polished is formed is pressed against the polishing cloth and pressurized, and the polishing liquid of the present invention is placed between the film to be polished and the polishing cloth. While being supplied, the film to be polished is polished by relatively moving the film to be polished and the polishing cloth on the substrate. As a polishing apparatus that can be used, there is generally used a holder for holding a substrate having a film to be polished, and a polishing surface plate to which a polishing cloth (pad) can be attached and a motor that can change the number of rotations is attached. A simple polishing apparatus can be used.

研磨定盤上の研磨布としては、一般的な不織布、発泡ポリウレタン、多孔質フッ素樹脂などが使用でき、特に制限がない。また、研磨布には研磨液がたまるような溝加工を施すことが好ましい。研磨条件に制限はないが、定盤の回転速度は半導体基板が飛び出さないように200rpm以下の低回転が好ましく、半導体基板にかける圧力(加工荷重)は研磨後に傷が発生しないように1kg/cm(98kPa)以下が好ましい。 As the polishing cloth on the polishing surface plate, a general nonwoven fabric, foamed polyurethane, porous fluororesin and the like can be used, and there is no particular limitation. Further, it is preferable that the polishing cloth is grooved so that the polishing liquid is accumulated. The polishing conditions are not limited, but the rotation speed of the surface plate is preferably low rotation of 200 rpm or less so that the semiconductor substrate does not jump out, and the pressure (working load) applied to the semiconductor substrate is 1 kg / no. cm 2 (98 kPa) or less is preferable.

基板の被研磨膜を研磨布に押圧した状態で研磨布と被研磨膜とを相対的に動かすには、具体的には基板と研磨定盤との少なくとも一方を動かせば良い。研磨定盤を回転させる他に、ホルダーを回転や揺動させて研磨しても良い。また、研磨定盤を遊星回転させる研磨方法、ベルト状の研磨布を長尺方向の一方向に直線状に動かす研磨方法等が挙げられる。なお、ホルダーは固定、回転、揺動のいずれの状態でも良い。これらの研磨方法は、研磨布と被研磨膜とを相対的に動かすのであれば、被研磨面や研磨装置により適宜選択できる。   In order to move the polishing cloth and the film to be polished relatively with the polishing film on the substrate pressed against the polishing cloth, specifically, at least one of the substrate and the polishing surface plate may be moved. In addition to rotating the polishing surface plate, polishing may be performed by rotating or swinging the holder. Further, a polishing method in which a polishing surface plate is rotated on a planetary surface, a polishing method in which a belt-like polishing cloth is moved linearly in one direction in the longitudinal direction, and the like can be mentioned. The holder may be in any state of being fixed, rotating and swinging. These polishing methods can be appropriately selected depending on the surface to be polished and the polishing apparatus as long as the polishing cloth and the film to be polished are moved relatively.

研磨している間、研磨布と被研磨膜の間には本発明の研磨液をポンプ等で連続的に供給する。この供給量に制限はないが、研磨布の表面が常に研磨液で覆われていることが好ましい。具体的には、研磨布面積1cm当たり、0.005〜0.40ミリリットル供給されることが好ましい。 During polishing, the polishing liquid of the present invention is continuously supplied between the polishing cloth and the film to be polished by a pump or the like. Although there is no restriction | limiting in this supply amount, it is preferable that the surface of polishing cloth is always covered with polishing liquid. Specifically, it is preferable that 0.005 to 0.40 ml is supplied per 1 cm 2 of the polishing pad area.

研磨終了後の半導体基板は、流水中で良く洗浄後、スピンドライヤ等を用いて半導体基板上に付着した水滴を払い落としてから乾燥させることが好ましい。   The semiconductor substrate after the polishing is preferably washed in running water, and then dried after removing water droplets adhering to the semiconductor substrate using a spin dryer or the like.

以下、実施例により本発明を説明する。本発明はこれらの実施例により限定されるものではない。   Hereinafter, the present invention will be described by way of examples. The present invention is not limited to these examples.

(1)ゼータ電位測定
・測定装置:ゼータサイザー3000HSA(マルバーン社製)
・測定方法:試料を注射器で5ml採取し、試料を注射器で装置内の測定セルに注入する。測定温度を20℃、溶媒種を水に設定し測定する。前記測定を5回繰り返し、平均値を測定値とする。
(1) Zeta potential measurement / measurement device: Zetasizer 3000HSA (Malvern)
Measurement method: 5 ml of a sample is taken with a syringe, and the sample is injected into a measurement cell in the apparatus with a syringe. The measurement temperature is set to 20 ° C. and the solvent type is set to water. The measurement is repeated 5 times, and the average value is taken as the measured value.

