JP2008274328A - Ferritic stainless steel sheet excellent in stretch-flanging formability and producing method therefor - Google Patents

Ferritic stainless steel sheet excellent in stretch-flanging formability and producing method therefor Download PDF

Info

Publication number
JP2008274328A
JP2008274328A JP2007116844A JP2007116844A JP2008274328A JP 2008274328 A JP2008274328 A JP 2008274328A JP 2007116844 A JP2007116844 A JP 2007116844A JP 2007116844 A JP2007116844 A JP 2007116844A JP 2008274328 A JP2008274328 A JP 2008274328A
Authority
JP
Japan
Prior art keywords
stainless steel
ferritic stainless
steel sheet
stretch
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007116844A
Other languages
Japanese (ja)
Inventor
Yoshimasa Funakawa
義正 船川
Tomohiro Ishii
知洋 石井
Masayuki Ota
雅之 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007116844A priority Critical patent/JP2008274328A/en
Publication of JP2008274328A publication Critical patent/JP2008274328A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ferritic stainless steel sheet excellent in stretch-flanging formability and producing method therefor. <P>SOLUTION: The ferritic stainless steel sheet excellent in stretch-flanging formability, has the composition composed by mass% of ≤0.015% C, ≤0.15% Si, ≤0.3% Mn, ≤0.04% P, ≤0.005% S, ≤0.08% Al, ≤0.015% N, 20.5-23.5% Cr, 0.3-0.7% Cu, ≤0.5% Ni, 0.2-0.4% Ti, ≤0.015% Nb and the balance Fe with inevitable impurities, and has no portion locally existing ≥10 pieces of spheroidal TiS and the aspect ratio of the ferrite grains (average grain diameter in the rolling direction/average grain diameter in the sheet thickness direction) is ≤2. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、フェライト系ステンレス鋼板、特に、伸びフランジ加工性に優れたフェライト系ステンレス鋼板およびその製造方法に関する。   The present invention relates to a ferritic stainless steel sheet, and more particularly to a ferritic stainless steel sheet excellent in stretch flangeability and a method for producing the same.

フェライト系ステンレス鋼板は、意匠性や耐食性に優れているため、建築物、輸送機器、家庭電化製品、厨房器具など様々な用途に用いられている。このフェライト系ステンレス鋼板の特徴は優れた表面性状にあるため、これまではその加工性に対する要求は厳しいものでなかった。しかし、近年、フェライト系ステンレス鋼板の適用範囲が拡大し、複雑な形状に加工されるようになると、優れたプレス加工性、特に優れた伸びフランジ加工性が要求されるようになっている。   Ferritic stainless steel sheets are excellent in design and corrosion resistance, and are therefore used in various applications such as buildings, transportation equipment, home appliances, and kitchen appliances. Since the ferritic stainless steel sheet is characterized by excellent surface properties, the requirements for its workability have not been severe so far. However, in recent years, when the application range of the ferritic stainless steel sheet is expanded and processed into a complicated shape, excellent press workability, particularly excellent stretch flange workability is required.

そのため、特許文献1には、Cr:8〜50%でC、N量を0.020%以下に低め、熱間圧延後の箱焼鈍でCおよびNを析出物とし、高圧延率で冷間圧延してフェライト粒の結晶方位をランダム化することで、機械的性質の面内異方性を軽減した形状凍結性に優れたフェライト系ステンレス鋼帯が開示されている。また、特許文献2には、Cr:10〜35%でC、N量を0.02%以下に減じ、1μm以下のTiCやNb(CN)の析出物の分布密度を規定することで再結晶を促進させた加工性に優れたフェライト系ステンレス鋼が開示されている。さらに、特許文献3には、Cr:8〜35%でC、N量を0.1%以下とし、板厚と使用環境温度でCr、Mo、Si、Al量を規定した熱交換器用フェライト系ステンレス鋼材が開示されている。
特開2003-160846号公報 特開平9-263903号公報 特開2003-328088号公報
Therefore, in Patent Document 1, Cr: 8 to 50%, C and N content is reduced to 0.020% or less, C and N are formed into precipitates by box annealing after hot rolling, and cold rolling is performed at a high rolling rate. Thus, a ferritic stainless steel strip excellent in shape freezing property in which in-plane anisotropy of mechanical properties is reduced by randomizing the crystal orientation of ferrite grains is disclosed. In Patent Document 2, recrystallization is promoted by reducing the amount of C and N to 0.02% or less with Cr: 10 to 35% and by defining the distribution density of TiC and Nb (CN) precipitates of 1 μm or less. Ferritic stainless steel with excellent workability is disclosed. In addition, Patent Document 3 describes a ferritic stainless steel material for heat exchangers in which Cr: 8 to 35%, C and N contents are 0.1% or less, and the Cr, Mo, Si, and Al contents are defined by the plate thickness and operating environment temperature. Is disclosed.
Japanese Patent Laid-Open No. 2003-160846 JP 9-263903 A JP2003-328088

