JP2008277285A - Electrothermal coating fused body, and its fusing method - Google Patents

Electrothermal coating fused body, and its fusing method Download PDF

Info

Publication number
JP2008277285A
JP2008277285A JP2008089063A JP2008089063A JP2008277285A JP 2008277285 A JP2008277285 A JP 2008277285A JP 2008089063 A JP2008089063 A JP 2008089063A JP 2008089063 A JP2008089063 A JP 2008089063A JP 2008277285 A JP2008277285 A JP 2008277285A
Authority
JP
Japan
Prior art keywords
weight
coating
electrothermal
film
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008089063A
Other languages
Japanese (ja)
Inventor
Seiichiro Miyata
征一郎 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZAIKEN KK
Original Assignee
ZAIKEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZAIKEN KK filed Critical ZAIKEN KK
Priority to JP2008089063A priority Critical patent/JP2008277285A/en
Publication of JP2008277285A publication Critical patent/JP2008277285A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-strength electrothermal coating fused body excelling in adhesiveness to an aluminum nitride base material without causing separation when a coating of a Si alloy containing 0.2% or more B is fusion-bonded to aluminum nitride in order to solve a problem that, when a coating of the Si alloy containing 0.2% or more B is fusion-bonded to the aluminum nitride, the coating is separated, or easy to separate or the strength of the coating itself is low, and its electrothermal coating fusion coating method. <P>SOLUTION: This electrothermal coating fused body has a structure where an electrothermal coating formed of a Si alloy containing 0.2 wt.% or more of B is fusion-bonded to the surface of an aluminum nitride ceramic base material containing 1 wt.% of an sintering additive of a rare-earth element compound in terms of oxide. In the coating, not smaller than 0.1 wt.% of a rare-earth element using the rare-earth element compound of the sintering additive of the ceramic base material as a supply source is included. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は電熱被膜融着体とその融着方法に係り、更に詳しくは、Bを含有するSi合金からなる電熱被膜が窒化アルミニウム基材に融着した電熱被膜融着体とその融着方法に係るものである。   The present invention relates to an electrothermal film fusion body and a fusion method thereof. More specifically, the present invention relates to an electrothermal film fusion body in which an electrothermal film made of a Si alloy containing B is fused to an aluminum nitride base material and the fusion method thereof. It is concerned.

AlN等のセラミックス基材にSi合金の電熱被膜を融着させたセラミックスヒーターには、高温加熱を繰り返すと、電熱被膜の抵抗値が変化(増加)する欠点がある。この欠点を改良する方法として特許文献1には、Si合金にBを0.03〜5%の範囲添加すると被膜の抵抗変化を抑制する効果があると記載されているが、特許文献1の明細書には被膜を融着する際のペーストの組成は記載されているが融着後の被膜の組成については何ら記載されていない。明細書の実施例には本来融着被膜の中に含有されるB量を記載すべきところであるが記載されていない。なお特許文献1の発明は、本願発明者の発明である。   A ceramic heater in which a Si alloy electrothermal coating is fused to a ceramic substrate such as AlN has a drawback that the resistance value of the electrothermal coating changes (increases) when high-temperature heating is repeated. As a method for improving this defect, Patent Document 1 describes that adding B to the Si alloy in the range of 0.03 to 5% has an effect of suppressing the resistance change of the film. Describes the composition of the paste at the time of fusing the film, but does not describe the composition of the film after fusing. In the examples of the specification, the amount of B originally contained in the fusion coating should be described, but it is not described. The invention of Patent Document 1 is the invention of the present inventor.

B成分は本来高温に加熱されると揮散することが多く、高温溶融後の被膜中の歩留まりが悪いことは当業者には周知のことであり、特許文献1の明細書の実施例に記載されたペースト中のB量が、融着皮膜の中にそのまま、つまり歩留まり100%で、含有されることは考えられない。   It is well known to those skilled in the art that the component B is often volatilized when heated to a high temperature, and the yield in the film after high temperature melting is poor, and is described in the examples of the specification of Patent Document 1. It is unlikely that the amount of B in the paste is contained in the fused film as it is, that is, with a yield of 100%.

Bが含有されると抵抗変化を抑制する効果があること、そしてBが高いほど、より高い温度で抵抗変化を抑制する効果があるので、Bはより高いほうが良いことは特許文献1の記載からうかがい知ることができるが、その数量的なデータには信憑性は無いのが現状である。   From the description of Patent Document 1, it is effective to suppress the resistance change when B is contained, and the higher the B is, the more effective the resistance change is at a higher temperature. Although it can be seen, the current situation is that the quantitative data is not credible.

窒化アルミニウムセラミックスの大気中で加熱できる温度は、概ね800〜850℃程度であり、大気中で使用する窒化アルミニウムを基材とするセラミックスヒーターの最高加熱も概ね800〜850℃程度が限界であることに鑑み、800〜850℃程度までセラミックスヒーターとして加熱しても、電熱皮膜の抵抗値が変化(上昇)しないことが最も好ましい窒化アルミニウムヒーターである。   The temperature at which aluminum nitride ceramics can be heated in the atmosphere is approximately 800 to 850 ° C., and the maximum heating of a ceramic heater based on aluminum nitride used in the atmosphere is limited to approximately 800 to 850 ° C. In view of the above, it is the most preferable aluminum nitride heater that the resistance value of the electrothermal coating does not change (rise) even when heated as a ceramic heater to about 800 to 850 ° C.

そこで本発明者は、セラミックスヒーターの皮膜のB含量と、皮膜の抵抗変化が始まる最高加熱温度の関係について改めて定量的な探索実験を行った。
その結果、B含量は高いほど抵抗変化の始まる温度は高くなり、そしてB含量0.2重量%以上では、最初の通電加熱で抵抗変化が始まる温度が800℃以上になることを実験的に確認できた。
しかしながら、その確認実験の過程で、B添加に伴う新たな問題を発見した。
Therefore, the present inventor conducted a quantitative search experiment again on the relationship between the B content of the ceramic heater film and the maximum heating temperature at which the resistance change of the film starts.
As a result, the higher the B content, the higher the temperature at which the resistance change starts, and the B content of 0.2% by weight or more confirms experimentally that the temperature at which the resistance change starts at the first current heating is 800 ° C or higher. did it.
However, a new problem associated with the addition of B was discovered during the confirmation experiment.

その新しい問題とは、Bを0.2%以上含有するSi合金の被膜を窒化アルミニウムに融着させた時、被膜が剥離する、あるいは剥がれ易い、あるいは被膜そのものの強度が弱いトラブルが発生することを発見した。
この問題は、被膜を電熱ヒーターとして利用する時、致命的な問題になる。
The new problem is that when a Si alloy film containing 0.2% or more of B is fused to aluminum nitride, the film peels off or is easily peeled off, or the film itself has a weak strength. I found
This problem becomes a fatal problem when the coating is used as an electric heater.

特開2005−71781号公報JP 2005-71781 A

本発明はかかる問題に鑑みてなされたものであり、その目的は、Bを0.2%以上含有するSi合金の被膜を窒化アルミニウムに融着させる時、窒化アルミニウム基材に対して密着性に優れ、剥がれることがない、皮膜強度の強い電熱被膜融着体を提供することである。そしてその電熱被膜融着方法を提供することである。   The present invention has been made in view of such problems, and its purpose is to provide adhesion to an aluminum nitride substrate when a Si alloy film containing 0.2% or more of B is fused to aluminum nitride. It is an object of the present invention to provide an electrothermal film fusion product which is excellent and does not peel off and has a high film strength. And it is providing the electrothermal film fusion | melting method.

