JP2008278402A - Multiplexed signal transmission system and multiplexed signal transmitting method - Google Patents

Multiplexed signal transmission system and multiplexed signal transmitting method Download PDF

Info

Publication number
JP2008278402A
JP2008278402A JP2007122211A JP2007122211A JP2008278402A JP 2008278402 A JP2008278402 A JP 2008278402A JP 2007122211 A JP2007122211 A JP 2007122211A JP 2007122211 A JP2007122211 A JP 2007122211A JP 2008278402 A JP2008278402 A JP 2008278402A
Authority
JP
Japan
Prior art keywords
signal
multiplexed
input
frequency
input signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007122211A
Other languages
Japanese (ja)
Other versions
JP4814151B2 (en
Inventor
Yoshimitsu Murahashi
善光 村橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2007122211A priority Critical patent/JP4814151B2/en
Publication of JP2008278402A publication Critical patent/JP2008278402A/en
Application granted granted Critical
Publication of JP4814151B2 publication Critical patent/JP4814151B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multiplexed signal transmission system and a multiplexed signal transmitting method that can separate original signals from a multiplexed signal with simple constitution. <P>SOLUTION: In a multiplexing transmission device 4, a modulation signal generator 42 generates a modulation signal for multiplexing on the basis of a synchronizing signal, multiplexers Ad2 to Ad4 and an adder Ce use the modulation signal for multiplexing to superpose a plurality of input signals including the synchronizing signal dispersedly in different bands, and a digital sigma modulation circuit 1 performs modulation into a quantized signal having a band where quantization noise is small in the frequency bands where the plurality of input signals are superposed and then outputs the quantized signal. In a demultiplexing reception device 5, an LPF 52a demodulates the synchronizing signal from the quantized signal, and multipliers Ae2 to Ae4 and LPFs 52b to 52d frequency-shift the quantized signal and demodulates it into the plurality of input signals by using a modulation signal for demultiplexing. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、複数の信号を多重化して送信する多重化送信装置と、受信した多重化信号を分離させる受信分離装置とからなる多重化信号伝送システムおよび多重化信号伝送方法に関し、特に複数の信号を多重化した量子化信号の送受信を行う多重化信号伝送システムおよび多重化信号伝送方法に関する。   The present invention relates to a multiplexed signal transmission system and a multiplexed signal transmission method including a multiplexing transmission apparatus that multiplexes and transmits a plurality of signals, and a reception separation apparatus that separates received multiplexed signals, and more particularly to a plurality of signals. The present invention relates to a multiplexed signal transmission system and a multiplexed signal transmission method for transmitting and receiving a quantized signal obtained by multiplexing the signal.

複数の信号の伝送するに際し、送信側では、クロック同期する複数の信号を時分割多重して送信し、受信側では、送信側からの多重化信号から元の信号を分離し、得られた元の信号から検出した同期パターンに基づいて元の信号を識別し、元の信号の出力位置を決定する多重伝送方法が提案されている(例えば、特許文献1参照)。   When transmitting a plurality of signals, the transmitting side transmits a plurality of clock-synchronized signals by time division multiplexing, and the receiving side separates the original signal from the multiplexed signal from the transmitting side, and obtains the original A multiplex transmission method has been proposed in which an original signal is identified based on a synchronization pattern detected from the above signal and an output position of the original signal is determined (see, for example, Patent Document 1).

しかしながら、受信側で時分割多重化された多重化信号を分離させるためには、切り替え回路によって切り替えながら1つの信号を取り出す必要があるが、多重化する信号が増えるにつれて、切り替え回路の回路規模が増大し、切り替えのためのオーバーヘッドが生じてしまうという問題点があった。
特開平10−233745号公報
However, in order to separate the multiplexed signal that has been time-division multiplexed on the receiving side, it is necessary to extract one signal while switching by the switching circuit. However, as the number of multiplexed signals increases, the circuit scale of the switching circuit increases. There is a problem that the overhead for switching increases.
JP-A-10-233745

本発明は斯かる問題点に鑑みてなされたものであり、その目的とするところは、受信側で、信号を切り換える切り替え回路を用いることなく、簡単な構成で多重化信号から元の信号を分離させることができる多重化信号伝送システムおよび多重化信号伝送方法を提供する点にある。   The present invention has been made in view of such problems, and an object of the present invention is to separate an original signal from a multiplexed signal with a simple configuration without using a switching circuit for switching signals on the receiving side. It is in the point which provides the multiplexed signal transmission system and multiplexed signal transmission method which can be made to do.

本発明は上記課題を解決すべく、以下に掲げる構成とした。
本発明の多重化信号伝送システムは、複数の入力信号を多重化した多重化信号を送信する多重化送信装置と、受信した前記多重化信号を複数の前記入力信号に分離させる受信分離装置とからなる多重化信号伝送システムであって、前記多重化送信装置は、同期信号となる同期信号用入力信号を含む複数の前記入力信号を受け付け、前記同期信号用入力信号に基づいて、複数の前記入力信号を多重化させるための多重用変調信号を生成する多重用変調信号生成手段と、該多重用変調信号生成手段によって生成された前記多重用変調信号を用いて、前記同期信号用入力信号以外の他の前記入力信号を周波数シフトさせることで、前記同期信号用入力信号を含む複数の前記入力信号を異なる帯域に分散させて重畳させる周波数シフト加算手段と、該周波数シフト加算手段からの出力信号を、複数の前記入力信号が分散して重畳されている周波数帯域に量子化ノイズが小なる帯域がそれぞれ形成される量子化信号に変調することで、当該量子化信号を複数の量子化ノイズが小なる帯域に複数の前記入力信号が分散されて重畳された前記多重化信号として出力するデルタシグマ変調手段とを具備し、前記受信分離装置は、前記多重化信号から前記同期信号用入力信号を復調させる同期信号復調手段と、該同期信号復調手段によって復調された前記同期信号用入力信号に基づいて、前記多重化信号から複数の前記入力信号を分離させるための分離用変調信号を生成する分離用変調信号生成手段と、該分離用変調信号生成手段によって生成された前記分離用変調信号を用いて、周波数シフトされて前記量子化信号に分散されて重畳されている前記同期信号用入力信号以外の他の前記入力信号毎に、前記多重化信号を前記入力信号が元の周波数帯域に戻るようにそれぞれ周波数シフトすることで、周波数シフトした前記多重化信号をそれぞれ出力する周波数シフト手段と、該周波数シフト手段によって周波数シフトさせたそれぞれの前記多重化信号を複数の前記入力信号にそれぞれ復調させる復調手段とを具備することを特徴とする。
In order to solve the above problems, the present invention has the following configuration.
A multiplexed signal transmission system according to the present invention includes a multiplexing transmission device that transmits a multiplexed signal obtained by multiplexing a plurality of input signals, and a reception separation device that separates the received multiplexed signal into a plurality of input signals. In the multiplexed signal transmission system, the multiplexed transmission device receives a plurality of the input signals including a synchronization signal input signal to be a synchronization signal, and a plurality of the inputs based on the synchronization signal input signal. A multiplexing modulation signal generating means for generating a multiplexing modulation signal for multiplexing the signal, and using the multiplexing modulation signal generated by the multiplexing modulation signal generating means, other than the synchronization signal input signal A frequency shift addition means for dispersing and superimposing the plurality of input signals including the synchronization signal input signal in different bands by frequency-shifting the other input signals; and By modulating the output signal from the wave number shift addition means into a quantized signal in which a band in which quantization noise is reduced is formed in a frequency band in which a plurality of the input signals are dispersed and superimposed, Delta-sigma modulation means for outputting a signal as a multiplexed signal in which a plurality of the input signals are dispersed and superimposed in a band in which a plurality of quantization noises are small, and the reception separation device includes the multiplexed signal A synchronization signal demodulating means for demodulating the synchronization signal input signal, and a plurality of the input signals separated from the multiplexed signal based on the synchronization signal input signal demodulated by the synchronization signal demodulating means. A separation modulation signal generating means for generating a separation modulation signal and a frequency shift using the separation modulation signal generated by the separation modulation signal generation means For each of the input signals other than the synchronization signal input signal distributed and superimposed on the quantized signal, the multiplexed signal is frequency shifted so that the input signal returns to the original frequency band. And a frequency shift means for outputting the frequency-shifted multiplexed signals, respectively, and a demodulating means for demodulating the multiplexed signals frequency-shifted by the frequency shift means to a plurality of the input signals, respectively. It is characterized by.

さらに、本発明の多重化信号伝送システムにおいては、前記デルタシグマ変調手段は、量子化ノイズが大なる帯域を間に挟んだ折り返し位置に量子化ノイズが小なる帯域が形成される前記量子化信号に変調させることを特徴とする。   Furthermore, in the multiplexed signal transmission system according to the present invention, the delta-sigma modulation means includes the quantized signal in which a band where the quantization noise is reduced is formed at a turn-back position sandwiching a band where the quantization noise is large. It is characterized by being modulated.

さらに、本発明の多重化信号伝送システムにおいては、前記デルタシグマ変調手段は、出力を複数サンプリング周期だけ遅延させる第1の遅延手段を有し、相互に縦続接続された複数の積分手段と、各積分手段からの出力を加算する加算手段と、当該加算手段からの出力をサンプリング周波数fsに基づいて量子化して前記量子化信号を出力する量子化手段と、入力を前記量子化手段からの出力を前記第1の遅延手段と同数のサンプリング周期だけ遅延させる第2の遅延手段を介して初段の前記積分手段に負帰還させる負帰還ループとを具備することを特徴とする。   Further, in the multiplexed signal transmission system of the present invention, the delta-sigma modulation means includes first delay means for delaying the output by a plurality of sampling periods, and a plurality of integration means cascaded with each other; An adding means for adding the outputs from the integrating means, a quantizing means for quantizing the output from the adding means based on the sampling frequency fs and outputting the quantized signal, and an input from the quantizing means And a negative feedback loop that negatively feeds back to the first integration means via second delay means that delays the same number of sampling cycles as the first delay means.

さらに、本発明の多重化信号伝送システムにおいては、前記受信分離装置の前記同期信号復調手段は、ベースバンドのみを通過させるローパスフィルタであり、前記多重化送信装置は、前記同期信号用入力信号のベースバンドのみを通過させるローパスフィルタを具備し、前記多重用変調信号生成手段は、前記ローパスフィルタを通過した前記同期信号用入力信号に基づいて、複数の前記入力信号を多重化させるための多重用変調信号を生成することを特徴とする。   Furthermore, in the multiplexed signal transmission system of the present invention, the synchronization signal demodulating means of the reception separation device is a low-pass filter that allows only baseband to pass, and the multiplexed transmission device is configured to transmit the synchronization signal input signal. A multiplexing low-pass filter that passes only the baseband, and the multiplexing modulation signal generating means is for multiplexing the plurality of input signals based on the synchronization signal input signal that has passed through the low-pass filter. A modulation signal is generated.

また、本発明の多重化送信装置は、複数の入力信号を多重化した多重化信号を送信する多重化送信装置であって、同期信号となる同期信号用入力信号を含む複数の前記入力信号を受け付け、前記同期信号用入力信号に基づいて、複数の前記入力信号を多重化させるための多重用変調信号を生成する多重用変調信号生成手段と、該多重用変調信号生成手段によって生成された前記多重用変調信号を用いて、前記同期信号用入力信号以外の他の前記入力信号を周波数シフトさせることで、前記同期信号用入力信号を含む複数の前記入力信号を異なる帯域に分散させて重畳させる周波数シフト加算手段と、該周波数シフト加算手段からの出力信号を、複数の前記入力信号が分散して重畳されている周波数帯域に量子化ノイズが小なる帯域がそれぞれ形成される量子化信号に変調することで、当該量子化信号を複数の量子化ノイズが小なる帯域に複数の前記入力信号が分散されて重畳された前記多重化信号として出力するデルタシグマ変調手段とを具備することを特徴とする。   The multiplexed transmission apparatus of the present invention is a multiplexed transmission apparatus that transmits a multiplexed signal obtained by multiplexing a plurality of input signals, and that receives a plurality of the input signals including a synchronization signal input signal to be a synchronization signal. Receiving, based on the synchronization signal input signal, a multiplexing modulation signal generating means for generating a multiplexing modulation signal for multiplexing a plurality of the input signals, and the multiplexing modulation signal generating means generated by the multiplexing modulation signal generating means A plurality of input signals including the synchronization signal input signal are dispersed and superimposed in different bands by frequency-shifting the input signal other than the synchronization signal input signal using a multiplexing modulation signal. The frequency shift adding means and the output signal from the frequency shift adding means have a frequency band in which quantization noise is reduced in a frequency band in which a plurality of the input signals are dispersed and superimposed. Delta-sigma modulation means for modulating the quantized signal to be generated and outputting the quantized signal as the multiplexed signal in which a plurality of the input signals are dispersed and superimposed in a band where a plurality of quantization noises are reduced It is characterized by comprising.

また、本発明の受信分離装置は、複数の入力信号が多重化されている多重化信号を複数の前記入力信号に分離させる受信分離装置であって、同期信号用入力信号と周波数シフトされた入力信号とが多重化された量子化信号である前記多重化信号から前記同期信号用入力信号を復調させる同期信号復調手段と、該同期信号復調手段によって復調された前記同期信号用入力信号に基づいて、前記多重化信号から複数の前記入力信号を分離させるための分離用変調信号を生成する分離用変調信号生成手段と、該分離用変調信号生成手段によって生成された前記分離用変調信号を用いて、周波数シフトされて前記量子化信号に多重化されている前記同期信号用入力信号以外の他の前記入力信号毎に、前記多重化信号を前記入力信号が元の周波数帯域に戻るようにそれぞれ周波数シフトすることで、周波数シフトした前記多重化信号をそれぞれ出力する周波数シフト手段と、該周波数シフト手段によって周波数シフトさせたそれぞれの前記多重化信号を複数の前記入力信号にそれぞれ復調させる復調手段とを具備することを特徴とする。   The reception demultiplexing apparatus of the present invention is a reception demultiplexing apparatus for demultiplexing a multiplexed signal, in which a plurality of input signals are multiplexed, into a plurality of the input signals, the input signal being frequency-shifted from the input signal for the synchronization signal A synchronization signal demodulating means for demodulating the synchronization signal input signal from the multiplexed signal, which is a quantized signal obtained by multiplexing the signal, and the synchronization signal input signal demodulated by the synchronization signal demodulation means Using a separation modulation signal generating means for generating a separation modulation signal for separating the plurality of input signals from the multiplexed signal, and the separation modulation signal generated by the separation modulation signal generation means The multiplexed signal is returned to the original frequency band for each of the input signals other than the synchronization signal input signal that is frequency-shifted and multiplexed to the quantized signal. Frequency-shifting means for outputting the frequency-shifted multiplexed signals, respectively, and demodulating the multiplexed signals frequency-shifted by the frequency-shifting means into a plurality of input signals, respectively. And demodulating means.