しかしながら、特許文献1に記載のフェライト系ステンレス鋼帯では、スプリングバック量は減り、形状凍結性には優れているが、優れた伸びフランジ加工性が得られない。また、特許文献2に記載のフェライト系ステンレス鋼では、C、Nの析出物を粗大化して軟質化を図り張出し性と深絞り性を向上させているが、優れた伸びフランジ加工性が得られない。さらに、特許文献3に記載のフェライト系ステンレス鋼材では、耐水蒸気酸化性は向上するが、伸びフランジ加工を行うと割れが生じ、複雑な形状のプレス加工には適さない。   However, in the ferritic stainless steel strip described in Patent Document 1, the amount of springback is reduced and the shape freezing property is excellent, but excellent stretch flangeability cannot be obtained. In addition, in the ferritic stainless steel described in Patent Document 2, the C and N precipitates are coarsened and softened to improve the stretchability and deep drawability, but excellent stretch flangeability is obtained. Absent. Furthermore, in the ferritic stainless steel material described in Patent Document 3, the steam oxidation resistance is improved, but cracking occurs when stretch flange processing is performed, which is not suitable for press processing of a complicated shape.

本発明は、このような事情に鑑みなされたもので、伸びフランジ加工性に優れたフェライト系ステンレス鋼板およびその製造方法を提供することを目的とする。   This invention is made | formed in view of such a situation, and it aims at providing the ferritic stainless steel plate excellent in stretch flange workability, and its manufacturing method.

本発明者らは、フェライト系ステンレス鋼板の伸びフランジ加工性について検討を行った結果、以下のことを見出した。
i) 一般の冷延鋼板では、伸びフランジ加工性は、フェライト粒界に沿って展伸したMnSを低減することで向上するが、フェライト系ステンレス鋼板のような高耐食性ステンレス鋼板ではこうしたMnSの析出が少ないにもかかわらず伸びフランジ加工性が劣る。
ii) 伸びフランジ加工の割れは、球状のTiSが10個以上集団で局在している部分より発生している。
iii) 伸びフランジ加工の割れは、フェライト粒のアスペクト比(圧延方向の平均粒径/板厚方向の平均粒径)が2を超えると、板面に平行に発生しやすくなる。
As a result of examining the stretch flangeability of the ferritic stainless steel sheet, the present inventors have found the following.
i) In general cold-rolled steel sheets, stretch flangeability is improved by reducing MnS expanded along the ferrite grain boundaries, but in high corrosion resistance stainless steel sheets such as ferritic stainless steel sheets, such MnS precipitation Despite the small amount, stretch flange workability is inferior.
ii) Cracks in stretch flange processing occur from the part where more than 10 spherical TiS are localized.
iii) If the aspect ratio of ferrite grains (average grain size in the rolling direction / average grain size in the plate thickness direction) of the ferrite grains exceeds 2, the cracks in the stretch flange process tend to occur in parallel to the plate surface.

本発明は、このような知見に基づきなされたもので、Mass%で、C≦0.015%、Si≦0.15%、Mn≦0.3%、P≦0.04%、S≦0.005%、Al≦0.08%、N≦0.015%、Cr:20.5〜23.5%、Cu:0.3〜0.7%、Ni≦0.5%、Ti:0.2〜0.4%、Nb≦0.015%を含み、残部がFeおよび不可避的不純物からなる組成を有し、球状のTiSが10個以上集団で局在している部分がなく、かつフェライト粒のアスペクト比が2以下であることを特徴とする伸びフランジ加工性に優れたフェライト系ステンレス鋼板を提供する。   The present invention has been made based on such knowledge, and in Mass%, C ≦ 0.015%, Si ≦ 0.15%, Mn ≦ 0.3%, P ≦ 0.04%, S ≦ 0.005%, Al ≦ 0.08%, N ≦ 0.015%, Cr: 20.5-23.5%, Cu: 0.3-0.7%, Ni ≦ 0.5%, Ti: 0.2-0.4%, Nb ≦ 0.015%, with the balance being Fe and inevitable impurities The present invention provides a ferritic stainless steel sheet excellent in stretch flangeability, characterized in that there is no portion where 10 or more spherical TiS are localized in a group and the aspect ratio of ferrite grains is 2 or less.

本発明のフェライト系ステンレス鋼板は、上記の組成を有する鋼を、1000℃以上の加熱温度に加熱し、800℃以上の仕上温度で熱間圧延し、400〜600℃の巻取温度で巻取り後、900℃以上で100秒以下の焼鈍を行い、酸洗し、冷間圧延後、850℃以上で再結晶焼鈍する方法によって製造できる。   The ferritic stainless steel sheet of the present invention is a steel having the above composition, heated to a heating temperature of 1000 ° C or higher, hot-rolled at a finishing temperature of 800 ° C or higher, and wound at a winding temperature of 400 to 600 ° C. Thereafter, it can be produced by annealing at 900 ° C. or more for 100 seconds or less, pickling, cold rolling, and then recrystallization annealing at 850 ° C. or more.

本発明により、伸びフランジ加工性に優れたフェライト系ステンレス鋼板を製造できるようになった。   According to the present invention, a ferritic stainless steel sheet excellent in stretch flangeability can be produced.

以下に、本発明の詳細について説明する。   Details of the present invention will be described below.