(2)研磨条件
・銅配線付き基体:ATDF社製854CMPパターン(絶縁膜部膜厚500nm)の溝部以外の銅膜を、銅用研磨液を用いて公知のCMP法により研磨したシリコン基板。
(2) Polishing conditions / Substrate with copper wiring: A silicon substrate obtained by polishing a copper film other than a groove of an 854 CMP pattern (insulating film thickness 500 nm) manufactured by ATDF by a known CMP method using a polishing liquid for copper.

・研磨装置:CMP用研磨機(アプライドマテリアルズ製、MIRRA)
・研磨パッド:スウェード状発泡ポリウレタン樹脂
・定盤回転数:93回/分
・ヘッド回転数:87回/分
・研磨圧力:14kPa
・研磨液の供給量:200ml/分
(3)研磨品の平坦性評価方法
・ディッシング:銅配線付き基体を用いて研磨を行い、触針式段差計で配線金属部幅100μm、絶縁膜部幅100μmが交互に並んだストライプ状パターン部の表面形状を測定し、配線金属部と絶縁膜部の段差量を評価した。
Polishing device: CMP polishing machine (Applied Materials, MIRRA)
・ Polishing pad: Suede-like foamed polyurethane resin ・ Surface plate rotation speed: 93 times / minute ・ Head rotation speed: 87 times / minute ・ Polishing pressure: 14 kPa
・ Supply of polishing liquid: 200 ml / min (3) Method for evaluating flatness of polished product ・ Dishing: Polishing using a substrate with copper wiring, and metal wire width of 100 μm, insulating film width with a stylus step meter The surface shape of the stripe-shaped pattern portion in which 100 μm are alternately arranged was measured, and the step amount between the wiring metal portion and the insulating film portion was evaluated.

・エロージョン:銅配線付き基体を用いて研磨を行い、触針式段差計で配線金属部幅9μm、絶縁膜部幅1μmが交互に並んだストライプ状パターン部の表面形状を測定し、ストライプ状パターン部とパターン部外縁の絶縁膜部の段差量を評価した。 ・ Erosion: Polishing is performed using a substrate with copper wiring, and the surface shape of the stripe pattern part in which the wiring metal part width 9 μm and the insulating film part width 1 μm are alternately arranged is measured with a stylus type step gauge, and the stripe pattern The amount of step difference between the insulating film portion at the outer edge of the pattern portion and the pattern portion was evaluated.

・絶縁膜部膜厚:銅配線付き基体を用いて研磨を行い、光学式膜厚計で配線金属部幅100μm、絶縁膜部幅100μmが交互に並んだストライプ状パターン部の絶縁膜部の膜厚を求めた。 Insulating film part film thickness: The film of the insulating film part of the stripe pattern part in which the wiring metal part width of 100 μm and the insulating film part width of 100 μm are alternately lined up by polishing using a substrate with copper wiring. The thickness was determined.

実施例1
(1)表面修飾コロイダルシリカ(Ia)の製造
平均粒径50nmのコロイダルシリカ1000g及び純水8000gからなる分散液を調整した。前記分散液中のコロイダルシリカのゼータ電位を測定したところ−35mVであった。次いで、アルミン酸カリウム5g及び純水995gからなる水溶液を前記分散液と室温で混合し、攪拌羽で10分間攪拌した。その後1日間、30℃の恒温槽内で静置し、得られた表面修飾コロイダルシリカ(Ia)のゼータ電位を測定したところ−45mVであった。
Example 1
(1) Production of surface-modified colloidal silica (Ia) A dispersion composed of 1000 g of colloidal silica having an average particle diameter of 50 nm and 8000 g of pure water was prepared. The zeta potential of colloidal silica in the dispersion was measured and found to be -35 mV. Next, an aqueous solution composed of 5 g of potassium aluminate and 995 g of pure water was mixed with the dispersion at room temperature and stirred with a stirring blade for 10 minutes. Then, it was left still in a thermostatic bath at 30 ° C. for 1 day, and the zeta potential of the obtained surface-modified colloidal silica (Ia) was measured to be −45 mV.