また、本発明の多重化信号伝送方法は、複数の入力信号を多重化した多重化信号を送信する多重化送信工程と、受信した前記多重化信号を複数の前記入力信号に分離する受信分離工程とを有する多重化信号伝送方法であって、前記多重化送信工程では、同期信号となる同期信号用入力信号を含む複数の前記入力信号を受け付け、前記同期信号用入力信号に基づいて、複数の前記入力信号を多重化させるための多重用変調信号を生成し、該生成した前記多重用変調信号を用いて、前記同期信号用入力信号以外の他の前記入力信号を周波数シフトさせることで、前記同期信号用入力信号を含む複数の前記入力信号を異なる帯域に分散させて重畳し、複数の前記入力信号を重畳した信号を、複数の前記入力信号が分散して重畳されている周波数帯域に量子化ノイズが小なる帯域がそれぞれ形成される量子化信号に変調することで、当該量子化信号を複数の量子化ノイズが小なる帯域に複数の前記入力信号が分散されて重畳された前記多重化信号として出力し、前記受信分離工程では、前記多重化信号から前記同期信号用入力信号を復調し、該復調した前記同期信号用入力信号に基づいて、前記多重化信号から複数の前記入力信号を分離させるための分離用変調信号を生成し、該生成した前記分離用変調信号を用いて、周波数シフトされて前記量子化信号に分散されて重畳されている前記同期信号用入力信号以外の他の前記入力信号毎に、前記多重化信号を前記入力信号が元の周波数帯域に戻るようにそれぞれ周波数シフトすることで、周波数シフトした前記多重化信号をそれぞれ出力し、該周波数シフトしたそれぞれの前記多重化信号を複数の前記入力信号にそれぞれ復調することを特徴とする。   The multiplexed signal transmission method of the present invention includes a multiplexed transmission step for transmitting a multiplexed signal obtained by multiplexing a plurality of input signals, and a reception separation step for separating the received multiplexed signal into the plurality of input signals. In the multiplexed transmission step, a plurality of input signals including a synchronization signal input signal to be a synchronization signal are received, and a plurality of input signals are received based on the synchronization signal input signal. A multiplexing modulation signal for multiplexing the input signal is generated, and by using the generated modulation signal for multiplexing, the other input signals other than the synchronization signal input signal are frequency-shifted, A frequency band in which a plurality of the input signals including a synchronization signal input signal are dispersed and superimposed in different bands, and a plurality of the input signals are superimposed and a plurality of the input signals are dispersed and superimposed. By modulating a quantized signal in which a band in which quantization noise is small is formed, the multiplexed signal in which a plurality of input signals are dispersed and superimposed in a band in which a plurality of quantization noises are small In the reception separation step, the synchronization signal input signal is demodulated from the multiplexed signal, and a plurality of the input signals are derived from the multiplexed signal based on the demodulated synchronization signal input signal. Other than the synchronization signal input signal that is frequency-shifted and dispersed and superimposed on the quantized signal using the generated separation modulation signal. For each of the input signals, each of the multiplexed signals is frequency-shifted so that the input signal returns to the original frequency band, thereby outputting the frequency-shifted multiplexed signals, respectively. Wherein the demodulating each respective said multiplexed signal obtained by frequency shifting on a plurality of said input signal.

さらに、本発明の多重化信号伝送方法においては、量子化ノイズが大なる帯域を間に挟んだ折り返し位置に量子化ノイズが小なる帯域が形成される前記量子化信号に変調することを特徴とする。   Furthermore, the multiplexed signal transmission method of the present invention is characterized in that modulation is performed to the quantized signal in which a band with a small quantization noise is formed at a folded position sandwiching a band with a large quantization noise therebetween. To do.

さらに、本発明の多重化信号伝送方法においては、前記受信分離工程では、ベースバンドのみを通過させるローパスフィルタを用いて、前記多重化信号から前記同期信号用入力信号を復調し、前記多重化送信工程は、ベースバンドのみを通過させるローパスフィルタを通過した前記同期信号用入力信号に基づいて、複数の前記入力信号を多重化させるための多重用変調信号を生成することを特徴とする。   Furthermore, in the multiplexed signal transmission method of the present invention, in the reception separation step, the synchronization signal input signal is demodulated from the multiplexed signal using a low-pass filter that passes only baseband, and the multiplexed transmission is performed. The step is characterized in that a multiplexing modulation signal for multiplexing a plurality of the input signals is generated based on the synchronization signal input signal that has passed through the low-pass filter that passes only the baseband.

また、本発明の多重化送信方法は、複数の入力信号を多重化した多重化信号を送信する多重化送信方法であって、同期信号となる同期信号用入力信号を含む複数の前記入力信号を受け付け、前記同期信号用入力信号に基づいて、複数の前記入力信号を多重化させるための多重用変調信号を生成し、該生成した前記多重用変調信号を用いて、前記同期信号用入力信号以外の他の前記入力信号を周波数シフトさせることで、前記同期信号用入力信号を含む複数の前記入力信号を異なる帯域に分散させて重畳し、複数の前記入力信号を重畳した信号を、複数の前記入力信号が分散して重畳されている周波数帯域に量子化ノイズが小なる帯域がそれぞれ形成される量子化信号に変調することで、当該量子化信号を複数の量子化ノイズが小なる帯域に複数の前記入力信号が分散されて重畳された前記多重化信号として出力することを特徴とする。   The multiplexed transmission method of the present invention is a multiplexed transmission method for transmitting a multiplexed signal obtained by multiplexing a plurality of input signals, and a plurality of the input signals including a synchronization signal input signal to be a synchronization signal. Receiving, generating a multiplexing modulation signal for multiplexing a plurality of the input signals based on the synchronization signal input signal, and using the generated multiplexing modulation signal, other than the synchronization signal input signal By shifting the frequency of the other input signals, a plurality of the input signals including the synchronization signal input signal are distributed and superimposed in different bands, and a plurality of the input signals are superimposed on each other. By modulating a quantized signal in which a band in which the quantization noise is reduced is formed in the frequency band in which the input signal is dispersed and superimposed, the quantized signal is duplicated in a band in which a plurality of quantization noises are reduced. The input signal and outputs as said multiplexed signal superimposed are distributed in.

また、本発明の受信分離方法は、複数の入力信号が多重化されている多重化信号を複数の前記入力信号に分離する受信分離方法であって、複数の入力信号が多重化されている多重化信号を複数の前記入力信号に分離する受信分離方法であって、同期信号用入力信号を含む複数の前記入力信号が分散して重畳されている周波数帯域に量子化ノイズが小なる帯域がそれぞれ形成されている前記多重化信号を受信し、 前記多重化信号から前記同期信号用入力信号を復調し、該復調した前記同期信号用入力信号に基づいて、前記多重化信号から複数の前記入力信号を分離させるための分離用変調信号を生成し、該生成した前記分離用変調信号を用いて、周波数シフトされて前記多重化信号に分散されて重畳されている前記同期信号用入力信号以外の他の前記入力信号毎に、前記多重化信号を前記入力信号が元の周波数帯域に戻るようにそれぞれ周波数シフトすることで、周波数シフトした前記多重化信号をそれぞれ出力し、
該周波数シフトしたそれぞれの前記多重化信号を複数の前記入力信号にそれぞれ復調することを特徴とする。
The reception demultiplexing method of the present invention is a reception demultiplexing method for demultiplexing a multiplexed signal in which a plurality of input signals are multiplexed into a plurality of the input signals, in which a plurality of input signals are multiplexed. In the reception separation method for separating the quantized signal into the plurality of input signals, each of the bands where the plurality of input signals including the synchronization signal input signal are dispersed and superimposed has a band in which the quantization noise is reduced. Receiving the multiplexed signal formed, demodulating the synchronization signal input signal from the multiplexed signal, and based on the demodulated synchronization signal input signal, a plurality of the input signals from the multiplexed signal Other than the synchronization signal input signal that is frequency-shifted and dispersed and superimposed on the multiplexed signal using the generated separation modulation signal. For each of the input signals, each of the multiplexed signals is frequency-shifted so that the input signal returns to the original frequency band, thereby outputting the frequency-shifted multiplexed signals, respectively.
Each of the multiplexed signals shifted in frequency is demodulated into a plurality of the input signals.

本発明の多重化信号伝送システムおよび多重化信号伝送方法は、多重化送信装置において、同期信号となる同期信号用入力信号を含む複数の入力信号を受け付け、同期信号用入力信号に基づいて、複数の入力信号を多重化させるための多重用変調信号を生成し、生成した多重用変調信号を用いて、同期信号用入力信号以外の他の入力信号を周波数シフトさせることで、同期信号用入力信号を含む複数の入力信号を異なる帯域に分散させて重畳し、複数の入力信号を重畳した信号を、複数の入力信号が分散して重畳されている周波数帯域に量子化ノイズが小なる帯域がそれぞれ形成される量子化信号に変調することで、当該量子化信号を複数の量子化ノイズが小なる帯域に複数の入力信号が分散されて重畳された多重化信号として出力するように構成し、受信分離装置において、多重化信号から同期信号用入力信号を復調し、復調した同期信号用入力信号に基づいて、多重化信号から複数の入力信号を分離させるための分離用変調信号を生成し、生成した分離用変調信号を用いて、周波数シフトされて量子化信号に分散されて重畳されている同期信号用入力信号以外の他の入力信号毎に、多重化信号を入力信号が元の周波数帯域に戻るようにそれぞれ周波数シフトすることで、周波数シフトした多重化信号をそれぞれ出力し、該周波数シフトしたそれぞれの多重化信号を複数の入力信号にそれぞれ復調するように構成することにより、送信側である多重化送信装置と、受信側である受信分離装置との同期が取れていない場合でも、多重化信号に重畳されている同期信号用入力信号を用いて生成した変調信号によって、周波数シフトさせた多重化信号を復調させるだけで、周波数シフトされて多重化信号に重畳されている複数の信号を分離させることができるため、受信側で、信号を切り換える切り替え回路を用いることなく、簡単な構成で多重化信号から元の信号を分離させることができるという効果を奏する。   In the multiplexed signal transmission system and the multiplexed signal transmission method of the present invention, the multiplexed transmission apparatus accepts a plurality of input signals including a synchronization signal input signal to be a synchronization signal, and a plurality of input signals based on the synchronization signal input signal A synchronization signal input signal is generated by generating a modulation signal for multiplexing to multiplex the input signal and shifting the frequency of other input signals other than the synchronization signal input signal using the generated modulation signal for multiplexing. A plurality of input signals including are distributed and superimposed in different bands, and a signal in which a plurality of input signals are superimposed is overlapped with a frequency band in which a plurality of input signals are dispersed and superimposed. By modulating the quantized signal to be formed, the quantized signal is output as a multiplexed signal in which a plurality of input signals are dispersed and superimposed in a band where a plurality of quantization noises are reduced. And configured to demodulate the synchronization signal input signal from the multiplexed signal in the reception separation device, and based on the demodulated synchronization signal input signal, a separation modulation signal for separating a plurality of input signals from the multiplexed signal. The multiplexed signal is generated for each input signal other than the synchronization signal input signal that is frequency-shifted and dispersed and superimposed on the quantized signal using the generated separation modulation signal. By respectively shifting the frequency so as to return to the frequency band, the frequency-shifted multiplexed signals are output, and the frequency-shifted multiplexed signals are respectively demodulated into a plurality of input signals. Even when the multiplexing transmitter on the transmitting side and the receiving / separating device on the receiving side are not synchronized, the synchronization signal input signal superimposed on the multiplexed signal is used. By simply demodulating the frequency-shifted multiplexed signal using the modulation signal generated in this way, it is possible to separate a plurality of signals that have been frequency-shifted and superimposed on the multiplexed signal. There is an effect that the original signal can be separated from the multiplexed signal with a simple configuration without using a switching circuit.

さらに、本発明の多重化信号伝送システムおよび多重化信号伝送方法においては、デルタシグマ変調手段によって、量子化ノイズが大なる帯域を間に挟んだ折り返し位置に量子化ノイズが小なる帯域が形成される量子化信号に変調するように構成することにより、量子化信号に重畳する複数の信号の帯域をそれぞれ確保することができ、量子化信号に複数の信号を重畳させることができるという効果を奏する。   Furthermore, in the multiplexed signal transmission system and the multiplexed signal transmission method of the present invention, a band where the quantization noise is reduced is formed at the folded position sandwiching the band where the quantization noise is increased by the delta-sigma modulation means. It is possible to secure a plurality of signal bands to be superimposed on the quantized signal, and to have a plurality of signals superimposed on the quantized signal. .

さらに、本発明の多重化信号伝送システムおよび多重化信号伝送方法においては、受信分離装置において、ベースバンドのみを通過させるローパスフィルタを用いて多重化信号から同期信号用入力信号を復調するように構成すると共に、多重化送信装置に、同期信号用入力信号のベースバンドのみを通過させるローパスフィルタを設け、ローパスフィルタを通過した同期信号用入力信号に基づいて、複数の入力信号を多重化させるための多重用変調信号を生成するように構成することにより、送信側と受信側とで用いる同期信号を同一な波形とすることができ、周波数シフトされて多重化信号に重畳されている複数の信号を正確に分離させることができるという効果を奏する。   Furthermore, in the multiplexed signal transmission system and the multiplexed signal transmission method of the present invention, the receiving / separating device is configured to demodulate the synchronization signal input signal from the multiplexed signal using a low-pass filter that passes only the baseband. In addition, the multiplexing transmitter is provided with a low-pass filter that passes only the baseband of the synchronization signal input signal, and a plurality of input signals are multiplexed based on the synchronization signal input signal that has passed through the low-pass filter. By configuring so as to generate a modulation signal for multiplexing, the synchronization signal used on the transmission side and the reception side can have the same waveform, and a plurality of signals shifted in frequency and superimposed on the multiplexed signal can be obtained. There is an effect that it can be accurately separated.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明に係る多重化信号伝送システムの実施の形態の構成を示すブロック図である。   FIG. 1 is a block diagram showing a configuration of an embodiment of a multiplexed signal transmission system according to the present invention.