本発明者は上記問題に関して鋭意研究を行った結果、下記の知見を得た。
すなわち、
焼結助剤として希土類元素化合物を使用する窒化アルミニウム基材に対してBを0.2%以上含有するSi合金の被膜を窒化アルミニウムに融着させる時、焼結助剤化合物の含有量が希土類酸化物換算で1重量%以上では、被膜が融着することを発見した。
そしてその時、融着被膜中に、セラミックス基材の焼結助剤の希土類元素化合物を供給源として希土類元素が溶け出してくることを発見した。
そして希土類元素の溶け出し量は、焼結助剤の量が同じでも、融着時の温度等の条件で変化し、希土類元素の溶け出し量が0.1重量%以上になると、被膜の密着性が高くなり、焼結密度上昇、抵抗値も低下し、電熱被膜として好適な被膜が得られることを発見した。
そして焼結助剤化合物の含有量が希土類酸化物換算で1重量%未満あるいは焼結助剤化合物が含まれていないセラミックス基材では、被膜が融着しない、あるいは皮膜が剥離する融着不良の問題が起こり、電熱被膜として好適な被膜が得られないことを発見した。
As a result of intensive studies on the above problems, the present inventor has obtained the following knowledge.
That is,
When a Si alloy film containing 0.2% or more of B is fused to aluminum nitride on an aluminum nitride base material that uses a rare earth element compound as a sintering aid, the content of the sintering aid compound is rare earth. It was found that the coating melts at 1% by weight or more in terms of oxide.
At that time, it was discovered that rare earth elements were melted into the fusion coating using a rare earth element compound as a sintering aid for the ceramic substrate as a supply source.
The amount of rare earth element leaching varies depending on conditions such as the temperature at the time of fusing, even when the amount of sintering aid is the same. It has been found that a film suitable for an electrothermal film can be obtained because the properties increase, the sintered density increases, and the resistance value decreases.
In the ceramic base material having a sintering aid compound content of less than 1% by weight in terms of rare earth oxides or containing no sintering aid compound, the coating does not melt or the coating peels off. It was discovered that a problem occurred and a film suitable as an electrothermal film could not be obtained.

また更に焼結助剤化合物含有量が酸化物換算で1重量%未満の窒化アルミニウムセラミックス基材あるいは焼結助剤を含まない窒化アルミニウムセラミックス基材でも、基材表面に、先ず、第一段階として、0.2重量%未満のBを含むSi合金からなる電熱被膜の第一の層を融着させると、密着性に優れた皮膜が得られ、この第一の融着層に、B含量が0.2重量%以上になるようにBの濃化処理を行うことで、0.2重量%以上のBを含み、かつ被膜の密着性、焼結密度が高く、電熱被膜として好適な被膜が得られることを発見した。   Furthermore, even in the case of an aluminum nitride ceramic base material having a sintering aid compound content of less than 1% by weight in terms of oxides or an aluminum nitride ceramic base material not containing a sintering aid, When a first layer of an electrothermal coating made of a Si alloy containing less than 0.2% by weight of B is fused, a coating having excellent adhesion can be obtained, and the first fused layer has a B content of By carrying out the B concentration treatment so that it becomes 0.2% by weight or more, a coating film that contains 0.2% by weight or more of B, has high adhesion and sintered density of the film, and is suitable as an electrothermal film. I found out that I could get it.

そして上記濃化処理には、上記第一の層の上に少なくとも一層あるいは複数層、Si合金の被膜を重ねて融着、融合させて、該第一の層と該重ねた層の融合層のB含有量が0.2重量%以上になるように、該重ねた層のB含有量を調整して融着させる方法が実用的で好適であることを発見した。   In the concentration treatment, at least one layer or a plurality of layers and a Si alloy film are stacked on the first layer, and are fused and fused to form a fusion layer of the first layer and the stacked layer. It has been found that a method of adjusting the B content of the stacked layers and fusing it so that the B content is 0.2% by weight or more is practical and suitable.

本発明は以上の知見を基になされたものであり、本発明課題は、下記の発明で解決できるものである。   This invention is made | formed based on the above knowledge, and this invention subject can be solved by the following invention.

(第1の発明)
希土類元素化合物の焼結助剤を酸化物換算で1重量%以上含む窒化アルミニウムセラミックス基材の表面に、0.2重量%以上のBを含むSi合金からなる電熱被膜が融着した構造の電熱被膜の融着体であって、該被膜中に、該セラミックス基材の焼結助剤の希土類元素化合物を供給源とする希土類元素が0.1重量%以上含まれてなる電熱被膜融着体。
(First invention)
Electric heat having a structure in which an electrothermal coating composed of a Si alloy containing 0.2% by weight or more of B is fused to the surface of an aluminum nitride ceramic base material containing 1% by weight or more of a sintering aid for a rare earth element compound. A fusion-bonded body of a film, wherein the coating film contains 0.1% by weight or more of a rare earth element using a rare earth element compound as a sintering aid for the ceramic substrate as a supply source. .

(第2の発明)
0.2重量%以上のBを含むSi合金からなる電熱被膜を窒化アルミニウムセラミックス基材の表面に融着させるに際して、該基材として希土類元素化合物の焼結助剤を酸化物換算で1重量%以上含む窒化アルミニウムセラミックスを使用し、かつ該電熱被膜の中に、該基材の希土類元素化合物を供給源する希土類元素成分を該被膜の0.1重量%以上溶出させることを特徴とする電熱被膜融着方法。
(Second invention)
When an electrothermal coating composed of a Si alloy containing 0.2% by weight or more of B is fused to the surface of an aluminum nitride ceramic substrate, a sintering aid for a rare earth element compound is used as the substrate in an amount of 1% by weight in terms of oxide. An electrothermal coating characterized by using the aluminum nitride ceramics as described above, and eluting a rare earth element component supplying the rare earth element compound of the substrate into the electrothermal coating in an amount of 0.1% by weight or more. Fusion method.

(第3の発明)
上記電熱皮膜を窒化アルミニウムセラミックス基材の表面に融着させるに際して、
該基材に0.2重量%未満のBを含むSi合金からなる電熱被膜の第一の層を融着させた後、該融着層のBが0.2重量%以上になるように濃化処理を行うことを特徴とする上記第2の発明に記載の電熱被膜融着方法。
(Third invention)
When fusing the electrothermal coating to the surface of the aluminum nitride ceramic substrate,
After fusing the first layer of the electrothermal coating made of a Si alloy containing less than 0.2% by weight of B to the substrate, it is concentrated so that the B of the fusion layer is 0.2% by weight or more. The electrothermal film fusion method according to the second aspect of the present invention, characterized in that a heat treatment is performed.

(第4の発明)
希土類元素化合物の焼結助剤を酸化物換算で1重量%未満含む窒化アルミニウムセラミックス基材あるいは焼結助剤を含まない窒化アルミニウムセラミックス基材の表面に、0.2重量%以上のBを含むSi合金からなる電熱被膜を融着させるに際して、該基材に0.2重量%未満のBを含むSi合金からなる電熱被膜の第一の層を融着させた後、該融着層のBが0.2重量%以上になるように濃化処理を行うことを特徴とする電熱被膜融着方法。
(Fourth invention)
The surface of an aluminum nitride ceramic base material containing less than 1% by weight of a rare earth element compound sintering aid in terms of oxide or an aluminum nitride ceramic base material containing no sintering aid contains 0.2% by weight or more of B. When the electrothermal coating made of Si alloy is fused, after the first layer of the electrothermal coating made of Si alloy containing less than 0.2% by weight of B is fused to the base material, An electrothermal coating fusing method characterized in that the concentration treatment is performed so as to be 0.2% by weight or more.

(第5の発明)
上記濃化処理の方法が、上記第一の層の上に少なくとも一層あるいは複数層、Si合金の被膜を重ねて融着、融合させて、該第一の層と該重ねた層の融合層のB含有量が0.2重量%以上になるように、該重ねた層のB含有量を調整して融着させる方法である上記第3の発明あるいは第4の発明のいずれか1つに記載の電熱被膜融着方法。
(Fifth invention)
The method of concentration treatment is to fuse at least one layer or a plurality of layers, a Si alloy film on the first layer, and fuse and fuse them to form a fusion layer of the first layer and the stacked layer. Either the third invention or the fourth invention, which is a method of adjusting the B content of the layer so that the B content is 0.2% by weight or more and fusing it. Electrothermal film fusion method.