(2)研磨液(Ib)の調整及び評価
上記により得られた表面修飾コロイダルシリカ(Ia)を含む分散液5000g、リンゴ酸40g、過酸化水素(試薬特級、30%水溶液)100g、ベンゾトリアゾール20g及び純水4840gを攪拌羽で30分間攪拌し、研磨液(Ib)を調整した。
(2) Preparation and Evaluation of Polishing Liquid (Ib) 5000 g of the dispersion containing the surface-modified colloidal silica (Ia) obtained above, 40 g of malic acid, 100 g of hydrogen peroxide (special grade reagent, 30% aqueous solution), 20 g of benzotriazole And 4840 g of pure water was stirred with a stirring blade for 30 minutes to prepare a polishing liquid (Ib).

上記により得られた研磨液(Ib)を用いて、銅配線付き基体を75秒研磨した。ディッシングは10nm、エロージョンは15nm、絶縁膜部膜厚は450nmであった。   The substrate with copper wiring was polished for 75 seconds using the polishing liquid (Ib) obtained above. The dishing was 10 nm, the erosion was 15 nm, and the insulating film thickness was 450 nm.

実施例2
(1)表面修飾コロイダルシリカ(IIa)の製造
アルミン酸カリウム5g及び純水995gからなる水溶液に代えて、アルミン酸カリウム20g及び純水を980gからなる水溶液を用いること以外は実施例1(1)と同様に操作を行ったところ、得られた表面修飾コロイダルシリカ(IIa)のゼータ電位は−61mVであった。
Example 2
(1) Production of surface-modified colloidal silica (IIa) Example 1 (1), except that an aqueous solution comprising 20 g of potassium aluminate and 980 g of pure water was used instead of an aqueous solution comprising 5 g of potassium aluminate and 995 g of pure water. When the same operation was performed, the zeta potential of the obtained surface-modified colloidal silica (IIa) was −61 mV.

(2)研磨液(IIb)の調整及び評価
上記により得られた表面修飾コロイダルシリカ(IIa)を含む分散液5000gを用いること以外は、実施例1(2)と同様に操作して、研磨液(IIb)を調整した。
(2) Preparation and evaluation of polishing liquid (IIb) The polishing liquid was operated in the same manner as in Example 1 (2) except that 5000 g of the dispersion liquid containing the surface-modified colloidal silica (IIa) obtained above was used. (IIb) was adjusted.

上記により得られた研磨液(IIb)を用いて、銅配線付き基体を90秒研磨した。ディッシングは15nm、エロージョンは15nm、絶縁膜部膜厚は450nmであった。   Using the polishing liquid (IIb) obtained above, the substrate with copper wiring was polished for 90 seconds. The dishing was 15 nm, the erosion was 15 nm, and the insulating film thickness was 450 nm.

実施例3
(1)表面修飾コロイダルシリカ(IIIa)の製造
平均粒径50nmのコロイダルシリカ1000g及び純水8000gからなる分散液に代えて平均粒径30nmのコロイダルシリカ1000g及び純水8000gからなる分散液(分散液中のコロイダルシリカのゼータ電位は−30mVであった。)を用いること以外は実施例1(1)と同様に操作を行ったところ、得られた表面修飾コロイダルシリカ(IIIa)のゼータ電位は−48mVであった。
Example 3
(1) Production of surface-modified colloidal silica (IIIa) Instead of a dispersion composed of 1000 g colloidal silica having an average particle diameter of 50 nm and 8000 g pure water, a dispersion comprising 1000 g colloidal silica having an average particle diameter of 30 nm and 8000 g pure water (dispersion) The colloidal silica contained in the resin was operated in the same manner as in Example 1 (1) except that the zeta potential of the surface-modified colloidal silica (IIIa) was − It was 48 mV.

(2)研磨液(IIIb)の調整及び評価
上記により得られた表面修飾コロイダルシリカ(IIIa)を含む分散液5000gを用いること以外は、実施例1(2)と同様に操作して、研磨液(IIIb)を調整した。
(2) Preparation and evaluation of polishing liquid (IIIb) The polishing liquid was operated in the same manner as in Example 1 (2) except that 5000 g of the dispersion liquid containing the surface-modified colloidal silica (IIIa) obtained above was used. (IIIb) was adjusted.