本実施の形態の多重化信号伝送システム3は、図1を参照すると、同期信号として用いる入力信号Xと入力信号X〜Xとを多重化して量子化信号に変調し、変調した量子化信号を送信する多重化送信装置4と、多重化送信装置4から受信した量子化信号を、多重化されている入力信号Xを用いて分離復調させ、出力端子P22から入力信号Xに対応する出力信号Yを、出力端子P23から入力信号Xに対応する出力信号Yを、出力端子P24から入力信号Xに対応する出力信号Yをそれぞれ出力する受信分離装置5とからなる。 Referring to FIG. 1, the multiplexed signal transmission system 3 according to the present embodiment multiplexes an input signal X 1 and input signals X 2 to X 4 used as synchronization signals, modulates them into quantized signals, and modulates the quantized quantum signals. a multiplexing transmission apparatus 4 for transmitting a signal, the quantized signal received from the multiplexing transmission apparatus 4, was separated demodulated using an input signal X 1 that are multiplexed, the input signal X 2 from the output terminal P22 the corresponding output signal Y 2, the output signal Y 3 corresponding to the input signal X 3 from the output terminal P23, the output signal Y 4 corresponding to the input signal X 4 from the output terminal P24 from the reception separator 5 for outputs Become.

次に、図1に示す多重化送信装置4の構成および多重化変調動作について図1乃至図11を参照して詳細に説明する。
図2は、図1に示す多重化送信装置に用いるデルタシグマ変調回路の電気的構成を示すブロック図であり、図3は、図2に示す遅延器の構成例を示すブロック図であり、図4は、図2に示すデルタシグマ変調回路における量子化ノイズ分布の周波数特性を示すグラフであり、図5は、デルタシグマ変調回路をモデル化したブロック図であり、図6は、図5に示すデルタシグマ変調回路から出力される量子化信号の量子化ノイズ分布の周波数特性を説明するための説明図であり、図7は、2サンプリング周期だけ遅延する遅延器を用いた2次のデルタシグマ変調回路をモデル化したブロック図であり、図8は、図7に示す2次のデルタシグマ変調回路から出力される量子化信号の量子化ノイズ分布の周波数特性を示すグラフであり、図9は、図2に示すデルタシグマ変調回路において7個の積分要素を用いた7次のデルタシグマ変調回路の構成を示すブロック図であり、図10は、図9に示す7次のデルタシグマ変調回路から出力される量子化信号の量子化ノイズ分布の周波数特性を示すグラフであり、図11は、図1に示す多重化送信装置における多重化変調動作を説明するための説明図である。
Next, the configuration and multiplexed modulation operation of the multiplexing transmitter 4 shown in FIG. 1 will be described in detail with reference to FIGS.
2 is a block diagram showing an electrical configuration of the delta-sigma modulation circuit used in the multiplexing transmission apparatus shown in FIG. 1, and FIG. 3 is a block diagram showing a configuration example of the delay unit shown in FIG. 4 is a graph showing the frequency characteristics of the quantization noise distribution in the delta-sigma modulation circuit shown in FIG. 2, FIG. 5 is a block diagram modeling the delta-sigma modulation circuit, and FIG. 6 is shown in FIG. FIG. 7 is an explanatory diagram for explaining the frequency characteristic of the quantization noise distribution of the quantized signal output from the delta sigma modulation circuit, and FIG. 7 is a second-order delta sigma modulation using a delay device that is delayed by two sampling periods. FIG. 8 is a block diagram in which a circuit is modeled. FIG. 8 is a graph showing frequency characteristics of a quantization noise distribution of a quantized signal output from the second-order delta-sigma modulation circuit shown in FIG. Figure FIG. 10 is a block diagram showing a configuration of a seventh-order delta-sigma modulation circuit using seven integration elements in the delta-sigma modulation circuit shown in FIG. 10, and FIG. 10 is output from the seventh-order delta-sigma modulation circuit shown in FIG. FIG. 11 is a graph showing frequency characteristics of a quantization noise distribution of a quantized signal, and FIG. 11 is an explanatory diagram for explaining a multiplexing modulation operation in the multiplexing transmission apparatus shown in FIG.

多重化送信装置4は、図1を参照すると、入力された入力信号Xにおけるベースバンド(周波数0付近の帯域)のみを通過させて同期信号を生成するローパスフィルタ(LPF)41と、LPF41によって生成された同期信号を用いて、sin信号によって変調された周波数fs/4のキャリア信号と、cos信号によって変調された周波数fs/4のキャリア信号と、周波数fs/2のキャリア信号とを生成する変調信号生成部42と、sin信号によって変調された周波数fs/4のキャリア信号を用いることで、入力信号Xを位相変調させると共に、周波数fs/4に周波数シフトさせる乗算器Ad2と、cos信号によって変調された周波数fs/4のキャリア信号を用いることで、入力信号Xをsin信号に基づいて位相変調された入力信号Xと直交する成分に位相変調させると共に、周波数fs/4に周波数シフトさせる乗算器Ad3と、周波数fs/2のキャリア信号を用いることで、入力信号Xを周波数fs/2に周波数シフトさせる乗算器Ad4と、入力信号Xと、sin信号に基づいて位相変調され、周波数fs/4に周波数シフトされた入力信号Xと、cos信号に基づいて位相変調され、周波数fs/4に周波数シフトされた入力信号Xと、周波数fs/2に周波数シフトされた入力信号Xとを加算する加算器Ceと、加算器Ceから出力される多ビット信号を量子化信号に変調するデルタシグマ変調回路1と、デルタシグマ変調回路1から出力される量子化信号を送信する伝送部43とを備えている。なお、fsは、サンプリング周波数である。 Referring to FIG. 1, the multiplexing transmission device 4 includes a low pass filter (LPF) 41 that generates only a baseband (band near frequency 0) in the input signal X 1 and generates a synchronization signal. Using the generated synchronization signal, a carrier signal having a frequency fs / 4 modulated by a sin signal, a carrier signal having a frequency fs / 4 modulated by a cos signal, and a carrier signal having a frequency fs / 2 are generated. a modulation signal generating unit 42, by using a carrier signal of a frequency fs / 4 which is modulated by the sin signal, the input signal X 2 causes the phase modulation, the multiplier Ad2 to frequency shift the frequency fs / 4, cos signal by using a carrier signal of a frequency fs / 4 which is modulated by position on the basis of an input signal X 3 to sin signal Modulated with phase-to-modulated in component orthogonal to the input signal X 2, a multiplier Ad3 to frequency shift the frequency fs / 4, by using a carrier signal of a frequency fs / 2, the input signal X 4 a frequency fs / a multiplier Ad4 to frequency shifted to 2, and the input signal X 1, is phase-modulated based on a sin signal, the input signal X 2, which is frequency shifted to a frequency fs / 4, is phase-modulated on the basis of the cos signal, the frequency fs / 4 the input signal X 3 that is frequency shifted to an adder Ce for adding the input signal X 4 that is frequency shifted to a frequency fs / 2, the quantized signal to multi-bit signal output from the adder Ce A delta sigma modulation circuit 1 that modulates the signal to the delta sigma, and a transmission unit 43 that transmits the quantized signal output from the delta sigma modulation circuit 1. Note that fs is a sampling frequency.

多重化送信装置4で用いられるデルタシグマ変調回路1は、図2を参照すると、入力端子P1に入力信号Xとして入力されるアナログ信号又はマルチビットで表されるデジタル信号を、異なるN種類(Nは整数)の代表値で表される量子化信号に変換し、変換した量子化信号を出力信号Yとして出力端子P2から出力するn次(n:1以上の整数)のデルタシグマ変調回路であり、相互に縦続接続されたn個の積分要素Fa1,…,Fanと、各積分要素Fa1〜Fanの前段にそれぞれ介在された乗算器Aa1〜Aanとを有している。各積分要素Fa1〜Fanは、出力をmサンプリング周期(Ts:1/周波数fs)(m:2以上の整数、図1に示す多重化送信装置4では、m=4)だけ遅延する遅延器Da1〜Danと、入力に遅延器Da1〜Danからの出力を加算して出力する加算器Ca1〜Canとを備えてそれぞれ構成されており、従って、前段側からの入力信号にmサンプリング周期だけ以前の出力信号が加算されて、次段側への出力信号が作成される。   Referring to FIG. 2, the delta sigma modulation circuit 1 used in the multiplexing transmission device 4 converts N types (N of different analog signals or multi-bit digital signals input as input signals X to the input terminal P1). Is an n-order (n: integer greater than or equal to 1) delta-sigma modulation circuit that converts the converted quantized signal into a quantized signal represented by a representative value and outputs the converted quantized signal as an output signal Y from the output terminal P2. , Fan connected in cascade with each other, and multipliers Aa1 to Aan interposed in front of each of the integrating elements Fa1 to Fan, respectively. Each of the integration elements Fa1 to Fan delays the output by m sampling periods (Ts: 1 / frequency fs) (m: an integer equal to or larger than 2; m = 4 in the multiplexing transmitter 4 shown in FIG. 1). ~ Dan and adders Ca1 ~ Can that add and output the outputs from the delay units Da1 ~ Dan to the input, respectively. The output signals are added to create an output signal for the next stage.

第1段目の積分要素Fa1には、入力端子P1に入力信号Xとして入力されたアナログ信号又はマルチビットデジタル信号が、加算器Cbと第1段目の乗算器Aa1とを介して入力され、各積分要素Fa1〜Fa(n−1)の出力は、乗算器Aa2〜Aanを介して次段の積分要素Fa2〜Fanにそれぞれ入力され、各積分要素Fa1〜Fanからの出力は、加算器Ccで相互に加算された後、量子化器10に入力される。量子化器10は、入力された信号を異なるN種類(Nは整数)の代表値で表される信号に量子化信号に変換する機能を有するものであり、本実施の形態では、入力された信号を2種類(+1とー1)の代表値で表される信号(1ビット信号)に変換する。具体的には、周波数fs毎に加算器Ccからの出力と予め定める値、例えば0レベルとを比較し、加算器Ccからの出力が予め定める値、例えば0レベル以上であるときには出力端子P2への出力信号Yを「1」とし、予め定める値未満であるときには「−1」とする。また、量子化器10からの出力信号Yは、mサンプリング周期だけ遅延する遅延器Dbおよび乗算器Abを介して、第1段目の乗算器Aa1の前段に介在されている加算器Cbに負帰還されている。   An analog signal or a multi-bit digital signal input as the input signal X to the input terminal P1 is input to the first-stage integration element Fa1 via the adder Cb and the first-stage multiplier Aa1. The outputs of the integration elements Fa1 to Fa (n−1) are respectively input to the integration elements Fa2 to Fan of the next stage via the multipliers Aa2 to Aan, and the outputs from the integration elements Fa1 to Fan are added to the adder Cc. Are added to each other and input to the quantizer 10. The quantizer 10 has a function of converting an input signal into a quantized signal into a signal represented by different representative values of N types (N is an integer). In this embodiment, the quantizer 10 The signal is converted into a signal (1-bit signal) represented by two types (+1 and −1) of representative values. Specifically, for each frequency fs, the output from the adder Cc is compared with a predetermined value, for example, 0 level. When the output from the adder Cc is a predetermined value, for example, 0 level or more, the output terminal P2 is connected. The output signal Y is “1”, and is “−1” when it is less than a predetermined value. Further, the output signal Y from the quantizer 10 is negatively fed to the adder Cb interposed in the preceding stage of the first-stage multiplier Aa1 through the delayer Db and the multiplier Ab delayed by m sampling periods. It has been returned.

なお、積分要素Fa1,…,Fanの遅延器Da1〜Danおよび負帰還ループの遅延器Dbとしては、例えば、図3に示すように、出力を1サンプリング周期だけ遅延する遅延器Dをm個縦続接続したものを用いることができる。   As the delay elements Da1 to Dan of the integration elements Fa1,..., Fan and the delay element Db of the negative feedback loop, for example, as shown in FIG. 3, m delay elements D that delay the output by one sampling period are cascaded. A connected one can be used.