1)組成(以下の「%」は「mass%」を表す。)
C≦0.015%
CはCrと結合して固溶Crを減じるため、耐食性を劣化させる。また、Cr炭化物は塑性変形時に割れの起点となることから、伸びフランジ加工性も劣化させる。このため、C量は0.015%以下とする。
1) Composition ("%" below represents "mass%")
C ≦ 0.015%
C combines with Cr to reduce solute Cr, thus deteriorating corrosion resistance. In addition, since Cr carbide becomes a starting point of cracking during plastic deformation, stretch flange workability is also deteriorated. Therefore, the C content is 0.015% or less.

Si≦0.15%
Siは固溶強化元素であり、鋼を硬質低延性化する。このため、Si量は0.15%以下とする。
Si ≦ 0.15%
Si is a solid solution strengthening element and makes steel hard and low ductile. Therefore, the Si content is 0.15% or less.

Mn≦0.3%
Mnは耐食性を劣化させることから、その含有量を0.3%以下とする。
Mn ≦ 0.3%
Since Mn deteriorates the corrosion resistance, its content is made 0.3% or less.

P≦0.04%
Pは鋼を顕著に固溶強化して加工性を劣化させるとともに、粒界に偏析して粒界の脆性破壊を助長する。このため、P量は0.04%以下とする。
P ≦ 0.04%
P remarkably solidifies and strengthens steel to deteriorate workability, and segregates at the grain boundary to promote brittle fracture at the grain boundary. Therefore, the P content is 0.04% or less.

S≦0.005%
Sは球状のTiSを形成するが、従来の知見では球状のTiSは伸びフランジ加工性を劣化させないと考えられていた。しかし、上記ii)で説明したように、球状のTiSが10個以上集団で局在するような場合は、一般の冷延鋼板で認められる展伸したMnSと同様な作用をして、伸びフランジ加工性を劣化させる。こうした球状のTiSが集団で局在することを防ぐためには、少なくともS量を0.005%以下とする必要がある。
S ≦ 0.005%
S forms spherical TiS, but conventional knowledge suggests that spherical TiS does not degrade stretch flangeability. However, as explained in ii) above, when spherical TiS is localized in a group of 10 or more, it acts in the same way as expanded MnS found in general cold-rolled steel sheets, and stretch flanges. Degradation of workability. In order to prevent such spherical TiS from being localized in a group, it is necessary that at least S content is 0.005% or less.

Al≦0.08%
Alは脱酸剤であり、鋼の清浄度を向上させるには、その量を0.02%以上とすることが望ましい。しかし、Al量が0.08%を超えるとAlNとして析出し、粒成長を阻害して圧延方向に展伸したアスペクト比の大きいフェライト粒が生成して伸びフランジ加工性が劣化する。このため、Al量は0.08%以下、好ましくは0.05%以下とする。
Al ≦ 0.08%
Al is a deoxidizer, and the amount is preferably 0.02% or more in order to improve the cleanliness of steel. However, if the Al content exceeds 0.08%, it precipitates as AlN, and ferrite grains having a large aspect ratio that are stretched in the rolling direction by inhibiting grain growth are formed, and stretch flangeability deteriorates. Therefore, the Al content is 0.08% or less, preferably 0.05% or less.

N≦0.015%
Nは、C同様、Crと結合して固溶Crを減じるため、耐食性を劣化させる。また、Cr窒化物は塑性変形時に割れの起点となることから、伸びフランジ加工性も劣化させる。このため、N量は0.015%以下とする。
N ≦ 0.015%
N, like C, combines with Cr to reduce solute Cr, thus deteriorating corrosion resistance. In addition, since Cr nitride becomes a starting point of cracking during plastic deformation, stretch flange workability is also deteriorated. For this reason, the N content is 0.015% or less.

Cr:20.5〜23.5%
Crは鋼板表面に不動態皮膜を形成し、耐食性を向上させる元素である。以下に述べるCuと同時に含有されることで優れた耐食性が得られるが、それにはCr量を20.5%以上とする必要がある。また、Cr量が23.5%を超えると、Crによる再結晶の遅延が顕著となり、フェライト粒が圧延方向に伸びやすくなって伸びフランジ加工性が劣化する。したがって、Cr量は23.5%以下とする。
Cr: 20.5-23.5%
Cr is an element that forms a passive film on the steel sheet surface and improves corrosion resistance. Although excellent corrosion resistance can be obtained by containing together with Cu described below, the Cr content needs to be 20.5% or more. On the other hand, if the Cr content exceeds 23.5%, the recrystallization delay due to Cr becomes remarkable, and the ferrite grains tend to extend in the rolling direction and the stretch flangeability deteriorates. Therefore, the Cr content is 23.5% or less.

Cu:0.3〜0.7%
Cuは、Cr量が20.5%以上の場合、耐食性を向上させる働きがあるため、その量を0.3%以上とする。また、Cu量が0.7%を超えると、CuSが析出しやすくなって伸びフランジ加工性が劣化する。したがって、Cu量は0.7%以下、好ましくは0.5%以下とする。
Cu: 0.3-0.7%
Cu has a function of improving corrosion resistance when the Cr content is 20.5% or more, so the content is 0.3% or more. On the other hand, if the Cu content exceeds 0.7%, CuS is liable to precipitate and the stretch flangeability is deteriorated. Therefore, the Cu content is 0.7% or less, preferably 0.5% or less.