(第6の発明)
上記Si合金が、Siを主成分とし、A群の中から選択された一種あるいは二種以上の元素と、B群の中から選択された一種あるいは二種以上の元素と、C群の元素と、残余不純物成分からなる合金であることを特徴とする上記第1の発明に記載の電熱被膜融着体。
A群の元素:Fe,Ni,Co,Zr ,Ti,Cr,Mo,W
B群の元素:Hf,Nb,Ta,V, Mn,Cu,Al,Ge
C群の元素:B,希土類元素
A群元素の成分範囲 :6〜65重量%
B群元素の成分範囲 :0〜10重量%
C群元素の成分範囲 :B≧0.2重量%,希土類元素≧0.1重量%
(Sixth invention)
The Si alloy contains Si as a main component, one or more elements selected from Group A, one or more elements selected from Group B, and elements of Group C. The electrothermal film fusion product according to the first aspect of the present invention, which is an alloy composed of residual impurity components.
Group A elements: Fe, Ni, Co, Zr, Ti, Cr, Mo, W
Group B elements: Hf, Nb, Ta, V, Mn, Cu, Al, Ge
Group C element: B, rare earth element Component range of Group A element: 6 to 65% by weight
Component range of group B elements: 0 to 10% by weight
Component range of group C elements: B ≧ 0.2 wt%, rare earth elements ≧ 0.1 wt%

本発明の電熱皮膜融着体は、融着した電熱被膜の密着性が高く、ボイド、欠陥がが少なく、800℃以上の加熱に使用しても抵抗変化が小さく、耐久性に極めて優れたものである。また本発明電熱皮膜融着体は、窒化アルミニウムセラミックス基材の希土類元素化合物の焼結助剤が酸化物換算で1重量%未満でも、あるいは以上でも、高温加熱時の耐久性に極めて優れたものである。   The electrothermal film fusion product of the present invention has high adhesion of the electrothermal film fused, has few voids and defects, has little resistance change even when used for heating at 800 ° C. or higher, and is extremely excellent in durability. It is. The electrothermal film fusion product of the present invention is extremely excellent in durability during high-temperature heating even if the sintering aid for the rare earth element compound of the aluminum nitride ceramic substrate is less than 1% by weight or more in terms of oxide. It is.

窒化アルミニウム基材にSi合金電熱被膜を融着したヒーターを通電加熱した時、Bの含まれていない電熱被膜では、加熱後、常温まで下げて抵抗値を測定すると、最初の加熱で最高加熱温度が400℃を越えたところから常温の抵抗値が元の値に戻らず高くなる特徴がある。   When a heater with a Si alloy electrothermal coating fused to an aluminum nitride substrate is heated and heated, the electrothermal coating that does not contain B is heated to the normal temperature after being heated. From the point where the temperature exceeds 400 ° C., the resistance value at normal temperature increases without returning to the original value.

最初の加熱で、常温抵抗値が元に戻らなくなる加熱温度を本願明細書では「抵抗変化の限界加熱温度」と表現することにすると、Bの含まれていない電熱被膜では、抵抗変化の限界加熱温度は、400℃であるが、電熱被膜にBを添加すると、400℃を越える温度に上昇する。そしてB含量が高い程、この限界加熱温度はより高くなる。つまりB含量が高くなる程、より高い温度に加熱しても抵抗変化が起きにくくなる。   If the heating temperature at which the normal temperature resistance value does not return to the original value by the first heating is expressed as “limit heating temperature of resistance change” in this specification, the limit heating of resistance change in the electrothermal film not containing B The temperature is 400 ° C., but when B is added to the electrothermal coating, the temperature rises to over 400 ° C. And the higher the B content, the higher this critical heating temperature. In other words, the higher the B content, the less resistance changes even when heated to a higher temperature.

繰り返し加熱したとき、程度の差は有るが、その抵抗値は上昇する傾向にあり、B含量が高くなる程、その上昇率は小さくなる。つまり繰り返し加熱に従って常温抵抗値は上昇するが、B含量が高くなる程、その上昇率はより軽微になり、ヒーターとしての耐久性はより向上するので、B含量はより高い程好ましい。   When heated repeatedly, there is a difference in degree, but the resistance value tends to increase. The higher the B content, the smaller the increase rate. That is, the normal temperature resistance value increases with repeated heating, but the higher the B content, the lower the increase rate and the more the durability as a heater. Therefore, the higher the B content, the better.

B含量0.2重量%以上で、最初の加熱で抵抗変化の始まる温度が800℃以上になる。従って、800℃の高温まで使用する電熱ヒーターでは、少なくともB含量は0.2重量%以上がよい。
B含量0.2重量%未満では、最初の加熱で、800℃未満の温度で抵抗変化が始まり、繰り返し加熱したとき、抵抗変化の上昇率がより大きくなるので、800℃以上に加熱する高温用途のヒーターでは耐久性が劣る。
When the B content is 0.2% by weight or more, the temperature at which the resistance change starts with the first heating becomes 800 ° C. or more. Therefore, in an electric heater used up to a high temperature of 800 ° C., at least the B content is preferably 0.2% by weight or more.
When the B content is less than 0.2% by weight, the resistance change starts at a temperature of less than 800 ° C. at the first heating, and the rate of increase in the resistance change becomes larger when repeatedly heated. The durability of the heater is inferior.

本発明の、「0.2重量%以上のBを含むSi合金からなる電熱被膜」とは、「最初の加熱で抵抗変化の始まる温度が800℃以上になるような性質を持つ電熱被膜」ということであり、この「0.2重量%以上のB含量」で、希土類元素化合物の焼結助剤が酸化物換算で1%未満の窒化アルミ基材あるいは焼結助剤を含まない窒化アルミニウムセラミックス基材では、電熱被膜が剥離する、あるいは剥がれ易い等の融着不良の問題が発生するということである。   The “electrothermal film made of a Si alloy containing 0.2% by weight or more of B” of the present invention is called “an electrothermal film having such a property that the temperature at which the resistance change starts at the first heating is 800 ° C. or higher”. With this “B content of 0.2% by weight or more”, the rare earth element compound sintering aid is less than 1% in terms of oxide and does not contain an aluminum nitride base material or an aluminum nitride ceramic containing no sintering aid. In the base material, there is a problem of poor fusion such that the electrothermal coating is peeled off or easily peeled off.

B含量0.2重量%未満では、希土類元素化合物の焼結助剤が酸化物換算で1%未満の窒化アルミ基材、あるいは焼結助剤を含まない窒化アルミニウムセラミックス基材でも、融着不良の問題は、起こり難くなる、あるいは全く発生しなくなるが、B含量が低いために、最初の加熱で、800℃未満の温度で抵抗変化が始まり、繰り返し加熱したとき、抵抗変化の上昇率がより大きくなるので、800℃以上に加熱する高温用途のヒーターでは、耐久性が劣る。   If the B content is less than 0.2% by weight, even if the sintering aid of the rare earth element compound is less than 1% in terms of oxide or an aluminum nitride ceramic substrate containing no sintering aid, the fusion is poor. The problem of is less likely to occur or does not occur at all, but because of the low B content, the resistance change starts at a temperature of less than 800 ° C. at the first heating, and when the heating is repeated, the rate of increase in the resistance change is more Since it becomes large, a high-temperature heater that heats to 800 ° C. or more has poor durability.