積分要素Fa1,…,Fanの遅延器Da1〜Danおよび負帰還ループの遅延器Dbの代わりに、出力を1サンプリング周期だけ遅延する遅延器Dを用いた従来のデルタシグマ変調回路は、量子化ノイズを高周波帯域側にシフトするデルタシグマ変調回路に特有のノイズシェーピング効果を有することになるが、本実施の形態の多重化信号伝送システムに用いるデルタシグマ変調回路1は、図4(a)〜(c)に示すように、周波数分布上で量子化ノイズが小なる帯域が複数箇所形成される。図4(a)は、2個の遅延器Dを縦続接続した、2サンプリング周期だけ遅延する遅延器Da1〜Danおよび遅延器Dbを用いた場合の量子化ノイズ分布の周波数特性が示されており、周波数fs/2付近に新たな量子化ノイズが小なる帯域が形成され、周波数fs/4で折り返した位置に、2箇所の量子化ノイズが小なる帯域が形成される。図4(b)は、3個の遅延器Dを縦続接続した、3サンプリング周期だけ遅延する遅延器Da1〜Danおよび遅延器Dbを用いた場合の量子化ノイズ分布の周波数特性が示されており、周波数fs/3付近に新たな量子化ノイズが小なる帯域が形成され、周波数fs/6で折り返した位置に、2箇所の量子化ノイズが小なる帯域が形成される。図4(c)は、4個の遅延器Dを縦続接続した、4サンプリング周期だけ遅延する遅延器Da1〜Danおよび遅延器Dbを用いた場合の量子化ノイズ分布の周波数特性が示されており、周波数fs/4付近と、周波数fs/2付近に新たな量子化ノイズが小なる帯域が形成され、周波数fs/8と周波数fs・3/8とで折り返したそれぞれの位置に、3箇所の量子化ノイズが小なる帯域が形成される。このようにm=2p個の遅延器Dを縦続接続した、2pサンプリング周期だけ遅延する遅延器Da1〜Danおよび遅延器Db、もしくは、m=2p+1個の遅延器Dを縦続接続した、2p+1サンプリング周期だけ遅延する遅延器Da1〜Danおよび遅延器Dbを用いることで、周波数分布上で量子化ノイズが小なる帯域が、量子化ノイズが大なる帯域を間に挟んだ折り返し位置、すなわちfs*k/m(mは自然数、kは0≦k<(m+1)/2の範囲にある整数)にある周波数帯域にp+1箇所形成されることになる。   Instead of the delay elements Da1 to Dan of the integration elements Fa1,..., Fan and the delay element Db of the negative feedback loop, the conventional delta-sigma modulation circuit using the delay element D that delays the output by one sampling period has a quantization noise. The delta sigma modulation circuit 1 used in the multiplexed signal transmission system of the present embodiment has the noise shaping effect peculiar to the delta sigma modulation circuit that shifts the signal to the high frequency band side. As shown in c), a plurality of bands where the quantization noise is reduced on the frequency distribution are formed. FIG. 4 (a) shows the frequency characteristics of the quantization noise distribution when two delay devices D are connected in cascade and delay devices Da1 to Dan and delay device Db that are delayed by two sampling periods are used. A band in which new quantization noise is reduced is formed in the vicinity of the frequency fs / 2, and two bands in which the quantization noise is reduced are formed at a position folded at the frequency fs / 4. FIG. 4B shows the frequency characteristics of the quantization noise distribution in the case of using the delay units Da1 to Dan and the delay unit Db that are delayed by 3 sampling periods in which three delay units D are connected in cascade. A band in which new quantization noise is reduced is formed in the vicinity of the frequency fs / 3, and a band in which two quantization noises are reduced is formed at a position folded at the frequency fs / 6. FIG. 4 (c) shows the frequency characteristics of the quantization noise distribution when four delay devices D are connected in cascade and the delay devices Da1 to Dan and the delay device Db that are delayed by four sampling periods are used. In the vicinity of the frequency fs / 4 and in the vicinity of the frequency fs / 2, a band in which new quantization noise is reduced is formed, and at each position where the frequency fs / 8 and the frequency fs · 3/8 are turned back, A band in which the quantization noise is small is formed. In this way, m = 2p delay devices D are connected in cascade, delay devices Da1 to Dan and delay device Db that are delayed by 2p sampling cycles, or m = 2p + 1 delay devices D are connected in cascade, 2p + 1 sampling cycles By using the delay devices Da1 to Dan and the delay device Db that are delayed by a certain amount, the band where the quantization noise is small on the frequency distribution is the folding position between which the band where the quantization noise is large, that is, fs * k / p + 1 locations are formed in a frequency band in which m is a natural number and k is an integer in the range of 0 ≦ k <(m + 1) / 2.

次に、デルタシグマ変調回路をモデル化した図5に示すブロック図を用いて、本実施の形態の多重化信号伝送システムに用いるデルタシグマ変調回路1における量子化ノイズ分布の周波数特性を検証する。なお、図5において、Gは、積分要素Fa1,…,Fanに、Hは、遅延器Dbにそれぞれ対応すると共に、量子化器10には、各帯域において均一なノイズNが加わるものする。   Next, the frequency characteristic of the quantization noise distribution in the delta sigma modulation circuit 1 used in the multiplexed signal transmission system of this embodiment is verified using the block diagram shown in FIG. 5 that models the delta sigma modulation circuit. In FIG. 5, G corresponds to the integration elements Fa1,..., Fan, H corresponds to the delay device Db, and the quantizer 10 is added with a uniform noise N in each band.

図5に示すモデルにおいて、ノイズNの伝達関数Qは、Q=1/(1+GH)で、入力信号xの伝達関数Pは、P=G/(1+GH)でそれぞれ表すことができ、P=1の場合には、G=1/Q、H=1−Qとなる。   In the model shown in FIG. 5, the transfer function Q of the noise N can be expressed as Q = 1 / (1 + GH), and the transfer function P of the input signal x can be expressed as P = G / (1 + GH), where P = 1. In this case, G = 1 / Q and H = 1-Q.

ここで、1次のデルタシグマ変調回路において、図6(a)に示すような高周波帯域側にシフトする量子化ノイズ分布の周波数特性は、Q=(1−Z−1)で表すことができ、G=1/(1−Z−1)、H=Z−1となり、積分要素Fa1,…,Fanの遅延器Da1〜Danおよび負帰還ループの遅延器Dbの代わりに、出力を1サンプリング周期だけ遅延する遅延器Dを用いた従来のデルタシグマ変調回路に相当する。 Here, in the primary delta-sigma modulation circuit, the frequency characteristic of the quantization noise distribution shifted to the high frequency band side as shown in FIG. 6A can be expressed by Q = (1-Z −1 ). , G = 1 / (1-Z −1 ), H = Z −1 , and instead of the delay elements Da1 to Dan of the integration elements Fa1,... This corresponds to a conventional delta-sigma modulation circuit using a delay device D that is delayed by a delay time.

これに対し、1次のデルタシグマ変調回路において、図6(b)に示すような低周波数帯域と周波数fs/2付近の帯域とに量子化ノイズが小なる帯域が形成される量子化ノイズ分布の周波数特性は、Q=(1−Z−1)(1+Z−1)で表すことができ、G=1/(1−Z−2)、H=Z−2となり、2個の遅延器Dを縦続接続した、2サンプリング周期だけ遅延する遅延器Da1〜Danおよび遅延器Dbを用いた1次のデルタシグマ変調回路1に相当する。 On the other hand, in the first-order delta-sigma modulation circuit, a quantization noise distribution in which a band in which the quantization noise is small is formed in a low frequency band and a band in the vicinity of the frequency fs / 2 as shown in FIG. Can be expressed by Q = (1-Z −1 ) (1 + Z −1 ), G = 1 / (1-Z −2 ), H = Z −2 , and two delay devices D Corresponding to a first-order delta-sigma modulation circuit 1 using delay devices Da1 to Dan and a delay device Db that are delayed by two sampling periods.

また、2次のデルタシグマ変調回路において、図6(c)に示すような低周波数帯域と周波数fs/2付近の帯域とに量子化ノイズが小なる帯域が形成される量子化ノイズ分布の周波数特性は、Q=(1−Z−1(1+Z−1で表すことができ、G=1/(1−Z−2、H=1−(1−Z−2となり、2個の遅延器Dを縦続接続した、2サンプリング周期だけ遅延する遅延器Da1〜Danおよび遅延器Dbを用いた2次のデルタシグマ変調回路1に相当する。 In the second-order delta-sigma modulation circuit, the frequency of the quantization noise distribution in which a band in which the quantization noise is small is formed between the low frequency band and the band near the frequency fs / 2 as shown in FIG. The characteristic can be represented by Q = (1-Z- 1 ) 2 (1 + Z- 1 ) 2 , G = 1 / (1-Z- 2 ) 2 , H = 1- (1-Z- 2 ) 2. This corresponds to a second-order delta-sigma modulation circuit 1 using two delay devices D connected in cascade and using delay devices Da1 to Dan and a delay device Db that are delayed by two sampling periods.

2次のデルタシグマ変調回路1は、図7に示すようにモデル化することができ、図7に示すモデルを用い、サンプリング周波数fs=2.8MHzでシミュレートした量子化ノイズ分布の周波数特性は、図8に示すように、低周波数(0)帯域と周波数fs/2=1.4MHz付近の帯域とに量子化ノイズが小なる帯域が形成されることが実証された。   The second-order delta-sigma modulation circuit 1 can be modeled as shown in FIG. 7, and the frequency characteristic of the quantization noise distribution simulated using the model shown in FIG. 7 and the sampling frequency fs = 2.8 MHz is As shown in FIG. 8, it was proved that a band in which the quantization noise is small is formed in the low frequency (0) band and the band in the vicinity of the frequency fs / 2 = 1.4 MHz.

デルタシグマ変調回路1において7個の積分要素Fa1〜Fa7を用いた7次のデルタシグマ変調回路2は、図9を参照すると、相互に縦続接続された7個の積分要素Fa1,…,Fa7と、各積分要素Fa1〜Fa7の前段にそれぞれ介在された乗算器Aa1〜Aa7とを有している。各積分要素Fa1〜Fa7は、出力をmサンプリング周期(Ts:1/周波数fs)(m:2以上の整数)だけ遅延する遅延器と、当該遅延器からの出力を入力に加算して出力する加算器とを備えてそれぞれ構成されており、従って、前段側からの入力信号にmサンプリング周期だけ以前の出力信号が加算されて、次段側への出力信号が作成される。   Referring to FIG. 9, the seventh-order delta sigma modulation circuit 2 using the seven integration elements Fa1 to Fa7 in the delta sigma modulation circuit 1 includes seven integration elements Fa1,. , And multipliers Aa1 to Aa7 respectively interposed in front stages of the integration elements Fa1 to Fa7. Each of the integration elements Fa1 to Fa7 adds a delay device that delays the output by m sampling periods (Ts: 1 / frequency fs) (m: an integer equal to or greater than 2) and an output from the delay device to the input and outputs the result. Therefore, the output signal from the previous stage is added to the input signal from the previous stage by the m sampling period, and the output signal to the next stage is created.

第1段目の積分要素Fa1には、入力端子P1に入力信号Xとして入力されたアナログ信号又はマルチビットデジタル信号が、加算器Cbと第1段目の乗算器Aa1とを介して、第1段目の積分要素Fa1に入力され、各積分要素Fa1〜Fa6の出力は、乗算器Aa2〜Aa7を介して次段の積分要素Fa2〜Fa7にそれぞれ入力され、各積分要素Fa1〜Fa7からの出力は、加算器Ccで相互に加算された後、量子化器10に入力される。量子化器10は、周波数fs毎に加算器Ccからの出力と予め定める値、例えば0レベルとを比較し、加算器Ccからの出力が予め定める値、例えば0レベル以上であるときには出力端子P2への出力信号Yを「1」とし、予め定める値未満であるときには「−1」とする。また、量子化器10からの出力信号Yは、mサンプリング周期だけ遅延する遅延器Dbおよび乗算器Abを介して、第1段目の乗算器Aa1の前段に介在されている加算器Cbに負帰還されている。   An analog signal or a multi-bit digital signal input as the input signal X to the input terminal P1 is input to the first stage integration element Fa1 via the adder Cb and the first stage multiplier Aa1. Input to the integration element Fa1 of the stage, and outputs of the integration elements Fa1 to Fa6 are respectively input to the integration elements Fa2 to Fa7 of the next stage via the multipliers Aa2 to Aa7, and are output from the integration elements Fa1 to Fa7. Are added to each other by the adder Cc and then input to the quantizer 10. The quantizer 10 compares the output from the adder Cc with a predetermined value, for example, 0 level for each frequency fs, and when the output from the adder Cc is a predetermined value, for example, 0 level or more, the output terminal P2 The output signal Y to “1” is “1”, and is “−1” when it is less than a predetermined value. Further, the output signal Y from the quantizer 10 is negatively fed to the adder Cb interposed in the preceding stage of the first-stage multiplier Aa1 through the delayer Db and the multiplier Ab delayed by m sampling periods. It has been returned.

また、積分要素Fa2、Fa4、Fa6の前段には、加算器Cd1〜Cd3がそれぞれ介在されており、積分要素Fa3、Fa5、Fa7の出力が、mサンプリング周期だけ遅延する遅延器Dc1〜Dc3および乗算器Ac1〜Ac3をそれぞれ介して、第1段目の乗算器Aa1の前段に介在されている加算器Cd1〜Cd3にそれぞれ負帰還される3つの部分負帰還ループが形成されている。   Further, adders Cd1 to Cd3 are interposed in front of the integration elements Fa2, Fa4, and Fa6, respectively, and delay elements Dc1 to Dc3 in which outputs of the integration elements Fa3, Fa5, and Fa7 are delayed by m sampling periods and multiplications. Three partial negative feedback loops are respectively fed back to the adders Cd1 to Cd3 interposed in the preceding stage of the first-stage multiplier Aa1 through the units Ac1 to Ac3, respectively.

図10は、4個の遅延器Dを縦続接続した、4サンプリング周期だけ遅延する遅延器Da1〜Dan、遅延器Dbおよび遅延器Dc1、Dc2、Dc3を用いたデルタシグマ変調回路2の量子化ノイズ分布の周波数特性が示されており、周波数fs/4付近と、周波数fs/2付近に新たな量子化ノイズが小なる帯域が形成され、周波数fs/8と周波数周波数fs・3/8とで折り返したそれぞれの位置に、3箇所の量子化ノイズが小なる帯域が形成されていると共に、3つの部分負帰還ループにより、量子化ノイズが小なる各帯域における量子化ノイズ分布の立ち上がりおよび立ち下がりに3つのディップがそれぞれ形成されている。ディップの形状は、各乗算器Aa1〜Aa7、乗算器AbおよびAc1〜Ac3の乗算係数を適宜選択することで変更することができ、有効周波数帯域となる量子化ノイズが小なる各帯域の幅と、帯域内でのダイナミックレンジを適宜設定することが可能になる。   FIG. 10 shows the quantization noise of the delta-sigma modulation circuit 2 using four delay devices D connected in cascade and using delay devices Da1 to Dan, a delay device Db, and delay devices Dc1, Dc2, and Dc3 that are delayed by four sampling periods. The frequency characteristics of the distribution are shown, and a band in which a new quantization noise is reduced is formed near the frequency fs / 4 and near the frequency fs / 2, and the frequency fs / 8 and the frequency fs · 3/8 are obtained. Bands where the quantization noise is reduced at three locations are formed at each folded position, and the rise and fall of the quantization noise distribution in each band where the quantization noise is reduced by three partial negative feedback loops Three dips are formed in each. The shape of the dip can be changed by appropriately selecting the multiplication coefficients of the multipliers Aa1 to Aa7, the multipliers Ab and Ac1 to Ac3, and the width of each band where the quantization noise that becomes the effective frequency band is reduced. The dynamic range within the band can be set as appropriate.

