JP2008278616A - Electrical device and power supply system - Google Patents

Electrical device and power supply system Download PDF

Info

Publication number
JP2008278616A
JP2008278616A JP2007118415A JP2007118415A JP2008278616A JP 2008278616 A JP2008278616 A JP 2008278616A JP 2007118415 A JP2007118415 A JP 2007118415A JP 2007118415 A JP2007118415 A JP 2007118415A JP 2008278616 A JP2008278616 A JP 2008278616A
Authority
JP
Japan
Prior art keywords
power
receiving electrode
power supply
electric
power conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007118415A
Other languages
Japanese (ja)
Inventor
Yasuo Kato
康男 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaiser Technology Inc
Original Assignee
Kaiser Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaiser Technology Inc filed Critical Kaiser Technology Inc
Priority to JP2007118415A priority Critical patent/JP2008278616A/en
Publication of JP2008278616A publication Critical patent/JP2008278616A/en
Pending legal-status Critical Current

Links

Landscapes

  • Near-Field Transmission Systems (AREA)
  • Rectifiers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To supply electric power efficiently even if an electrical device is not close to a power supply system. <P>SOLUTION: A receiving electrode 11 is capacity coupled to a human body 3 carrying a mobile device 1 and receives an action of electric field around the human body induced by a feeding device 2. A power conversion portion 12 generates a DC voltage from the electric field which acts on the receiving electrode 11 to charge a battery 14 via a charging circuit 13. The power conversion portion 12 comprises two voltage generation circuits 100 each composed of a coil 101 and an electrode 102 connected to the receiving electrode 11 in the form of connecting the coils 101 in series. Furthermore, the power conversion unit 121 is provided with a first capacitor 110 for setting the resonance frequency of the two coils 101 connected in series and with a diode 120 and a second capacitor 130, which form a rectifier circuit for converting an AC generated at both ends of the two coils 101 connected in series into a DC. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、モバイル装置等の電気機器に非接触で電力を供給する技術に関するものである。   The present invention relates to a technique for supplying electric power to an electric device such as a mobile device in a contactless manner.

非接触で電力を供給する技術としては、給電装置から被給電装置に交流磁束や電磁波を印加し、被給電装置において印加された交流磁束や電磁波をコイル等を用いて電力に変換して使用する技術が知られている(たとえば、特許文献1、2)。
特開2000-50534号公報 特開2007-18210号公報
As a technology for supplying electric power in a non-contact manner, an AC magnetic flux or electromagnetic wave is applied from the power supply device to the power supplied device, and the AC magnetic flux or electromagnetic wave applied in the power supplied device is converted into electric power using a coil or the like. Techniques are known (for example, Patent Documents 1 and 2).
Japanese Unexamined Patent Publication No. 2000-50534 Japanese Unexamined Patent Publication No. 2007-18210

前記交流磁束や電磁波を用いて給電を行う技術によれば、給電装置と被給電装置を充分に近接させないと、効率よく給電を行えないという問題があった。
そこで、本発明は、給電装置と被給電装置をさほど近接させなくても、非接触で効率よく給電を行えるようにすることを課題とする。
According to the technique of supplying power using the AC magnetic flux or electromagnetic wave, there is a problem that power cannot be supplied efficiently unless the power supply device and the power-supplied device are sufficiently close to each other.
Therefore, an object of the present invention is to enable efficient power supply in a non-contact manner without bringing the power supply device and the power-supplied device so close to each other.

前記課題達成のために、本発明は、電気機器に受電電極と、前記受電電極に接続し、前記受電電極に印加される交流電界を電力に変換する電力変換部とを備えたものである。   In order to achieve the above object, the present invention includes a power receiving electrode in an electrical device, and a power conversion unit that is connected to the power receiving electrode and converts an alternating electric field applied to the power receiving electrode into electric power.