上記により得られた研磨液(IIIb)を用いて、銅配線付き基体を85秒研磨した。ディッシングは15nm、エロージョンは15nm、絶縁膜部膜厚は450nmであった。   The substrate with copper wiring was polished for 85 seconds using the polishing liquid (IIIb) obtained above. The dishing was 15 nm, the erosion was 15 nm, and the insulating film thickness was 450 nm.

比較例1
(1)研磨液の調整及び評価
平均粒径50nmのコロイダルシリカ500g、リンゴ酸40g、過酸化水素(試薬特級、30%水溶液)100g、ベンゾトリアゾール20g及び純水9340gを、攪拌羽で30分間攪拌し、研磨液を調整した。研磨液中のコロイダルシリカのゼータ電位を測定したところ−35mVであった。
Comparative Example 1
(1) Preparation and evaluation of polishing liquid 500 g of colloidal silica having an average particle diameter of 50 nm, 40 g of malic acid, 100 g of hydrogen peroxide (special grade reagent, 30% aqueous solution), 20 g of benzotriazole and 9340 g of pure water are stirred for 30 minutes with a stirring blade. The polishing liquid was adjusted. The zeta potential of the colloidal silica in the polishing liquid was measured and found to be -35 mV.

上記により得られた研磨液を用いて、銅配線付き基体を80秒研磨した。ディッシングは25nm、エロージョンは65nm、絶縁膜部膜厚は450nmであった。   Using the polishing liquid obtained as described above, the substrate with copper wiring was polished for 80 seconds. The dishing was 25 nm, the erosion was 65 nm, and the insulating film thickness was 450 nm.

Claims (5)

二酸化ケイ素粒子とアルミン酸カリウムを水中で反応させて二酸化ケイ素粒子の表面にアルミン酸イオンを結合させることを特徴とする表面修飾二酸化ケイ素粒子の製造法。   A method for producing surface-modified silicon dioxide particles, comprising reacting silicon dioxide particles and potassium aluminate in water to bind aluminate ions to the surface of the silicon dioxide particles. 前記表面修飾二酸化ケイ素粒子のゼータ電位が、反応前の二酸化ケイ素粒子のゼータ電位より負の方向に変位することを特徴とする請求項1記載の表面修飾二酸化ケイ素粒子の製造法。   The method for producing surface-modified silicon dioxide particles according to claim 1, wherein the zeta potential of the surface-modified silicon dioxide particles is displaced in a negative direction relative to the zeta potential of the silicon dioxide particles before the reaction. 請求項1又は2に記載の方法で得られた表面修飾二酸化ケイ素粒子、酸、酸化剤及び水を含有してなることを特徴とする研磨液。   A polishing liquid comprising the surface-modified silicon dioxide particles obtained by the method according to claim 1, an acid, an oxidizing agent, and water. さらに金属の防食剤を含有してなる請求項3記載の研磨液。   The polishing liquid according to claim 3, further comprising a metal anticorrosive. 被研磨対象が絶縁膜及び金属膜であることを特徴とする請求項3又は4記載の研磨液。   The polishing liquid according to claim 3 or 4, wherein the object to be polished is an insulating film and a metal film.
JP2007153921A 2007-04-13 2007-06-11 Manufacturing process of surface-modified silicon dioxide particles and polishing liquid Pending JP2008280229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007153921A JP2008280229A (en) 2007-04-13 2007-06-11 Manufacturing process of surface-modified silicon dioxide particles and polishing liquid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007105848 2007-04-13
JP2007153921A JP2008280229A (en) 2007-04-13 2007-06-11 Manufacturing process of surface-modified silicon dioxide particles and polishing liquid

Publications (1)

Publication Number Publication Date
JP2008280229A true JP2008280229A (en) 2008-11-20

Family

ID=40141356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007153921A Pending JP2008280229A (en) 2007-04-13 2007-06-11 Manufacturing process of surface-modified silicon dioxide particles and polishing liquid

Country Status (1)