多重化送信装置4におけるデルタシグマ変調回路1は、4個の遅延器Dを縦続接続した、4サンプリング周期だけ遅延する遅延器Da1〜Dan、遅延器Dbが用いられており、出力される量子化信号は、図11に示すように、周波数0付近と、周波数fs/4付近と、周波数fs/2付近に量子化ノイズが小なる帯域が形成された量子化ノイズ分布の周波数特性を有し、入力信号X〜Xが周波数0付近の帯域に重畳される。なお、入力信号X〜Xは、デルタシグマ変調回路1の前段に設けられた図示しない帯域制限ローパスフィルタによって、(fs/2)/4以内に帯域制限されているものとする。 The delta-sigma modulation circuit 1 in the multiplexing transmission device 4 uses delay units Da1 to Dan and a delay unit Db that are delayed by 4 sampling periods in which four delay units D are connected in cascade, and output quantization As shown in FIG. 11, the signal has frequency characteristics of a quantization noise distribution in which a band in which the quantization noise is small is formed in the vicinity of frequency 0, in the vicinity of frequency fs / 4, and in the vicinity of frequency fs / 2. Input signals X 1 to X 4 are superimposed on a band near frequency 0. Note that the input signals X 2 to X 4 are band-limited within (fs / 2) / 4 by a band-limiting low-pass filter (not shown) provided in the previous stage of the delta-sigma modulation circuit 1.

伝送部43は、電線、各種ケーブル、光ファイバ、赤外線、電波等の伝送媒体を用いて、デルタシグマ変調回路1から出力される量子化信号を直接、もしくは搬送波に載せて伝送する伝送手段である。   The transmission unit 43 is a transmission unit that transmits the quantized signal output from the delta-sigma modulation circuit 1 directly or on a carrier wave using a transmission medium such as an electric wire, various cables, an optical fiber, an infrared ray, and a radio wave. .

図11を参照すると、入力端子P11から入力された同期信号として用いる入力信号Xは、加算器Ceに入力されると共に、LPF41に入力され、LPF41に入力された入力信号Xは、LPF41によって同期信号が生成される。なお、入力信号Xは、LPF41にかけても立ち上がりエッジがわかりやすい同期信号が得られるような波形となっている。また、本実施の形態では、デルタシグマ変調回路1のノイズ特性から、入力信号X〜Xそれぞれに入力可能な信号帯域は、fs/8以下の帯域であるため、変調信号生成部42で生成されるキャリア信号の位相の基準となる同期信号、すなわち入力信号Xとしては、fs/8以下(実際には、デルタシグマ変調のノイズの影響を考慮してfs/8よりも十分に低い周波数)の信号を用いることができる。 Referring to FIG. 11, an input signal X 1 used as a synchronization signal input from the input terminal P 11 is input to the adder Ce and input to the LPF 41, and the input signal X 1 input to the LPF 41 is input by the LPF 41. A synchronization signal is generated. The input signal X 1 is a waveform such as easy synchronization signal notice rising edge even over the LPF41 is obtained. In the present embodiment, the signal band that can be input to each of the input signals X 1 to X 4 is a band of fs / 8 or less from the noise characteristics of the delta-sigma modulation circuit 1. phase serving as a reference synchronizing signal of the carrier signal generated, i.e. as the input signal X 1 is, fs / 8 or less (in fact, well below fs / 8 in consideration of the influence of the noise of the delta-sigma modulation Frequency) signal can be used.

変調信号生成部42は、LPF41によって生成された同期信号をキャリア信号の位相の基準として用いて、sin信号によって変調された周波数fs/4のキャリア信号と、cos信号によって変調された周波数fs/4のキャリア信号と、周波数fs/2のキャリア信号とを生成し、sin信号によって変調された周波数fs/4のキャリア信号を乗算器Ad2に、cos信号によって変調された周波数fs/4のキャリア信号を乗算器Ad3に、周波数fs/2のキャリア信号を乗算器Ad4にそれぞれ出力する。   The modulation signal generation unit 42 uses the synchronization signal generated by the LPF 41 as a reference for the phase of the carrier signal, and uses the carrier signal having the frequency fs / 4 modulated by the sin signal and the frequency fs / 4 modulated by the cos signal. And a carrier signal having the frequency fs / 2 modulated by the sin signal are generated in the multiplier Ad2, and a carrier signal having the frequency fs / 4 modulated by the cos signal is generated. A carrier signal having a frequency fs / 2 is output to the multiplier Ad3 to the multiplier Ad4.

入力端子P12から入力された入力信号Xは、乗算器Ad2に入力され、乗算器Ad2は、sin信号によって変調された周波数fs/4のキャリア信号を用いることで、図11に示すように、入力信号Xを位相変調させると共に、周波数fs/4に周波数シフトさせ、sin信号に基づいて位相変調され、周波数fs/4に周波数シフトされた入力信号Xは、加算器Ceに入力される。 Input signal X 2 inputted from the input terminal P12 is input to a multiplier Ad2, multiplier Ad2, by using the carrier signal of a frequency fs / 4 which is modulated by the sin signal, as shown in FIG. 11, the input signal X 2 causes phase-modulated, is frequency shifted to a frequency fs / 4, is phase-modulated based on a sin signal, the input signal X 2, which is frequency shifted to a frequency fs / 4 is input to the adder Ce .

入力端子P13から入力された入力信号Xは、乗算器Ad3に入力され、乗算器Ad3は、cos信号によって変調された周波数fs/4のキャリア信号を用いることで、図11に示すように、入力信号Xをsin信号に基づいて位相変調された入力信号Xと直交する成分に位相変調させると共に、周波数fs/4に周波数シフトさせ、cos信号に基づいて位相変調され、周波数fs/4に周波数シフトされた入力信号Xは、加算器Ceに入力される。 Input signal X 3 inputted from the input terminal P13 is input to a multiplier Ad3, multiplier Ad3, by using the carrier signal of a frequency fs / 4 modulated by cos signal, as shown in FIG. 11, the input signal X 3 causes phase modulation component orthogonal to the input signal X 2, which is phase-modulated based on sin signal, the frequency shift to the frequency fs / 4, is phase-modulated on the basis of the cos signal, the frequency fs / 4 input signal X 3 that is frequency shifted is input to the adder Ce.

入力端子P14から入力された入力信号Xは、乗算器Ad4に入力され、乗算器Ad4は、周波数fs/2のキャリア信号を用いることで、図11に示すように、入力信号Xを周波数fs/2に周波数シフトさせ、周波数fs/2に周波数シフトされた入力信号Xは、加算器Ceに入力される。 Input signal X 4 input from the input terminal P14 is input to a multiplier Ad4, multiplier Ad4, by using the carrier signal of a frequency fs / 2, as shown in FIG. 11, the frequency of the input signal X 4 fs / 2 to cause the frequency shifted input signal X 4 that is frequency shifted to a frequency fs / 2 is input to the adder Ce.

加算器Ceによって、図11に示すように、入力信号Xと、sin信号に基づいて位相変調され、周波数fs/4に周波数シフトされた入力信号Xと、cos信号に基づいて位相変調され、周波数fs/4に周波数シフトされた入力信号Xと、周波数fs/2に周波数シフトされた入力信号Xとが加算された多ビット出力は、デルタシグマ変調回路1に入力され、デルタシグマ変調回路1は、加算器Ceからの多ビット出力に対してデルタシグマ変調を施すことで、図11に示すような、入力信号Xがベースバンド(周波数0付近の帯域)の量子化ノイズが小なる帯域に、sin信号に基づいて位相変調された入力信号Xと、cos信号に基づいて位相変調され、入力信号Xに対して直交化された入力信号Xとが周波数fs/4付近の量子化ノイズが小なる帯域に、入力信号Xが周波数fs/2付近の量子化ノイズが小なる帯域にそれぞれ重畳された量子化信号を出力し、伝送部43によって電線、各種ケーブル、光ファイバ、赤外線、電波等の伝送媒体を用いて伝送される。なお、デルタシグマ変調回路1は、4個の遅延器Dを縦続接続した、4サンプリング周期だけ遅延する遅延器Da1〜Dan、遅延器Dbが用いられている。また、デルタシグマ変調回路1の出力は、4つの入力信号X〜Xが多重化されたデジタル信号である量子化信号となり、伝送路などの影響を受けにくく、エラーに強いという利点を有している。 By the adder Ce, as shown in FIG. 11, the input signal X 1, is phase-modulated based on a sin signal, the input signal X 2, which is frequency shifted to a frequency fs / 4, it is phase-modulated on the basis of the cos signal , the input signal X 3 that is frequency shifted to a frequency fs / 4, the multi-bit output and input signal X 4 that is frequency shifted to a frequency fs / 2 is added is inputted to the delta sigma modulation circuit 1, a delta-sigma modulation circuit 1, by performing a delta sigma modulation to the multi-bit output from the adder Ce, as shown in FIG. 11, the quantization noise of the input signal X 1 is a baseband (band around frequency 0) the small becomes band, the input signal X 2, which is phase-modulated based on the sin signal, is phase-modulated on the basis of the cos signal, orthogonalized input signal X 3 and is frequency for the input signal X 2 fs / 4 to the band quantization noise is small in the vicinity, and outputs the input signal X 4 is a frequency fs / 2 near the quantization noise is superimposed on each of the small becomes the band quantized signal, the electric wire by the transmission unit 43, It is transmitted using various media such as cables, optical fibers, infrared rays, and radio waves. Note that the delta-sigma modulation circuit 1 uses delay devices Da1 to Dan and a delay device Db that are delayed by four sampling periods in which four delay devices D are connected in cascade. Further, the output of the delta-sigma modulation circuit 1 is a quantized signal that is a digital signal in which the four input signals X 1 to X 4 are multiplexed, and has an advantage that it is not easily affected by a transmission path and is resistant to errors. is doing.

次に、図1に示す受信分離装置5の構成および信号処理動作について図1および図12を参照して詳細に説明する。
図12は、図1に示す受信分離装置における分離復調動作を説明するための説明図である。
Next, the configuration and signal processing operation of the reception separating apparatus 5 shown in FIG. 1 will be described in detail with reference to FIGS.
FIG. 12 is an explanatory diagram for explaining a demultiplexing / demodulating operation in the receiving and separating apparatus shown in FIG.

受信分離装置5は、図1を参照すると、多重化送信装置4から伝送された量子化信号を受信する受信部51と、入力された量子化信号におけるベースバンド(周波数0付近の帯域)のみを通過させることで、入力信号Xのみを取り出し、同期信号を生成するローパスフィルタ(LPF)52aと、LPF52aによって生成された同期信号をキャリア信号の位相の基準として用いて、sin信号によって変調された周波数fs/4のキャリア信号と、cos信号によって変調された周波数fs/4のキャリア信号と、周波数fs/2のキャリア信号とを生成する変調信号生成部53と、sin信号によって変調された周波数fs/4のキャリア信号を用いることで、量子化信号に重畳されている入力信号X〜Xを、位相変調させると共に、周波数シフトさせる乗算器Ae2と、cos信号によって変調された周波数fs/4のキャリア信号を用いることで、量子化信号に重畳されている入力信号X〜Xを、位相変調させる共に、周波数シフトさせる乗算器Ae3と、周波数fs/2のキャリア信号を用いることで、量子化信号に重畳されている入力信号X〜Xを、周波数シフトさせる乗算器Ae4と、乗算器Ae2の出力におけるベースバンド(周波数0付近の帯域)のみをアナログ信号として通過させることで、乗算器Ae2の出力から入力信号Xのみをアナログ信号として取り出すローパスフィルタ(LPF)52bと、乗算器Ae3の出力におけるベースバンド(周波数0付近の帯域)のみをアナログ信号として通過させることで、乗算器Ae3の出力から入力信号Xのみをアナログ信号として取り出すローパスフィルタ(LPF)52cと、乗算器Ae4の出力におけるベースバンド(周波数0付近の帯域)のみをアナログ信号として通過させることで、乗算器Ae4の出力から入力信号Xのみをアナログ信号として取り出すローパスフィルタ(LPF)52dとを備えている。 Referring to FIG. 1, the reception / separation device 5 receives only the reception unit 51 that receives the quantized signal transmitted from the multiplexing transmission device 4 and the baseband (band near frequency 0) in the input quantized signal. by passing, it extracts only the input signal X 1, and the low-pass filter (LPF) 52a to generate a synchronization signal using a synchronization signal generated by LPF52a as a phase reference for the carrier signal, modulated by sin signal A modulated signal generating unit 53 for generating a carrier signal having a frequency fs / 4, a carrier signal having a frequency fs / 4 modulated by the cos signal, and a carrier signal having a frequency fs / 2; and the frequency fs modulated by the sin signal. When the carrier signal of / 4 is used, the input signals X 1 to X 4 superimposed on the quantized signal are phase-modulated. Both multipliers Ae2 to frequency shift, by using a carrier signal of a frequency fs / 4 modulated by cos signal, an input signal X 1 to X 4 which are superimposed on the quantized signal, both to the phase modulation, By using the multiplier Ae3 that shifts the frequency and the carrier signal having the frequency fs / 2, the multiplier Ae4 that shifts the frequency of the input signals X 1 to X 4 superimposed on the quantized signal and the output of the multiplier Ae2 in the only by passing an analog signal baseband (band around frequency 0), and a low-pass filter (LPF) 52 b extract only the input signal X 2 as an analog signal from the output of the multiplier Ae2, the output of the multiplier Ae3 By passing only the baseband (band near frequency 0) as an analog signal, the output of the multiplier Ae3 A low pass filter (LPF) 52c extracts only the input signal X 3 as an analog signal from the force, only the base band at the output of the multiplier AE4 (band around frequency 0) by passing an analog signal, the output of the multiplier AE4 and a low pass filter (LPF) 52 d taken out as an analog signal only input signal X 4 from.

図12を参照すると、受信部51によって受信された量子化信号は、LPF52aと、乗算器Ae2と、乗算器Ae3と、乗算器Ae4とにそれぞれ入力される。LPF52aに入力された量子化信号は、ベースバンド(周波数0付近の帯域)のみを通過させるLPF52aによって、入力信号Xのみが取り出され、同期信号が生成される。 Referring to FIG. 12, the quantized signal received by the receiving unit 51 is input to the LPF 52a, the multiplier Ae2, the multiplier Ae3, and the multiplier Ae4, respectively. Input quantization signal to LPF52a, depending LPF52a which passes only base band (band around frequency 0), only the input signal X 1 is taken out, the synchronization signal is generated.