ここで、前記電力変換部は、コイルと、前記受電電極に接続した、前記コイルに当該コイルの軸方向に重ねて配置された電極と、前記コイルの両端間に生じる交流を、前記電力として用いる直流に整流する整流部とを含めて構成する。または、直列接続された複数のコイルと、前記複数のコイルの各々に対応して、各々設けられた、前記受電電極に接続し対応するコイルに当該コイルの軸方向に重ねて配置された、複数の電極と、前記直列接続した複数のコイルの両端間に生じる交流を、前記電力として用いる直流に整流する整流部とより構成するようにしてもよい。   Here, the power conversion unit uses, as the power, a coil, an electrode connected to the power receiving electrode, the electrode arranged to overlap the coil in the axial direction of the coil, and an alternating current generated between both ends of the coil. And a rectifying unit that rectifies to direct current. Alternatively, a plurality of coils connected in series and a plurality of coils respectively provided corresponding to each of the plurality of coils and connected to the corresponding power receiving electrode and arranged to overlap each other in the axial direction of the coil. And a rectifying unit that rectifies alternating current generated between both ends of the plurality of coils connected in series to direct current used as the electric power.

このような電気機器によれば、交流電界の発生空間内に受信電極を位置させるだけで、電力を効率よく発生することができる。したがって、電気機器を直接給電装置に近接させずとも、たとえば、電気機器の受信電極を、給電装置において交流電界を発生させた空間内に位置させるだけで、当該電気機器に効率良く給電を行うことができるようになる。
さて、ここで、以上のような電気機器には、複数の前記電力変換部を、各電力変換部の整流部の出力を直列接続した形態で備えるようにしたり、複数の前記電力変換部を、各電力変換部の整流部の出力を並列接続した形態で備えるようにして、出力電圧や出力電流を、電力変換部を単独で備える場合に比べ増大させるようにしてもよい。
According to such an electric device, it is possible to efficiently generate electric power simply by positioning the receiving electrode in the space where the AC electric field is generated. Therefore, even if the electric device is not directly brought close to the power supply device, for example, the electric device can be efficiently supplied only by positioning the receiving electrode of the electric device in the space where the AC electric field is generated in the power supply device. Will be able to.
Now, in the above electrical equipment, a plurality of the power conversion units are provided in a form in which the outputs of the rectification units of each power conversion unit are connected in series, or a plurality of the power conversion units are provided. The output of the rectifying unit of each power conversion unit may be provided in a form connected in parallel, and the output voltage and the output current may be increased as compared with the case where the power conversion unit is provided alone.

また、以上の電気機器、給電システムにおいて前記給電媒体は人体であってよい。
また、以上の各電気機器を用いた給電システムは、より具体的には、当該電気機器と、当該電気器の前記受信電極が容量結合する、導電性ある給電媒体に容量結合し当該給電媒体に交流電圧信号を印加して当該給電媒体周りに電界を誘起する給電装置とより構成することができる。
Further, in the above electric apparatus and power feeding system, the power feeding medium may be a human body.
In addition, more specifically, the power supply system using each of the above electric devices is capacitively coupled to a conductive power supply medium in which the electric device and the reception electrode of the electric device are capacitively coupled to the power supply medium. A power supply device that applies an AC voltage signal to induce an electric field around the power supply medium can be configured.

以上のように、本発明によれば、給電装置と被給電装置をさほど近接させなくても、非接触で効率よく給電を行うことができる。   As described above, according to the present invention, power can be efficiently supplied in a non-contact manner without bringing the power feeding device and the power-supplied device so close to each other.

以下、本発明の実施形態を説明する。
図1aに、本実施形態に係る給電システムの構成を示す。
図示するように、給電システムは、人間によって携帯されるモバイル装置1と、モバイル装置1に人体3を介して給電を行う給電装置2とを有する。
そして、給電装置2は、交流電圧信号を生成する発振器21、発振器21が生成した交流電圧信号を増幅して給電電極23に印加する増幅器22とを有している。ここで、給電電極23は、給電電極23に接近した人体3と非接触で容量結合して、交流信号を人体3に印加し、人体周りに電界を誘起する。
Embodiments of the present invention will be described below.
FIG. 1 a shows a configuration of a power feeding system according to the present embodiment.
As illustrated, the power supply system includes a mobile device 1 carried by a human and a power supply device 2 that supplies power to the mobile device 1 via a human body 3.
The power feeding device 2 includes an oscillator 21 that generates an AC voltage signal, and an amplifier 22 that amplifies the AC voltage signal generated by the oscillator 21 and applies the AC voltage signal to the power supply electrode 23. Here, the feeding electrode 23 is capacitively coupled to the human body 3 approaching the feeding electrode 23 in a non-contact manner, applies an AC signal to the human body 3, and induces an electric field around the human body.

一方、モバイル装置1は、受電電極11、電力変換部12、充電回路13、バッテリ14、電源回路15、機能部16とを有している。
そして、このようなモバイル装置1の構成において、受電電極11は、モバイル装置1を携帯している人体3と非接触で容量結合し、人体周りの電界の作用を受ける。電力変換部12は、受電電極11に作用した電界から直流電圧を生成し、充電回路13は、電力変換部12が生成した直流電圧による電流を用いてバッテリ14を充電し、電源回路15は、バッテリ14の電力を用いて、機能部16で必要とする各種電圧の電源を生成する。そして、機能部16は、電源回路15が生成した電源を用いて動作し、所定の機能を果たす。
On the other hand, the mobile device 1 includes a power receiving electrode 11, a power conversion unit 12, a charging circuit 13, a battery 14, a power supply circuit 15, and a function unit 16.
In such a configuration of the mobile device 1, the power receiving electrode 11 is capacitively coupled with the human body 3 carrying the mobile device 1 in a non-contact manner, and receives the action of an electric field around the human body. The power converter 12 generates a DC voltage from the electric field applied to the power receiving electrode 11, the charging circuit 13 charges the battery 14 using the current generated by the DC voltage generated by the power converter 12, and the power supply circuit 15 The power of the battery 14 is used to generate power supplies of various voltages required by the function unit 16. The functional unit 16 operates using the power generated by the power circuit 15 and performs a predetermined function.

ここで、本実施形態に係る給電システムによれば、以上のように給電装置2とモバイル装置1が動作するので、たとえば、図1bに示すように、モバイル装置1を携帯したユーザが、改札ゲートなどに設置された給電電極23に手を接近させただけで、給電装置2からモバイル装置1に給電することができるようになる。   Here, according to the power supply system according to the present embodiment, since the power supply device 2 and the mobile device 1 operate as described above, for example, as shown in FIG. It is possible to supply power from the power supply device 2 to the mobile device 1 simply by bringing a hand close to the power supply electrode 23 installed in the device.

さて、図1aに戻り、モバイル装置1の電力変換部12は、受電電極11を各々入力INに接続した複数の電力変換ユニット121の正負(+-)の出力を直列接続した構成を有している。ここで、この電力変換部12の構成を図2aに示す。
図示するように、電力変換ユニット121は、コイル101とコイル101に近接配置した電極102とより構成される電圧生成回路100を二つ備えており、二つの電圧生成回路100のコイル101は直列に接続される。また、二つの電圧生成回路100の電極102は、電力変換ユニット121の入力INを介して受電電極11に接続される。
Now, returning to FIG. 1a, the power conversion unit 12 of the mobile device 1 has a configuration in which positive and negative (+-) outputs of a plurality of power conversion units 121 each having the power receiving electrode 11 connected to the input IN are connected in series. Yes. Here, the configuration of the power converter 12 is shown in FIG.
As shown in the figure, the power conversion unit 121 includes two voltage generation circuits 100 including a coil 101 and an electrode 102 disposed close to the coil 101. The coils 101 of the two voltage generation circuits 100 are connected in series. Connected. The electrodes 102 of the two voltage generation circuits 100 are connected to the power receiving electrode 11 via the input IN of the power conversion unit 121.

また、電力変換ユニット121は、直接接続した二つのコイル101の共振周波数を給電装置2の発振器21の生成する交流電圧信号の周波数に設定するための第1コンデンサ110と、直接接続した二つのコイル101の両端に生じる交流を直流化する整流回路を有し、この整流回路は、ダイオード120と第2コンデンサ130とより構成され、この整流回路の出力が電力変換ユニット121の正負(+-)の出力となる。   In addition, the power conversion unit 121 includes a first capacitor 110 for setting the resonance frequency of the two directly connected coils 101 to the frequency of the AC voltage signal generated by the oscillator 21 of the power feeding device 2 and the two directly connected coils. 101 includes a rectifier circuit that converts the alternating current generated at both ends of the circuit 101 into a direct current. The rectifier circuit includes a diode 120 and a second capacitor 130. Output.