Country Link
JP (1) JP2008280229A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011026138A (en) * 2009-07-21 2011-02-10 Nippon Chem Ind Co Ltd Colloidal silica and method for producing the same
JP2011026140A (en) * 2009-07-21 2011-02-10 Nippon Chem Ind Co Ltd Colloidal silica and method for producing the same
JP2011111533A (en) * 2009-11-26 2011-06-09 Asahi Kasei E-Materials Corp Functional coating film
JP2012079717A (en) * 2010-09-30 2012-04-19 Fujimi Inc Composition for polishing and polishing method using the same
JP2012117025A (en) * 2010-12-03 2012-06-21 Nippon Sheet Glass Co Ltd Anti-fog coated article
JP2014094845A (en) * 2012-11-08 2014-05-22 Agc Si-Tech Co Ltd Method for manufacturing scaly silica particles
JP2016522855A (en) * 2013-05-15 2016-08-04 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Chemical mechanical polishing composition comprising one or more polymers selected from the group consisting of N-vinyl homopolymers and N-vinyl copolymers
WO2017170660A1 (en) * 2016-03-30 2017-10-05 株式会社フジミインコーポレーテッド Method for producing cationically modified silica and cationically modified silica dispersion
WO2018061656A1 (en) * 2016-09-30 2018-04-05 株式会社フジミインコーポレーテッド Method for producing cationically modified silica, cationically modified silica dispersion, method for producing polishing composition using cationically modified silica, and polishing composition using cationically modified silica
US10144850B2 (en) 2015-09-25 2018-12-04 Versum Materials Us, Llc Stop-on silicon containing layer additive

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4944836A (en) * 1985-10-28 1990-07-31 International Business Machines Corporation Chem-mech polishing method for producing coplanar metal/insulator films on a substrate
JPH02278822A (en) * 1989-03-07 1990-11-15 Internatl Business Mach Corp <Ibm> Chemical-mechanical polishing of electronic component board
JPH08502016A (en) * 1992-08-31 1996-03-05 エカ ノーベル アクチェボラーグ Silica sol, method for preparing silica sol and use of sol
JPH0883780A (en) * 1994-07-12 1996-03-26 Toshiba Corp Abrasive and polishing method
JP2677646B2 (en) * 1988-12-26 1997-11-17 旭電化工業株式会社 Method for producing colloidal silica
JP2000500171A (en) * 1995-11-09 2000-01-11 ミネソタ マイニング アンド マニュファクチャリング カンパニー Water-dispersible coating having silica particle surface coated with metal oxide
WO2003103033A1 (en) * 2002-06-03 2003-12-11 Hitachi Chemical Co., Ltd. Polishing fluid and method of polishing
WO2005101474A1 (en) * 2004-04-12 2005-10-27 Hitachi Chemical Co., Ltd. Metal polishing liquid and polishing method using it
JP2006147993A (en) * 2004-11-24 2006-06-08 Hitachi Chem Co Ltd Polishing solution for cmp and polishing method
WO2007077886A1 (en) * 2005-12-27 2007-07-12 Hitachi Chemical Co., Ltd. Metal polishing liquid and method for polishing film to be polished

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4944836A (en) * 1985-10-28 1990-07-31 International Business Machines Corporation Chem-mech polishing method for producing coplanar metal/insulator films on a substrate
JP2677646B2 (en) * 1988-12-26 1997-11-17 旭電化工業株式会社 Method for producing colloidal silica
JPH02278822A (en) * 1989-03-07 1990-11-15 Internatl Business Mach Corp <Ibm> Chemical-mechanical polishing of electronic component board
JPH08502016A (en) * 1992-08-31 1996-03-05 エカ ノーベル アクチェボラーグ Silica sol, method for preparing silica sol and use of sol
JPH0883780A (en) * 1994-07-12 1996-03-26 Toshiba Corp Abrasive and polishing method
JP2000500171A (en) * 1995-11-09 2000-01-11 ミネソタ マイニング アンド マニュファクチャリング カンパニー Water-dispersible coating having silica particle surface coated with metal oxide
WO2003103033A1 (en) * 2002-06-03 2003-12-11 Hitachi Chemical Co., Ltd. Polishing fluid and method of polishing
WO2005101474A1 (en) * 2004-04-12 2005-10-27 Hitachi Chemical Co., Ltd. Metal polishing liquid and polishing method using it
JP2006147993A (en) * 2004-11-24 2006-06-08 Hitachi Chem Co Ltd Polishing solution for cmp and polishing method
WO2007077886A1 (en) * 2005-12-27 2007-07-12 Hitachi Chemical Co., Ltd. Metal polishing liquid and method for polishing film to be polished