変調信号生成部53は、LPF52aによって生成された同期信号を用いて、sin信号によって変調された周波数fs/4のキャリア信号と、cos信号によって変調された周波数fs/4のキャリア信号と、周波数fs/2のキャリア信号とを生成し、sin信号によって変調された周波数fs/4のキャリア信号を乗算器Ad2に、cos信号によって変調された周波数fs/4のキャリア信号を乗算器Ad3に、周波数fs/2のキャリア信号を乗算器Ad4にそれぞれ出力する。   The modulation signal generation unit 53 uses the synchronization signal generated by the LPF 52a, the carrier signal having the frequency fs / 4 modulated by the sin signal, the carrier signal having the frequency fs / 4 modulated by the cos signal, and the frequency fs. / 2 carrier signal, the carrier signal having the frequency fs / 4 modulated by the sin signal to the multiplier Ad2, the carrier signal having the frequency fs / 4 modulated by the cos signal to the multiplier Ad3, and the frequency fs. The carrier signal of / 2 is output to the multiplier Ad4.

乗算器Ae2に入力された量子化信号は、乗算器Ae2によって、sin信号によって変調された周波数fs/4のキャリア信号を用いることで、量子化信号に重畳されている入力信号X〜Xが、位相変調されると共に、周波数シフトされ、LPF52bに入力される。これにより、乗算器Ae2からの出力は、図12に示すように、入力信号Xがベースバンド(周波数0付近の帯域)の量子化ノイズが小なる帯域に、入力信号Xと入力信号Xとが周波数fs/4付近の量子化ノイズが小なる帯域に、入力信号Xが周波数fs/2付近の量子化ノイズが小なる帯域にそれぞれ重畳された量子化信号となる。 Input quantization signal to the multiplier Ae2 includes multipliers by Ae2, by using a carrier signal of a frequency fs / 4 which is modulated by the sin signal, the input signal X 1 to X 4 which are superimposed on the quantized signal Are phase-modulated and frequency-shifted and input to the LPF 52b. Thus, the output from the multiplier Ae2, as shown in FIG. 12, the band quantization noise is small for the input signal X 2 baseband (band around frequency 0), the input signal X and the input signal X 4 1 and the frequency fs / 4 near the quantization noise in the small becomes bands, the input signal X 2 frequency fs / 2 near the quantization noise is respectively superimposed quantized signal into small becomes bands.

乗算器Ae2からの出力は、ベースバンド(周波数0付近の帯域)のみを通過させるローパスフィルタ(LPF)52bによって、図14に示すように、入力信号Xのみがアナログ信号として取り出され、出力端子P22から出力信号Yとして出力される。 The output from multiplier Ae2 is by the low-pass filter (LPF) 52 b to pass only the baseband (band around frequency 0), as shown in FIG. 14, only the input signal X 2 is taken out as an analog signal, an output terminal It is output as an output signal Y 2 from P22.

乗算器Ae3に入力された量子化信号は、乗算器Ae3によって、cos信号によって変調された周波数fs/4のキャリア信号を用いることで、量子化信号に重畳されている入力信号X〜Xを、位相変調されると共に、周波数シフトされ、LPF52cに入力される。これにより、乗算器Ae3からの出力は、図12に示すように、入力信号Xがベースバンド(周波数0付近の帯域)の量子化ノイズが小なる帯域に、入力信号Xと入力信号Xとが周波数fs/4付近の量子化ノイズが小なる帯域に、入力信号Xが周波数fs/2付近の量子化ノイズが小なる帯域にそれぞれ重畳された量子化信号となる。 Input quantization signal to the multiplier Ae3 includes multipliers by Ae3, by using a carrier signal of a frequency fs / 4 modulated by cos signal, an input signal X 1 to X 4 which are superimposed on the quantized signal Are phase-modulated and frequency-shifted and input to the LPF 52c. Thus, the output from the multiplier Ae3, as shown in FIG. 12, the band quantization noise is small for the input signal X 3 baseband (band around frequency 0), the input signal X and the input signal X 4 the band 1 and the frequency fs / 4 near the quantization noise is small, the input signal X 3 is the quantization noise around the frequency fs / 2 is respectively superimposed quantized signal into small becomes bands.

乗算器Ae3からの出力は、ベースバンド(周波数0付近の帯域)のみを通過させるローパスフィルタ(LPF)52cによって、図14に示すように、入力信号Xのみがアナログ信号として取り出され、出力端子P23から出力信号Yとして出力される。 The output from multiplier Ae3 is by the low-pass filter (LPF) 52c to pass only the baseband (band around frequency 0), as shown in FIG. 14, only the input signal X 3 is taken out as an analog signal, an output terminal It is output as an output signal Y 3 from P23.

乗算器Ae4に入力された量子化信号は、乗算器Ae4によって、周波数fs/2のキャリア信号を用いることで、量子化信号に重畳されている入力信号X〜Xを、周波数シフトされ、LPF52dに入力される。これにより、乗算器Ae4からの出力は、図14に示すように、入力信号Xがベースバンド(周波数0付近の帯域)の量子化ノイズが小なる帯域に、入力信号Xと入力信号Xとが周波数fs/4付近の量子化ノイズが小なる帯域に、入力信号Xが周波数fs/2付近の量子化ノイズが小なる帯域にそれぞれ重畳された量子化信号となる。 Input quantization signal to the multiplier AE4 is by a multiplier AE4, by using a carrier signal of a frequency fs / 2, the input signal X 1 to X 4 which are superimposed on the quantized signal, the frequency shift, Input to the LPF 52d. Thus, the output from the multiplier Ae4, as shown in FIG. 14, the band quantization noise is small for the input signal X 4 baseband (band around frequency 0), the input signal X 2 and the input signal X 3 and the band frequency fs / 4 near the quantization noise becomes small, the input signal X 1 frequency fs / 2 near the quantization noise is respectively superimposed quantized signal into small becomes bands.

乗算器Ae4からの出力は、ベースバンド(周波数0付近の帯域)のみを通過させるローパスフィルタ(LPF)52dによって、図14に示すように、入力信号Xのみがアナログ信号として取り出され、出力端子P24から出力信号Yとして出力される。 The output from multiplier Ae4 is by the low-pass filter (LPF) 52 d to pass only the baseband (band around frequency 0), as shown in FIG. 14, only the input signal X 4 is taken out as an analog signal, an output terminal It is output as an output signal Y 4 from P24.

このように、乗算器Ae2〜Ae4と、ローパスフィルタ(LPF)52a〜52dとからなる簡単な構成の受信分離装置5によって、多重化送信装置4から出力される量子化信号に多重化された4つの入力信号X〜Xを簡単に分離させることができると共に、入力信号Xを同期信号として用いて、量子化信号に重畳されている他の入力信号X〜Xを分離させることができるため、多重化送信装置4と受信分離装置5との間で同期が取れていない場合であっても、正確に量子化信号に重畳されている入力信号X〜Xを正確に分離させることができる。 In this way, 4 multiplexed to the quantized signal output from the multiplexing transmission device 4 by the reception / separation device 5 having a simple configuration including the multipliers Ae2 to Ae4 and the low pass filters (LPF) 52a to 52d. The two input signals X 1 to X 4 can be easily separated, and the other input signals X 2 to X 4 superimposed on the quantized signal are separated using the input signal X 1 as a synchronization signal. Therefore, even when the multiplexing transmission device 4 and the reception separation device 5 are not synchronized, the input signals X 2 to X 4 superimposed on the quantized signal are accurately separated accurately. Can be made.

なお、本実施の形態では、4個の遅延器Dを縦続接続した、4サンプリング周期だけ遅延する遅延器Da1〜Dan、遅延器Dbが用いられ、周波数0付近と、周波数fs/4付近と、周波数fs/2付近との3箇所に量子化ノイズが小なる帯域が形成される量子化ノイズ分布の周波数特性を有するデルタシグマ変調回路1によって、4つの入力信号X〜Xを多重化するように構成したが、遅延器Dの縦続接続数を変更することにより、量子化ノイズ分布の周波数特性における量子化ノイズが小なる帯域の数を任意に設定することができ、量子化ノイズが小なる帯域に重畳して多重化する入力信号数も任意に設定することができる。 In the present embodiment, delay devices Da1 to Dan and delay device Db that are connected by four delay devices D cascaded and delayed by four sampling periods are used, and the vicinity of frequency 0, the vicinity of frequency fs / 4, The four input signals X 1 to X 4 are multiplexed by the delta-sigma modulation circuit 1 having the frequency characteristic of the quantization noise distribution in which the bands where the quantization noise is small are formed at three places near the frequency fs / 2. However, by changing the number of cascade connections of the delay device D, the number of bands in which the quantization noise in the frequency characteristic of the quantization noise distribution is small can be arbitrarily set, and the quantization noise is small. The number of input signals to be multiplexed by being superimposed on a certain band can be arbitrarily set.

また、本実施の形態では、周波数fs/4付近の量子化ノイズが小なる帯域に直交化させた入力信号X、Xの2つの信号を重畳させるように構成したが、周波数fs/4付近の量子化ノイズが小なる帯域に、位相変調を施すことなく、入力信号Xのみを重畳させるようにしても良い。 In the present embodiment, the two signals of the input signals X 2 and X 3 that are orthogonalized in a band where the quantization noise in the vicinity of the frequency fs / 4 is reduced are superimposed, but the frequency fs / 4 is used. band quantization noise is small in the vicinity, without performing the phase modulation, may be to superimpose only the input signal X 2.

さらに、本実施の形態では、ローパスフィルタ(LPF)52a〜52dによって多重化信号をアナログ信号に復調させるように構成したが、デジタルローパスフィルタを用いることで多重化信号をマルチビットデジタル信号であるPCM(Pulse-Code Modulation)信号に変調させるようにしても良い。   Further, in the present embodiment, the multiplexed signal is demodulated into an analog signal by the low-pass filters (LPF) 52a to 52d, but the multiplexed signal is a PCM that is a multi-bit digital signal by using a digital low-pass filter. A (Pulse-Code Modulation) signal may be modulated.

以上説明したように、本実施の形態によれば、多重化送信装置4において、同期信号となる同期信号用入力信号を含む複数の入力信号を受け付け、変調信号生成部42によって、同期信号用入力信号に基づいて、複数の入力信号を多重化させるための多重用変調信号を生成し、乗算器Ad2〜Ad4および加算器Ceによって、多重用変調信号を用いて、同期信号用入力信号以外の他の入力信号を周波数シフトさせることで、同期信号用入力信号を含む複数の入力信号を異なる帯域に分散させて重畳し、デルタシグマ変調回路1によって、複数の入力信号を重畳した信号を、複数の入力信号が分散して重畳されている周波数帯域に量子化ノイズが小なる帯域がそれぞれ形成される量子化信号に変調することで、当該量子化信号を複数の量子化ノイズが小なる帯域に複数の入力信号が分散されて重畳された多重化信号として出力するように構成し、受信分離装置5において、ローパスフィルタ(LPF)52aを通過させることで、多重化信号から同期信号用入力信号を復調し、変調信号生成部53によって、同期信号用入力信号に基づいて、多重化信号から複数の入力信号を分離させるための分離用変調信号を生成し、乗算器Ae2〜Ae4によって、分離用変調信号を用いて、周波数シフトされて量子化信号に分散されて重畳されている同期信号用入力信号以外の他の入力信号毎に、多重化信号を入力信号が元の周波数帯域に戻るようにそれぞれ周波数シフトすることで、周波数シフトした多重化信号をそれぞれ出力し、ローパスフィルタ(LPF)52b〜52dによって、周波数シフトしたそれぞれの多重化信号を複数の入力信号にそれぞれ復調するように構成することにより、送信側である多重化送信装置4と、受信側である受信分離装置6との同期が取れていない場合でも、多重化信号に重畳されている同期信号用入力信号を用いて生成した変調信号によって、周波数シフトさせた多重化信号を復調させるだけで、周波数シフトされて多重化信号に重畳されている複数の信号を分離させることができるため、受信側で、信号を切り換える切り替え回路を用いることなく、簡単な構成で多重化信号から元の信号を分離させることができるという効果を奏する。   As described above, according to the present embodiment, the multiplexing transmission apparatus 4 accepts a plurality of input signals including a synchronization signal input signal to be a synchronization signal, and the modulation signal generation unit 42 inputs the synchronization signal input. Based on the signal, a modulation signal for multiplexing for multiplexing a plurality of input signals is generated, and other than the synchronization signal input signal by using the multiplexing modulation signal by the multipliers Ad2 to Ad4 and the adder Ce. The input signal including the synchronizing signal input signal is dispersed and superimposed in different bands, and a signal obtained by superimposing the plurality of input signals by the delta-sigma modulation circuit 1 is By modulating the quantized signal to form a band where the quantization noise is reduced in the frequency band where the input signal is distributed and superimposed, the quantized signal is quantized multiple times. It is configured to output a multiplexed signal in which a plurality of input signals are dispersed and superimposed in a band where noise is reduced, and in the receiving and separating device 5, it is passed through a low-pass filter (LPF) 52 a so that the multiplexed signal can be output. Demodulating the synchronization signal input signal, the modulation signal generation unit 53 generates a separation modulation signal for separating a plurality of input signals from the multiplexed signal, based on the synchronization signal input signal, and the multipliers Ae2 to Ae2. By Ae4, the multiplexed signal is converted to the original frequency for each input signal other than the synchronization signal input signal that is frequency-shifted and dispersed and superimposed on the quantized signal using the separation modulation signal. By shifting each frequency so as to return to the band, each of the frequency-shifted multiplexed signals is output, and the low-pass filter (LPF) 52b to 52d By configuring each multiplexed signal shifted several times to be demodulated into a plurality of input signals, the multiplexed transmission device 4 on the transmission side and the reception separation device 6 on the reception side are not synchronized. Even in this case, the frequency-shifted multiplexed signal is simply demodulated by the modulation signal generated using the synchronization signal input signal superimposed on the multiplexed signal, and the frequency-shifted signal is superimposed on the multiplexed signal. Since a plurality of signals can be separated, the original signal can be separated from the multiplexed signal with a simple configuration without using a switching circuit for switching signals on the receiving side.

さらに、本実施の形態によれば、デルタシグマ変調回路1によって、量子化ノイズが大なる帯域を間に挟んだ折り返し位置に量子化ノイズが小なる帯域が形成される量子化信号に変調するように構成することにより、量子化信号に重畳する複数の信号の帯域をそれぞれ確保することができ、量子化信号に複数の信号を重畳させることができるという効果を奏する。   Furthermore, according to the present embodiment, the delta-sigma modulation circuit 1 modulates a quantized signal in which a band where the quantization noise is small is formed at a turn-back position sandwiching a band where the quantization noise is large. With this configuration, it is possible to secure a plurality of signal bands to be superimposed on the quantized signal, and it is possible to superimpose a plurality of signals on the quantized signal.