Ni≦0.5%
Niは耐食性を向上させる元素であるが、多量に含有されると鋼を硬質化して延性劣化の原因となる。したがって、Ni量は0.5%以下とする。
Ni ≦ 0.5%
Ni is an element that improves the corrosion resistance, but if contained in a large amount, Ni hardens the steel and causes ductility deterioration. Therefore, the Ni content is 0.5% or less.

Ti:0.2〜0.4%
Tiは、N、C、Sと結合して窒化物、炭化物、硫化物を形成する。Ti量が0.2%未満では、これらの元素を析出物として固定できず、結果としてCr炭化物が形成されて耐食性が劣化する。このため、Ti量は0.2%以上とする。また、Ti量が0.4%を超えると、TiNやTiSの核生成が促進されて微細析出するようになり、鋼が硬質低延性化してしまう。これにともない伸びフランジ加工性も劣化する。このため、Ti量は0.4%以下とする。
Ti: 0.2-0.4%
Ti combines with N, C, and S to form nitrides, carbides, and sulfides. If the Ti content is less than 0.2%, these elements cannot be fixed as precipitates, and as a result, Cr carbide is formed and the corrosion resistance deteriorates. For this reason, Ti amount is 0.2% or more. On the other hand, when the Ti content exceeds 0.4%, nucleation of TiN and TiS is promoted and fine precipitation occurs, and the steel becomes hard and ductile. As a result, stretch flange workability also deteriorates. For this reason, the Ti amount is set to 0.4% or less.

Nb≦0.015%
Nbは、CおよびNを析出物として固定するが、同時に再結晶も抑制するため、フェライト粒が圧延方向に伸びやすくなって伸びフランジ加工性が劣化する。このため、Nb量は0.015%以下とする。
Nb ≦ 0.015%
Nb fixes C and N as precipitates, but also suppresses recrystallization at the same time, so that ferrite grains easily extend in the rolling direction and stretch flangeability deteriorates. For this reason, the Nb content is 0.015% or less.

残部は、Feおよび不可避的不純物であるが、B≦0.001%、Mo≦0.1%、V≦0.05%、Mg≦0.01%、Ca≦0.01%の範囲内で含有されても、本発明の効果が得られる。   The balance is Fe and inevitable impurities, but the effect of the present invention is not limited even if it is contained within the range of B ≦ 0.001%, Mo ≦ 0.1%, V ≦ 0.05%, Mg ≦ 0.01%, Ca ≦ 0.01%. can get.

2)TiSの存在状態
TiSが10個以上一ヶ所に局在している場合は、フェライト粒界に局在するため、フェライト粒界にフィルム状に並んで存在する。このフェライト粒界にフィルム状に並んだTiSは、伸びフランジ加工時に亀裂の起点となり、伸びフランジ加工性を劣化させる。したがって、TiSが10個以上局在している部分が存在しないようにする必要がある。
2) TiS presence status
When 10 or more TiS are localized at one location, they are localized at the ferrite grain boundary, so they are arranged in a film at the ferrite grain boundary. TiS lined up in the form of a film at the ferrite grain boundary becomes a starting point of cracking during stretch flange processing and deteriorates stretch flangeability. Therefore, it is necessary to prevent a portion where 10 or more TiS are localized.

3)フェライト粒のアスペクト比
本発明のフェライト系ステンレス鋼板は、フェライト粒と析出物で構成されている。フェライト粒が圧延方向に展伸して圧延方向の平均粒径と板厚方向の平均粒径の比、すなわちアスペクト比が2を超えると析出物、特にTiSが板面に平行に並びやすくなり、また、塑性変形時の応力が板面に平行なフェライト粒界に集中するようになることから、板面に平行なフェライト粒界に存在する析出物、特にTiSを起点に破壊が起こりやすくなる。このため、伸びフランジ加工性が劣化するので、フェライト粒のアスペクト比は2以下にする必要がある。
3) Aspect ratio of ferrite grains The ferritic stainless steel sheet of the present invention is composed of ferrite grains and precipitates. The ratio of the average grain size in the rolling direction to the average grain size in the rolling direction and the average grain size in the plate thickness direction, that is, the aspect ratio exceeds 2, makes it easy for the precipitates, especially TiS, to be arranged in parallel to the plate surface. In addition, since stress during plastic deformation is concentrated on ferrite grain boundaries parallel to the plate surface, fractures are likely to occur starting from precipitates present at the ferrite grain boundaries parallel to the plate surface, particularly TiS. For this reason, since the stretch flangeability deteriorates, the aspect ratio of the ferrite grains must be 2 or less.

4)製造条件
熱間圧延に先立つ加熱温度:1000℃以上
熱間圧延に先立つ鋼(スラブ)の加熱温度が1000℃を下回ると圧延組織が熱延鋼板に残留し、冷間圧延、再結晶焼鈍後のフェライト粒が圧延方向に展伸しやすくなるので、伸びフランジ加工性が劣化する。したがって、加熱温度は1000℃以上とする。
4) Manufacturing conditions Heating temperature prior to hot rolling: 1000 ° C or more When the heating temperature of steel (slab) prior to hot rolling falls below 1000 ° C, the rolled structure remains on the hot-rolled steel sheet, cold rolling and recrystallization annealing Since the later ferrite grains easily expand in the rolling direction, stretch flange workability deteriorates. Therefore, the heating temperature is 1000 ° C. or higher.

熱間圧延の仕上温度:800℃以上
仕上温度が800℃を下回ると圧延荷重が高くなり、ロールが肌荒れする。このロールの肌荒れは鋼板に転写され、鋼板表面を粗くする。そのため、鋼板表面の凸部にあるCrが優先して酸化され、鋼板の耐食性を劣化させる。したがって、仕上温度は800℃以上、好ましくは850℃以上とする。
Hot rolling finishing temperature: 800 ° C. or more If the finishing temperature is below 800 ° C., the rolling load increases and the roll becomes rough. The rough surface of the roll is transferred to the steel sheet and roughens the steel sheet surface. Therefore, Cr on the convex portion of the steel plate surface is preferentially oxidized and deteriorates the corrosion resistance of the steel plate. Therefore, the finishing temperature is 800 ° C. or higher, preferably 850 ° C. or higher.

巻取温度:400〜600℃
巻取温度は熱延鋼板中の析出物制御に重要である。巻取温度が400℃を下回るとTiCが析出せず、続く熱延鋼板の焼鈍時にフェライト粒界にTiCが析出してフェライト粒が展伸しやすくなるので、伸びフランジ加工性が劣化する。また、巻取温度が600℃を超えると、熱延鋼板のフェライト粒が粗大化して、冷間圧延、再結晶焼鈍後の結晶粒が粗大混粒化しやすくなり、伸びフランジ加工性が劣化する。したがって、巻取温度は400〜600℃とする。
Winding temperature: 400 ~ 600 ℃
The coiling temperature is important for controlling precipitates in the hot rolled steel sheet. When the coiling temperature is below 400 ° C., TiC does not precipitate, and TiC precipitates at the ferrite grain boundary during the subsequent annealing of the hot-rolled steel sheet, so that the ferrite grains tend to expand, so that stretch flangeability is deteriorated. On the other hand, when the coiling temperature exceeds 600 ° C., the ferrite grains of the hot-rolled steel sheet are coarsened, and the crystal grains after cold rolling and recrystallization annealing are liable to be coarsely mixed and deteriorated in stretch flangeability. Therefore, the coiling temperature is 400 to 600 ° C.

熱延鋼板の焼鈍:900℃以上で100秒以下
焼鈍温度が900℃を下回ると熱間圧延時に発達した圧延方向に伸びたフェライト組織が破壊されないため、冷間圧延、再結晶焼鈍後のフェライト粒も圧延方向に展伸しやすくなるので、伸びフランジ加工性が劣化する。したがって、焼鈍温度は900℃以上とする。一方、900℃以上での均熱時間が100秒を超えると一度析出していた析出物が再溶解してその後の冷間圧延、再結晶焼鈍時に再析出し、フェライト粒を展伸させるとともに、フェライト粒界に析出物を集団で形成させるので、伸びフランジ加工性が劣化する。したがって、均熱時間は100秒以下とする。
Annealing of hot-rolled steel sheets: 900 ° C or more and 100 seconds or less If the annealing temperature is below 900 ° C, the ferrite structure that has developed in the hot rolling direction and expanded in the rolling direction will not be destroyed. However, since it becomes easy to expand in the rolling direction, stretch flangeability deteriorates. Therefore, the annealing temperature is 900 ° C. or higher. On the other hand, when the soaking time at 900 ° C. or higher exceeds 100 seconds, the precipitate once precipitated is redissolved and then re-precipitated during cold rolling and recrystallization annealing, and the ferrite grains are expanded. Since precipitates are formed collectively at the ferrite grain boundaries, stretch flangeability deteriorates. Therefore, the soaking time is 100 seconds or less.

酸洗:熱延鋼板の焼鈍後には、スケール除去のために酸洗する必要があるが、ステンレス鋼に対して行われる通常の酸洗法を適用できる。   Pickling: After annealing a hot-rolled steel sheet, pickling is necessary for removing the scale, but a normal pickling method performed on stainless steel can be applied.

冷間圧延:酸洗後の鋼板は、冷間圧延により所望の板厚の冷延鋼板とされる。   Cold rolling: The steel plate after pickling is made into a cold rolled steel plate having a desired thickness by cold rolling.

再結晶焼鈍の焼鈍温度:850℃以上
再結晶焼鈍の焼鈍温度が850℃未満だと圧延方向に展伸した冷間圧延組織が残留しやすくなるので、伸びフランジ加工性が劣化する。また、再結晶が不十分なため、伸びも極端に低下する。このため、再結晶焼鈍の焼鈍温度は850℃以上とする。
Recrystallization annealing annealing temperature: 850 ° C. or higher If the recrystallization annealing annealing temperature is lower than 850 ° C., a cold rolled structure stretched in the rolling direction tends to remain, and stretch flangeability deteriorates. In addition, since recrystallization is insufficient, the elongation is extremely reduced. For this reason, the annealing temperature of recrystallization annealing shall be 850 degreeC or more.

再結晶焼鈍後の冷延鋼板には、伸長率0.5〜1.5%の範囲で調質圧延を行うことができる。   The cold-rolled steel sheet after recrystallization annealing can be subjected to temper rolling in the range of 0.5 to 1.5% elongation.

表1に示す化学組成を有する鋼No.1〜13を溶製し、表2に示す熱延条件で熱間圧延して板厚3mmの熱延鋼板を製造した。次いで、これらの熱延鋼板を表2に示す条件で焼鈍後、酸洗し、冷間圧延して板厚0.8mmの冷延鋼板とした。最後に、これらの冷延鋼板を表2に示す条件で再結晶焼鈍し、鋼板No.1〜13を作製した。そして、TiSの析出状態、フェライト粒のアスペクト比、機械的性質、耐食性を調査した。
TiSの析出状態:鋼板面から板厚方向に研削し、板厚中心部より抽出レプリカ法で析出物を採取し、透過型電子顕微鏡で10視野観察して、TiSの個数を数えた。TiSが10個以上局在していたものが観察された場合は、TiSの数を示し、10個未満の場合は、すべて0とした。
フェライト粒のアスペクト比:圧延方向に平行な板厚断面の板厚中央部を研磨し、王水でエッチング後、フェライト粒を観察し、圧延方向と板厚方向の平均粒径を求め、次の式で定義されるアスペクト比を算出した。
アスペクト比=(圧延方向の平均粒径)/ (板厚方向の平均粒径)
ここで、平均粒径は切断法で求めた。実際の長さ500μmとなる線を組織写真上で板厚方向に5本、圧延方向に5本引き、この線分と粒界の交点の数を数えた。板厚方向に引いた線分の総長をその線分と粒界との交点の数で割ることにより、粒界で切断された線分の平均長さを算出し、板厚方向の平均粒径とした。同様にして、圧延方向の平均粒径を求めた。
機械的性質:圧延方向に平行にJIS 13号B引張試験片を採取し、引張試験を行って、引張強度TSと全伸びElを求めた。また、100mm角に切り出した試料の中央に10mmφの穴を打ち抜き、この穴を、頂角60°の円錐ポンチで打ち抜きバリの反対側より押し広げた。そして、目視で割れの発生を確認できた時点の穴径dを測定し、次の式で定義される穴広げ率で伸びフランジ加工性を評価した。
穴広げ率=[(d-10)/10]×100 (%)
耐食性:複合サイクル試験(CCT)で評価した。すなわち、35℃の5%NaCl水溶液の噴霧を2時間、湿度30%、60℃で乾燥を4時間、湿度95%、50℃で湿潤を2時間を1サイクルとし、これを15サイクル行った。そして、錆の発生を目視で評価し、錆の発生が認められたものを×とした。
Steel Nos. 1 to 13 having the chemical composition shown in Table 1 were melted and hot rolled under the hot rolling conditions shown in Table 2 to produce hot rolled steel sheets having a thickness of 3 mm. Next, these hot-rolled steel sheets were annealed under the conditions shown in Table 2, pickled, and cold-rolled to obtain cold-rolled steel sheets having a thickness of 0.8 mm. Finally, these cold-rolled steel sheets were recrystallized and annealed under the conditions shown in Table 2 to produce steel sheets Nos. 1-13. The TiS precipitation state, ferrite grain aspect ratio, mechanical properties, and corrosion resistance were investigated.
Precipitation state of TiS: The steel sheet was ground in the thickness direction, and the precipitate was collected from the center of the thickness by the extraction replica method, and observed with 10 fields of view with a transmission electron microscope, and the number of TiS was counted. When 10 or more TiS were observed, the number of TiS was shown, and when it was less than 10, all were set to 0.
Aspect ratio of ferrite grains: Polish the center of the thickness of the section of the thickness parallel to the rolling direction, etch with aqua regia, observe the ferrite grains, find the average grain size in the rolling direction and the thickness direction, and The aspect ratio defined by the formula was calculated.
Aspect ratio = (Average grain size in rolling direction) / (Average grain size in sheet thickness direction)
Here, the average particle diameter was determined by a cutting method. Five lines with an actual length of 500 μm were drawn on the structure photograph in the plate thickness direction and five in the rolling direction, and the number of intersections of these line segments and grain boundaries was counted. By dividing the total length of the line segment drawn in the thickness direction by the number of intersections between the line segment and the grain boundary, the average length of the line segment cut at the grain boundary is calculated, and the average grain size in the thickness direction is calculated. It was. Similarly, the average particle size in the rolling direction was determined.
Mechanical properties: JIS 13B tensile test specimens were taken in parallel with the rolling direction and subjected to a tensile test to determine the tensile strength TS and total elongation El. In addition, a 10 mmφ hole was punched in the center of the sample cut into a 100 mm square, and this hole was widened from the opposite side of the burr by punching with a conical punch with a vertex angle of 60 °. And the hole diameter d when the generation | occurrence | production of the crack was confirmed visually was measured, and stretch flange workability was evaluated by the hole expansion rate defined by the following formula | equation.
Hole expansion rate = [(d-10) / 10] x 100 (%)
Corrosion resistance: evaluated by combined cycle test (CCT). That is, spraying of a 5% NaCl aqueous solution at 35 ° C. for 2 hours, 30% humidity at 60 ° C. for 4 hours for drying, 95% humidity, 2 hours at 50 ° C. for 2 hours, and 15 cycles. And generation | occurrence | production of rust was evaluated visually and the thing by which generation | occurrence | production of rust was recognized was set as x.

結果を表3に示す。本発明例である鋼板No.1〜3、5〜7、10〜12は、伸びフランジ加工性に優れたフェライト系ステンレス鋼板であることがわかる。また、これらの鋼板は、優れた耐食性を有している。   The results are shown in Table 3. It turns out that the steel plate Nos. 1-3, 5-7, 10-12 which are the examples of this invention are ferritic stainless steel plates excellent in stretch flangeability. Moreover, these steel plates have excellent corrosion resistance.

鋼板No.1〜4は、C量を変化させた場合の例である。C量が本発明範囲内にある鋼板No.1〜3は、穴広げ率、耐食性ともに優れている。C量が本発明範囲外である鋼板No.4は、フェライト粒のアスペクト比が2を超えており、穴広げ率が低く、耐食性も劣位にある。   Steel plates No. 1 to 4 are examples when the amount of C is changed. Steel plates Nos. 1 to 3 having an amount of C within the range of the present invention are excellent in both hole expansion rate and corrosion resistance. Steel plate No. 4 having a C content outside the scope of the present invention has an aspect ratio of ferrite grains exceeding 2, has a low hole expansion rate, and is inferior in corrosion resistance.

鋼板No.5〜8は、S量を変化させた場合の例である。S量が本発明範囲内にある鋼板No.5〜7は、穴広げ率、耐食性ともに優れている。S量が本発明範囲を超えている鋼板No.8は、TiSが10個を超えて凝集しており、穴広げ率が低く、耐食性も劣位にある。   Steel plates Nos. 5 to 8 are examples when the S amount is changed. Steel sheets Nos. 5 to 7 having an S amount within the range of the present invention are excellent in both hole expansion ratio and corrosion resistance. Steel plate No. 8 having an S amount exceeding the range of the present invention has agglomeration of TiS exceeding 10 pieces, has a low hole expansion rate, and is inferior in corrosion resistance.

鋼板No.9〜13は、Ti量を変化させた場合の例である。Ti量が本発明範囲を下回る鋼板No.9は、TiSの析出量が少なく、TiSが局所的に凝集していないが、粗大なMnSが析出して穴広げ率が低く、また耐食性も劣位にある。Ti量が本発明範囲内にある鋼板No.10〜12は、100%を超える優れた穴広げ率を示し、耐食性にも優れている。Ti量が本発明範囲を上回る鋼板No.13は、Elが30%を下回り、強度も高く、フェライト粒のアスペクト比も2を超えており、穴広げ率は100%を大きく下回っている。   Steel plates Nos. 9 to 13 are examples when the amount of Ti is changed. Steel plate No. 9 whose Ti amount is below the scope of the present invention has a small amount of TiS precipitation and TiS is not locally agglomerated, but coarse MnS is precipitated and the hole expansion rate is low, and the corrosion resistance is also inferior. is there. Steel plates Nos. 10 to 12 whose Ti amount is within the range of the present invention show an excellent hole expansion ratio exceeding 100% and are excellent in corrosion resistance. Steel plate No. 13 whose Ti content exceeds the range of the present invention has an El of less than 30%, high strength, an aspect ratio of ferrite grains of more than 2, and a hole expansion ratio of well below 100%.

Figure 2008274328
Figure 2008274328

Figure 2008274328
Figure 2008274328

Figure 2008274328
Figure 2008274328

Claims (2)

Mass%で、C≦0.015%、Si≦0.15%、Mn≦0.3%、P≦0.04%、S≦0.005%、Al≦0.08%、N≦0.015%、Cr:20.5〜23.5%、Cu:0.3〜0.7%、Ni≦0.5%、Ti:0.2〜0.4%、Nb≦0.015%を含み、残部がFeおよび不可避的不純物からなる組成を有し、球状のTiSが10個以上局在している部分がなく、かつフェライト粒のアスペクト比(圧延方向の平均粒径/板厚方向の平均粒径)が2以下であることを特徴とする伸びフランジ加工性に優れたフェライト系ステンレス鋼板。   Mass%, C ≦ 0.015%, Si ≦ 0.15%, Mn ≦ 0.3%, P ≦ 0.04%, S ≦ 0.005%, Al ≦ 0.08%, N ≦ 0.015%, Cr: 20.5 to 23.5%, Cu: 0.3 to Including 0.7%, Ni ≦ 0.5%, Ti: 0.2-0.4%, Nb ≦ 0.015%, the balance is composed of Fe and unavoidable impurities, and the portion where 10 or more spherical TiS are localized A ferritic stainless steel sheet excellent in stretch flangeability, characterized in that the ferrite grain aspect ratio (average grain size in the rolling direction / average grain size in the plate thickness direction) is 2 or less. 請求項1に記載の組成を有する鋼を、1000℃以上の加熱温度に加熱し、800℃以上の仕上温度で熱間圧延し、400〜600℃の巻取温度で巻取り後、900℃以上で100秒以下の焼鈍を行い、酸洗し、冷間圧延後、850℃以上で再結晶焼鈍することを特徴とする伸びフランジ加工性に優れたフェライト系ステンレス鋼板の製造方法。   The steel having the composition according to claim 1 is heated to a heating temperature of 1000 ° C or higher, hot-rolled at a finishing temperature of 800 ° C or higher, and wound at a winding temperature of 400 to 600 ° C, and then 900 ° C or higher. A method for producing a ferritic stainless steel sheet excellent in stretch flangeability, characterized by annealing at 100 seconds or less, pickling, cold rolling, and then recrystallization annealing at 850 ° C. or higher.
JP2007116844A 2007-04-26 2007-04-26 Ferritic stainless steel sheet excellent in stretch-flanging formability and producing method therefor Pending JP2008274328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007116844A JP2008274328A (en) 2007-04-26 2007-04-26 Ferritic stainless steel sheet excellent in stretch-flanging formability and producing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007116844A JP2008274328A (en) 2007-04-26 2007-04-26 Ferritic stainless steel sheet excellent in stretch-flanging formability and producing method therefor

Publications (1)

Publication Number Publication Date
JP2008274328A true JP2008274328A (en) 2008-11-13

Family

ID=40052669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007116844A Pending JP2008274328A (en) 2007-04-26 2007-04-26 Ferritic stainless steel sheet excellent in stretch-flanging formability and producing method therefor

Country Status (1)

Country Link
JP (1) JP2008274328A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068034A (en) * 2007-09-11 2009-04-02 Jfe Steel Kk Ferritic stainless steel sheet superior in formability for extension flange, and manufacturing method therefor
WO2014087648A1 (en) * 2012-12-07 2014-06-12 Jfeスチール株式会社 Ferritic stainless steel sheet
JP2015137375A (en) * 2014-01-21 2015-07-30 Jfeスチール株式会社 Ferritic stainless cold rolled steel sheet and manufacturing method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068034A (en) * 2007-09-11 2009-04-02 Jfe Steel Kk Ferritic stainless steel sheet superior in formability for extension flange, and manufacturing method therefor
WO2014087648A1 (en) * 2012-12-07 2014-06-12 Jfeスチール株式会社 Ferritic stainless steel sheet
JP5664826B2 (en) * 2012-12-07 2015-02-04 Jfeスチール株式会社 Ferritic stainless steel sheet
CN104685089A (en) * 2012-12-07 2015-06-03 杰富意钢铁株式会社 Jfe steel corporation
JP2015137375A (en) * 2014-01-21 2015-07-30 Jfeスチール株式会社 Ferritic stainless cold rolled steel sheet and manufacturing method therefor

Similar Documents

Publication Publication Date Title
TWI513524B (en) High-strength hot-dip galvanized steel sheet, high-strength alloyed hot-dip galvanized steel sheet excellent in mechanical truncation characteristics, and the like
JP5315811B2 (en) Ferritic stainless steel plate with excellent resistance to sulfuric acid corrosion
JP6851269B2 (en) Manufacturing method of ferritic stainless steel sheets, ferritic stainless steel members for steel pipes and exhaust system parts, and ferritic stainless steel sheets
JP2006118000A (en) Lightweight high strength steel having excellent ductility and its production method
JP2005097725A (en) Steel sheet for hot press having hydrogen embrittlement resistance, automobile member and its production method
WO2012036308A1 (en) High-strength hot-rolled steel sheet having superior punchability and method for producing same
JP2009068104A (en) Ferritic stainless steel sheet excellent in punchability, and manufacturing method therefor
JP2006193771A (en) Ferritic stainless steel sheet with excellent workability, and its manufacturing method
JP2005068548A (en) High strength thin steel sheet excellent in hydrogen embitterment resistance and its manufacturing method
WO2017002148A1 (en) Cold-rolled stainless steel sheet material, manufacturing method therefor, and cold-rolled steel sheet
JP2010047786A (en) Steel sheet for hot pressing and method for producing the same, and method for producing hot-pressed steel sheet member
JP2009242840A (en) High-tensile steel excellent in bending workability and low-temperature toughness, and method for manufacturing the same
JP7268182B2 (en) Ferritic stainless steel sheet, manufacturing method thereof, and ferritic stainless steel member
JP2007119847A (en) Cold-rolled ferritic stainless steel sheet having excellent press formability and its production method
JP2005264328A (en) High-strength steel plate having excellent workability and method for manufacturing the same
JP5262029B2 (en) Ferritic stainless steel plate with excellent stretch flangeability
JP5453747B2 (en) Stainless cold-rolled steel sheet excellent in punching processability and manufacturing method thereof
JP5151223B2 (en) Ferritic stainless steel sheet excellent in spinning workability and manufacturing method thereof
WO2020196311A1 (en) High-strength steel plate and method for manufacturing same
WO2008004506A1 (en) Cr-CONTAINING STEEL EXCELLENT IN THERMAL FATIGUE CHARACTERISTICS
JP4606113B2 (en) Austenitic stainless steel with high proportional limit stress and manufacturing method
JP2008274328A (en) Ferritic stainless steel sheet excellent in stretch-flanging formability and producing method therefor
JP2001262234A (en) Method for producing ferritic stainless steel sheet for automotive exhaust system excellent in deep drawability
KR101618489B1 (en) Hot-rolled steel sheet and manufacturing method for same
JP2003213376A (en) Ferritic stainless steel sheet having excellent secondary hole enlargementability and production method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100325

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD03 Notification of appointment of power of attorney

Effective date: 20120321

Free format text: JAPANESE INTERMEDIATE CODE: A7423

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A977 Report on retrieval

Effective date: 20120329

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20120418

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120524

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121204