なお、電力変換部12を構成するn個の電力変換ユニット121の直列接続は、i(iは1から n-1の整数)番目の電力変換ユニット121の負-の出力をi+1番目の電力変換ユニット121の正+の出力に接続することにより行われる。そして、1番目の電力変換ユニット121の正+の出力と、n番目の電力変換ユニット121の負-の出力が電力変換部12の出力として充電回路13に接続される。   Note that the n power conversion units 121 constituting the power conversion unit 12 are connected in series with the negative output of the i-th power conversion unit 121 (i is an integer from 1 to n-1). This is done by connecting to the positive + output of the power conversion unit 121. The positive + output of the first power conversion unit 121 and the negative − output of the nth power conversion unit 121 are connected to the charging circuit 13 as the output of the power conversion unit 12.

さて、このような電力変換部12によれば、各電力変換ユニット121の各電圧生成回路100において、電極102に交流電圧が印加されると、電極102に交流が発生し、この交流に追従して、コイル101の軸方向にコイル101を貫く磁束に変化が発生し、この磁束変化に応じてコイル101に誘起電圧が生じる。そして、各電力変換ユニット121において、直列接続された二つのコイル101の両端間の交流電圧が、整流回路によって直流電圧に整流された後に出力される。そして、電力変換部12において、各電力変換ユニット121の出力する直流電圧が加算され、当該電圧による電流が充電回路13に出力され、バッテリ14に充電されることになる。なお、本発明者の実験によれば、給電電極23への5.0Vppの交流電圧信号の印加に対して、電力変換ユニット121一つでDC3.4V、22μAの電力を得ることができた。   Now, according to such a power conversion unit 12, in each voltage generation circuit 100 of each power conversion unit 121, when an AC voltage is applied to the electrode 102, an AC is generated in the electrode 102, and this AC is followed. Thus, a change occurs in the magnetic flux passing through the coil 101 in the axial direction of the coil 101, and an induced voltage is generated in the coil 101 in accordance with the change in the magnetic flux. In each power conversion unit 121, the AC voltage between both ends of the two coils 101 connected in series is output after being rectified to a DC voltage by the rectifier circuit. Then, in the power conversion unit 12, the DC voltage output from each power conversion unit 121 is added, and a current based on the voltage is output to the charging circuit 13 and the battery 14 is charged. According to the experiment of the present inventor, when a 5.0 Vpp AC voltage signal is applied to the feeding electrode 23, DC 3.4 V and 22 μA power can be obtained with one power conversion unit 121.

ここで、図2b1、b2に電圧生成回路100の第1の構成例を示す。
図示するように、電圧生成回路100は、フェライト製のコア1011が中央穴に挿入されたコイル101と、コア1011の上部の端面に固定した銅性の電極102と、電極102をコア1011の端面上に封止する比較的透磁率の大きな封止体1012を有している。ここで、電極102は導線を介して前述のように受電電極11に接続される。また、封止体1012としては、磁性粉末を混合したエポキシ樹脂などを用いることができる。
Here, a first configuration example of the voltage generation circuit 100 is shown in FIGS.
As shown in the figure, the voltage generation circuit 100 includes a coil 101 in which a ferrite core 1011 is inserted in a central hole, a copper electrode 102 fixed to an upper end surface of the core 1011, and an electrode 102 connected to the end surface of the core 1011. A sealing body 1012 having a relatively high magnetic permeability is provided on the top. Here, the electrode 102 is connected to the power receiving electrode 11 through the conducting wire as described above. Further, as the sealing body 1012, an epoxy resin mixed with magnetic powder or the like can be used.