なお、本発明の電熱被膜が融着したセラミックスヒーターが、その用途を800℃以上で使用するヒーターに限定されるものではないことは勿論である。当然800℃未満の温度でも好適に使用できるわけであり、その用途に特別な制約があるわけではない。   Needless to say, the ceramic heater to which the electrothermal coating of the present invention is fused is not limited to a heater that is used at 800 ° C. or higher. Naturally, it can be suitably used even at a temperature of less than 800 ° C., and there are no particular restrictions on its use.

窒化アルミニウムセラミックス基材には、焼結助剤に希土類元素化合物を用いるもの、あるいは焼結助剤を使用しないものが存在するが、本発明の「0.2重量%以上のBを含むSi合金からなる被膜」を、窒化アルミニウム基材の表面に塗布、あるいは印刷して加熱溶融した時、セラミックス基材中の焼結助剤の量に応じて、被膜の融着性が変化し、希土類元素化合物の焼結助剤量が酸化物換算で1%未満のセラミックス基材および焼結助剤を使用しない通称「助剤レス窒化アルミニウム」には、被膜が融着しない、あるいは融着したものが剥離する、あるいは融着した被膜がこすると剥落する等の融着不良が起こる。   There are aluminum nitride ceramic base materials that use rare earth element compounds as sintering aids, or those that do not use sintering aids, but according to the present invention, “Si alloy containing 0.2% by weight or more of B”. When the coating consisting of “coating” is applied to the surface of an aluminum nitride substrate, or printed and melted by heating, the fusing property of the coating changes depending on the amount of the sintering aid in the ceramic substrate. The common name “auxiliary-less aluminum nitride” in which the amount of the sintering aid of the compound is less than 1% in terms of oxide and does not use the sintering aid is that the coating does not melt or is fused. If the coated film is peeled off or rubbed, it will be peeled off, resulting in poor fusion.

希土類元素化合物の焼結助剤量が酸化物換算で1%以上で融着するようになる。そしてその時、融着被膜中に、セラミックス基材の焼結助剤の希土類元素化合物を供給源として希土類元素が溶け出してくる。つまり融着被膜の成分として希土類元素は全く添加していないにもかかわらず、被膜の中に希土類元素が存在し、焼結助剤が酸化物であっても、膜中に存在する希土類元素は、酸化物の形では存在していない。   The rare earth element compound is fused when the amount of sintering aid is 1% or more in terms of oxide. At that time, the rare earth element is melted into the fusion coating using the rare earth element compound as a sintering aid for the ceramic substrate as a supply source. In other words, despite the fact that no rare earth element is added as a component of the fusion coating, rare earth elements are present in the coating, and even if the sintering aid is an oxide, It does not exist in oxide form.

被膜に含まれる希土類元素は、明らかに焼結助剤の希土類元素化合物を供給源とするものである。そして希土類元素の溶け出し量は、焼結助剤の量が同じでも、融着時の温度等の条件で変化する。   The rare earth element contained in the coating is obviously a source of a sintering aid rare earth element compound. And even if the amount of the sintering aid is the same, the amount of the rare earth element that melts out varies depending on conditions such as the temperature during fusion.

融着被膜への希土類元素の溶け出し量が0.1重量%以上になると、融着した被膜の密着性が高くなると共に被膜の焼結密度も上がり、被膜の強度も強くなり、そして被膜の電気抵抗値も低下して、電熱被膜として好適な被膜が得られる。   When the amount of the rare earth element dissolved into the fused film is 0.1% by weight or more, the adhesion of the fused film increases, the sintered density of the film increases, the strength of the film increases, The electric resistance value also decreases, and a film suitable as an electrothermal film can be obtained.

被膜の融着にあたって、焼結助剤含有量が酸化物換算で1重量%以上の窒化アルミニウムセラミックス基材の表面に、融着後のB含有量が0.2重量%以上の所定の目標値になるように、予め目標値よりもBを高めに配合したSi合金の原料粉末に樹脂バインダーを混ぜて作ったペーストを塗布あるいは印刷、乾燥して、ペーストの揮発成分を揮散させた後、真空中、あるいは不活性雰囲気中で、Si合金の原料粉末ペーストの固相線温度以上に加熱して溶融すると、溶融した被膜はセラミックス基材に融着する。   When the coating is fused, a predetermined target value of 0.2% by weight or more on the surface of an aluminum nitride ceramic substrate having a sintering aid content of 1% by weight or more in terms of oxide is obtained. After applying or printing and drying a paste made by mixing a resin binder with Si alloy raw material powder pre-blended with B higher than the target value to evaporate the volatile components of the paste, vacuum When heated and melted above the solidus temperature of the Si alloy raw material powder paste in an inert atmosphere, the melted film is fused to the ceramic substrate.

被膜の融着は、固相線付近の温度から始まるが、固相線温度付近では融着はするが、被膜の接着強度、焼結密度も低く、ピンホール多く、機械的強度が弱く、希土類元素の溶け込み量も極めて僅かである。
温度上昇(固相線温度よりも)に伴って、被膜への希土類元素の溶け出し量は増加する。被膜の焼結密度も上昇、ピンホール減少、機械的強度アップする。
Film fusion starts at a temperature near the solidus, but fusion occurs near the solidus temperature, but the adhesion strength and sintering density of the film are low, there are many pinholes, and the mechanical strength is weak. The amount of elemental penetration is very small.
As the temperature rises (rather than the solidus temperature), the amount of rare earth element dissolved into the coating increases. The sintered density of the coating also increases, pinholes decrease, and mechanical strength increases.

希土類元素の溶け込み量0.1重量%以上で、実用的な電熱被膜が得られる。
溶け込み量0.1重量%以上を得るためには、合金の成分組成と温度と焼結密度と溶け込み量の関係について定量的な関係を把握しておくと、温度の制御で溶け込み量0.1重量%以上が確保できる。
A practical electrothermal coating can be obtained with a rare earth element penetration of 0.1 wt% or more.
In order to obtain a penetration amount of 0.1% by weight or more, it is necessary to grasp a quantitative relationship between the alloy composition, the temperature, the sintered density, and the penetration amount. More than wt% can be secured.

なおセラミックス基材から溶け出す成分ではなく、印刷皮膜に予め希土類元素の別の原料成分を配合して、融着皮膜の中に含まれる希土類元素量を高くすることは可能であるが、セラミックス基材から溶け出す希土類元素成分量が0.1重量未満の時は、皮膜の焼結密度、強度、共に低く、そして被膜の電気抵抗値も高く、電熱被膜として好適な被膜が得られない。つまり外から希土類元素の別の原料成分を添加して、みかけの希土類元素成分量だけを高くして好適な電熱皮膜は得られない。   It is possible to increase the amount of rare earth elements contained in the fused film by mixing other raw material elements of the rare earth element in advance in the printed film instead of the component that dissolves from the ceramic substrate. When the amount of the rare earth element component that dissolves from the material is less than 0.1 weight, both the sintered density and strength of the film are low, and the electric resistance value of the film is high, and a film suitable as an electrothermal film cannot be obtained. That is, a suitable electrothermal coating cannot be obtained by adding another raw material component of rare earth elements from the outside to increase only the apparent amount of rare earth elements.

希土類元素化合物の焼結助剤を酸化物換算で1重量%未満含む窒化アルミニウムセラミックス基材あるいは焼結助剤を含まない窒化アルミニウムセラミックス基材の表面に、0.2重量%以上のBを含み、焼結密度、強度に優れ電熱被膜として好適なSi合金電熱被膜を融着させるためには、下記の方法が有効である。すなわち、
融着に際して、まずセラミックス基材に0.2重量%未満のBを含むSi合金からなる電熱被膜の第一の層を融着させた後、次に、この融着層のBが0.2重量%以上になるように濃化処理を行うことで、焼結密度、強度に優れ、0.2重量%以上のBを含む電熱被膜が得られる。
この融着皮膜は、希土類元素化合物の焼結助剤が1重量%以上の窒化アルミニウムセラミックス基材を使用した場合と同等の優れた耐久性を示す。
The surface of an aluminum nitride ceramic base material containing less than 1% by weight of a rare earth element sintering aid in terms of oxide or 0.2% by weight or more of B is contained on the surface of the aluminum nitride ceramic base material not containing a sintering aid. In order to fuse a Si alloy electrothermal coating film excellent in sintering density and strength and suitable as an electrothermal coating film, the following method is effective. That is,
At the time of fusion, first, a first layer of an electrothermal coating made of a Si alloy containing less than 0.2% by weight of B is fused to a ceramic substrate, and then B of this fusion layer is 0.2. By performing the concentration treatment so as to be at least wt%, an electrothermal coating film having excellent sintered density and strength and containing 0.2 wt% or more of B can be obtained.
This fused film exhibits excellent durability equivalent to that obtained when an aluminum nitride ceramic base material having a sintering aid of a rare earth element compound of 1% by weight or more is used.

予め0.2重量%未満のBを含むSi合金からなる電熱被膜の第一の層を融着させた後、次に、この融着層のBが0.2重量%以上になるように濃化処理を行う方法は、焼結助剤を酸化物換算で1重量%以上含む窒化アルミニウムセラミックス基材の場合にも当然有効である。
焼結助剤を酸化物換算で1重量%以上含む窒化アルミニウムセラミックス基材の場合に適用すると、融着皮膜の健全性(ピンホール等)の改善に著効がある。
After the first layer of the electrothermal coating made of a Si alloy containing less than 0.2% by weight of B is fused in advance, the concentration of B is 0.2% by weight or more. Naturally, the method of performing the crystallization treatment is also effective in the case of an aluminum nitride ceramic substrate containing 1% by weight or more of a sintering aid in terms of oxide.
When applied to an aluminum nitride ceramic base material containing 1% by weight or more of a sintering aid in terms of oxide, it has a significant effect on improving the soundness (such as pinholes) of the fused film.

Bの濃化処理の方法には、上記第一の層の上に少なくとも一層あるいは複数層、Si合金の被膜を重ねて融着、融合させて、該第一の層と該重ねた層の融合層のB含有量が0.2重量%以上になるように、該重ねた層のB含有量を調整して融着させる方法が有効である。
複数層重ねて融合させる方法は、Bの濃化のみならず、融着皮膜の健全性(ピンホール等)の改善に著効がある。
なおB濃化の方法として、その他浸硼処理等、通常使用されている方法は有効に使用できる。
In the method of concentration treatment of B, at least one layer or a plurality of layers and a Si alloy film are stacked on the first layer and fused and fused to fuse the first layer and the stacked layer. A method of adjusting the B content of the stacked layers and fusing them so that the B content of the layer is 0.2% by weight or more is effective.
The method of fusing multiple layers is not only effective for B concentration but also for improving the soundness (such as pinholes) of the fused film.
In addition, as a method for concentrating B, other commonly used methods such as boron treatment can be used effectively.

本発明電熱皮膜の融着合金の成分組成は下記範囲が好適である。
すなわち、希土類元素化合物の焼結助剤を酸化物換算で1重量%以上含む窒化アルミニウムセラミックス基材を使用し、希土類元素成分は、セラミックス基材の焼結助剤の希土類元素化合物から溶出した量とする前提条件の基において、Siを主成分とし、A群の中から選択された一種あるいは二種以上の元素と、B群の中から選択された一種あるいは二種以上の元素と、C群の中の元素と、残余不純物成分からなる合金が好適である。
A群の元素:Fe,Ni,Co,Zr,Ti,Cr,Mo,W
B群の元素:Hf,Nb,Ta,V, Mn,Cu,Al,Ge
C群の元素:B,希土類元素
A群元素の成分範囲 :6〜65重量%
B群元素の成分範囲 :0〜10重量%
C群元素の成分範囲 :B≧0.2重量%,溶出希土類元素≧0.1重量%
The following composition is suitable for the component composition of the fusion alloy of the electrothermal coating of the present invention.
That is, an aluminum nitride ceramic base material containing 1% by weight or more of a sintering aid for the rare earth element compound in terms of oxide is used, and the amount of the rare earth element component eluted from the rare earth element compound of the sintering aid for the ceramic base material. In the group of preconditions, Si as a main component, one or more elements selected from Group A, one or more elements selected from Group B, and Group C An alloy composed of the elements in the above and the remaining impurity components is preferred.
Group A elements: Fe, Ni, Co, Zr, Ti, Cr, Mo, W
Group B elements: Hf, Nb, Ta, V, Mn, Cu, Al, Ge
Group C element: B, rare earth element Component range of Group A element: 6 to 65% by weight
Component range of group B elements: 0 to 10% by weight
Component range of group C element: B ≧ 0.2 wt%, eluted rare earth element ≧ 0.1 wt%

本発明電熱被膜の融着合金の組成は、耐久性の観点から、電熱被膜と窒化アルミニウム基材の線膨張係数の差の絶対値が、2.0×10−6以下になるように、最も好ましくは、1.5×10−6以下になるように、その成分組成を調整することが好ましい。下限未満、上限を越える範囲では、高温加熱後の抵抗変化が大きくなり、耐久性が短くなる。   From the viewpoint of durability, the composition of the fusion alloy of the electrothermal coating of the present invention is most preferably such that the absolute value of the difference in linear expansion coefficient between the electrothermal coating and the aluminum nitride base material is 2.0 × 10 −6 or less. Preferably, the component composition is adjusted so as to be 1.5 × 10 −6 or less. In the range below the lower limit and above the upper limit, the resistance change after high-temperature heating increases and the durability decreases.

A群元素は、A群の中から一種あるいは二種以上の元素を選択する。
A群元素がFe,Ni,Co,Zr,Ti,Crの場合、成分範囲は6〜28重量%が好適である。A群元素がMo,Wの場合、成分範囲は40〜65重量%が好適である。
上限を超えると、そして下限未満では、上記線膨張係数の差の絶対値の範囲を逸脱し、ヒーターの耐久性が短くなる。
As the group A element, one or more elements are selected from the group A.
When the group A element is Fe, Ni, Co, Zr, Ti, or Cr, the component range is preferably 6 to 28% by weight. When the group A element is Mo or W, the component range is preferably 40 to 65% by weight.
If it exceeds the upper limit and less than the lower limit, it deviates from the range of the absolute value of the difference in linear expansion coefficient, and the durability of the heater is shortened.

B群の元素は、必要に応じて任意に添加できる元素である。上限10%まで添加しても良い。C群は必須元素である。   The elements of group B are elements that can be optionally added as necessary. An upper limit of 10% may be added. Group C is an essential element.

焼結助剤としての希土類元素化合物とは、Y23、Yb23、Er23、Ce23、Ho23等の希土類酸化物や、その他Sc、Y、Er、Yb、Ce、Dy、Ho、Gd、Laなどを含む希土類元素化合物である。
また本発明に適用できるAlNセラミックスは、上記希土類化合物以外の成分としてCaO、SrOなどのアルカリ土類金属化合物、焼成温度低減化のために、必要に応じて、Li2Oなどのアルカリ金属やSiO2、Si34、SiCなどの珪素化合物、黒色化をはかるためにMo、W、V、Nb、Ta、Tiなどを含む金属及び金属化合物やカーボンを含んだものも用いることができる。
Rare earth element compounds as sintering aids include rare earth oxides such as Y 2 O 3 , Yb 2 O 3 , Er 2 O 3 , Ce 2 O 3 , Ho 2 O 3 , other Sc, Y, Er, It is a rare earth element compound containing Yb, Ce, Dy, Ho, Gd, La and the like.
In addition, AlN ceramics applicable to the present invention include alkaline earth metal compounds such as CaO and SrO as components other than the rare earth compounds, alkali metals such as Li 2 O and SiO 2 as necessary for reducing the firing temperature. 2 , silicon compounds such as Si 3 N 4 and SiC, metals containing Mo, W, V, Nb, Ta, Ti and the like to achieve blackening, and those containing metal compounds and carbon can also be used.

