JP2008275556A - Ultrasonic flow meter - Google Patents

Ultrasonic flow meter Download PDF

Info

Publication number
JP2008275556A
JP2008275556A JP2007122413A JP2007122413A JP2008275556A JP 2008275556 A JP2008275556 A JP 2008275556A JP 2007122413 A JP2007122413 A JP 2007122413A JP 2007122413 A JP2007122413 A JP 2007122413A JP 2008275556 A JP2008275556 A JP 2008275556A
Authority
JP
Japan
Prior art keywords
ultrasonic
rod
tube
fluid
transmitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007122413A
Other languages
Japanese (ja)
Inventor
Hidekazu Murakami
英一 村上
Junichi Kamijo
純一 上條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RALLY MASTER KK
Tokyo Keiso Co Ltd
Original Assignee
RALLY MASTER KK
Tokyo Keiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RALLY MASTER KK, Tokyo Keiso Co Ltd filed Critical RALLY MASTER KK
Priority to JP2007122413A priority Critical patent/JP2008275556A/en
Publication of JP2008275556A publication Critical patent/JP2008275556A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable an ultrasonic reflecting surface to be arranged simply in fluid, in order to realize good measurement precision. <P>SOLUTION: Two bars 12 are inserted into a flow channel tube 11 in a direction perpendicular to the tube axis. Heads of the bars 12 are obliquely cut out at 45 degrees, and these tilted reflecting surfaces 13 are disposed so as to face opposite directions mutually. Furthermore, flat surfaces 14 are formed so as to face each other at the heads of the bars 12. Ultrasonic transducers 16 are attached to outer edges of the bars 12 positioned on the outside of the tube 11, respectively. Ultrasonic beams B are transmitted and received by the two ultrasonic transducers 16 alternately and repeatedly. The ultrasonic beam B transmitted by the upstream-side ultrasonic transducer 16a is projected into the fluid through the bar 12a, the tilted reflecting surface 13a and the flat surface 14a, propagates through a prescribed distance between the flat surfaces 14 and reaches the downstream-side ultrasonic transducer 16b after passing through the flat surface 14b, the tilted reflecting surface 13b and the bar 12b. The ultrasonic beam B transmitted by the ultrasonic transducer 16b reaches the ultrasonic transducer 16a after passing through the reverse path. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、管体内の流体中に超音波反射面を備えた超音波流量計に関するものである。   The present invention relates to an ultrasonic flowmeter provided with an ultrasonic reflection surface in a fluid in a tubular body.

従来から時間差方式の超音波流量計においては、一般に図9に示すような管体1の外側の流れに沿った上流側、下流側位置に超音波送受波器2、3を設置している。これらの超音波送受波器2、3間で交互に超音波ビームBを発信、受信して、上流側から下流側への管体1の内壁で反射する超音波ビームBの伝播と、下流側から上流側への同様の超音波ビームBの伝播とにより生ずる時間差から、管体1内を流れる流体の流速及び流量を求めている。   Conventionally, in a time difference type ultrasonic flowmeter, ultrasonic transducers 2 and 3 are generally installed at upstream and downstream positions along the flow outside the tube 1 as shown in FIG. The ultrasonic beam B is transmitted and received alternately between the ultrasonic transducers 2 and 3, and the propagation of the ultrasonic beam B reflected from the inner wall of the tubular body 1 from the upstream side to the downstream side, and the downstream side From the time difference caused by the propagation of the same ultrasonic beam B from the upstream side to the upstream side, the flow velocity and flow rate of the fluid flowing in the tube body 1 are obtained.

しかし、超音波ビームBが管体1から液体中に進むとき、及び流体中から管体1内に進むときに屈折が生ずる。更には、このときの屈折は液体の密度、粘度、温度などの動粘度により屈折角に変化が生じ、測定に不具合をもたらす。   However, refraction occurs when the ultrasonic beam B travels from the tube 1 into the liquid and from the fluid into the tube 1. Furthermore, the refraction at this time causes a change in the refraction angle due to the kinematic viscosity such as the density, viscosity, temperature, etc. of the liquid, resulting in a measurement failure.

例えば、流体が水の場合に、例えば温度が1℃と99℃では動粘度が大きく異なって屈折角が変化し、超音波送受波器2、3の位置を移動させないと十分な信号を得ることができない。   For example, when the fluid is water, for example, when the temperature is 1 ° C. and 99 ° C., the kinematic viscosity is greatly different and the refraction angle changes, and a sufficient signal can be obtained unless the positions of the ultrasonic transducers 2 and 3 are moved. I can't.

そこで、図10に示すように超音波送受波器2、3に角度を持たせて直線で結ぶようにすれば、この点については解決されるが、管体1を斜めに正確に加工し、防水対策を行うことは極めて困難である。   Therefore, as shown in FIG. 10, if the ultrasonic transducers 2 and 3 are connected with a straight line with an angle, this point can be solved, but the tubular body 1 is accurately processed obliquely, It is extremely difficult to take waterproof measures.

このような問題に対応するための1つの方策として、特許文献1の手段が知られている。この特許文献1によれば、図11に示すように管体4中に一対の金属製の反射体5、6を吊り下げ、超音波送受波器7から発生した超音波ビームBを管体4内に導入して反射体5で反射して管軸方向に向け、再び相手側の反射体6で受け、相手側の超音波送受波器8に導くようになっている。超音波送受波器8で発生した超音波ビームBも逆の経路を経て超音波送受波器7に至る。   As one measure for dealing with such a problem, the means of Patent Document 1 is known. According to this Patent Document 1, as shown in FIG. 11, a pair of metal reflectors 5 and 6 are suspended in a tubular body 4, and an ultrasonic beam B generated from an ultrasonic transducer 7 is suspended from the tubular body 4. It is introduced into the interior, reflected by the reflector 5 and directed in the tube axis direction, received again by the counterpart reflector 6 and guided to the counterpart ultrasonic transducer 8. The ultrasonic beam B generated by the ultrasonic transducer 8 also reaches the ultrasonic transducer 7 via the reverse path.

特表2004−526127号公報JP-T-2004-526127

しかし、上述の特許文献1においては、管体1内に超音波ビームBを直角に進入させるため、管体1と流体間での屈折角が生ずることはないが、次のような問題がある。   However, in the above-mentioned Patent Document 1, since the ultrasonic beam B enters the tube 1 at a right angle, there is no refraction angle between the tube 1 and the fluid, but there are the following problems. .

(1)管体1と反射体5、管体1と反射体6との間の超音波伝播経路において、超音波ビームBが流体の流速により偏向され、超音波ビームBが効率的に相手側の超音波送受波器7、8に到達せず、S/Nが大きくなり誤差が介入し易い。
(2)管体1中に吊り下げた反射体5、6が動き易く、超音波ビームBの伝達距離が変化し易い。
(3)管体1への反射体5、6の取り付け作業が容易ではない。
(1) In the ultrasonic wave propagation path between the tube body 1 and the reflector 5, and between the tube body 1 and the reflector 6, the ultrasonic beam B is deflected by the flow velocity of the fluid, and the ultrasonic beam B is efficiently transmitted to the other side. The ultrasonic transducers 7 and 8 are not reached, the S / N becomes large, and an error is likely to intervene.
(2) The reflectors 5 and 6 suspended in the tube body 1 are easy to move, and the transmission distance of the ultrasonic beam B is likely to change.
(3) It is not easy to attach the reflectors 5 and 6 to the tube body 1.

本発明の目的は、上述の課題を解消し、簡易に流体中に超音波反射面を配置でき、良好な測定精度が得られる超音波流量計を提供することにある。   An object of the present invention is to provide an ultrasonic flowmeter that solves the above-described problems and that can easily arrange an ultrasonic reflection surface in a fluid and that can obtain good measurement accuracy.

上記目的を達成するための本発明に係る超音波流量計の技術的特徴は、流路用管体を流れる流体の流量を測定する超音波流量計において、前記管体内に一対の超音波伝播用の棒状体を管軸方向に間隔をおいてかつ管軸方向と直交する方向に挿入し、前記管体内の前記棒状体の先端の前記棒状体同士の対向する側の反対側にそれぞれ傾斜反射面を形成すると共に、前記棒状体の前記管体外の外端部にそれぞれ超音波送受波器を取り付け、前記超音波送受波器により超音波ビームの発信、受信を交互に繰り返し、前記超音波ビームを前記一方の棒状体、前記傾斜反射面から、前記流体、相手側傾斜反射面、相手側棒状体を経て相手側の前記超音波送受波器に伝達することにある。   In order to achieve the above object, the technical feature of the ultrasonic flowmeter according to the present invention is that an ultrasonic flowmeter for measuring a flow rate of a fluid flowing through a flow path tube body is used for a pair of ultrasonic wave propagation in the tube body. Are inserted in a direction perpendicular to the tube axis direction at intervals in the tube axis direction, and inclined reflecting surfaces are respectively provided on the opposite sides of the ends of the rod bodies in the tube body to the opposite sides of the rod bodies. And an ultrasonic transducer is attached to each outer end of the rod-shaped body outside the tubular body, and the ultrasonic beam is alternately transmitted and received by the ultrasonic transducer, and the ultrasonic beam is It is to be transmitted from the one rod-like body and the inclined reflection surface to the ultrasonic transducer on the other side via the fluid, the other-side inclined reflection surface and the other-side rod-like body.

本発明に係る超音波流量計によれば、取り付けが容易で流量を正確に計測することができる。   According to the ultrasonic flowmeter of the present invention, it is easy to mount and the flow rate can be accurately measured.

本発明を図1〜図5に図示の実施例に基づいて詳細に説明する。
図1は実施例における超音波流量計の構成図を示しており、例えば内径20mmの流路用管体11内に、例えばPPSなどの合成樹脂材料から成り、超音波ビーム伝播用の例えば直径7mmの丸棒状の2本の棒状体12a、12bが、その先端を管径の1/3程度の位置にして挿入されている。棒状体12a、12bの挿入方向は、管軸Oと直交する平面内において、管軸Oに向けて挿入され、棒状体12a、12b同士の管軸方向の間隔は例えば80mmとされている。
The present invention will be described in detail based on the embodiment shown in FIGS.
FIG. 1 shows a configuration diagram of an ultrasonic flowmeter according to the embodiment. For example, a flow tube 11 having an inner diameter of 20 mm is made of a synthetic resin material such as PPS and has a diameter of 7 mm for ultrasonic beam propagation. Two rod-like bodies 12a and 12b having a round bar shape are inserted with their tips at a position about 1/3 of the tube diameter. The insertion direction of the rod-shaped bodies 12a and 12b is inserted toward the tube axis O in a plane orthogonal to the tube axis O, and the interval between the rod-shaped bodies 12a and 12b in the tube axis direction is, for example, 80 mm.

図2、図3に示すように、棒状体12a、12bの先端の対向する反対側には、斜め45度に切削された傾斜反射面13a、13bが形成され、これらの傾斜反射面13a、13bは互いに相反する方向に向けられている。更に、棒状体12a、12bの先端には、管軸方向と直交する平面14a、14bが互いに対向して形成されている。この平面14a、14bは棒状体12a、12bに段差が生じないように、棒状体12a、12bの中間部から滑らかな曲面を経て平面状に切削されている。   As shown in FIGS. 2 and 3, inclined reflecting surfaces 13 a and 13 b cut at an angle of 45 degrees are formed on the opposite sides of the ends of the rod-like bodies 12 a and 12 b, and these inclined reflecting surfaces 13 a and 13 b are formed. Are oriented in opposite directions. Furthermore, flat surfaces 14a and 14b orthogonal to the tube axis direction are formed at the tips of the rod-shaped bodies 12a and 12b so as to face each other. The flat surfaces 14a and 14b are cut into a flat shape through a smooth curved surface from an intermediate portion of the rod-like bodies 12a and 12b so that no step is generated in the rod-like bodies 12a and 12b.

棒状体12a、12bの管体11の外部に位置する外端部15a、15bには、それぞれ超音波送受波器16a、16bが取り付けられ、これらの超音波送受波器16a、16bには図示しない超音波発信回路が接続されていると共に、超音波送受波器16a、16bの出力は演算制御手段17に接続され、演算制御手段17の出力は表示手段18に接続されている。   Ultrasonic transducers 16a and 16b are respectively attached to the outer ends 15a and 15b of the rod-shaped bodies 12a and 12b located outside the tubular body 11, and these ultrasonic transducers 16a and 16b are not shown. An ultrasonic transmission circuit is connected, the outputs of the ultrasonic transducers 16 a and 16 b are connected to the calculation control means 17, and the output of the calculation control means 17 is connected to the display means 18.

流量測定に際しては、超音波送受波器16a、16bにおいて、交互に超音波ビームBを繰り返して発信かつ受信する。上流側の超音波送受波器16aから発信された超音波ビームBは棒状体12a内を伝播して先端の傾斜反射面13aで管軸方向に反射され、平面14aを経て流体中に出射される。超音波ビームは平面14a、14b間の所定距離の流体中を通過し、相手側の平面14b、傾斜反射面13bを経て棒状体12bを進行し、下流側の超音波送受波器16bに至る。下流側の超音波送受波器16bからの超音波ビームBは、逆の経路を経て上流側の超音波送受波器16aに至ることになる。   When measuring the flow rate, the ultrasonic transducers 16a and 16b repeatedly transmit and receive the ultrasonic beam B alternately. The ultrasonic beam B transmitted from the upstream ultrasonic transducer 16a propagates through the rod-like body 12a, is reflected in the tube axis direction by the inclined reflecting surface 13a at the tip, and is emitted into the fluid through the flat surface 14a. . The ultrasonic beam passes through the fluid of a predetermined distance between the flat surfaces 14a and 14b, travels through the rod-like body 12b via the mating flat surface 14b and the inclined reflecting surface 13b, and reaches the ultrasonic transducer 16b on the downstream side. The ultrasonic beam B from the downstream ultrasonic transducer 16b reaches the upstream ultrasonic transducer 16a through the reverse path.

超音波ビームBが棒状体12a、12bの平面14a、14b間を通過する際には流速の影響を受け、上流側から下流側に到達するまでの時間と、下流側から上流側に到達する時間が異なり、伝播時間差を演算制御手段17で測定する。この伝播時間差により、演算制御手段17において公知の方法により流量値を算出し、表示手段18に表示又は他の回路に出力する。   When the ultrasonic beam B passes between the flat surfaces 14a and 14b of the rod-like bodies 12a and 12b, it is affected by the flow velocity, and it takes time to reach the downstream side from the upstream side and time to reach the upstream side from the downstream side. Are different, and the propagation time difference is measured by the arithmetic control means 17. Based on this propagation time difference, the calculation control means 17 calculates the flow rate value by a known method and displays it on the display means 18 or outputs it to another circuit.

このように本実施例においては、超音波ビームBの管体中に入射は棒状体12a、12bに伝達されることにより、屈折や流体の流速の影響を受けることなく、棒状体12a、12b間においてのみ流速に伝達するので、精度の良い測定が可能となる。また、棒状体12a、12bの管体11への取り付けも、管体11に管軸Oとの直交平面方向に孔を穿孔すればよいので、簡便に固定ができる。   As described above, in this embodiment, the incidence of the ultrasonic beam B into the tubular body is transmitted to the rod-shaped bodies 12a and 12b, so that there is no influence of refraction or fluid flow velocity between the rod-shaped bodies 12a and 12b. Therefore, accurate measurement is possible. Further, the rod-like bodies 12a and 12b can be attached to the tube body 11 simply by perforating holes in the tube body 11 in the direction perpendicular to the tube axis O.

上述の実施例においては、断面円形の棒状体12a、12bに平面14a、14bを形成しており、曲面、傾斜面を形成せざるを得ず、超音波ビームBがこれらの曲面等で乱反射し、ノイズ成分が大きくなることが考えられる。   In the above-described embodiment, the flat surfaces 14a and 14b are formed on the rod-like bodies 12a and 12b having a circular cross section, and it is necessary to form curved surfaces and inclined surfaces, and the ultrasonic beam B is irregularly reflected by these curved surfaces and the like. It is conceivable that the noise component becomes large.

この対策として、図4に示すように棒状体12a、12bに断面角型のものを使用してもよい。この場合に、上述のノイズ発生の問題は解決され、傾斜反射面13a、13bの面積を大きくすることができるが、流体に対する抵抗となり、流れを大きく乱すことにもなる。   As a countermeasure against this, as shown in FIG. 4, the rod-shaped bodies 12a and 12b may have a rectangular cross section. In this case, the above-mentioned problem of noise generation is solved, and the area of the inclined reflecting surfaces 13a and 13b can be increased, but it becomes a resistance to the fluid and the flow is greatly disturbed.

そこで、図5又は図6に示すように、棒状体12として断面半円状、半楕円状又は三角状のものを使用し、平面14は予め素材に作成されているものとし、棒状体12aの上流側の面、棒状体12bの下流側の面は円形、楕円形、又は三角形とすると、流れを大きく乱すことがないので好適である。   Therefore, as shown in FIG. 5 or FIG. 6, a rod-shaped body 12 having a semicircular, semi-elliptical or triangular shape is used, and the flat surface 14 is preliminarily made of a material. It is preferable that the upstream surface and the downstream surface of the rod-shaped body 12b be circular, elliptical, or triangular because the flow is not greatly disturbed.

更に、棒状体12a、12bの先端の平面14a、14bは球状面に加工してレンズ効果を持たせることができる。これにより、相手側の棒状体12a、12bの球状面に至る過程における超音波ビームBを任意の形状に収束することができ、効率的な伝播を行わせることが可能となる。また、傾斜反射面13a、13bを曲面として、レンズ効果を持たせてもよい。   Furthermore, the flat surfaces 14a and 14b at the tips of the rod-shaped bodies 12a and 12b can be processed into spherical surfaces to have a lens effect. Thereby, the ultrasonic beam B in the process of reaching the spherical surfaces of the counterpart rod-like bodies 12a and 12b can be converged into an arbitrary shape, and efficient propagation can be performed. Moreover, you may give the lens effect by making the inclined reflective surfaces 13a and 13b into a curved surface.

更には、棒状体12a、12bの管体11内への挿入深さは流体抵抗が生ずること、層流を考慮して、深く挿入しないことが望ましい。また、挿入方向は必ずしも管軸Oに向ける必要はなく、図7に示すように管軸Oに対して偏心していてもよい。   Furthermore, it is desirable not to insert the rod-like bodies 12a and 12b into the tube body 11 in consideration of laminar flow because of fluid resistance. Further, the insertion direction is not necessarily directed to the tube axis O, and may be eccentric with respect to the tube axis O as shown in FIG.

更に、棒状体12a、12bは管軸方向から見て平行に揃えることなく、図8に示すように管体11への挿入方向が異なっていても、傾斜反射面13a、13b同士が管軸方向で一致していれば支障はない。   Further, the rod-like bodies 12a and 12b are not aligned parallel to each other when viewed from the tube axis direction, and even if the insertion direction into the tube body 11 is different as shown in FIG. If they match, there is no problem.

また、棒状体12a、12bの材料は必ずしも合成樹脂とは限らず金属であってもよい。   The material of the rod-like bodies 12a and 12b is not necessarily a synthetic resin, and may be a metal.

実施例の構成図である。It is a block diagram of an Example. 棒状体の正面図である。It is a front view of a rod-shaped body. 棒状体の背面図である。It is a rear view of a rod-shaped body. 棒状体の変形例の斜視図である。It is a perspective view of the modification of a rod-shaped body. 棒状体の変形例の断面図である。It is sectional drawing of the modification of a rod-shaped body. 棒状体の変形例の断面図である。It is sectional drawing of the modification of a rod-shaped body. 棒状体の挿入方向の説明図である。It is explanatory drawing of the insertion direction of a rod-shaped body. 棒状体の挿入方向の説明図である。It is explanatory drawing of the insertion direction of a rod-shaped body. 従来例の構成図である。It is a block diagram of a prior art example. 従来例の構成図である。It is a block diagram of a prior art example. 従来例の構成図である。It is a block diagram of a prior art example.

符号の説明Explanation of symbols

11 流路用管体
12a、12b 棒状体
13a、13b 傾斜反射面
14a、14b 平面
15a、15b 外端部
16a、16b 超音波送受波器
17 演算制御手段
18 表示手段
DESCRIPTION OF SYMBOLS 11 Tube body 12a, 12b Rod-shaped body 13a, 13b Inclined reflection surface 14a, 14b Plane 15a, 15b Outer end part 16a, 16b Ultrasonic transducer 17 Calculation control means 18 Display means

Claims (4)

流路用管体を流れる流体の流量を測定する超音波流量計において、前記管体内に一対の超音波伝播用の棒状体を管軸方向に間隔をおいてかつ管軸方向と直交する方向に挿入し、前記管体内の前記棒状体の先端の前記棒状体同士の対向する側の反対側にそれぞれ傾斜反射面を形成すると共に、前記棒状体の前記管体外の外端部にそれぞれ超音波送受波器を取り付け、前記超音波送受波器により超音波ビームの発信、受信を交互に繰り返し、前記超音波ビームを前記一方の棒状体、前記傾斜反射面から、前記流体、相手側傾斜反射面、相手側棒状体を経て相手側の前記超音波送受波器に伝達することを特徴とする超音波流量計。   In the ultrasonic flowmeter for measuring the flow rate of the fluid flowing through the flow path tube body, a pair of ultrasonic propagation rods in the tube body are spaced in the tube axis direction and perpendicular to the tube axis direction. Inserted into the tube, and formed with an inclined reflecting surface on the opposite side of the ends of the rods facing each other at the ends of the rods, and transmitting and receiving ultrasonic waves to the outer ends of the rods outside the tube. Attach a wave device, and alternately repeat transmission and reception of an ultrasonic beam by the ultrasonic transducer, and the ultrasonic beam is transmitted from the one rod-shaped body, the inclined reflection surface, the fluid, the counterpart inclined reflection surface, An ultrasonic flowmeter, wherein the ultrasonic flowmeter is transmitted to the ultrasonic transducer on the other side via a counterpart rod-like body. 前記傾斜反射面で反射して前記流体中に前記超音波ビームが入出射する前記棒状体の部分は、前記管軸と直交する平面状としたことを特徴とする請求項1に記載の超音波流量計。   2. The ultrasonic wave according to claim 1, wherein a portion of the rod-like body that is reflected by the inclined reflecting surface and the ultrasonic beam enters and exits the fluid is formed in a planar shape perpendicular to the tube axis. Flowmeter. 前記傾斜反射面で反射して前記流体中に前記超音波ビームが入出射する前記棒状体の部分は、球面状としたことを特徴とする請求項1に記載の超音波流量計。   2. The ultrasonic flowmeter according to claim 1, wherein a portion of the rod-like body that is reflected by the inclined reflecting surface and the ultrasonic beam enters and exits the fluid is formed in a spherical shape. 前記棒状体は管軸に向けて挿入したことを特徴とする請求項1に記載の超音波流量計。   The ultrasonic flowmeter according to claim 1, wherein the rod-shaped body is inserted toward a tube axis.
JP2007122413A 2007-05-07 2007-05-07 Ultrasonic flow meter Pending JP2008275556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007122413A JP2008275556A (en) 2007-05-07 2007-05-07 Ultrasonic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007122413A JP2008275556A (en) 2007-05-07 2007-05-07 Ultrasonic flow meter

Publications (1)

Publication Number Publication Date
JP2008275556A true JP2008275556A (en) 2008-11-13

Family

ID=40053668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007122413A Pending JP2008275556A (en) 2007-05-07 2007-05-07 Ultrasonic flow meter

Country Status (1)

Country Link
JP (1) JP2008275556A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102288328A (en) * 2011-05-12 2011-12-21 铜陵德瑞曼电子科技有限公司 Ultrasonic heat meter base tube

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6140512A (en) * 1984-07-23 1986-02-26 ウエスチングハウス エレクトリック コーポレーション Measuring device for velocity of flow of fluid
JP2003194601A (en) * 2001-11-28 2003-07-09 Krohne Ag Instrument for measuring flow rate
JP2005037219A (en) * 2003-07-14 2005-02-10 Matsushita Electric Ind Co Ltd Ultrasonic transmitter/receiver and manufacturing method therefor
EP1775560A2 (en) * 2005-10-14 2007-04-18 Kamstrup A/S Flow straightener for an ultrasonic flow meter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6140512A (en) * 1984-07-23 1986-02-26 ウエスチングハウス エレクトリック コーポレーション Measuring device for velocity of flow of fluid
JP2003194601A (en) * 2001-11-28 2003-07-09 Krohne Ag Instrument for measuring flow rate
JP2005037219A (en) * 2003-07-14 2005-02-10 Matsushita Electric Ind Co Ltd Ultrasonic transmitter/receiver and manufacturing method therefor
EP1775560A2 (en) * 2005-10-14 2007-04-18 Kamstrup A/S Flow straightener for an ultrasonic flow meter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102288328A (en) * 2011-05-12 2011-12-21 铜陵德瑞曼电子科技有限公司 Ultrasonic heat meter base tube

Similar Documents

Publication Publication Date Title
EP3268701B1 (en) Hybrid sensing ultrasonic flowmeter
EP2513611B1 (en) Ultrasonic transducer, flow meter and method
KR101798716B1 (en) Ultrasonic flowmeter and method for measuring flow rate
CN103575378A (en) Ultrasonic wedge and method for determining the speed of sound in same
US10151610B2 (en) Flow rate measurement device and flow rate measurement method
JP2015232519A (en) Clamp-on type ultrasonic flow meter and flow measurement method
RU2637381C2 (en) Ultrasonic waveguide
RU2708904C1 (en) Method and system for ultrasonic overhead flow measurement and body for measurement
RU154441U1 (en) SENSOR FOR ULTRASONIC FLOW METER
EP3063508B1 (en) A flow meter for ultrasonically measuring the flow velocity of fluids
KR101097405B1 (en) Non-intrusive ultrasonic current meter
JP2008122317A (en) Ultrasonic flow meter for gas
JP2008275556A (en) Ultrasonic flow meter
JP2008122317A5 (en)
EP2657658B1 (en) Ultrasonic flow measurement system
RU2649421C1 (en) Ultrasonic flowmeter with metal sensor
RU2576551C1 (en) Sensor of ultrasonic flowmeter
JP4931550B2 (en) Ultrasonic flow meter
JP2008026213A (en) Ultrasonic flowmeter
JP2007033115A (en) Detection part of ultrasonic flowmeter
JP2008014833A (en) Ultrasonic flowmeter
RU2780963C1 (en) Ultrasonic gas flow meter
JP2009216496A (en) Ultrasonic flowmeter
JP2010181321A (en) Ultrasonic flowmeter
JP2008196924A (en) Ultrasonic flowmeter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120508