次に、図3に電圧生成回路100の第2の構成例を示す。
本構成例は、プリント基板の導体パターンとして電圧生成回路100を形成したものであり、この構成例では、図3aに層構造を示すように、板状またはフィルム状の基材の31の上に、第1パターン層32、絶縁層33、第2パターン層34を当該順序で積層したプリント基板30を用いる。
Next, FIG. 3 shows a second configuration example of the voltage generation circuit 100.
In this configuration example, a voltage generation circuit 100 is formed as a conductor pattern of a printed circuit board. In this configuration example, as shown in a layer structure in FIG. The printed circuit board 30 in which the first pattern layer 32, the insulating layer 33, and the second pattern layer 34 are stacked in this order is used.

そして、図3bに示すように、第1パターン層32に設けた渦巻き形状を有する導電体パターンによってコイル101を形成し、第2パターン層34に、導電体パターンにより電極102を形成する。また、絶縁層には、コイル101の両端を、第1パターン層上の、コイル101の両端に接続する導線パターンに接続するための接続ビア35を形成する。ここで、電極102の導電体パターンは、図3dにプリント基板30を鉛直方向から見た配置を示すように、コイル101のパターンを覆うように形成する。   Then, as shown in FIG. 3b, the coil 101 is formed by the conductive pattern having a spiral shape provided in the first pattern layer 32, and the electrode 102 is formed by the conductive pattern in the second pattern layer. In addition, connection vias 35 are formed in the insulating layer to connect both ends of the coil 101 to a conductor pattern connected to both ends of the coil 101 on the first pattern layer. Here, the conductor pattern of the electrode 102 is formed so as to cover the pattern of the coil 101 as shown in FIG.

ここで、図3dは、このようにして電圧生成回路100を形成したプリント基板30の外観を表しており、図示するように電圧生成回路100は、単一のプリント基板30に任意数形成することができる。
なお、電圧生成回路100は、以上のようにプリント基板30の導体パターンとして形成するのと同様にして半導体基板上のパターンとして形成することもできる。
以上、本発明の実施形態について説明した。
ところで、以上の実施形態では、電力変換部12を、受電電極11を各々入力INに接続した複数の電力変換ユニット121を直列に接続して構成したが、電力変換部12は、電力変換ユニット121を単独で用いるように構成してもよい。
または、電力変換部12は、図4aに示すように受電電極11を各々入力INに接続した複数の電力変換ユニット121を並列に接続して構成してもよい。なお、この場合には、電力変換部12を構成する複数の電力変換ユニット121の並列接続は、各電力変換ユニット121の正+の出力同士、負-の出力同士をそれぞれ接続することにより行われる。そして、各電力変換ユニット121の正+の出力と、各電力変換ユニット121の負-の出力を電力変換部12の出力として充電回路13に接続することになる。
Here, FIG. 3d shows the appearance of the printed circuit board 30 on which the voltage generation circuit 100 is formed in this manner. As shown in the figure, the voltage generation circuit 100 is formed in an arbitrary number on the single printed circuit board 30. Can do.
Note that the voltage generation circuit 100 can also be formed as a pattern on a semiconductor substrate in the same manner as the conductor pattern of the printed circuit board 30 as described above.
The embodiment of the present invention has been described above.
In the above embodiment, the power conversion unit 12 is configured by connecting a plurality of power conversion units 121 each having the power receiving electrode 11 connected to the input IN in series. However, the power conversion unit 12 includes the power conversion unit 121. May be used alone.
Alternatively, the power conversion unit 12 may be configured by connecting in parallel a plurality of power conversion units 121 each having the power receiving electrode 11 connected to the input IN, as shown in FIG. 4a. In this case, the parallel connection of the plurality of power conversion units 121 constituting the power conversion unit 12 is performed by connecting the positive + outputs and the negative − outputs of each power conversion unit 121 to each other. . Then, the positive + output of each power conversion unit 121 and the negative − output of each power conversion unit 121 are connected to the charging circuit 13 as the output of the power conversion unit 12.

このようにすることにより、電力変換部12から充電回路13に流れる直流電流を大きさを、電力変換ユニット121を単独で用いる場合に比べ増大することができる。
また、以上の実施形態は、モバイル装置1を、充電回路13、バッテリ14、電源回路15を省略し、電力変換部12の出力を直接電源として機能部16を動作させるように構成してもよい。
また、以上の実施形態に係る給電システムは、給電装置2を、モバイル装置1に信号伝送を行う送信装置として構成するようにしてもよい。
すなわち、この場合には、給電システムを、図4bに示すように、人間によって携帯されるモバイル装置1と、モバイル装置1に人体3を介した給電と信号送信を行う送信装置4とを有する。
By doing in this way, the magnitude | size of the direct current which flows into the charging circuit 13 from the power conversion part 12 can be increased compared with the case where the power conversion unit 121 is used independently.
In the above embodiment, the mobile device 1 may be configured to operate the functional unit 16 using the output of the power conversion unit 12 as a direct power source, omitting the charging circuit 13, the battery 14, and the power supply circuit 15. .
In the power supply system according to the above embodiment, the power supply device 2 may be configured as a transmission device that performs signal transmission to the mobile device 1.
That is, in this case, as shown in FIG. 4B, the power supply system includes a mobile device 1 carried by a human and a transmission device 4 that performs power supply and signal transmission via the human body 3 to the mobile device 1.

そして、送信装置4は、モバイル装置1に送信する信号を出力する送信信号処理部41、送信信号処理部41から出力された信号をAM変調する変調器42、AM変調器が変調した信号を増幅して給電電極23に印加する増幅器22とを有している。
一方、モバイル装置1は、受電電極11、電力変換部12、充電回路13、バッテリ14、電源回路15、機能部16、復調器17とを有している。
そして、モバイル装置1において、受電電極11は、モバイル装置1を携帯している人体3と容量結合し、人体周りの電界の作用を受ける。電力変換部12は、受電電極11に作用した電界から直流電圧を生成し、充電回路13は、電力変換部12が生成した直流電圧による電流を用いてバッテリ14を充電し、電源回路15は、バッテリ14の電力を用いて、機能部16で必要とする各種電圧の電源を生成する。復調器17は、電源回路15が生成した電源を用いて動作し、受電電極11の出力より送信装置4が送信した信号を復調する。そして、機能部16は、電源回路15が生成した電源を用いて動作し、復調器17が復調した信号を受信し、受信した信号に対して所定の処理を行う。
Then, the transmission device 4 outputs a signal to be transmitted to the mobile device 1, a transmission signal processing unit 41, a modulator 42 that modulates the signal output from the transmission signal processing unit 41, and amplifies the signal modulated by the AM modulator And an amplifier 22 to be applied to the power supply electrode 23.
On the other hand, the mobile device 1 includes a power receiving electrode 11, a power conversion unit 12, a charging circuit 13, a battery 14, a power supply circuit 15, a function unit 16, and a demodulator 17.
In the mobile device 1, the power receiving electrode 11 is capacitively coupled to the human body 3 carrying the mobile device 1 and is subjected to the action of an electric field around the human body. The power converter 12 generates a DC voltage from the electric field applied to the power receiving electrode 11, the charging circuit 13 charges the battery 14 using the current generated by the DC voltage generated by the power converter 12, and the power supply circuit 15 The power of the battery 14 is used to generate power supplies of various voltages required by the function unit 16. The demodulator 17 operates using the power supply generated by the power supply circuit 15 and demodulates the signal transmitted from the transmission device 4 from the output of the power receiving electrode 11. The functional unit 16 operates using the power supply generated by the power supply circuit 15, receives the signal demodulated by the demodulator 17, and performs predetermined processing on the received signal.

以上、本発明の実施形態について説明した   The embodiment of the present invention has been described above.

本発明の実施形態に係る給電システムの構成を示すブロック図である。It is a block diagram which shows the structure of the electric power feeding system which concerns on embodiment of this invention. 本発明の実施形態に係る給電システムの電力変換ユニットの構成を示す図である。It is a figure which shows the structure of the power conversion unit of the electric power feeding system which concerns on embodiment of this invention. 本発明の実施形態に係る電圧生成回路の他の構成例を示す図である。It is a figure which shows the other structural example of the voltage generation circuit which concerns on embodiment of this invention. 本発明の実施形態に係る給電システムの他の構成例を示すブロック図である。It is a block diagram which shows the other structural example of the electric power feeding system which concerns on embodiment of this invention.

符号の説明Explanation of symbols

1…モバイル装置、2…給電装置、3…人体、4…送信装置、11…受電電極、12…電力変換部、13…充電回路、14…バッテリ、15…電源回路、16…機能部、17…復調器、21…発振器、22…増幅器、23…給電電極、30…プリント基板、41…送信信号処理部、42…変調器、100…電圧生成回路、101…コイル、102…電極、110…第1コンデンサ、120…ダイオード、121…電力変換ユニット、130…第2コンデンサ、1011…コア、1012…封止体。   DESCRIPTION OF SYMBOLS 1 ... Mobile device, 2 ... Power feeding device, 3 ... Human body, 4 ... Transmission device, 11 ... Power receiving electrode, 12 ... Power conversion part, 13 ... Charging circuit, 14 ... Battery, 15 ... Power supply circuit, 16 ... Function part, 17 DESCRIPTION OF SYMBOLS ... Demodulator, 21 ... Oscillator, 22 ... Amplifier, 23 ... Feed electrode, 30 ... Printed circuit board, 41 ... Transmission signal processing part, 42 ... Modulator, 100 ... Voltage generation circuit, 101 ... Coil, 102 ... Electrode, 110 ... 1st capacitor | condenser, 120 ... diode, 121 ... power conversion unit, 130 ... 2nd capacitor | condenser, 1011 ... core, 1012 ... sealing body.

Claims (6)

電気機器であって、
受電電極と、
前記受電電極に接続し、前記受電電極に印加される交流電界を電力に変換する電力変換部とを有し、
前記電力変換部は、
コイルと、
前記受電電極に接続した、前記コイルに当該コイルの軸方向に重ねて配置された電極と、
前記コイルの両端間に生じる交流を、前記電力として用いる直流に整流する整流部とを有することを特徴とする電気機器。
Electrical equipment,
A receiving electrode;
A power converter connected to the power receiving electrode and converting an AC electric field applied to the power receiving electrode into electric power;
The power converter is
Coils,
An electrode connected to the power receiving electrode and arranged to overlap the coil in the axial direction of the coil; and
An electric device comprising: a rectifying unit that rectifies alternating current generated between both ends of the coil into direct current used as the electric power.
電気機器であって、
受電電極と、
前記受電電極に接続し、前記受電電極に印加される交流電界を電力に変換する電力変換部とを有し、
前記電力変換部は、
直列接続された複数のコイルと、
前記複数のコイルの各々に対応して、各々設けられた、前記受電電極に接続し対応するコイルに当該コイルの軸方向に重ねて配置された、複数の電極と、
前記直列接続した複数のコイルの両端間に生じる交流を、前記電力として用いる直流に整流する整流部とを有することを特徴とする電気機器。
Electrical equipment,
A receiving electrode;
A power converter connected to the power receiving electrode and converting an alternating electric field applied to the power receiving electrode into electric power;
The power converter is
A plurality of coils connected in series;
Corresponding to each of the plurality of coils, a plurality of electrodes connected to the power receiving electrode and disposed on the corresponding coil in an axial direction of the coil,
An electric device comprising: a rectifying unit that rectifies alternating current generated between both ends of the plurality of coils connected in series to direct current used as the electric power.
請求項1または2記載の電気機器であって、
複数の前記電力変換部を、各電力変換部の整流部の出力を直列接続した形態で備えたことを特徴とする電気機器。
The electric device according to claim 1 or 2,
An electrical apparatus comprising a plurality of the power conversion units in a form in which outputs of rectification units of the respective power conversion units are connected in series.
請求項1または2記載の電気機器であって、
複数の前記電力変換部を、各電力変換部の整流部の出力を並列接続した形態で備えたことを特徴とする電気機器。
The electric device according to claim 1 or 2,
An electrical apparatus comprising a plurality of the power conversion units in a form in which outputs of rectification units of the respective power conversion units are connected in parallel.
請求項1、2、3または4記載の給電システムであって、
前記給電媒体は人体であることを特徴とする給電システム。
The power supply system according to claim 1, 2, 3 or 4,
The power supply system, wherein the power supply medium is a human body.
請求項1、2、3、4または5記載の電気機器と、当該電気器の前記受信電極が容量結合する、導電性ある給電媒体に容量結合し当該給電媒体に交流電圧信号を印加して当該給電媒体周りに電界を誘起する給電装置とを有することを特徴とする給電システム。   The electric device according to claim 1, and the receiving electrode of the electric device are capacitively coupled to a conductive power supply medium, and an AC voltage signal is applied to the power supply medium. A power feeding system comprising: a power feeding device that induces an electric field around the power feeding medium.
JP2007118415A 2007-04-27 2007-04-27 Electrical device and power supply system Pending JP2008278616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007118415A JP2008278616A (en) 2007-04-27 2007-04-27 Electrical device and power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007118415A JP2008278616A (en) 2007-04-27 2007-04-27 Electrical device and power supply system

Publications (1)

Publication Number Publication Date
JP2008278616A true JP2008278616A (en) 2008-11-13

Family

ID=40055926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007118415A Pending JP2008278616A (en) 2007-04-27 2007-04-27 Electrical device and power supply system

Country Status (1)

Country Link
JP (1) JP2008278616A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009212675A (en) * 2008-03-03 2009-09-17 Kaiser Technology:Kk Alternating current signal detector and receiver
CN102570628A (en) * 2010-12-24 2012-07-11 通用电气公司 Power harvesting systems
US9496743B2 (en) 2010-09-13 2016-11-15 Semiconductor Energy Laboratory Co., Ltd. Power receiving device and wireless power feed system
WO2020246539A1 (en) * 2019-06-04 2020-12-10 学校法人早稲田大学 Batteryless electronic device and transmission system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009212675A (en) * 2008-03-03 2009-09-17 Kaiser Technology:Kk Alternating current signal detector and receiver
US9496743B2 (en) 2010-09-13 2016-11-15 Semiconductor Energy Laboratory Co., Ltd. Power receiving device and wireless power feed system
CN102570628A (en) * 2010-12-24 2012-07-11 通用电气公司 Power harvesting systems
WO2020246539A1 (en) * 2019-06-04 2020-12-10 学校法人早稲田大学 Batteryless electronic device and transmission system

Similar Documents

Publication Publication Date Title
US20220085654A1 (en) Wireless power transfer using multiple coil arrays
US20170256990A1 (en) Receiver Coil Arrangements for Inductive Wireless Power Transfer for Portable Devices
US9923388B2 (en) Wireless power transmitter
US11689056B2 (en) Transmitting assembly for a universal wireless charging device and a method thereof
US7948781B2 (en) Contactless power receiving unit and electronic device employing the same
US20090096412A1 (en) Inductive charging device
JP2019165243A (en) Transmission coil module for wireless power transmitter
US20110210617A1 (en) Power transmission across a substantially planar interface by magnetic induction and geometrically-complimentary magnetic field structures
US9601942B2 (en) Wireless power receiver and wireless power transferring method
JP6768902B2 (en) Power receiving device
CN102386684A (en) Electronic component, power feeding apparatus, power receiving apparatus, and wireless power feeding system
US20130249313A1 (en) Power transmission system and power receiving jacket
US20180062441A1 (en) Segmented and Longitudinal Receiver Coil Arrangements for Wireless Power Transfer
US10804726B2 (en) Wheel coils and center-tapped longitudinal coils for wireless power transfer
JP2008278616A (en) Electrical device and power supply system
CN110323837B (en) Coil unit, wireless power feeding device, wireless power receiving device, and wireless power transmission system
US11239027B2 (en) Bent coil structure for wireless power transfer
JP2005537773A (en) Recharging method and apparatus
CN107112802B (en) Wireless power receiver
US9991749B2 (en) Coil unit, wireless power feeding device, wireless power receiving device, and wireless power transmission device
JP2017005952A (en) Non-contact power transmission device, non-contact power reception device, and non-contact power transmission system
KR101810869B1 (en) Wireless power transmission apparatus, coil for wireless power transmission and system for transmitting/receiving wireless power
JP2019126202A (en) Lc circuit unit, wireless transmission equipment, wireless power reception device, and wireless power transmission system
CN112615440B (en) Wireless power transmission device and wireless power transmission system
JP2011050171A (en) Electromagnetic wave conversion device