さらに、本実施の形態によれば、受信分離装置5において、ベースバンドのみを通過させるローパスフィルタ52aを用いて多重化信号から同期信号用入力信号を復調するように構成すると共に、多重化送信装置4に、同期信号用入力信号のベースバンドのみを通過させるローパスフィルタ41を設け、ローパスフィルタ41を通過した同期信号用入力信号に基づいて、複数の入力信号を多重化させるための多重用変調信号を生成するように構成することにより、送信側と受信側とで用いる同期信号を同一な波形とすることができ、周波数シフトされて多重化信号に重畳されている複数の信号を正確に分離させることができるという効果を奏する。   Furthermore, according to the present embodiment, the reception separation device 5 is configured to demodulate the synchronization signal input signal from the multiplexed signal using the low-pass filter 52a that passes only the baseband, and the multiplexed transmission device. 4 is provided with a low-pass filter 41 that allows only the baseband of the synchronization signal input signal to pass therethrough, and a multiplexed modulation signal for multiplexing a plurality of input signals based on the synchronization signal input signal that has passed through the low-pass filter 41. The synchronization signal used on the transmission side and the reception side can have the same waveform, and a plurality of signals that are frequency-shifted and superimposed on the multiplexed signal can be accurately separated. There is an effect that can be.

なお、本発明が上記各実施の形態に限定されず、本発明の技術思想の範囲内において、各実施の形態は適宜変更され得ることは明らかである。また、上記構成部材の数、位置、形状等は上記実施の形態に限定されず、本発明を実施する上で好適な数、位置、形状等にすることができる。なお、各図において、同一構成要素には同一符号を付している。   Note that the present invention is not limited to the above-described embodiments, and it is obvious that the embodiments can be appropriately changed within the scope of the technical idea of the present invention. In addition, the number, position, shape, and the like of the constituent members are not limited to the above-described embodiment, and can be set to a suitable number, position, shape, and the like in practicing the present invention. In each figure, the same numerals are given to the same component.

本発明に係る多重化信号伝送システムの実施の形態の構成を示すブロック図である。It is a block diagram which shows the structure of embodiment of the multiplexed signal transmission system which concerns on this invention. 図1に示す多重化送信装置に用いるデルタシグマ変調回路の電気的構成を示すブロック図である。FIG. 2 is a block diagram showing an electrical configuration of a delta sigma modulation circuit used in the multiplexing transmission apparatus shown in FIG. 1. 図2に示す遅延器の構成例を示すブロック図である。FIG. 3 is a block diagram illustrating a configuration example of a delay device illustrated in FIG. 2. 図2に示すデルタシグマ変調回路における量子化ノイズ分布の周波数特性を示すグラフである。3 is a graph showing frequency characteristics of quantization noise distribution in the delta-sigma modulation circuit shown in FIG. 2. デルタシグマ変調回路をモデル化したブロック図である。It is the block diagram which modeled the delta-sigma modulation circuit. 図5に示すデルタシグマ変調回路から出力される量子化信号の量子化ノイズ分布の周波数特性を説明するための説明図である。It is explanatory drawing for demonstrating the frequency characteristic of the quantization noise distribution of the quantization signal output from the delta-sigma modulation circuit shown in FIG. 2サンプリング周期だけ遅延する遅延器を用いた2次のデルタシグマ変調回路をモデル化したブロック図である。FIG. 5 is a block diagram modeling a second-order delta-sigma modulation circuit using a delay device that is delayed by two sampling periods. 図7に示す2次のデルタシグマ変調回路から出力される量子化信号の量子化ノイズ分布の周波数特性を示すグラフである。It is a graph which shows the frequency characteristic of the quantization noise distribution of the quantization signal output from the secondary delta-sigma modulation circuit shown in FIG. 図2に示すデルタシグマ変調回路において7個の積分要素を用いた7次のデルタシグマ変調回路の構成を示すブロック図である。FIG. 3 is a block diagram illustrating a configuration of a seventh-order delta sigma modulation circuit using seven integration elements in the delta sigma modulation circuit illustrated in FIG. 2. 図9に示す7次のデルタシグマ変調回路から出力される量子化信号の量子化ノイズ分布の周波数特性を示すグラフである。10 is a graph showing frequency characteristics of a quantization noise distribution of a quantized signal output from the seventh-order delta sigma modulation circuit shown in FIG. 9. 図1に示す多重化送信装置における多重化変調動作を説明するための説明図である。It is explanatory drawing for demonstrating the multiplexing modulation | alteration operation | movement in the multiplexing transmission apparatus shown in FIG. 図1に示す受信分離装置における分離復調動作を説明するための説明図である。It is explanatory drawing for demonstrating the isolation | separation demodulation operation in the receiving separation apparatus shown in FIG.

符号の説明Explanation of symbols

1、2 デルタシグマ変調回路
3 多重化信号伝送システム
4 多重化送信装置
5 受信分離装置
10 量子化器
41 ローパスフィルタ(LPF)
42 変調信号生成部
43 伝送部
51 受信部
52a〜52d ローパスフィルタ(LPF)
53 変調信号生成部
Aa1〜Aan、Ab、Ac1〜Ac3、Ad2〜Ad4、Ae2〜Ae4 乗算器
Ca1〜Can、Cb、Cc、Cd1〜Cd3、Ce 加算器
D1〜D4、Da1〜Dan、Db、Dc1〜Dc3 遅延器
Fa1〜Fan 積分要素
P1〜P4、P11〜P14 入力端子
P21〜P24 出力端子
X、X〜X 入力信号
Y、Y〜Y 出力信号
DESCRIPTION OF SYMBOLS 1, 2 Delta-sigma modulation circuit 3 Multiplexed signal transmission system 4 Multiplexing transmission apparatus 5 Reception separation apparatus 10 Quantizer 41 Low pass filter (LPF)
42 modulation signal generation unit 43 transmission unit 51 reception unit 52a to 52d low-pass filter (LPF)
53 Modulation signal generator Aa1-Aan, Ab, Ac1-Ac3, Ad2-Ad4, Ae2-Ae4 Multiplier Ca1-Can, Cb, Cc, Cd1-Cd3, Ce adder D1-D4, Da1-Dan, Db, Dc1 ~Dc3 delayer Fa1~Fan integral element P1 to P4, P11-P14 input terminal P21~P24 output terminal X, X 1 ~X 4 input signals Y, Y 1 ~Y 4 output signal

Claims (11)