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011026138A (en) * 2009-07-21 2011-02-10 Nippon Chem Ind Co Ltd Colloidal silica and method for producing the same
JP2011026140A (en) * 2009-07-21 2011-02-10 Nippon Chem Ind Co Ltd Colloidal silica and method for producing the same
JP2011111533A (en) * 2009-11-26 2011-06-09 Asahi Kasei E-Materials Corp Functional coating film
JP2012079717A (en) * 2010-09-30 2012-04-19 Fujimi Inc Composition for polishing and polishing method using the same
JP2012117025A (en) * 2010-12-03 2012-06-21 Nippon Sheet Glass Co Ltd Anti-fog coated article
JP2014094845A (en) * 2012-11-08 2014-05-22 Agc Si-Tech Co Ltd Method for manufacturing scaly silica particles
JP2016522855A (en) * 2013-05-15 2016-08-04 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Chemical mechanical polishing composition comprising one or more polymers selected from the group consisting of N-vinyl homopolymers and N-vinyl copolymers
US10144850B2 (en) 2015-09-25 2018-12-04 Versum Materials Us, Llc Stop-on silicon containing layer additive
WO2017170660A1 (en) * 2016-03-30 2017-10-05 株式会社フジミインコーポレーテッド Method for producing cationically modified silica and cationically modified silica dispersion
JPWO2017170660A1 (en) * 2016-03-30 2019-02-07 株式会社フジミインコーポレーテッド Method for producing cation-modified silica and cation-modified silica dispersion
US11167995B2 (en) 2016-03-30 2021-11-09 Fujimi Incorporated Method for producing cationically modified silica and cationically modified silica dispersion
WO2018061656A1 (en) * 2016-09-30 2018-04-05 株式会社フジミインコーポレーテッド Method for producing cationically modified silica, cationically modified silica dispersion, method for producing polishing composition using cationically modified silica, and polishing composition using cationically modified silica
US10941318B2 (en) 2016-09-30 2021-03-09 Fujimi Incorporated Method for producing cationically modified silica, cationically modified silica dispersion, method for producing polishing composition using cationically modified silica, and polishing composition using cationically modified silica

Similar Documents

Publication Publication Date Title
JP2008280229A (en) Manufacturing process of surface-modified silicon dioxide particles and polishing liquid
EP2071615B1 (en) Aqueous dispersion for chemical mechanical polishing and chemical mechanical polishing method for semiconductor device
JP5472049B2 (en) Abrasives for chemical mechanical polishing
EP2356192B1 (en) Barrier slurry for low-k dielectrics
KR100681216B1 (en) Polishing composition
US8163049B2 (en) Fluoride-modified silica sols for chemical mechanical planarization
WO2007116770A1 (en) Aqueous dispersion for chemical mechanical polishing, chemical mechanical polishing method, and kit for preparing aqueous dispersion for chemical mechanical polishing
TW202007753A (en) Tungsten chemical mechanical polishing for reduced oxide erosion
KR101472617B1 (en) Polishing liquid for metal and method of polishing
EP1193745A1 (en) Polishing composite for use in lsi manufacture and method of manufacturing lsi
EP3891236B1 (en) Composition and method for metal cmp
WO2007029465A1 (en) Polishing agent, method for polishing surface to be polished, and method for manufacturing semiconductor integrated circuit device
JP2003501817A (en) Slurry composition and chemical mechanical polishing method using the same
SG172674A1 (en) Compositions and methods for polishing silicon nitride materials
WO2008040183A1 (en) A chemical-mechanical polishing liquid for polishing low-dielectric material
WO2007000852A1 (en) Abrasive and process for producing semiconductor integrated-circuit unit
JP4400562B2 (en) Polishing liquid for metal and polishing method
JP2018107293A (en) Composition for chemical mechanical polishing, and chemical mechanical polishing method
KR101273705B1 (en) Polishing solution for cmp, and method for polishing substrate using the polishing solution for cmp
TW200821376A (en) Onium-containing CMP compositions and methods of use thereof
CN100468647C (en) Polishing agent and polishing method
JP2010103409A (en) Metal polishing solution and polishing method using same
JP4759779B2 (en) Substrate polishing method
US20220145132A1 (en) Polishing solution, dispersion, polishing solution production method, and polishing method
JP6387634B2 (en) Polishing method and CMP polishing liquid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130521