実施例によって本発明を説明する。
実施例1(抵抗変化の限界加熱温度とB含量の関係の確認テスト)
セラミックス基材:焼結助剤としてY2O3を5wt%含む窒化アルミニウム板(製造元:(株)トクヤマ)を使用した。
セラミックス基材の寸法:2インチ角×厚さ1mm
電熱回路被膜の印刷と融着
Si合金の原料粉末に、PVPのアルコール溶液を混ぜて印刷用のペーストを作製し、上記セラミックス基材の表面に、図1に示した電熱回路(回路幅:5mm)をスクリーン印刷し、乾燥後、真空中で加熱して、被膜をセラミックス基材に融着させた。融着した電熱被膜の厚さは50〜70μmであった。
The examples illustrate the invention.
Example 1 (Confirmation test of relationship between limit heating temperature of resistance change and B content)
Ceramic substrate: An aluminum nitride plate (manufacturer: Tokuyama Corporation) containing 5 wt% Y 2 O 3 as a sintering aid was used.
Dimensions of ceramic substrate: 2 inch square x 1 mm thickness
Printing and fusing of electrothermal circuit coatings
A PVP alcohol solution is mixed with the raw material powder of Si alloy to produce a paste for printing. On the surface of the ceramic substrate, the electric heating circuit (circuit width: 5 mm) shown in FIG. 1 is screen-printed and dried. The film was fused to the ceramic substrate by heating in vacuum. The thickness of the fused electrothermal coating was 50 to 70 μm.

通電加熱テスト
融着後、電熱回路両端の孔に耐熱鋼製ボルトを差し込んで耐熱鋼製リード線とつなぎ、回路に交流を通電して加熱した。
各成分組成の電熱回路被膜に対して、400〜850℃まで50℃刻みの各温度に加熱して、1時間保持後、常温まで放冷し、常温の電気抵抗値を測定して、B含量と抵抗変化が開始する加熱温度(50℃刻みの温度)の関係について調べた。昇温速度は、200℃/時間。
Electric heating test After fusion, heat-resistant steel bolts were inserted into holes at both ends of the electric heating circuit, connected to heat-resistant steel lead wires, and AC was applied to the circuit to heat it.
Heating to each temperature in increments of 50 ° C. to 400-850 ° C. for each component composition of the electric circuit film, holding for 1 hour, allowing to cool to room temperature, measuring the electrical resistance value at room temperature, And the heating temperature (temperature in increments of 50 ° C.) at which the resistance change starts was investigated. The heating rate is 200 ° C./hour.

電熱被膜の融着後の分析値と各温度に加熱後、常温抵抗値が変化し始める温度を表1に示す。なお電熱被膜の分析は湿式分析である。   Table 1 shows the analytical values after fusion of the electrothermal coating and the temperatures at which the room temperature resistance value starts to change after heating to each temperature. The analysis of the electrothermal coating is a wet analysis.

Figure 2008277285
Figure 2008277285

結果
テストの結果、電熱被膜の中のB含量が0.2wt%以上で抵抗変化の開始温度が800℃以上であった。
Results As a result of the test, the B content in the electrothermal coating was 0.2 wt% or more, and the onset temperature of the resistance change was 800 ° C. or more.

実施例2(焼結助剤量と融着性の関係のテスト)
セラミックス基材:セラミックス基材として、表2に示す焼結助剤の種類と量が異なる窒化アルミニウム板を使用した。
セラミックス基材の寸法:φ60mm×厚さ3mm
焼結助剤量の異なるセラミックス基材は、窒化アルミニウム粉末と希土類酸化物の粉末を所定量混合し、金型で成形した後、窒素雰囲気中、ホットプレスで焼成した。
Example 2 (Test of relationship between amount of sintering aid and fusing property)
Ceramic substrate: As the ceramic substrate, aluminum nitride plates having different types and amounts of sintering aids shown in Table 2 were used.
Dimensions of ceramic substrate: φ60mm x thickness 3mm
Ceramic substrates having different amounts of sintering aids were mixed with a predetermined amount of aluminum nitride powder and rare earth oxide powder, molded in a mold, and then fired in a nitrogen atmosphere by hot pressing.

被膜の印刷と融着
表2(セラミックス基材の焼結助剤の種類と量)に示す組成のSi合金の原料粉末のペーストに、PVPのアルコール溶液を混ぜて印刷用のペーストを作製し、上記セラミックス基材の表面に、全面ベタ塗りでスクリーン印刷し、乾燥後、10-5トールの真空中で加熱して、被膜をセラミックス基材に融着させた。
融着した電熱被膜の厚さは60〜80μmであった。
Printing and fusing of the film A paste for printing was prepared by mixing the PVP alcohol solution with the raw material powder of the Si alloy having the composition shown in Table 2 (type and amount of sintering aid for the ceramic substrate). The entire surface of the ceramic substrate was screen-printed with a solid coating, dried, and heated in a vacuum of 10 −5 torr to fuse the coating to the ceramic substrate.
The thickness of the fused electrothermal coating was 60 to 80 μm.

融着温度は、番号1〜8までは共に1300℃、9、10は1280℃、11、12は、1320℃である。
被膜のB量は、原料粉末のペーストに配合するB原料粉末の量を加減することにより調整した。なおBとY元素の分析は、湿式分析である。
The fusing temperature is 1300 ° C. for numbers 1 to 8, 9 is 1280 ° C., and 11 and 12 are 1320 ° C.
The B amount of the coating was adjusted by adjusting the amount of the B raw material powder blended in the raw material powder paste. The analysis of B and Y elements is a wet analysis.

被膜の密着性テスト
被膜にガムテープを貼り付けて引き剥がしテストを行った。
密着性テストの結果を表3に示す。
Film adhesion test A test was performed by applying a gum tape to the film and peeling it off.
The results of the adhesion test are shown in Table 3.

Figure 2008277285
Figure 2008277285

Figure 2008277285
Figure 2008277285

結果
以上の結果より、Bを0.2重量%以上含有するSi合金被膜を、希土類元素化合物(酸化物)を焼結助剤とする窒化アルミニウムセラミックス基材に融着させた時、焼結助剤量1%未満のセラミックス基材では、被膜が剥離、あるいは一部剥離した。
焼結助剤量1%以上のセラミックス基材では、被膜の剥離が無く、焼結助剤の希土類成分が0.1%以上、被膜に溶けこんでいた。
Results From the above results, when a Si alloy film containing 0.2% by weight or more of B was fused to an aluminum nitride ceramic base material using a rare earth element compound (oxide) as a sintering aid, sintering aid was obtained. In the ceramic base material having an agent amount of less than 1%, the coating film was peeled off or partly peeled off.
In the ceramic base material having a sintering aid amount of 1% or more, there was no peeling of the coating, and the rare earth component of the sintering aid was dissolved in the coating by 0.1% or more.

実施例3(融着温度と溶け出し量の関係のテスト)
セラミックス基材:実施例2の焼結助剤としてY2O3を5wt%含む窒化アルミニウム板を使用してSi合金の融着温度とYの溶け出し量について調べた。
Example 3 (Test of relationship between fusion temperature and leaching amount)
Ceramic substrate: Using an aluminum nitride plate containing 5 wt% of Y 2 O 3 as a sintering aid in Example 2, the fusion temperature of Si alloy and the amount of Y dissolved out were examined.

被膜の印刷と融着
表2に示す融着組成のSi合金の原料粉末のペーストに、PVPのアルコール溶液を混ぜて印刷用のペーストを作製し、上記セラミックス基材の表面に、全面ベタ塗りでスクリーン印刷し、乾燥後、10-5トールの真空中で加熱して、被膜をセラミックス基材に融着させた。融着した電熱被膜の厚さは60〜80μm。
結果を表4(希土類元素の溶け出し量と融着温度の関係)に示す。
なお皮膜のボイドは超音波顕微鏡で検査した。
Printing and fusing of film Coated PVP alcohol solution is mixed with paste of Si alloy raw material powder with the fusing composition shown in Table 2 to produce a printing paste. After screen printing and drying, the coating was fused to the ceramic substrate by heating in a vacuum of 10 -5 Torr. The thickness of the fused electrothermal coating is 60 to 80 μm.
The results are shown in Table 4 (relationship between the amount of rare earth element dissolved out and the fusing temperature).
The voids in the film were examined with an ultrasonic microscope.

Figure 2008277285
結果
Si−Ni系合金は、1200℃、1330℃、Si−Fe系合金は、1210℃、1310℃、上下いずれの温度でも被膜は融着したが、融着温度が低い時は、Yの溶け出し量が少なく、焼結不足で、ボイドが極めて多い被膜であった。
Figure 2008277285
result
The Si-Ni alloy was 1200 ° C, 1330 ° C, the Si-Fe alloy was 1210 ° C, 1310 ° C, and the film was fused at any of the upper and lower temperatures, but when the fusion temperature was low, Y melted out. It was a coating with a small amount, insufficient sintering, and a very large number of voids.

実施例4
工程数と融着皮膜の密着性、健全性の関係のテスト
セラミックス基材:
焼結助剤を含まない窒化アルミニウム板(製造元:古河電子(株))および実施例1の焼結助剤としてY2O3を5wt%含む窒化アルミニウム板(製造元:(株)トクヤマ)を使用して、Si合金の融着工程を2回に分けて行った時の融着電熱被膜の密着性、健全性について調べた。
Example 4
Test of the relationship between the number of processes and the adhesion and soundness of the fused film Ceramic substrate:
An aluminum nitride plate containing no sintering aid (manufacturer: Furukawa Electronics Co., Ltd.) and an aluminum nitride plate containing 5 wt% Y 2 O 3 (manufacturer: Tokuyama Corp.) as the sintering aid of Example 1 were used. Then, the adhesion and soundness of the fused electrothermal coating when the fusion process of the Si alloy was divided into two were investigated.

すなわち焼結助剤を含まない窒化アルミニウム板および焼結助剤としてY2O3を5wt%含む窒化アルミニウム板に対して、
最初の工程では、0.2重量%未満のBを含むSi合金からなる被膜の第一の層を融着させた後、二回目の工程で、0.2量%を越えるBを含むSi合金の被膜を第一の層の上に重ねて融着、融合させて、第一層、第二層融合後のB含有量が0.2重量%以上になるように調整した。
焼結助剤としてY2O3を5wt%含む窒化アルミニウム板に対しては融合後の電熱被膜の中に基材のYを0.1重量%以上に溶出させた。
なお第一層と第二層の被膜の重量割合は1:1である。
That is, for an aluminum nitride plate not containing a sintering aid and an aluminum nitride plate containing 5 wt% Y 2 O 3 as a sintering aid,
In the first step, the first layer of the coating made of the Si alloy containing less than 0.2% by weight of B is fused, and then in the second step, the Si alloy containing more than 0.2% by weight of B. The film was laminated on the first layer and fused and fused to adjust the B content after fusion of the first layer and the second layer to 0.2% by weight or more.
For an aluminum nitride plate containing 5 wt% of Y 2 O 3 as a sintering aid, Y of the base material was eluted to 0.1 wt% or more in the electrothermal coating after fusion.
The weight ratio between the first layer and the second layer is 1: 1.

被膜の印刷と融着
第一層被膜成分のSi合金の原料粉末のペーストに、PVPのアルコール溶液を混ぜて印刷用のペーストを作製し、上記セラミックス基材の表面に、全面ベタ塗りでスクリーン印刷し、乾燥後、10-5トールの真空中で加熱して、第一層被膜をセラミックス基材に融着させた後、再び第二層被膜成分のSi合金の原料粉末ペーストを上記第一層の被膜表面に、全面ベタ塗りでスクリーン印刷し、乾燥後、10-5トールの真空中で加熱して、第二層被膜を溶かして、第一、第二層を融合させてセラミックス基材に融着させた。
皮膜の密着性は、被膜にガムテープを貼り付けて引き剥がしテストで調べた。
皮膜の健全性(ボイド)は超音波顕微鏡で調べた。
融着した電熱被膜の厚さは100〜120μm。
結果(工程数と融着皮膜の密着性、健全性の関係)を表5、表6に示す。
表5は、焼結助剤を含まない窒化アルミニウム板についての結果、表6は焼結助剤としてY2O3を5wt%含む窒化アルミニウム板についての結果である。
Printing and fusing of the coating The PVP alcohol solution is mixed with the paste of the Si alloy raw material powder of the first layer coating material to produce a printing paste, and the entire surface of the ceramic substrate is coated with a solid surface. After drying, heating in a vacuum of 10 -5 Torr to fuse the first layer coating to the ceramic substrate, the second layer coating component Si alloy raw material powder paste is again added to the first layer The entire surface of the film is screen-printed with a solid coating, dried, and heated in a vacuum of 10 -5 torr to dissolve the second layer film and fuse the first and second layers into a ceramic substrate. Fused.
The adhesion of the film was examined by peeling off a gum tape applied to the film.
The soundness (void) of the film was examined with an ultrasonic microscope.
The thickness of the fused electrothermal coating is 100 to 120 μm.
Tables 5 and 6 show the results (relationship between the number of steps and the adhesion and soundness of the fused film).
Table 5 shows the results for an aluminum nitride plate containing no sintering aid, and Table 6 shows the results for an aluminum nitride plate containing 5 wt% Y 2 O 3 as a sintering aid.

Figure 2008277285
結果
焼結助剤を含まない窒化アルミニウム板でも、密着強度が大で、ボイドの少ない健全皮膜が融着できることを確認できた。
Figure 2008277285
Results Even with an aluminum nitride plate containing no sintering aid, it was confirmed that a sound coating with high adhesion strength and few voids could be fused.

Figure 2008277285
結果
Y2O3を5wt%含む窒化アルミニウム板では、融着工程を2回に分け、併せてYが十分に溶け出した被膜は、密着性良好で、ボイドは極めて少なかった。
Figure 2008277285
result
In the aluminum nitride plate containing 5 wt% of Y 2 O 3 , the fusion process was divided into two, and the film in which Y was sufficiently dissolved had good adhesion and extremely few voids.

半導体を高温(800℃以上)で加熱する窒化アルミニウム面状発熱体に好適に
使用でき、半導体加熱用途に多くの需要が見込める。
It can be suitably used for an aluminum nitride planar heating element that heats a semiconductor at a high temperature (800 ° C. or higher), and many demands can be expected for semiconductor heating applications.

図1は実施例の電熱回路被膜の説明図である。FIG. 1 is an explanatory view of an electric heating circuit film of an example.

Claims (6)

希土類元素化合物の焼結助剤を酸化物換算で1重量%以上含む窒化アルミニウムセラミックス基材の表面に、0.2重量%以上のBを含むSi合金からなる電熱被膜が融着した構造の電熱被膜の融着体であって、該被膜中に、該セラミックス基材の焼結助剤の希土類元素化合物を供給源とする希土類元素が0.1重量%以上含まれてなることを特徴とする電熱被膜融着体。 Electric heat having a structure in which an electrothermal coating composed of a Si alloy containing 0.2% by weight or more of B is fused to the surface of an aluminum nitride ceramic base material containing 1% by weight or more of a sintering aid for a rare earth element compound. A fusion-bonded body of a film, characterized in that the film contains 0.1% by weight or more of a rare earth element using a rare earth element compound as a source of sintering aid for the ceramic substrate. Electrothermal film fusion product. 0.2重量%以上のBを含むSi合金からなる電熱被膜を窒化アルミニウムセラミックス基材の表面に融着させるに際して、該基材として希土類元素化合物の焼結助剤を酸化物換算で1重量%以上含む窒化アルミニウムセラミックスを使用し、かつ該電熱被膜の中に、該基材の希土類元素化合物を供給源する希土類元素成分を該被膜の0.1重量%以上溶出させることを特徴とする電熱被膜融着方法。 When an electrothermal coating composed of a Si alloy containing 0.2% by weight or more of B is fused to the surface of an aluminum nitride ceramic substrate, a sintering aid for a rare earth element compound is used as the substrate in an amount of 1% by weight in terms of oxide. An electrothermal coating characterized by using the aluminum nitride ceramic containing the above and eluting a rare earth element component supplying the rare earth element compound of the base material in an amount of 0.1% by weight or more of the coating in the electrothermal coating. Fusion method. 上記電熱皮膜を窒化アルミニウムセラミックス基材の表面に融着させるに際して、
該基材に0.2重量%未満のBを含むSi合金からなる電熱被膜の第一の層を融着させた後、該融着層のBが0.2重量%以上になるように濃化処理を行うことを特徴とする請求項2に記載の電熱被膜融着方法。
When fusing the electrothermal coating to the surface of the aluminum nitride ceramic substrate,
After fusing the first layer of the electrothermal coating made of a Si alloy containing less than 0.2% by weight of B to the substrate, it is concentrated so that the B of the fusion layer is 0.2% by weight or more. The electrothermal film fusion method according to claim 2, wherein the heat treatment is performed.
希土類元素化合物の焼結助剤を酸化物換算で1重量%未満含む窒化アルミニウムセラミックス基材あるいは焼結助剤を含まない窒化アルミニウムセラミックス基材の表面に、0.2重量%以上のBを含むSi合金からなる電熱被膜を融着させるに際して、該基材に0.2重量%未満のBを含むSi合金からなる電熱被膜の第一の層を融着させた後、該融着層のBが0.2重量%以上になるように濃化処理を行うことを特徴とする電熱被膜融着方法。 The surface of an aluminum nitride ceramic base material containing less than 1% by weight of a rare earth element compound sintering aid in terms of oxide or an aluminum nitride ceramic base material containing no sintering aid contains 0.2% by weight or more of B. When the electrothermal coating made of Si alloy is fused, after the first layer of the electrothermal coating made of Si alloy containing less than 0.2% by weight of B is fused to the base material, An electrothermal coating fusing method characterized in that the concentration treatment is performed so as to be 0.2% by weight or more. 上記濃化処理の方法が、上記第一の層の上に少なくとも一層あるいは複数層、Si合金の被膜を重ねて融着、融合させて、該第一の層と該重ねた層の融合層のB含有量が0.2重量%以上になるように、該重ねた層のB含有量を調整して融着させる方法である請求項3〜4のいずれか1項に記載の電熱被膜融着方法。 The method of concentration treatment is to fuse at least one layer or a plurality of layers, a Si alloy film on the first layer, and fuse and fuse them to form a fusion layer of the first layer and the stacked layer. The electrothermal coating fusion according to any one of claims 3 to 4, which is a method of adjusting the B content of the layer so as to be fused so that the B content is 0.2 wt% or more. Method. 上記Si合金が、Siを主成分とし、A群の中から選択された一種あるいは二種以上の元素と、B群の中から選択された一種あるいは二種以上の元素と、C群の元素と、残余不純物成分からなる合金であることを特徴とする請求項1に記載の電熱被膜融着体。
A群の元素:Fe,Ni,Co,Zr,Ti,Cr,Mo,W
B群の元素:Hf,Nb,Ta,V, Mn,Cu,Al,Ge
C群の元素:B,希土類元素
A群元素の成分範囲 :6〜65重量%
B群元素の成分範囲 :0〜10重量%
C群元素の成分範囲 :B≧0.2重量%,希土類元素≧0.1重量%
The Si alloy contains Si as a main component, one or more elements selected from Group A, one or more elements selected from Group B, and elements of Group C. 2. The electrothermal film fusion product according to claim 1, wherein the electrothermal film fusion product is an alloy composed of residual impurity components.
Group A elements: Fe, Ni, Co, Zr, Ti, Cr, Mo, W
Group B elements: Hf, Nb, Ta, V, Mn, Cu, Al, Ge
Group C element: B, rare earth element Component range of Group A element: 6 to 65% by weight
Component range of group B elements: 0 to 10% by weight
Component range of group C elements: B ≧ 0.2 wt%, rare earth elements ≧ 0.1 wt%
JP2008089063A 2007-04-05 2008-03-31 Electrothermal coating fused body, and its fusing method Withdrawn JP2008277285A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008089063A JP2008277285A (en) 2007-04-05 2008-03-31 Electrothermal coating fused body, and its fusing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007099311 2007-04-05
JP2008089063A JP2008277285A (en) 2007-04-05 2008-03-31 Electrothermal coating fused body, and its fusing method

Publications (1)

Publication Number Publication Date
JP2008277285A true JP2008277285A (en) 2008-11-13

Family

ID=40054965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008089063A Withdrawn JP2008277285A (en) 2007-04-05 2008-03-31 Electrothermal coating fused body, and its fusing method

Country Status (1)

Country Link
JP (1) JP2008277285A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102300347A (en) * 2011-07-13 2011-12-28 邓湘凌 Silicon nitride composite heat-generation body and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102300347A (en) * 2011-07-13 2011-12-28 邓湘凌 Silicon nitride composite heat-generation body and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP7219810B2 (en) Silicon nitride substrate, silicon nitride-metal composite, silicon nitride circuit substrate, and semiconductor package
EP0899986A1 (en) Electric heating element and electrostatic chuck using the same
WO2001062686A1 (en) Aluminum nitride sintered compact, ceramic substrate, ceramic heater and electrostatic chuck
JP3933174B2 (en) Heater unit and device equipped with the same
JP2005317749A (en) Holding body for semiconductor manufacturing apparatus and semiconductor manufacturing apparatus loaded therewith
JP5644161B2 (en) Electrostatic chuck for holding semiconductor and method for manufacturing the same
JP2008277285A (en) Electrothermal coating fused body, and its fusing method
JP2003034585A (en) Joint body of nitride-based ceramic member and metal member, and nitride-based ceramic circuit board using the same
CN112087829B (en) Surface type heating element and manufacturing method
JP3526710B2 (en) Circuit board manufacturing method
JPH11251039A (en) Aluminum nitride ceramic heater
JP7434420B2 (en) Method for producing metal-ceramic substrates
JP2007186382A (en) Aluminum nitride sintered compact
JP7449981B2 (en) Method and furnace for producing metal-ceramic substrates
CN112087826B (en) Surface type heating element and method for manufacturing the same
JP2537606B2 (en) Ceramic Heater
JP2014187252A (en) Joining material, joining structure and process of manufacturing the same, and semiconductor module
KR102239330B1 (en) The surface heater contaning controlled oxide layer and the manufacturing method for the same
JP2008044846A (en) Aluminum nitride sintered compact and electrostatic chuck using the same
JP2007112635A (en) Aluminum nitride sintered compact
JP4199604B2 (en) Aluminum nitride ceramic heater
JP2023094609A (en) Manufacturing method of ceramic susceptor
Roth et al. Improving the bond strength of sinter joints by modifying the DBC without noble finishes and modified silver sinter pastes
JP5641967B2 (en) Aluminum nitride sintered body and electrostatic chuck using the same
JP2007013210A (en) Method for manufacturing ceramic substrate

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090609

A621 Written request for application examination

Effective date: 20090609

Free format text: JAPANESE INTERMEDIATE CODE: A621

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090609

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20111004