複数の入力信号を多重化した多重化信号を送信する多重化送信装置と、受信した前記多重化信号を複数の前記入力信号に分離させる受信分離装置とからなる多重化信号伝送システムであって、
前記多重化送信装置は、同期信号となる同期信号用入力信号を含む複数の前記入力信号を受け付け、
前記同期信号用入力信号に基づいて、複数の前記入力信号を多重化させるための多重用変調信号を生成する多重用変調信号生成手段と、
該多重用変調信号生成手段によって生成された前記多重用変調信号を用いて、前記同期信号用入力信号以外の他の前記入力信号を周波数シフトさせることで、前記同期信号用入力信号を含む複数の前記入力信号を異なる帯域に分散させて重畳させる周波数シフト加算手段と、
該周波数シフト加算手段からの出力信号を、複数の前記入力信号が分散して重畳されている周波数帯域に量子化ノイズが小なる帯域がそれぞれ形成される量子化信号に変調することで、当該量子化信号を複数の量子化ノイズが小なる帯域に複数の前記入力信号が分散されて重畳された前記多重化信号として出力するデルタシグマ変調手段とを具備し、
前記受信分離装置は、前記多重化信号から前記同期信号用入力信号を復調させる同期信号復調手段と、
該同期信号復調手段によって復調された前記同期信号用入力信号に基づいて、前記多重化信号から複数の前記入力信号を分離させるための分離用変調信号を生成する分離用変調信号生成手段と、
該分離用変調信号生成手段によって生成された前記分離用変調信号を用いて、周波数シフトされて前記量子化信号に分散されて重畳されている前記同期信号用入力信号以外の他の前記入力信号毎に、前記多重化信号を前記入力信号が元の周波数帯域に戻るようにそれぞれ周波数シフトすることで、周波数シフトした前記多重化信号をそれぞれ出力する周波数シフト手段と、
該周波数シフト手段によって周波数シフトさせたそれぞれの前記多重化信号を複数の前記入力信号にそれぞれ復調させる復調手段とを具備することを特徴とする多重化信号伝送システム。
A multiplexed signal transmission system comprising a multiplexing transmission device that transmits a multiplexed signal obtained by multiplexing a plurality of input signals, and a reception separation device that separates the received multiplexed signal into a plurality of input signals,
The multiplexing transmission device receives a plurality of the input signals including a synchronization signal input signal to be a synchronization signal,
A multiplexing modulation signal generating means for generating a multiplexing modulation signal for multiplexing a plurality of the input signals based on the synchronization signal input signal;
Using the multiplexing modulation signal generated by the multiplexing modulation signal generating means, the input signal other than the synchronization signal input signal is frequency-shifted, thereby including a plurality of synchronization signal input signals. Frequency shift addition means for dispersing and superimposing the input signal in different bands;
By modulating the output signal from the frequency shift adding means to a quantized signal in which a band with a small quantization noise is formed in a frequency band in which a plurality of the input signals are dispersed and superimposed, Delta-sigma modulation means for outputting the multiplexed signal as the multiplexed signal in which a plurality of the input signals are dispersed and superimposed in a band in which a plurality of quantization noises are small,
The reception separation device includes a synchronization signal demodulation unit that demodulates the synchronization signal input signal from the multiplexed signal;
A separation modulation signal generation means for generating a separation modulation signal for separating the plurality of input signals from the multiplexed signal based on the synchronization signal input signal demodulated by the synchronization signal demodulation means;
For each of the input signals other than the synchronization signal input signal that is frequency-shifted using the separation modulation signal generated by the separation modulation signal generation means and dispersed and superimposed on the quantized signal In addition, frequency shift means for respectively outputting the frequency-shifted multiplexed signal by frequency-shifting the multiplexed signal so that the input signal returns to the original frequency band;
And a demodulating means for demodulating each of the multiplexed signals frequency-shifted by the frequency shifting means into a plurality of the input signals.
前記デルタシグマ変調手段は、量子化ノイズが大なる帯域を間に挟んだ折り返し位置に量子化ノイズが小なる帯域が形成される前記量子化信号に変調させることを特徴とする請求項1記載の多重化信号伝送システム。   2. The delta-sigma modulation means modulates the quantized signal in which a band with a small quantization noise is formed at a folding position sandwiching a band with a large quantization noise therebetween. Multiplexed signal transmission system. 前記デルタシグマ変調手段は、出力を複数サンプリング周期だけ遅延させる第1の遅延手段を有し、相互に縦続接続された複数の積分手段と、
各積分手段からの出力を加算する加算手段と、
当該加算手段からの出力をサンプリング周波数fsに基づいて量子化して前記量子化信号を出力する量子化手段と、
入力を前記量子化手段からの出力を前記第1の遅延手段と同数のサンプリング周期だけ遅延させる第2の遅延手段を介して初段の前記積分手段に負帰還させる負帰還ループとを具備することを特徴とする請求項1又は2記載の多重化信号伝送システム。
The delta-sigma modulation means includes first delay means for delaying the output by a plurality of sampling periods, and a plurality of integration means cascaded with each other;
Adding means for adding outputs from the integrating means;
Quantization means for quantizing the output from the adding means based on the sampling frequency fs and outputting the quantized signal;
A negative feedback loop that negatively feeds back the input to the integrating means through the second delay means that delays the output from the quantizing means by the same number of sampling periods as the first delay means. The multiplexed signal transmission system according to claim 1 or 2, characterized in that:
前記受信分離装置の前記同期信号復調手段は、ベースバンドのみを通過させるローパスフィルタであり、
前記多重化送信装置は、前記同期信号用入力信号のベースバンドのみを通過させるローパスフィルタを具備し、
前記多重用変調信号生成手段は、前記ローパスフィルタを通過した前記同期信号用入力信号に基づいて、複数の前記入力信号を多重化させるための多重用変調信号を生成することを特徴とする請求項1乃至3のいずれかに記載の多重化信号伝送システム。
The synchronization signal demodulating means of the reception separation device is a low-pass filter that allows only baseband to pass through,
The multiplexed transmission device includes a low-pass filter that allows only the baseband of the synchronization signal input signal to pass through,
The multiplexing modulation signal generating means generates a multiplexing modulation signal for multiplexing a plurality of the input signals based on the synchronization signal input signal that has passed through the low-pass filter. The multiplexed signal transmission system according to any one of 1 to 3.
複数の入力信号を多重化した多重化信号を送信する多重化送信装置であって、
同期信号となる同期信号用入力信号を含む複数の前記入力信号を受け付け、
前記同期信号用入力信号に基づいて、複数の前記入力信号を多重化させるための多重用変調信号を生成する多重用変調信号生成手段と、
該多重用変調信号生成手段によって生成された前記多重用変調信号を用いて、前記同期信号用入力信号以外の他の前記入力信号を周波数シフトさせることで、前記同期信号用入力信号を含む複数の前記入力信号を異なる帯域に分散させて重畳させる周波数シフト加算手段と、
該周波数シフト加算手段からの出力信号を、複数の前記入力信号が分散して重畳されている周波数帯域に量子化ノイズが小なる帯域がそれぞれ形成される量子化信号に変調することで、当該量子化信号を複数の量子化ノイズが小なる帯域に複数の前記入力信号が分散されて重畳された前記多重化信号として出力するデルタシグマ変調手段とを具備することを特徴とする多重化送信装置。
A multiplexing transmitter for transmitting a multiplexed signal obtained by multiplexing a plurality of input signals,
Receiving a plurality of the input signals including a synchronization signal input signal to be a synchronization signal;
A multiplexing modulation signal generating means for generating a multiplexing modulation signal for multiplexing a plurality of the input signals based on the synchronization signal input signal;
Using the multiplexing modulation signal generated by the multiplexing modulation signal generating means, the input signal other than the synchronization signal input signal is frequency-shifted, thereby including a plurality of synchronization signal input signals. Frequency shift addition means for dispersing and superimposing the input signal in different bands;
By modulating the output signal from the frequency shift adding means to a quantized signal in which a band with a small quantization noise is formed in a frequency band in which a plurality of the input signals are dispersed and superimposed, And a delta-sigma modulation means for outputting the multiplexed signal as the multiplexed signal in which a plurality of the input signals are dispersed and superimposed in a band in which a plurality of quantization noises are small.
複数の入力信号が多重化されている多重化信号を複数の前記入力信号に分離させる受信分離装置であって、
同期信号用入力信号と周波数シフトされた入力信号とが多重化された量子化信号である前記多重化信号から前記同期信号用入力信号を復調させる同期信号復調手段と、
該同期信号復調手段によって復調された前記同期信号用入力信号に基づいて、前記多重化信号から複数の前記入力信号を分離させるための分離用変調信号を生成する分離用変調信号生成手段と、
該分離用変調信号生成手段によって生成された前記分離用変調信号を用いて、周波数シフトされて前記量子化信号に多重化されている前記同期信号用入力信号以外の他の前記入力信号毎に、前記多重化信号を前記入力信号が元の周波数帯域に戻るようにそれぞれ周波数シフトすることで、周波数シフトした前記多重化信号をそれぞれ出力する周波数シフト手段と、
該周波数シフト手段によって周波数シフトさせたそれぞれの前記多重化信号を複数の前記入力信号にそれぞれ復調させる復調手段とを具備することを特徴とする受信分離装置。
A receiving and separating device for separating a multiplexed signal in which a plurality of input signals are multiplexed into a plurality of the input signals,
Synchronization signal demodulating means for demodulating the synchronization signal input signal from the multiplexed signal, which is a quantized signal in which the synchronization signal input signal and the frequency-shifted input signal are multiplexed;
A separation modulation signal generation means for generating a separation modulation signal for separating the plurality of input signals from the multiplexed signal based on the synchronization signal input signal demodulated by the synchronization signal demodulation means;
For each of the input signals other than the synchronization signal input signal that is frequency-shifted and multiplexed onto the quantized signal using the separation modulation signal generated by the separation modulation signal generation means, Frequency shift means for respectively outputting the multiplexed signals that have been frequency shifted by shifting the frequency of the multiplexed signals so that the input signal returns to the original frequency band;
Demodulating means for demodulating each of the multiplexed signals frequency-shifted by the frequency shifting means into a plurality of the input signals, respectively.
複数の入力信号を多重化した多重化信号を送信する多重化送信工程と、受信した前記多重化信号を複数の前記入力信号に分離する受信分離工程とを有する多重化信号伝送方法であって、
前記多重化送信工程では、同期信号となる同期信号用入力信号を含む複数の前記入力信号を受け付け、
前記同期信号用入力信号に基づいて、複数の前記入力信号を多重化させるための多重用変調信号を生成し、
該生成した前記多重用変調信号を用いて、前記同期信号用入力信号以外の他の前記入力信号を周波数シフトさせることで、前記同期信号用入力信号を含む複数の前記入力信号を異なる帯域に分散させて重畳し、
複数の前記入力信号を重畳した信号を、複数の前記入力信号が分散して重畳されている周波数帯域に量子化ノイズが小なる帯域がそれぞれ形成される量子化信号に変調することで、当該量子化信号を複数の量子化ノイズが小なる帯域に複数の前記入力信号が分散されて重畳された前記多重化信号として出力し、
前記受信分離工程では、前記多重化信号から前記同期信号用入力信号を復調し、
該復調した前記同期信号用入力信号に基づいて、前記多重化信号から複数の前記入力信号を分離させるための分離用変調信号を生成し、
該生成した前記分離用変調信号を用いて、周波数シフトされて前記量子化信号に分散されて重畳されている前記同期信号用入力信号以外の他の前記入力信号毎に、前記多重化信号を前記入力信号が元の周波数帯域に戻るようにそれぞれ周波数シフトすることで、周波数シフトした前記多重化信号をそれぞれ出力し、
該周波数シフトしたそれぞれの前記多重化信号を複数の前記入力信号にそれぞれ復調することを特徴とする多重化信号伝送方法。
A multiplexed signal transmission method comprising: a multiplexing transmission step for transmitting a multiplexed signal obtained by multiplexing a plurality of input signals; and a reception separation step for separating the received multiplexed signal into a plurality of the input signals,
In the multiplexed transmission step, a plurality of the input signals including a synchronization signal input signal to be a synchronization signal are received,
Based on the synchronization signal input signal, a multiplexing modulation signal for multiplexing the plurality of input signals is generated,
Using the generated modulation signal for multiplexing, the input signals other than the synchronization signal input signal are frequency shifted to disperse the plurality of input signals including the synchronization signal input signal in different bands. Superimpose,
A signal obtained by superimposing a plurality of the input signals is modulated into a quantized signal in which a band in which quantization noise is reduced is formed in a frequency band in which the plurality of input signals are dispersed and superimposed. A plurality of the input signals are dispersed and superimposed in a band where a plurality of quantization noises are reduced, and output as a multiplexed signal,
In the reception separation step, the synchronization signal input signal is demodulated from the multiplexed signal,
Based on the demodulated input signal for synchronization signal, a separation modulation signal for separating the plurality of input signals from the multiplexed signal is generated,
Using the generated modulation signal for separation, for each of the input signals other than the synchronization signal input signal that is frequency-shifted and distributed and superimposed on the quantized signal, By respectively shifting the frequency so that the input signal returns to the original frequency band, each of the multiplexed signals shifted in frequency is output,
A multiplexed signal transmission method, wherein each of the multiplexed signals shifted in frequency is demodulated into a plurality of input signals.
量子化ノイズが大なる帯域を間に挟んだ折り返し位置に量子化ノイズが小なる帯域が形成される前記量子化信号に変調することを特徴とする請求項7記載の多重化信号伝送方法。   8. The multiplexed signal transmission method according to claim 7, wherein modulation is performed to the quantized signal in which a band where the quantization noise is reduced is formed at a turn-back position sandwiching a band where the quantization noise is large. 前記受信分離工程では、ベースバンドのみを通過させるローパスフィルタを用いて、前記多重化信号から前記同期信号用入力信号を復調し、
前記多重化送信工程は、ベースバンドのみを通過させるローパスフィルタを通過した前記同期信号用入力信号に基づいて、複数の前記入力信号を多重化させるための多重用変調信号を生成することを特徴とする請求項7又は8記載の多重化信号伝送方法。
In the reception separation step, the synchronization signal input signal is demodulated from the multiplexed signal using a low-pass filter that passes only baseband,
The multiplexing transmission step generates a modulation signal for multiplexing for multiplexing the plurality of input signals based on the input signal for synchronization signals that has passed through a low-pass filter that passes only baseband. The multiplexed signal transmission method according to claim 7 or 8.
複数の入力信号を多重化した多重化信号を送信する多重化送信方法であって、
同期信号となる同期信号用入力信号を含む複数の前記入力信号を受け付け、
前記同期信号用入力信号に基づいて、複数の前記入力信号を多重化させるための多重用変調信号を生成し、
該生成した前記多重用変調信号を用いて、前記同期信号用入力信号以外の他の前記入力信号を周波数シフトさせることで、前記同期信号用入力信号を含む複数の前記入力信号を異なる帯域に分散させて重畳し、
複数の前記入力信号を重畳した信号を、複数の前記入力信号が分散して重畳されている周波数帯域に量子化ノイズが小なる帯域がそれぞれ形成される量子化信号に変調することで、当該量子化信号を複数の量子化ノイズが小なる帯域に複数の前記入力信号が分散されて重畳された前記多重化信号として出力することを特徴とする多重化送信方法。
A multiplexed transmission method for transmitting a multiplexed signal obtained by multiplexing a plurality of input signals,
Receiving a plurality of the input signals including a synchronization signal input signal to be a synchronization signal;
Based on the synchronization signal input signal, a multiplexing modulation signal for multiplexing the plurality of input signals is generated,
Using the generated modulation signal for multiplexing, the input signals other than the synchronization signal input signal are frequency shifted to disperse the plurality of input signals including the synchronization signal input signal in different bands. Superimpose,
A signal obtained by superimposing a plurality of the input signals is modulated into a quantized signal in which a band in which quantization noise is reduced is formed in a frequency band in which the plurality of input signals are dispersed and superimposed. A multiplexed transmission method comprising: outputting a multiplexed signal as the multiplexed signal in which a plurality of input signals are dispersed and superimposed in a band in which a plurality of quantization noises are reduced.
複数の入力信号が多重化されている多重化信号を複数の前記入力信号に分離する受信分離方法であって、
同期信号用入力信号を含む複数の前記入力信号が分散して重畳されている周波数帯域に量子化ノイズが小なる帯域がそれぞれ形成されている前記多重化信号を受信し、
前記多重化信号から前記同期信号用入力信号を復調し、
該復調した前記同期信号用入力信号に基づいて、前記多重化信号から複数の前記入力信号を分離させるための分離用変調信号を生成し、
該生成した前記分離用変調信号を用いて、周波数シフトされて前記多重化信号に分散されて重畳されている前記同期信号用入力信号以外の他の前記入力信号毎に、前記多重化信号を前記入力信号が元の周波数帯域に戻るようにそれぞれ周波数シフトすることで、周波数シフトした前記多重化信号をそれぞれ出力し、
該周波数シフトしたそれぞれの前記多重化信号を複数の前記入力信号にそれぞれ復調することを特徴とする受信分離方法。
A reception separation method for separating a multiplexed signal in which a plurality of input signals are multiplexed into a plurality of the input signals,
Receiving the multiplexed signal in which a band in which quantization noise is reduced is formed in a frequency band in which a plurality of the input signals including a synchronization signal input signal are dispersed and superimposed;
Demodulate the synchronization signal input signal from the multiplexed signal,
Based on the demodulated input signal for synchronization signal, a separation modulation signal for separating the plurality of input signals from the multiplexed signal is generated,
Using the generated modulation signal for separation, for each input signal other than the synchronization signal input signal that is frequency-shifted and dispersed and superimposed on the multiplexed signal, the multiplexed signal is By respectively shifting the frequency so that the input signal returns to the original frequency band, each of the multiplexed signals shifted in frequency is output,
A reception separation method, wherein each of the multiplexed signals shifted in frequency is demodulated into a plurality of the input signals.
JP2007122211A 2007-05-07 2007-05-07 Multiplexed signal transmission system and multiplexed signal transmission method Expired - Fee Related JP4814151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007122211A JP4814151B2 (en) 2007-05-07 2007-05-07 Multiplexed signal transmission system and multiplexed signal transmission method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007122211A JP4814151B2 (en) 2007-05-07 2007-05-07 Multiplexed signal transmission system and multiplexed signal transmission method

Publications (2)

Publication Number Publication Date
JP2008278402A true JP2008278402A (en) 2008-11-13
JP4814151B2 JP4814151B2 (en) 2011-11-16

Family

ID=40055784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007122211A Expired - Fee Related JP4814151B2 (en) 2007-05-07 2007-05-07 Multiplexed signal transmission system and multiplexed signal transmission method

Country Status (1)

Country Link
JP (1) JP4814151B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008278401A (en) * 2007-05-07 2008-11-13 Sharp Corp Multiplexed signal transmission system and multiplexed signal transmitting method
CN105594327A (en) * 2016-01-27 2016-05-25 华中农业大学 Land leveling system for paddy field rotary cultivator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0970062A (en) * 1995-09-01 1997-03-11 N T T Ido Tsushinmo Kk Radio signal transmission method for mobile communication and its system
WO2006046709A1 (en) * 2004-10-29 2006-05-04 Pioneer Corporation Receiving device
JP2008278401A (en) * 2007-05-07 2008-11-13 Sharp Corp Multiplexed signal transmission system and multiplexed signal transmitting method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0970062A (en) * 1995-09-01 1997-03-11 N T T Ido Tsushinmo Kk Radio signal transmission method for mobile communication and its system
WO2006046709A1 (en) * 2004-10-29 2006-05-04 Pioneer Corporation Receiving device
JP2008278401A (en) * 2007-05-07 2008-11-13 Sharp Corp Multiplexed signal transmission system and multiplexed signal transmitting method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008278401A (en) * 2007-05-07 2008-11-13 Sharp Corp Multiplexed signal transmission system and multiplexed signal transmitting method
CN105594327A (en) * 2016-01-27 2016-05-25 华中农业大学 Land leveling system for paddy field rotary cultivator

Also Published As

Publication number Publication date
JP4814151B2 (en) 2011-11-16

Similar Documents

Publication Publication Date Title
CA2361010A1 (en) Vestigial sideband generator particularly for digital television
US9590663B2 (en) Radio apparatus
EP0681382A2 (en) Digital modulator for cellular base stations
JP4814151B2 (en) Multiplexed signal transmission system and multiplexed signal transmission method
JP4814150B2 (en) Multiplexed signal transmission system and multiplexed signal transmission method
JP4620047B2 (en) Multi-channel tuner using discrete cosine transform
JP2008103958A (en) Signal mutilexing system and signal mutilexing/demultiplexing system
CN102592599A (en) Signal processing method
JP4713435B2 (en) Delta-sigma modulator
EP0498457B1 (en) Digital type VSB modulation apparatus
JP2006526360A (en) Multi-channel tuner for alias cancellation based on conversion and cancellation method
JP4776496B2 (en) Signal multiplexing system and signal demultiplexing method
JP2008199246A (en) Signal multiplexing system and signal multiplexing/demultiplexing method
JP2008228010A (en) Filter apparatus
JP2015046865A (en) Interference wave replica generating circuit and interference wave suppression circuit
JP2008219695A (en) Signal batch processor
JP2007274310A (en) Amplitude limiting device
JP6383592B2 (en) Optical transmission device, wireless transmission device, and wireless reception device
JP4766245B2 (en) Receiver and data communication system
JPH06104943A (en) Four-phase modulator
JPH02116227A (en) Transmission distortion removing circuit
US20080205307A1 (en) Transmitting Signals Via at Least Two Hannels Simultaneously
EP0919091A1 (en) Receiver for independent sideband signals
Heo et al. Multi-channel DTV signal generator design using modified Farrow filter
JPH06291744A (en) Spread spectrum communication system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110825

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees