JP2008274186A - Method for producing thermoplastic resin - Google Patents

Method for producing thermoplastic resin Download PDF

Info

Publication number
JP2008274186A
JP2008274186A JP2007122551A JP2007122551A JP2008274186A JP 2008274186 A JP2008274186 A JP 2008274186A JP 2007122551 A JP2007122551 A JP 2007122551A JP 2007122551 A JP2007122551 A JP 2007122551A JP 2008274186 A JP2008274186 A JP 2008274186A
Authority
JP
Japan
Prior art keywords
extruder
resin
raw material
reaction
material supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007122551A
Other languages
Japanese (ja)
Inventor
Naoya Kamikaya
直也 上仮屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2007122551A priority Critical patent/JP2008274186A/en
Publication of JP2008274186A publication Critical patent/JP2008274186A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing thermoplastic resin with suppressed thermal deterioration of the resin, by improving reaction efficiency and sharply improving reaction uniformity by suppressing fluctuation of extrusion in a tandem type reaction extruder. <P>SOLUTION: The invention relates to a method for producing thermoplastic resin by using a tandem type reaction extruder provided with a first extruder, a second extruder and a part connecting the resin delivery of the first extruder and the supply port of the second extruder, and a pressure controlling mechanism in the part connecting the resin delivery of the first extruder and the supply port of the second extruder, and setting "the distance between the supply port of the second extruder and the pressure controlling mechanism" shorter than "the distance between the resin delivery of the first extruder and the pressure controlling mechanism", and a first step reaction treating the main raw materials and auxiliary material is carried out in the first extruder, and a second step reaction further reacting the reaction product in the first extruder with the other auxiliary material or volatilizing is carried out in the second extruder, wherein a single screw extruder is used as the first extruder. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、タンデム型反応押出機による熱可塑性樹脂の製造方法に関する。   The present invention relates to a method for producing a thermoplastic resin by a tandem reaction extruder.

押出機を用いて樹脂を加熱溶融し、溶融樹脂と反応剤とを連続的に反応させる反応押出法は、反応槽等で行うバッチ式法と比較して生産性に優れ、低コストで効率良く熱可塑性樹脂を製造出来るという特徴を有している。   The reaction extrusion method, in which the resin is heated and melted using an extruder and the molten resin and the reactant are reacted continuously, is superior in productivity to the batch method performed in a reaction vessel, etc., and is low cost and efficient. It has the characteristic that a thermoplastic resin can be manufactured.

しかしながら、従来の熱可塑性樹脂を溶融させて反応させる製造方法は反応効率及び反応均一性が低いという問題点がある。   However, the conventional production method in which a thermoplastic resin is melted and reacted has a problem that the reaction efficiency and the reaction uniformity are low.

これより、反応効率及び反応均一性を向上させる方法として、押出機を用いた変性熱可塑性樹脂の製造方法に関して、反応媒体として二酸化炭素を用いる事により、反応効率を向上させる方法がある(例えば、特許文献1参照)。このような方法は、反応媒体を用いる為、設備が複雑化して高価になると共に、製造コストが高いという問題がある。   From this, as a method for improving the reaction efficiency and reaction uniformity, there is a method for improving the reaction efficiency by using carbon dioxide as a reaction medium with respect to the method for producing a modified thermoplastic resin using an extruder (for example, Patent Document 1). Since such a method uses a reaction medium, the facilities are complicated and expensive, and the manufacturing cost is high.

これに対して、(メタ)アクリル酸エステルホモポリマー、或いは(メタ)アクリル酸エステルと、スチレン、置換スチレン、無水マレイン酸、無水イタコン酸およびこれらの混合物から成る群から選択されたモノマーとコポリマーのイミド化方法に関して、キャビティートランスファーミキサーを用いて、ある圧力下でアミン又はアンモニアを反応させ、その後、連続して脱ガス押出機でガス抜きする方法が開示されている(例えば、特許文献2参照)。しかし、このような押出機と形状の異なる第1押出機と第2押出機を有するタンデム型反応押出機では、第1押出機の樹脂吐出口と第2押出機原料供給口を接続する部品内で樹脂と反応副生成物が分離し、第1押出機及び第2押出機の押出変動が大きくなり、反応が不均一になるといった問題があった。また、押出変動を小さくするために、第1押出機の樹脂吐出口直後に圧力制御装置を具備して、第1押出機と第2押出機原料供給口を接続する部品、及び、第2押出機の押出変動を小さくすることが考えられるが、この場合、接続する部品内で樹脂と反応副生成物が発泡したり、分離して押出が変動し、反応が不均一になっていた。   In contrast, monomers and copolymers selected from the group consisting of (meth) acrylate homopolymers or (meth) acrylate esters and styrene, substituted styrene, maleic anhydride, itaconic anhydride and mixtures thereof. Regarding the imidization method, a method of reacting amine or ammonia under a certain pressure using a cavity transfer mixer and then continuously degassing with a degas extruder is disclosed (for example, see Patent Document 2). ). However, in such a tandem reaction extruder having a first extruder and a second extruder that are different in shape from the extruder, the inside of the component that connects the resin discharge port of the first extruder and the raw material supply port of the second extruder As a result, the resin and the reaction by-product are separated, the fluctuations in extrusion of the first extruder and the second extruder increase, and the reaction becomes non-uniform. Further, in order to reduce the extrusion fluctuation, a part that includes a pressure control device immediately after the resin discharge port of the first extruder and connects the first extruder and the second extruder material supply port, and the second extrusion Although it is conceivable to reduce the extrusion fluctuation of the machine, in this case, the resin and the reaction by-product foam in the parts to be connected, or the separation and extrusion fluctuate, resulting in a non-uniform reaction.

また、一般的に反応押出を、混錬性/分散性の高い2軸押出機を用いて行い、2軸押出機の種々の混錬/分散機構を有したスクリュエレメントを用いて高い混錬/分散能力を持たせること、および/または、押出機L/Dを大きくすることで押出機内滞留時間を長くすること、によって反応を促進する方法がある。しかしながら、2軸押出機は構造上スクリュ/バレルに微小な滞留部分を多く有すること、また反応完了まで押出機スクリュにおいて混錬/分散させて反応を進行させるため、押出機内において樹脂が熱により変質し、樹脂成形物において異物となる可能性があった。
特開2002−256042 特開平7−214552
In general, reactive extrusion is performed using a twin screw extruder with high kneading / dispersibility, and high kneading / high screwing using screw elements having various kneading / dispersing mechanisms of the twin screw extruder. There is a method of promoting the reaction by imparting a dispersing ability and / or increasing the residence time in the extruder by increasing the extruder L / D. However, the twin-screw extruder has a structure with many small staying parts in the screw / barrel, and since the reaction proceeds by kneading / dispersing in the extruder screw until the reaction is completed, the resin is altered by heat in the extruder. However, there is a possibility of becoming a foreign substance in the resin molded product.
JP2002-256042 JP-A-7-214552

本発明は、このような従来の技術が有する課題に鑑みてなされたものであり、タンデム型反応押出機に於いて、反応効率を向上させると共に、押出変動を抑制して反応均一性を大幅に向上させる事が可能であると共に、押出機内における樹脂滞留による樹脂熱劣化を防ぐことが可能である熱可塑性樹脂の製造方法を提供する事を目的とする。   The present invention has been made in view of the problems of such a conventional technique. In a tandem type reaction extruder, the reaction efficiency is improved and the variation in extrusion is suppressed and the reaction uniformity is greatly improved. It is an object of the present invention to provide a method for producing a thermoplastic resin that can be improved and that can prevent resin thermal degradation due to resin retention in an extruder.

上記課題を解決する為、本発明者等は鋭意検討を行った。その結果、第1押出機、第2押出機、および第1押出機の樹脂吐出口と第2押出機の原料供給口を接続する部品、を有するタンデム型押出機を用い、第1押出機と第2押出機で異なる反応を行うことにより上記課題が解決出来る事を見出し、本発明を完成した。   In order to solve the above problems, the present inventors have conducted intensive studies. As a result, the first extruder, the second extruder, and a tandem type extruder having a resin discharge port of the first extruder and a component connecting the raw material supply port of the second extruder, It discovered that the said subject could be solved by performing different reaction with a 2nd extruder, and completed this invention.

すなわち、本発明は、
(i)第1押出機、第2押出機、第1押出機の樹脂吐出口と第2押出機の原料供給口を接続する部品、及び、第1押出機の樹脂吐出口と第2押出機の原料供給口を接続する部品内圧力制御機構を有し、「第2押出機原料供給口と圧力制御機構の距離」が「第1押出機吐出口と圧力制御機構との距離」よりも短いことを特徴とするタンデム型押出機を用いて、第1押出機において主原料と副原料とを処理する第1段目反応を行い、第2押出機において、第1押出機における反応生成物をさらに他の副原料と処理する第2段目反応を行う熱可塑性樹脂の製造方法であって、第1押出機に単軸押出機を用いることを特徴とする製造方法。
That is, the present invention
(I) The first extruder, the second extruder, the parts connecting the resin discharge port of the first extruder and the raw material supply port of the second extruder, and the resin discharge port of the first extruder and the second extruder The internal pressure control mechanism for connecting the raw material supply ports is provided, and the “distance between the second extruder raw material supply port and the pressure control mechanism” is shorter than the “distance between the first extruder discharge port and the pressure control mechanism”. Using the tandem type extruder characterized in that, the first stage reaction in which the main raw material and the auxiliary raw material are processed in the first extruder is performed, and in the second extruder, the reaction product in the first extruder is Furthermore, it is a manufacturing method of the thermoplastic resin which performs the 2nd stage reaction processed with another auxiliary material, Comprising: A manufacturing method characterized by using a single screw extruder for a 1st extruder.

(ii)第1押出機、第2押出機、第1押出機の樹脂吐出口と第2押出機の原料供給口を接続する部品、及び、第1押出機の樹脂吐出口と第2押出機の原料供給口を接続する部品内圧力制御機構を有し、「第2押出機原料供給口と圧力制御機構の距離」が「第1押出機吐出口と圧力制御機構との距離」よりも短いことを特徴とするタンデム型押出機を用いて、第1押出機において主原料と副原料とを処理する第1段目反応を行い、第2押出機において脱揮を行う熱可塑性樹脂の製造方法であって、第1押出機に単軸押出機を用いることを特徴とする製造方法。   (Ii) The first extruder, the second extruder, the parts connecting the resin discharge port of the first extruder and the raw material supply port of the second extruder, and the resin discharge port of the first extruder and the second extruder The internal pressure control mechanism for connecting the raw material supply ports is provided, and the “distance between the second extruder raw material supply port and the pressure control mechanism” is shorter than the “distance between the first extruder discharge port and the pressure control mechanism”. The manufacturing method of the thermoplastic resin which performs the 1st step | paragraph reaction which processes a main raw material and an auxiliary | assistant raw material in a 1st extruder, and devolatilizes in a 2nd extruder using the tandem type | mold extruder characterized by the above-mentioned A manufacturing method characterized by using a single screw extruder as the first extruder.

(iii)単軸押出機である第1押出機の、押出機長さLcmと直径Dcmの比であるL/Dが50以下であることを特徴とする、(i)または(ii)に記載の熱可塑性樹脂の製造方法。   (Iii) The first extruder that is a single-screw extruder has an L / D that is a ratio of an extruder length Lcm to a diameter Dcm of 50 or less, and is described in (i) or (ii) A method for producing a thermoplastic resin.

(iv)第1押出機の樹脂吐出口と第2押出機原料供給口を接続する部品内圧力が20MPa以上、100MPa以下である事を特徴とする、(i)〜(iii)いずれかに記載の熱可塑性樹脂の製造方法。   (Iv) The internal pressure of the component connecting the resin discharge port of the first extruder and the second extruder raw material supply port is 20 MPa or more and 100 MPa or less, and any one of (i) to (iii) Of manufacturing thermoplastic resin.

(v)第1押出機の樹脂吐出口と第2押出機原料供給口を接続する部品の部品内容積をVcm、第1押出機への1分当たりの樹脂供給量をQcmとしたときに、部品内容積を任意に変えることで接続部品内滞留時間V/Qを1分以上15分以下とすることを特徴とした(i)〜(iv)いずれかに記載の熱可塑性樹脂の製造方法。 (V) When the internal volume of the part connecting the resin discharge port of the first extruder and the second extruder raw material supply port is Vcm 3 , and the resin supply amount per minute to the first extruder is Qcm 3 In addition, the residence time V / Q in the connection component is set to 1 minute or more and 15 minutes or less by arbitrarily changing the internal volume of the component, and the production of the thermoplastic resin according to any one of (i) to (iv) Method.

(vi)第1押出機の樹脂吐出口と第2押出機原料供給口を接続する部品内に樹脂分散機構を設けることを特徴とする(i)〜(v)いずれかに記載の熱可塑性樹脂の製造方法。   (Vi) The thermoplastic resin according to any one of (i) to (v), wherein a resin dispersion mechanism is provided in a component connecting the resin discharge port of the first extruder and the second extruder material supply port. Manufacturing method.

(vii)第1押出機においてアクリル系樹脂とイミド化剤とを処理する第1段目反応を行い、第2押出機において第1押出機における反応生成物をさらにエステル化剤と処理する第2段目反応を行うことを特徴とする、(i)、(iii)、(iv)、(v)または(vi)の何れかに記載の熱可塑性樹脂の製造方法。   (Vii) A first stage reaction is performed in which the acrylic resin and the imidizing agent are treated in the first extruder, and the reaction product in the first extruder is further treated with the esterifying agent in the second extruder. The method for producing a thermoplastic resin according to any one of (i), (iii), (iv), (v), and (vi), wherein a stage reaction is performed.

(viii)熱可塑性樹脂が下記一般式(1)で表される単位と、下記一般式(2)で表される単位及び/又は下記一般式(3)で表される単位とを有するイミド樹脂である事を特徴とする、(i)〜(vii)の何れかに記載の熱可塑性樹脂の製造方法。   (Viii) An imide resin in which the thermoplastic resin has a unit represented by the following general formula (1), a unit represented by the following general formula (2) and / or a unit represented by the following general formula (3) The method for producing a thermoplastic resin according to any one of (i) to (vii), wherein

Figure 2008274186
(但し、R及びRは、それぞれ独立に、水素又は炭素数1〜8のアルキル基を示し、Rは、水素、炭素数1〜18のアルキル基、炭素数3〜12のシクロアルキル基、又は炭素数5〜15の芳香環を含む置換基を示す。)
Figure 2008274186
(However, R 1 and R 2 each independently represent hydrogen or an alkyl group having 1 to 8 carbon atoms, and R 3 represents hydrogen, an alkyl group having 1 to 18 carbon atoms, or a cycloalkyl having 3 to 12 carbon atoms. Or a substituent containing an aromatic ring having 5 to 15 carbon atoms.)

Figure 2008274186
(但し、R及びRは、それぞれ独立に、水素又は炭素数1〜8のアルキル基を示し、Rは、水素、炭素数1〜18のアルキル基、炭素数3〜12のシクロアルキル基、又は炭素数5〜15の芳香環を含む置換基を示す。)
Figure 2008274186
(However, R 4 and R 5 each independently represent hydrogen or an alkyl group having 1 to 8 carbon atoms, and R 6 represents hydrogen, an alkyl group having 1 to 18 carbon atoms, or a cycloalkyl having 3 to 12 carbon atoms. Or a substituent containing an aromatic ring having 5 to 15 carbon atoms.)

Figure 2008274186
(但し、Rは、水素又は炭素数1〜8のアルキル基を示し、Rは、炭素数6〜10のアリール基を示す。)
に関する。
Figure 2008274186
(However, R 7 represents hydrogen or an alkyl group having 1 to 8 carbon atoms, and R 8 represents an aryl group having 6 to 10 carbon atoms.)
About.

本発明によれば、単軸押出機である第1押出機、第2押出機、および第1押出機の樹脂吐出口と第2押出機の原料供給口を接続する部品、を有するタンデム型押出機を用い、第1押出機と第2押出機で異なる反応を行うことにより、押出変動を抑制して反応均一性を大幅に向上させる事、また押出機内樹脂滞留による樹脂劣化を防ぐ事が可能になり、且、低コストで容易に効率良く熱可塑性樹脂を製造する事が出来る製造方法を提供出来る。   According to the present invention, a tandem extrusion having a first extruder, a second extruder, which are single-screw extruders, and a component connecting a resin discharge port of the first extruder and a raw material supply port of the second extruder. It is possible to significantly improve reaction uniformity by suppressing extrusion fluctuations and to prevent resin deterioration due to resin stagnation in the extruder by performing different reactions between the first extruder and the second extruder. In addition, it is possible to provide a production method capable of producing a thermoplastic resin easily and efficiently at low cost.

また、本発明によれば、光学材料や耐熱性材料として有用な熱可塑性樹脂、特にイミド樹脂を、タンデム型押出反応機を用いることにより安価な設備費で、高い生産性での製造が可能となる。   Further, according to the present invention, a thermoplastic resin useful as an optical material or a heat-resistant material, particularly an imide resin, can be produced with low equipment cost and high productivity by using a tandem extrusion reactor. Become.

さらに、本発明によれば、圧力変動を抑制することにより、特性バラツキが非常に小さく、且、樹脂内における樹脂劣化異物が少ない熱可塑性樹脂、特にイミド樹脂を得ることができる。   Furthermore, according to the present invention, by suppressing the pressure fluctuation, it is possible to obtain a thermoplastic resin, in particular, an imide resin, having very small characteristic variation and few resin-deteriorating foreign substances in the resin.

本発明は、第1押出機、第2押出機、および第1押出機の樹脂吐出口と第2押出機の原料供給口を接続する部品、を有するタンデム型押出機を用い、第1押出機と第2押出機で異なる反応を行う反応押出法であって、第1押出機に単軸押出機を用いることを特徴とする。   The present invention uses a tandem type extruder having a first extruder, a second extruder, and a component connecting a resin discharge port of the first extruder and a raw material supply port of the second extruder, and the first extruder And a second extruder, which are different from each other, wherein a single screw extruder is used as the first extruder.

本発明のタンデム型押出機とは、例えば、第1押出機、第2押出機の2台を、第1押出機の樹脂吐出口と第2押出機の原料供給口を接続する部品(以下、単に接続部品と略記することもある)で接続したものがあげられる。必要に応じてさらに、第3押出機を接続部品で接続したものであってもよい。少なくとも2基以上であれば、接続台数は適宜設定できる。   The tandem type extruder of the present invention is, for example, two parts, a first extruder and a second extruder, which are components that connect the resin discharge port of the first extruder and the raw material supply port of the second extruder (hereinafter referred to as “the second extruder”). In some cases, they are simply connected as connecting parts). If necessary, the third extruder may be connected with a connecting component. If there are at least two or more, the number of connected devices can be set as appropriate.

更に、前記タンデム型押出機は、第1押出機の樹脂吐出口と第2押出機原料供給口を接続する部品内圧力の制御機構(単に圧力制御機構とも略記することもある)を「第2押出機原料供給口と圧力制御機構の距離」が「第1押出機吐出口と圧力制御機構の距離」よりも短い位置に有する。さらに、第1押出機の樹脂吐出口と第2押出機原料供給口を接続する部品内圧力は、20MPa以上、100MPa以下である事が好ましい。具体的には、第1押出機の樹脂吐出口と、第1押出機の樹脂吐出口と第2押出機原料供給口を接続する部品にそれぞれ圧力計を設置し、両方の値が上記値を指せばよい。下限として特に好ましくは、25MPa以上であり、さらに好ましくは、30MPa以上である。上限として、特に好ましくは、90MPa以下であり、更に好ましくは、80MPa以下である。   Further, the tandem extruder has a second internal pressure control mechanism (which may be simply abbreviated as a pressure control mechanism) connecting the resin discharge port of the first extruder and the second extruder raw material supply port. The “distance between the extruder raw material supply port and the pressure control mechanism” is shorter than the “distance between the first extruder discharge port and the pressure control mechanism”. Furthermore, the internal pressure of the component connecting the resin discharge port of the first extruder and the second extruder material supply port is preferably 20 MPa or more and 100 MPa or less. Specifically, pressure gauges are respectively installed on the resin discharge port of the first extruder and the parts connecting the resin discharge port of the first extruder and the second extruder material supply port, and both values are the above values. Just point. The lower limit is particularly preferably 25 MPa or more, and more preferably 30 MPa or more. The upper limit is particularly preferably 90 MPa or less, and further preferably 80 MPa or less.

第1押出機の樹脂吐出口と第2押出機原料供給口を接続する部品内圧力が20MPa未満の場合、第1押出機に於ける反応効率が低くなるため好ましくない。さらに部品内圧力が5MPa未満になると、第1押出機に於ける反応効率が低くなると共に、接続部品内で樹脂と反応副生成物が発泡、分離し、押出変動が大きくなり、反応が不均一になる為、好ましくない。   If the internal pressure of the component connecting the resin discharge port of the first extruder and the second extruder raw material supply port is less than 20 MPa, the reaction efficiency in the first extruder is lowered, which is not preferable. Further, when the internal pressure of the component is less than 5 MPa, the reaction efficiency in the first extruder is lowered, and the resin and the reaction by-product are foamed and separated in the connection component, the fluctuation of extrusion is increased, and the reaction is not uniform. Therefore, it is not preferable.

又、第1押出機の樹脂吐出口と第2押出機原料供給口を接続する部品内圧力が100MPaより高い場合、特に、押出機減速機の耐圧仕様を超える場合などは押出機が破損する事もあり、好ましくない。   Also, when the internal pressure of the part connecting the resin discharge port of the first extruder and the second extruder raw material supply port is higher than 100 MPa, especially when the pressure resistance specification of the extruder speed reducer is exceeded, the extruder may be damaged. There is also not preferable.

図1に、本発明によるタンデム型反応押出機の一例を示すが、本発明はこれに限定されるものではない。同図に示すように、第1押出機(1)と第2押出機(2)がタンデム型に配置されている。タンデム型とは、図1のような並列配列でも、第1押出機(1)と第2押出機(2)が直角に配列される直交配列のどちらでも構わない。第1押出機(1)の吐出口(6)は、接続部品(3)を介して、第2押出機(2)の原料供給口(7)に接続されている。   FIG. 1 shows an example of a tandem reaction extruder according to the present invention, but the present invention is not limited to this. As shown in the figure, the first extruder (1) and the second extruder (2) are arranged in a tandem type. The tandem type may be either a parallel arrangement as shown in FIG. 1 or an orthogonal arrangement in which the first extruder (1) and the second extruder (2) are arranged at right angles. The discharge port (6) of the first extruder (1) is connected to the raw material supply port (7) of the second extruder (2) via the connection component (3).

本発明における、第1押出機には単軸押出機を用いる。単軸押出機は2軸押出機等多軸押出機に比べ、耐圧が大きいため、押出機内圧力を高くすることができ、第1段目反応効率を大幅に上げることが可能となること、さらに押出機内における樹脂滞留部分が少ないため反応押出中における樹脂の熱劣化を防ぐことが可能となること、また設備費が安価であるため好ましい。   In the present invention, a single screw extruder is used as the first extruder. The single-screw extruder has a higher pressure resistance than a multi-screw extruder such as a twin-screw extruder, so that the pressure in the extruder can be increased, and the first-stage reaction efficiency can be significantly increased. Since there are few resin residence parts in an extruder, it becomes possible to prevent the thermal deterioration of the resin in reaction extrusion, and since equipment cost is cheap, it is preferable.

本発明における、第2押出機として、単軸押出機、同方向噛合型二軸押出機、同方向非噛合型二軸押出機、異方向噛合型二軸押出機、異方向非噛合型二軸押出機、多軸押出機等各種押出機が適用出来る。その中でも、特に、混錬/分散能力が高い点で各種二軸押出機を適用するのが好ましく、混錬/分散能力、生産性が高い事から同方向噛合型二軸押出機が更に好ましい。   In the present invention, as the second extruder, a single-screw extruder, a same-direction meshing twin-screw extruder, a same-direction non-meshing twin-screw extruder, a different-direction meshing twin-screw extruder, a different-direction non-meshing twin-screw Various extruders such as an extruder and a multi-screw extruder can be applied. Among them, in particular, various twin screw extruders are preferably applied from the viewpoint of high kneading / dispersing ability, and the same direction meshing twin screw extruder is more preferred because of high kneading / dispersing ability and productivity.

接続部品とは、例えば、樹脂流路形状が円管、L型管のようなものがあげられる。本発明に係る接続部品は、緩やかな樹脂流路の容積変化を有したものが好ましい。特に好ましくは、容積変化の無い樹脂流路を有した接続部品である。急激に容積が変化した樹脂流路を持つ接続部品では、樹脂と反応副生成物が発泡、分離して押出が変動し、反応が不均一になる為、好ましくない。接続部品内における樹脂滞留時間は、第1押出機への時間当たりの樹脂供給量Qに対し接続部品容積Vを変えることにより、滞留時間V/Qを適当に設定することができる。接続部品容積Vは、接続部品断面積および/または接続部品長を変えることで適当に設定できるが、接続部品断面積を変えると流路内樹脂流動性に影響を与えるため、接続部品長を変えることで接続部品容積を設定することが好ましい。接続部品内における樹脂滞留時間V/Qは1分以上15分以下が好ましい。特に好ましくは、2分以上13分以下、さらに好ましくは3分以上10分以下である。   Examples of the connecting parts include those in which the resin flow path shape is a circular pipe or an L-shaped pipe. The connection component according to the present invention preferably has a gentle volume change of the resin flow path. Particularly preferred is a connecting part having a resin flow path with no volume change. In a connecting part having a resin flow path whose volume has changed rapidly, the resin and the reaction by-product are foamed and separated, the extrusion is fluctuated, and the reaction becomes non-uniform, which is not preferable. The resin residence time in the connection component can be set appropriately by changing the connection component volume V with respect to the resin supply amount Q per hour to the first extruder. The connecting part volume V can be appropriately set by changing the connecting part cross-sectional area and / or the connecting part length. However, changing the connecting part cross-sectional area affects the resin fluidity in the flow path, so the connecting part length is changed. Thus, it is preferable to set the connection component volume. The resin residence time V / Q in the connection part is preferably 1 minute or more and 15 minutes or less. Especially preferably, it is 2 minutes or more and 13 minutes or less, More preferably, it is 3 minutes or more and 10 minutes or less.

接続部品内における樹脂滞留時間が1分未満の場合は、反応が十分に進行していないにも関わらず、樹脂が第2押出機の原料供給口に到達してしまうため、好ましくない。   When the resin residence time in the connection part is less than 1 minute, the resin reaches the raw material supply port of the second extruder although the reaction does not proceed sufficiently, which is not preferable.

接続部品内における樹脂滞留時間が15分以上の場合は、反応が十分に進行しているにも関わらず樹脂が接続管内に滞留している状態となり、樹脂熱劣化の可能性があるに加え、生産効率が悪くなるため好ましくない。   If the resin residence time in the connection part is 15 minutes or more, the resin is still in the connection pipe even though the reaction has progressed sufficiently, and there is a possibility of resin heat deterioration, Since production efficiency deteriorates, it is not preferable.

本発明のタンデム型押出機は、接続部品に圧力制御機構(4)を具備することにより、押出変動を抑制することができるようになり、第1押出機(1)−第1押出機の樹脂吐出口と第2押出機原料供給口を接続する部品(3)内圧力を制御できる。圧力制御機構とは、樹脂流路容積を変化させ、圧力損失を制御可能な装置である。本発明に係る好ましい圧力制御機構は、定流圧力弁、ギアポンプ、オリフィス等を例示することができる。圧力制御機構に於ける樹脂流路の容積を急激に変化させると、樹脂と反応副生成物が発泡や分離を起こす可能性があり、その結果押出が変動することあり、反応が不均一になる為、定流圧力弁、オリフィス等が特に好ましい。   The tandem type extruder of the present invention can suppress fluctuations in extrusion by providing the connecting part with the pressure control mechanism (4), and the resin of the first extruder (1) -first extruder. The internal pressure of the component (3) connecting the discharge port and the second extruder raw material supply port can be controlled. The pressure control mechanism is a device that can control the pressure loss by changing the resin flow path volume. A preferable pressure control mechanism according to the present invention can be exemplified by a constant flow pressure valve, a gear pump, an orifice, and the like. If the volume of the resin flow path in the pressure control mechanism is changed suddenly, the resin and reaction by-products may foam and separate, resulting in fluctuations in extrusion and non-uniform reaction. Therefore, a constant flow pressure valve, an orifice and the like are particularly preferable.

また、本発明のタンデム型押出機は、接続部品内においても効率良く反応を進めることを可能にするため、接続部品内に樹脂分散機構を具備することが好ましい。接続部品内に具備する樹脂分散機構として、例えば、スタティックミキサー、部品内に流れ方向に垂直にランダムな位置にピンを複数配置すること等が挙げられる。   In addition, the tandem type extruder of the present invention preferably includes a resin dispersion mechanism in the connection part in order to allow the reaction to proceed efficiently even in the connection part. Examples of the resin dispersion mechanism provided in the connection component include a static mixer, and a plurality of pins arranged at random positions perpendicular to the flow direction in the component.

このように接続管内において十分な樹脂滞留時間を与え、好ましくは接続部品内に樹脂分散機構を具備させることと、第1押出機内および接続管内圧力を十分に上げ反応効率を大幅に向上させることにより、第1押出機の長さを短くすることで、設備費を安価に抑えることが可能となる。第1押出機長さLと直径Dの比はL/D50以下が好ましく、特に好ましくは40以下、更に好ましくは30以下である。
また、本発明においては、圧力制御機構を取り付ける位置を適切にすることにより、押出変動の抑制をより高精度に行うことが可能となる。本発明に係る圧力制御機構を取り付ける位置は、「第2押出機原料供給口と圧力制御機構との距離」が「第1押出機吐出口と圧力制御機構との距離」よりも短ければ特に制限されないが、「第2押出機原料供給口と圧力制御機構との距離」が短ければ短いほど好ましく、第2押出機原料供給口に直結している場合が最も好ましい。圧力制御機構を「第2押出機原料供給口と圧力制御機構との距離」と「第1押出機吐出口と圧力制御機構との距離」が等しい場合または「第2押出機原料供給口と圧力制御機構との距離」よりも「第1押出機吐出口と圧力制御機構との距離」が短い場合及び第1押出機吐出口と圧力制御機構が直結している場合、圧力制御機構後の接続部品内で樹脂と反応副生成物が発泡したり、分離して押出が変動し、反応が不均一になる為、好ましくない。また、圧力制御機構の種類によっては、圧力制御機構と、接続部品または第2押出機原料供給口(第2押出機で混練が開始される位置)が一体となっている場合などは、実体として圧力差が生じる部分を圧力制御機構の位置と称することもある。
Thus, by providing a sufficient resin residence time in the connection pipe, preferably by providing a resin dispersion mechanism in the connection part, and by sufficiently raising the pressure in the first extruder and in the connection pipe to greatly improve the reaction efficiency. By shortening the length of the first extruder, the facility cost can be reduced at a low cost. The ratio between the length L of the first extruder and the diameter D is preferably L / D50 or less, particularly preferably 40 or less, and further preferably 30 or less.
Further, in the present invention, it is possible to suppress the extrusion fluctuation with higher accuracy by appropriately adjusting the position where the pressure control mechanism is attached. The position where the pressure control mechanism according to the present invention is attached is particularly limited if the “distance between the second extruder raw material supply port and the pressure control mechanism” is shorter than the “distance between the first extruder discharge port and the pressure control mechanism”. However, it is preferable that the “distance between the second extruder raw material supply port and the pressure control mechanism” is as short as possible, and it is most preferable that the distance is directly connected to the second extruder raw material supply port. When the pressure control mechanism is equal to the “distance between the second extruder raw material supply port and the pressure control mechanism” and the “distance between the first extruder discharge port and the pressure control mechanism” or “the second extruder raw material supply port and the pressure When the “distance between the first extruder discharge port and the pressure control mechanism” is shorter than the “distance with the control mechanism” or when the first extruder discharge port and the pressure control mechanism are directly connected, the connection after the pressure control mechanism Since the resin and reaction by-product are foamed in the parts or separated and the extrusion is fluctuated, the reaction becomes non-uniform. Also, depending on the type of pressure control mechanism, when the pressure control mechanism and the connecting part or the second extruder raw material supply port (position where kneading is started in the second extruder) are integrated, The portion where the pressure difference occurs is sometimes referred to as the position of the pressure control mechanism.

本発明における押出変動とは、第1押出機の樹脂吐出口と第2押出機原料供給口を接続する部品内圧力変動である。具体的には、第1押出機の樹脂吐出口と、第1押出機の樹脂吐出口と第2押出機原料供給口を接続する部品にそれぞれ圧力計を設置した場合、それぞれの圧力計における圧力の振れ幅のことであり、より具体的には、単位時間(1分)当たりの圧力の最大値と最小値の差のことである。好ましくは、この押出変動が1MPa以内である。   The extrusion fluctuation in the present invention is the pressure fluctuation in the component connecting the resin discharge port of the first extruder and the second extruder raw material supply port. Specifically, when pressure gauges are respectively installed in the resin discharge port of the first extruder and the parts connecting the resin discharge port of the first extruder and the second extruder material supply port, the pressure in each pressure gauge More specifically, it is the difference between the maximum value and the minimum value of pressure per unit time (1 minute). Preferably, this extrusion fluctuation is within 1 MPa.

本発明においては、原料は、固体状態の樹脂を用いることができ、単軸押出機である第1押出機(1)の原料供給口(5)に、ホッパーより供給され、押出機内で加熱溶融される。押出機内で樹脂が溶融された後の部分に設けられた第1段目反応の副原料供給口(8)から、ポンプ等などの供給装置を用いて、固体、液体又は気体状態の副原料を供給し、樹脂と副原料の第1段目反応を行う。   In the present invention, the raw material can be a solid resin, and is supplied from the hopper to the raw material supply port (5) of the first extruder (1), which is a single screw extruder, and is heated and melted in the extruder. Is done. From the auxiliary raw material supply port (8) of the first stage reaction provided in the part after the resin is melted in the extruder, the auxiliary raw material in a solid, liquid or gaseous state is supplied using a supply device such as a pump. The first stage reaction of the resin and the auxiliary material is performed.

第1押出機における第1段目反応生成物は樹脂吐出口から単離されることなく、樹脂吐出口に接続した接続部品を経由して第2押出機原料供給口へ導かれ、第2押出機へ投入される。   The first-stage reaction product in the first extruder is guided to the second extruder raw material supply port via a connecting part connected to the resin discharge port without being isolated from the resin discharge port. It is thrown into.

次いで、第2押出機(2)原料供給口(7)後に設けられたベント口(9)で、第1押出機から供給された第1押出機における反応生成物中の第1段目反応の未反応副原料、反応副生成物、分解物などを除去する。ベント口の圧力は大気圧下、または真空下等が挙げられ、好ましくは真空下である。又、ベント口は必要に応じて複数個設ける事も可能である。   Next, the first stage reaction in the reaction product in the first extruder supplied from the first extruder at the vent port (9) provided after the second extruder (2) raw material supply port (7). Unreacted by-products, reaction by-products and decomposition products are removed. Examples of the pressure at the vent port include atmospheric pressure, vacuum, and the like, and preferably vacuum. A plurality of vent openings may be provided as necessary.

第2押出機(2)への第2段目反応における固体、液体又は気体状態の副原料の供給は、第2段目反応の副原料供給口(10)から、ポンプ等を用いて供給し、第1押出機における反応生成物と副原料等による第2段目反応を行う。   The secondary raw material in the second stage reaction to the second extruder (2) is supplied from the secondary raw material supply port (10) of the second stage reaction using a pump or the like. Then, the second stage reaction is performed with the reaction product and the auxiliary material in the first extruder.

次いで、第2押出機(2)の副原料供給口(10)より下流側にベント口(11)が設けられ、第2段目反応生成物中の未反応副原料、反応副生成物、分解物などを除去する。ベント口までの距離は、実施する反応の反応率などから適宜設定してやればよい。ベント口の圧力は大気圧下、または真空下等が挙げられ、好ましくは真空下である。又、ベント口は必要に応じて複数個設ける事も可能である。   Next, a vent port (11) is provided downstream from the by-material feed port (10) of the second extruder (2), and unreacted by-products, reaction by-products, decomposition in the second stage reaction product Remove things. What is necessary is just to set the distance to a vent port suitably from the reaction rate etc. of the reaction to implement. Examples of the pressure at the vent port include atmospheric pressure, vacuum, and the like, and preferably vacuum. A plurality of vent openings may be provided as necessary.

更に、第2押出機(2)に於いては、第1段目反応生成物と第2段目副原料の第2段目反応を行わず、必要に応じて複数個のベントで第1段目反応の未反応副原料、反応副生成物、分解物などの脱揮、および加熱処理を行う事も可能である。
触媒、酸化防止剤、熱安定剤、可塑剤、滑剤、紫外線吸収剤、帯電防止剤、着色剤、収縮防止剤等各種添加剤は、第1押出機(1)原料供給口(5)から原料樹脂と共に供給出来る。又、各種添加剤は必要に応じて、例えば、第2押出機(2)の添加剤供給口(12)からも供給出来る。添加剤供給口(12)からの各種添加剤の供給方法としては、サイドフィード法、押出機上部から添加する個別フィード法等が挙げられる。
Further, in the second extruder (2), the second-stage reaction of the first-stage reaction product and the second-stage auxiliary material is not performed, and the first-stage is made with a plurality of vents as necessary. Volatilization of unreacted by-products, reaction by-products and decomposition products of the eye reaction, and heat treatment are also possible.
Various additives such as catalysts, antioxidants, heat stabilizers, plasticizers, lubricants, UV absorbers, antistatic agents, colorants, shrinkage inhibitors, etc. are fed from the first extruder (1) raw material supply port (5). Can be supplied with resin. Moreover, various additives can also be supplied from the additive supply port (12) of the second extruder (2) as required. Examples of a method for supplying various additives from the additive supply port (12) include a side feed method, an individual feed method for adding from the upper part of the extruder, and the like.

本発明においては、前記タンデム型押出機を用いて第1押出機と第2押出機で異なる反応を行うことができる。   In the present invention, different reactions can be carried out between the first extruder and the second extruder using the tandem extruder.

具体的には、第1押出機において主原料と副原料とを処理する第1段目反応を行い、第2押出機において第1押出機における反応生成物をさらに他の副原料と処理する第2段目反応を行うことができる。   Specifically, the first stage reaction in which the main raw material and the auxiliary raw material are processed in the first extruder is performed, and the reaction product in the first extruder is further processed with another auxiliary raw material in the second extruder. A second stage reaction can be performed.

一例として、第1押出機でアクリル系樹脂とイミド化剤とを処理する第1段目反応を行い、第2押出機で第1押出機における反応生成物をさらにエステル化剤と処理する第2段目反応を行い、熱可塑性樹脂としてイミド樹脂を得る反応をあげることができる。   As an example, a first stage reaction in which an acrylic resin and an imidizing agent are treated in a first extruder, and a reaction product in the first extruder is further treated with an esterifying agent in a second extruder. A reaction for obtaining an imide resin as a thermoplastic resin by performing a stage reaction can be mentioned.

上記タンデム型反応押出機の第1押出機に於いて、先ずアクリル系樹脂を原料樹脂(主原料)として用い、これにアンモニア又は置換アミン等の第1段目反応の副原料(以下、イミド化剤と呼ぶ事がある)を処理した樹脂(以下、イミド樹脂中間体1と呼ぶ事がある)を得る事が出来る。   In the first extruder of the tandem reaction extruder, first, an acrylic resin is used as a raw material resin (main raw material), and this is used as a secondary raw material for the first-stage reaction such as ammonia or substituted amine (hereinafter, imidization). It is possible to obtain a resin (hereinafter sometimes referred to as an imide resin intermediate 1) that has been treated.

このイミド樹脂中間体1は、上記タンデム型反応押出機の第2押出機に於いて、第2段目反応の副原料(以下、エステル化剤と呼ぶ事がある)で処理し、必要により加熱処理等を行うことで、樹脂中に残存する酸成分(カルボキシ基及び酸無水物由来のもの)の割合を制御する(以下、イミド樹脂中間体2と呼ぶ事がある)事が出来る。この際、エステル化剤によって処理する事無く、加熱処理等のみを行う事も出来る。第2押出機において、加熱処理(押出機内での溶融樹脂の混錬/分散)のみを行った場合、イミド樹脂中間体1におけるカルボキシル基同士の脱水反応および/またはカルボキシル基とアルキルエステル基の脱アルコール反応、等によりカルボキシル基の一部または全部を酸無水物基とする事が出来る。加熱処理温度は過剰な熱履歴による樹脂の分解、着色等を抑制する為に、反応温度は150〜400℃の範囲で行う。180〜320℃が好ましく、更には200〜280℃が好ましい。   This imide resin intermediate 1 is treated with a secondary raw material of the second stage reaction (hereinafter sometimes referred to as an esterifying agent) in the second extruder of the tandem type reaction extruder, and heated if necessary. By performing the treatment or the like, the ratio of the acid component (derived from the carboxy group and the acid anhydride) remaining in the resin can be controlled (hereinafter sometimes referred to as the imide resin intermediate 2). At this time, it is possible to perform only heat treatment or the like without treatment with an esterifying agent. In the second extruder, when only heat treatment (mixing / dispersion of molten resin in the extruder) is performed, dehydration reaction between carboxyl groups in the imide resin intermediate 1 and / or desorption of carboxyl groups and alkyl ester groups. Some or all of the carboxyl groups can be converted into acid anhydride groups by alcohol reaction or the like. The heat treatment is carried out at a reaction temperature in the range of 150 to 400 ° C. in order to suppress decomposition, coloring, etc. of the resin due to excessive heat history. 180-320 degreeC is preferable and 200-280 degreeC is more preferable.

更に、イミド樹脂中間体2を減圧脱揮等により、樹脂中に含まれるエステル化剤を除去し、本発明のイミド樹脂を得る事が出来る。   Furthermore, the imide resin intermediate 2 can be removed by removing the esterifying agent contained in the resin by devolatilization under reduced pressure or the like, thereby obtaining the imide resin of the present invention.

本発明のイミド樹脂中間体1及びイミド樹脂中間体2を得るには、イミド化或いは酸成分制御を進行させ、且つ、過剰な熱履歴による樹脂の分解、着色等を抑制する為に、反応温度は150〜400℃の範囲で行う。180〜320℃が好ましく、更には200〜280℃が好ましい。   In order to obtain the imide resin intermediate 1 and the imide resin intermediate 2 of the present invention, the reaction temperature is increased in order to proceed with imidization or acid component control and to suppress decomposition, coloring, etc. of the resin due to excessive thermal history. Is performed in the range of 150 to 400 ° C. 180-320 degreeC is preferable and 200-280 degreeC is more preferable.

前述のような製造方法以外でも、本発明のタンデム型反応押出機でイミド樹脂が得られる方法であれば、特に製造方法に制限はない。   In addition to the production method as described above, the production method is not particularly limited as long as the imide resin can be obtained by the tandem reaction extruder of the present invention.

この場合、主原料となるアクリル系樹脂としては、無水マレイン酸等の酸無水物又はそれらと炭素数1〜20の直鎖又は分岐のアルコールとのハーフエステル;アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、イタコン酸、無水イタコン酸、クロトン酸、フマル酸、シトラコン酸等のα,β−エチレン性不飽和カルボン酸等をあげることができる。また、下記一般式(2)で示される繰り返し単位と、下記一般式(3)で示される繰り返し単位からなるメタクリル酸メチル−スチレン共重合体等の(メタ)アクリル酸エステル−芳香族ビニル共重合体、又は一般式(2)で示される繰り返し単位からなるメタクリル酸メチル重合体等の(メタ)アクリル酸エステル重合体等があげられる。   In this case, as the acrylic resin as the main raw material, an acid anhydride such as maleic anhydride or a half ester of them with a linear or branched alcohol having 1 to 20 carbon atoms; acrylic acid, methacrylic acid, maleic acid, Mention may be made of α, β-ethylenically unsaturated carboxylic acids such as maleic anhydride, itaconic acid, itaconic anhydride, crotonic acid, fumaric acid and citraconic acid. Further, (meth) acrylic acid ester-aromatic vinyl copolymer such as methyl methacrylate-styrene copolymer comprising a repeating unit represented by the following general formula (2) and a repeating unit represented by the following general formula (3): And (meth) acrylic acid ester polymers such as methyl methacrylate polymers composed of repeating units represented by general formula (2).

Figure 2008274186
(但し、R及びRは、それぞれ独立に、水素又は炭素数1〜8のアルキル基を示し、Rは、水素、炭素数1〜18のアルキル基、炭素数3〜12のシクロアルキル基、又は炭素数5〜15の芳香環を含む置換基を示す。)
Figure 2008274186
(However, R 4 and R 5 each independently represent hydrogen or an alkyl group having 1 to 8 carbon atoms, and R 6 represents hydrogen, an alkyl group having 1 to 18 carbon atoms, or a cycloalkyl having 3 to 12 carbon atoms. Or a substituent containing an aromatic ring having 5 to 15 carbon atoms.)

Figure 2008274186
(但し、Rは、水素又は炭素数1〜8のアルキル基を示し、Rは、炭素数6〜10のアリール基を示す。)
本発明のイミド樹脂を製造する際に、先ずメチルメタクリレート−スチレン共重合体等の(メタ)アクリル酸エステル−芳香族ビニル共重合体、又はメタクリル酸メチル重合体等の(メタ)アクリル酸エステル重合体を重合し、これをイミド樹脂化する場合、本発明で用いる事ができる(メタ)アクリル酸エステル−芳香族ビニル共重合体、(メタ)アクリル酸エステル重合体は、イミド化反応が可能であれば、リニアー(線状)ポリマーであっても、またブロックポリマー、コアシェルポリマー、分岐ポリマー、ラダーポリマー、架橋ポリマーであっても構わない。ブロックポリマーはA−B型、A−B−C型、A−B−A型、又はこれら以外のいずれのタイプのブロックポリマーであっても構わない。コアシェルポリマーはただ一層のコア及びただ一層のシェルのみからなるものであっても、それぞれが多層になっていても構わない。
Figure 2008274186
(However, R 7 represents hydrogen or an alkyl group having 1 to 8 carbon atoms, and R 8 represents an aryl group having 6 to 10 carbon atoms.)
When producing the imide resin of the present invention, first, a (meth) acrylic acid ester-aromatic vinyl copolymer such as methyl methacrylate-styrene copolymer or a (meth) acrylic acid ester weight such as methyl methacrylate polymer is used. When a polymer is polymerized and converted into an imide resin, the (meth) acrylate-aromatic vinyl copolymer and (meth) acrylate polymer that can be used in the present invention can undergo an imidization reaction. As long as it is a linear polymer, it may be a block polymer, a core-shell polymer, a branched polymer, a ladder polymer, or a crosslinked polymer. The block polymer may be an A-B type, an A-B-C type, an A-B-A type, or any other type of block polymer. The core-shell polymer may be composed of only one core and only one shell, or each may be a multilayer.

副原料としては、イミド化剤をあげることができる。イミド化剤としては、例えば、メチルアミン、エチルアミン、n−プロピルアミン、i−プロピルアミン、n−ブチルアミン、i−ブチルアミン、tert−ブチルアミン、n−ヘキシルアミン等の脂肪族炭化水素基含有アミン、アニリン、ベンジルアミン、トルイジン、トリクロロアニリン等の芳香族炭化水素基含有アミン、シクロヘキシルアミン等の脂環式炭化水素基含有アミン、アンモニアなどが挙げられる。又、尿素、1,3−ジメチル尿素、1,3−ジエチル尿素、1,3−ジプロピル尿素の如き、加熱によりこれらのアミンを発生する尿素系化合物を用いる事も出来る。これらのイミド化剤の内、コスト、物性の面からメチルアミン、アンモニア、シクロヘキシルアミンが好ましく、中でも、メチルアミンが特に好ましい。   An example of the auxiliary material is an imidizing agent. Examples of imidizing agents include amines containing aliphatic hydrocarbon groups such as methylamine, ethylamine, n-propylamine, i-propylamine, n-butylamine, i-butylamine, tert-butylamine, n-hexylamine, and aniline. Aromatic hydrocarbon group-containing amines such as benzylamine, toluidine, and trichloroaniline, alicyclic hydrocarbon group-containing amines such as cyclohexylamine, and ammonia. In addition, urea compounds such as urea, 1,3-dimethylurea, 1,3-diethylurea, and 1,3-dipropylurea that generate these amines by heating can also be used. Of these imidizing agents, methylamine, ammonia, and cyclohexylamine are preferable from the viewpoint of cost and physical properties, and methylamine is particularly preferable.

イミド化剤の添加量は必要な物性を発現する為のイミド化率によって適宜決定してやればよい。好ましくは、主原料の100重量部に対して、1〜100重量部である。   What is necessary is just to determine suitably the addition amount of an imidation agent by the imidation rate for expressing a required physical property. Preferably, it is 1 to 100 parts by weight with respect to 100 parts by weight of the main raw material.

エステル化剤としては、例えば、ジメチルカーボネート、2,2−ジメトキシプロパン、ジメチルスルホキシド、トリエチルオルトホルメート、トリメチルオルトアセテート、トリメチルオルトホルメート、ジフェニルカーボネート、ジメチルサルフェート、メチルトルエンスルホネート、メチルトリフルオロメチルスルホネート、メチルアセテート、メタノール、エタノール、メチルイソシアネート、p−クロロフェニルイソシアネート、ジメチルカルボジイミド、ジメチル−t−ブチルシリルクロライド、イソプロペニルアセテート、ジメチルウレア、テトラメチルアンモニウムハイドロオキサイド、ジメチルジエトキシシラン、テトラ−N−ブトキシシラン、ジメチル(トリメチルシラン)フォスファイト、トリメチルフォスファイト、トリメチルフォスフェート、トリクレジルフォスフェート、ジアゾメタン、エチレンオキサイド、プロピレンオキサイド、シクロヘキセンオキサイド、2−エチルヘキシルグリシジルエーテル、フェニルグリシジルエーテル、ベンジルグリシジルエーテル等が挙げられる。   Examples of esterifying agents include dimethyl carbonate, 2,2-dimethoxypropane, dimethyl sulfoxide, triethyl orthoformate, trimethyl orthoacetate, trimethyl orthoformate, diphenyl carbonate, dimethyl sulfate, methyl toluene sulfonate, methyl trifluoromethyl sulfonate. , Methyl acetate, methanol, ethanol, methyl isocyanate, p-chlorophenyl isocyanate, dimethylcarbodiimide, dimethyl-t-butylsilyl chloride, isopropenyl acetate, dimethylurea, tetramethylammonium hydroxide, dimethyldiethoxysilane, tetra-N-butoxy Silane, dimethyl (trimethylsilane) phosphite, trimethyl phosphite Trimethyl phosphate, tricresyl phosphate, diazomethane, ethylene oxide, propylene oxide, cyclohexene oxide, 2-ethylhexyl glycidyl ether, phenyl glycidyl ether, benzyl glycidyl ether.

エステル化剤の添加量は、必要な物性を発現する為の樹脂中に於ける酸成分の割合によって決定される。好ましくは、イミド樹脂中間体1の100重量部に対して、1〜100重量部である。   The addition amount of the esterifying agent is determined by the ratio of the acid component in the resin for expressing necessary physical properties. Preferably, it is 1 to 100 parts by weight with respect to 100 parts by weight of the imide resin intermediate 1.

イミド樹脂中間体1をエステル化剤で処理、及び/又は加熱処理する際、又はイミド樹脂中間体2に対して、一般に用いられる触媒、酸化防止剤、熱安定剤、可塑剤、滑剤、紫外線吸収剤、帯電防止剤、着色剤、収縮防止剤などを本発明の目的が損なわれない範囲で添加しても良い。   When the imide resin intermediate 1 is treated with an esterifying agent and / or heat-treated, or for the imide resin intermediate 2, generally used catalysts, antioxidants, heat stabilizers, plasticizers, lubricants, UV absorption An agent, an antistatic agent, a coloring agent, an anti-shrinkage agent and the like may be added as long as the object of the present invention is not impaired.

このように、本発明を有効に適応して合成する事の出来る熱可塑性樹脂としては、イミド樹脂などがあげられる。   As described above, examples of the thermoplastic resin that can be synthesized by effectively applying the present invention include imide resins.

イミド樹脂としては、たとえば、前述の方法で主原料及び副原料の種類や量を適宜設定することで種々のものを製造することができるが、具体的には下記一般式(1)で表される単位と、前記一般式(2)で表される単位及び/又は前記一般式(3)で表される単位とを有するものがあげられる。   As the imide resin, for example, various types can be produced by appropriately setting the kind and amount of the main raw material and the auxiliary raw material by the above-described method. Specifically, the imide resin is represented by the following general formula (1). And a unit represented by the general formula (2) and / or a unit represented by the general formula (3).

Figure 2008274186
(但し、R及びRは、それぞれ独立に、水素又は炭素数1〜8のアルキル基を示し、Rは、水素、炭素数1〜18のアルキル基、炭素数3〜12のシクロアルキル基、又は炭素数5〜15の芳香環を含む置換基を示す。)
本発明のイミド樹脂を構成する、第一の構成単位は、前記一般式(1)で表されるものであり、一般的にグルタルイミド単位と呼ばれる事が多い(以下、一般式(1)をグルタルイミド単位と省略して示す事がある。)。
Figure 2008274186
(However, R 1 and R 2 each independently represent hydrogen or an alkyl group having 1 to 8 carbon atoms, and R 3 represents hydrogen, an alkyl group having 1 to 18 carbon atoms, or a cycloalkyl having 3 to 12 carbon atoms. Or a substituent containing an aromatic ring having 5 to 15 carbon atoms.)
The first structural unit constituting the imide resin of the present invention is represented by the general formula (1) and is generally called a glutarimide unit (hereinafter referred to as the general formula (1)). Sometimes abbreviated as glutarimide unit.)

好ましいグルタルイミド単位としては、R、Rが水素又はメチル基であり、Rが水素、メチル基、ブチル基、又はシクロヘキシル基である。Rがメチル基であり、Rが水素であり、Rがメチル基である場合が、特に好ましい。 As a preferable glutarimide unit, R 1 and R 2 are hydrogen or a methyl group, and R 3 is hydrogen, a methyl group, a butyl group, or a cyclohexyl group. The case where R 1 is a methyl group, R 2 is hydrogen, and R 3 is a methyl group is particularly preferable.

該グルタルイミド単位は、単一の種類でもよく、R、R、Rが異なる複数の種類を含んでいても構わない。 The glutarimide unit may be of a single type or may include a plurality of types in which R 1 , R 2 and R 3 are different.

尚、グルタルイミド単位は、上述したイミド樹脂を製造する方法において説明した主原料をイミド化する事により形成する事が可能である。   In addition, a glutarimide unit can be formed by imidizing the main raw material demonstrated in the method to manufacture the imide resin mentioned above.

イミド樹脂を構成する、第二の構成単位は、前記一般式(2)で表されるものであり、一般的には(メタ)アクリル酸エステル単位と呼ばれる事が多い(ここで、(メタ)アクリル酸エステルとは、アクリル酸エステル、メタクリル酸エステルを示す。以下、一般式(2)を(メタ)アクリル酸エステル単位と省略して示す事がある。)。   The second structural unit constituting the imide resin is represented by the general formula (2) and is generally called a (meth) acrylic acid ester unit (here, (meth) Acrylic acid ester refers to acrylic acid ester and methacrylic acid ester.Hereinafter, general formula (2) may be abbreviated as (meth) acrylic acid ester unit).

イミド樹脂を製造する際に、先ず(メタ)アクリル酸エステル−芳香族ビニル共重合体、または(メタ)アクリル酸エステル重合体を重合し、これを後イミド化して形成する場合、具体的に(メタ)アクリル酸エステル単位を残基として与える原料としては、特に限定するものではないが、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、ベンジル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート等が挙げられる。これらの中で、メタクリル酸メチルが特に好ましい。   When manufacturing an imide resin, when (meth) acrylic acid ester-aromatic vinyl copolymer or (meth) acrylic acid ester polymer is first polymerized and then imidized, it is specifically ( The raw material for giving a meth) acrylic acid ester unit as a residue is not particularly limited. For example, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, t -Butyl (meth) acrylate, benzyl (meth) acrylate, cyclohexyl (meth) acrylate, etc. are mentioned. Of these, methyl methacrylate is particularly preferred.

これら第二の構成単位は、単一の種類でもよく、R、R、Rが異なる複数の種類を含んでいても構わない。同様に、前記(メタ)アクリル酸エステル単位を残基として与える原料も複数の種類を混合して用いても構わない。 These second structural units may be of a single type or may include a plurality of types in which R 4 , R 5 , and R 6 are different. Similarly, a plurality of types of raw materials that give the (meth) acrylic acid ester unit as a residue may be used.

本発明のイミド樹脂に必要に応じて含有させる第三の構成単位は、前記一般式(3)で表されるものであり、一般的には芳香族ビニル単位と呼ばれる事が多い(以下、一般式(3)を芳香族ビニル単位と省略して示す事がある。)
好ましい芳香族ビニル構成単位としては、Rが水素及びRがフェニル基であるスチレン、Rがメチル基及びRがフェニル基であるα−メチルスチレン等が挙げられる。これらの中でスチレンが特に好ましい。
The third structural unit contained in the imide resin of the present invention as needed is represented by the general formula (3), and is generally called an aromatic vinyl unit (hereinafter referred to as general vinyl). (Formula (3) may be abbreviated as an aromatic vinyl unit.)
Preferred aromatic vinyl structural units include styrene in which R 7 is hydrogen and R 8 is a phenyl group, and α-methylstyrene in which R 7 is a methyl group and R 8 is a phenyl group. Of these, styrene is particularly preferred.

これら第三の構成単位は、単一の種類でもよく、R、Rが異なる複数の種類を含んでいても構わない。 These third structural units may be of a single type, or may include a plurality of types in which R 7 and R 8 are different.

イミド樹脂中の、一般式(1)で表されるグルタルイミド単位の含有量は、例えばRの構造にも依存するが、イミド樹脂の20重量%以上が好ましい。グルタルイミド単位の、好ましい含有量は、20重量%から95重量%であり、より好ましくは40〜90重量%、更に好ましくは、50〜80重量%である。グルタルイミド単位の割合がこの範囲より小さい場合、得られるイミド樹脂の耐熱性が不足したり、透明性が損なわれる事がある。また、この範囲を超えると不必要に耐熱性、溶融粘度が上がり、成形加工性が悪くなる他、得られるフィルムの機械的強度は極端に脆くなり、又、透明性が損なわれる事がある。 The content of the glutarimide unit represented by the general formula (1) in the imide resin depends on, for example, the structure of R 3 , but is preferably 20% by weight or more of the imide resin. The preferable content of the glutarimide unit is 20% to 95% by weight, more preferably 40 to 90% by weight, and still more preferably 50 to 80% by weight. When the ratio of the glutarimide unit is smaller than this range, the resulting imide resin may have insufficient heat resistance or the transparency may be impaired. On the other hand, if it exceeds this range, the heat resistance and melt viscosity are unnecessarily increased, the moldability becomes worse, the mechanical strength of the resulting film becomes extremely brittle, and the transparency may be impaired.

イミド樹脂の、一般式(3)で表される芳香族ビニル単位の含有量は、イミド樹脂の総繰り返し単位を基準として、1重量%以上が好ましい。芳香族ビニル単位の、好ましい含有量は、1重量%から40重量%であり、より好ましくは1〜30重量%、更に好ましくは、1〜25重量%である。芳香族ビニル単位がこの範囲より大きい場合、得られるイミド樹脂の耐熱性が不足する。この範囲より小さい場合、得られるフィルムの機械的強度が低下することがある。   The content of the aromatic vinyl unit represented by the general formula (3) in the imide resin is preferably 1% by weight or more based on the total repeating unit of the imide resin. The content of the aromatic vinyl unit is preferably 1 to 40% by weight, more preferably 1 to 30% by weight, and still more preferably 1 to 25% by weight. When the aromatic vinyl unit is larger than this range, the resulting imide resin has insufficient heat resistance. If it is smaller than this range, the mechanical strength of the resulting film may be lowered.

主原料である、一般式(2)、(3)及び、副原料であるイミド化剤の割合を調整することで、一般式(1)で表される単位と、一般式(2)で表される単位及び/又は一般式(3)で表される単位とを任意の割合で含有するイミド樹脂を得ることができ、一般式(1)、(2)、(3)の割合を調整することで、各種要求される物性に調整する事が可能である。例えば、本発明のイミド樹脂を、先ずメチルメタクリレート−スチレン共重合体等の(メタ)アクリル酸エステル−芳香族ビニル共重合体を重合した後にイミド化して形成する場合、例えば(メタ)アクリル酸エステルと芳香族ビニルの重合割合を調整することで一般式(3)の割合を決め(一般式(3)の割合を0とする事も可能)、更にイミド化時のイミド化剤の添加割合を調整する事で、更に一般式(1)、(2)の割合を調整する事ができる。   By adjusting the ratio of the general raw materials, general formulas (2) and (3), and the imidizing agent, which is a secondary raw material, the unit represented by general formula (1) and the general formula (2) Can be obtained, and an imide resin containing the unit represented by the general formula (3) in an arbitrary ratio can be obtained, and the ratios of the general formulas (1), (2), and (3) are adjusted. Therefore, it is possible to adjust to various required physical properties. For example, when the imide resin of the present invention is first formed by polymerizing a (meth) acrylic ester-aromatic vinyl copolymer such as methyl methacrylate-styrene copolymer, for example, a (meth) acrylic ester is used. The ratio of the general formula (3) is determined by adjusting the polymerization ratio of the aromatic vinyl and the aromatic vinyl (the ratio of the general formula (3) can also be set to 0). By adjusting, the ratios of the general formulas (1) and (2) can be further adjusted.

イミド樹脂には、必要に応じ、更に、第四の構成単位が共重合されていてもかまわない。第四の構成単位として、アクリロニトリルやメタクリロニトリル等のニトリル系単量体、マレイミド、N−メチルマレイミド、N−フェニルマレイミド、N−シクロヘキシルマレイミド等のマレイミド系単量体を共重合してなる構成単位を用いる事ができる。これらは熱可塑性樹脂中に、直接共重合してあっても良く、グラフト共重合してあっても構わない。第四の構成単位は、主原料中に含まれている事が好ましい。   The imide resin may further be copolymerized with a fourth structural unit as necessary. A constitution obtained by copolymerizing nitrile monomers such as acrylonitrile and methacrylonitrile, and maleimide monomers such as maleimide, N-methylmaleimide, N-phenylmaleimide, N-cyclohexylmaleimide as the fourth structural unit Units can be used. These may be directly copolymerized in a thermoplastic resin or may be graft copolymerized. The fourth structural unit is preferably contained in the main raw material.

本発明の製造法において得られるイミド樹脂中で、一般式(3)を含有するタイプは、メタクリル酸メチル−スチレン共重合体中の各構成単位量及びグルタルイミド単位の含有量を調節する事で実質的に配向複屈折を有さない特徴を付与する事も可能である。配向複屈折とは所定の温度、所定の延伸倍率で延伸した場合に発現する複屈折の事をいう。本明細書中では、特にことわりのない限り、イミド樹脂のガラス転移温度より5℃高い温度で、100%延伸した場合に発現する複屈折の事をいうものとする。   In the imide resin obtained in the production method of the present invention, the type containing the general formula (3) is obtained by adjusting the content of each constituent unit and glutarimide unit in the methyl methacrylate-styrene copolymer. It is also possible to impart a feature that does not substantially have orientation birefringence. Oriented birefringence refers to birefringence that develops when stretched at a predetermined temperature and a predetermined draw ratio. In this specification, unless otherwise specified, it means birefringence that develops when stretched 100% at a temperature 5 ° C. higher than the glass transition temperature of the imide resin.

ここで配向複屈折は、ポリマー構造由来の固有複屈折と分子配向状態に由来する配向分布関数の積であり、延伸軸方向の屈折率(nx)と、それと直行する軸方向の屈折率(ny)から、次式
△nor=nx−ny
で定義され、位相差計により測定される位相差Re(nm)を厚みd(μm)で割った値である。
配向複屈折△nor=Re/d
配向複屈折は上記したように、延伸軸方向の屈折率(nx)とそれと直行する軸方向の屈折率(ny)の差であるので、nxがnyより大きい場合は正の値を示し、逆にnxがnyより小さい場合は負の値を示す。
Here, the orientation birefringence is the product of the intrinsic birefringence derived from the polymer structure and the orientation distribution function derived from the molecular orientation state. The refractive index (nx) in the stretching axis direction and the axial refractive index (ny) orthogonal thereto. ) From the following formula: Δn or = nx−ny
The phase difference Re (nm) measured by a phase meter is divided by the thickness d (μm).
Oriented birefringence Δn or = Re / d
As described above, the orientation birefringence is the difference between the refractive index (nx) in the stretching axis direction and the refractive index (ny) in the axial direction perpendicular thereto, and therefore, when nx is larger than ny, it shows a positive value and vice versa. When nx is smaller than ny, a negative value is indicated.

配向複屈折の値としては、−0.1×10−3〜0.1×10−3である事が好ましく、−0.01×10−3〜0.01×10−3である事がより好ましい。配向複屈折が上記の範囲外の場合、環境の変化に対して、成形加工時に複屈折を生じ易く、安定した光学的特性を得る事が難しくなる。 The value of orientation birefringence is preferably −0.1 × 10 −3 to 0.1 × 10 −3 , and preferably −0.01 × 10 −3 to 0.01 × 10 −3. More preferred. When the orientation birefringence is out of the above range, the birefringence is likely to occur during the molding process with respect to the environmental change, and it becomes difficult to obtain stable optical characteristics.

実質的に配向複屈折を有さないイミド樹脂を得る為には、メタクリル酸メチル−スチレン共重合体等の(メタ)アクリル酸エステル−芳香族ビニル共重合体中の各構成単位量を調節、更にイミド化の程度を調製する必要があり、一般式(1)で示される繰り返し単位と、一般式(3)で示される繰り返し単位が、重量比で2.0:1.0〜4.0:1.0の範囲にあることが好ましく、2.5:1.0〜4.0:1.0の範囲がより好ましく、3.0:1.0〜3.5:1.0の範囲が更に好ましい。   In order to obtain an imide resin having substantially no orientation birefringence, the amount of each structural unit in the (meth) acrylic acid ester-aromatic vinyl copolymer such as methyl methacrylate-styrene copolymer is adjusted, Furthermore, it is necessary to prepare the degree of imidization, and the repeating unit represented by the general formula (1) and the repeating unit represented by the general formula (3) are 2.0: 1.0 to 4.0 by weight ratio. Is preferably in the range of 1.0, more preferably in the range of 2.5: 1.0 to 4.0: 1.0, and in the range of 3.0: 1.0 to 3.5: 1.0. Is more preferable.

又、本発明のイミド樹脂は、1×10ないし5×10の重量平均分子量を有する事が好ましい。熱可塑性樹脂の製造過程で、樹脂に対して過剰な熱履歴を与えると熱分解が生じ、重量平均分子量が1×10を下回る。更には、架橋が生じ、重量平均分子量が5×10を上回る場合もある。本発明に於ける熱可塑性樹脂の製造方法を適用すれば、熱可塑性樹脂の製造過程で、樹脂に対する熱履歴が低減でき、上記重量平均分子量の範囲を達成できる。重量平均分子量が1×10を下回る場合には、フィルムにした場合の機械的強度が不足し、5×10を上回る場合には、溶融押出時の粘度が高く、成形加工性が低下し、成形品の生産性が低下する事がある。 The imide resin of the present invention preferably has a weight average molecular weight of 1 × 10 4 to 5 × 10 5 . In the process of producing a thermoplastic resin, if an excessive heat history is given to the resin, thermal decomposition occurs, and the weight average molecular weight is less than 1 × 10 4 . Furthermore, crosslinking may occur and the weight average molecular weight may exceed 5 × 10 5 . When the method for producing a thermoplastic resin according to the present invention is applied, the heat history for the resin can be reduced in the process of producing the thermoplastic resin, and the range of the weight average molecular weight can be achieved. When the weight average molecular weight is less than 1 × 10 4 , the mechanical strength when formed into a film is insufficient, and when it exceeds 5 × 10 5 , the viscosity at the time of melt extrusion is high, and the molding processability is lowered. , Productivity of molded products may decrease.

本発明のイミド樹脂に於けるガラス転移温度は110℃以上である事が好ましく、120℃以上である事がより好ましい。ガラス転移温度が上記の値を下回ると、耐熱性が要求される用途においては適用範囲が制限される。   The glass transition temperature in the imide resin of the present invention is preferably 110 ° C. or higher, and more preferably 120 ° C. or higher. When the glass transition temperature is lower than the above value, the application range is limited in applications where heat resistance is required.

本発明のイミド樹脂には、必要に応じて、他の熱可塑性樹脂を添加する事が出来る。成形加工の際には、一般に用いられる酸化防止剤、熱安定剤、可塑剤、滑剤、紫外線吸収剤、帯電防止剤、着色剤、収縮防止剤等を本発明の目的が損なわれない範囲で添加しても良い。
本発明のイミド樹脂から得られる成形品は、例えば、カメラやVTR、プロジェクター用の撮影レンズやファインダー、フィルター、プリズム、フレネルレンズ等の映像分野、CDプレイヤーやDVDプレイヤー、MDプレイヤーなどの光ディスク用ピックアップレンズ等のレンズ分野、CDプレイヤーやDVDプレイヤー、MDプレイヤー等の光ディスク用の光記録分野、液晶用導光板、偏光子保護フィルムや位相差フィルム等の液晶ディスプレイ用フィルム、表面保護フィルム等の情報機器分野、光ファイバ、光スイッチ、光コネクター等の光通信分野、自動車ヘッドライトやテールランプレンズ、インナーレンズ、計器カバー、サンルーフ等の車両分野、眼鏡やコンタクトレンズ、内視境用レンズ、滅菌処理の必要な医療用品等の医療機器分野、道路透光板、ペアガラス用レンズ、採光窓やカーポート、照明用レンズや照明カバー、建材用サイジング等の建築・建材分野、電子レンジ調理容器(食器)、家電製品のハウジング、玩具、サングラス、文房具、等に使用可能である。
If necessary, other thermoplastic resins can be added to the imide resin of the present invention. When molding, generally used antioxidants, heat stabilizers, plasticizers, lubricants, UV absorbers, antistatic agents, colorants, shrinkage inhibitors, etc. are added within the range that does not impair the purpose of the present invention. You may do it.
Molded articles obtained from the imide resin of the present invention include, for example, imaging fields such as cameras, VTRs, projector lenses, viewfinders, filters, prisms, and Fresnel lenses, optical disc pickups such as CD players, DVD players, and MD players. Information equipment such as lens fields such as lenses, optical recording fields for optical disks such as CD players, DVD players, and MD players, liquid crystal light guide plates, liquid crystal display films such as polarizer protective films and retardation films, and surface protective films Fields, optical communication fields such as optical fiber, optical switch, optical connector, etc., automotive headlights, tail lamp lenses, inner lenses, instrument covers, sunroofs, and other vehicle fields, glasses, contact lenses, internal vision lenses, need for sterilization Medical supplies Appliances field, road translucent plates, pair glass lenses, lighting windows and carports, lighting lenses and covers, building material sizing, etc., microwave cooking containers (tableware), home appliance housings, toys , Sunglasses, stationery, etc.

本発明を実施例に基づき、更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。尚、以下の実施例及び比較例で測定した物性の各測定方法は次の通りである。
(1)イミド化率の測定
生成物のペレット1gをジクロロメタン5ccに溶解し、SensIR Tecnologies社製TravelIRを用いて、室温にてIRスペクトルを測定した。得られたスペクトルより、1720cm−1のエステルカルボニル基に帰属される吸収強度(Absester)と、1660cm−1のイミドカルボニル基に帰属される吸収強度(Absimide)の比からイミド化率を求めた。ここで、イミド化率とは全カルボニル基中のイミドカルボニル基の占める割合をいう。
(2)樹脂中に残存する酸成分の割合の測定
ジクロロメタン37.5mlに生成物のペレット0.3gを溶解させ、メタノール37.5mlを添加した。この溶液に1wt%フェノールフタレインエタノール溶液を2滴添加し、0.1N水酸化ナトリウム水溶液5mlを添加して1時間攪拌した。この溶液に0.1N塩酸を滴下して溶液の赤紫色が消失するまでの0.1N塩酸の滴下量(Aml)を測定した。
The present invention will be described in more detail based on examples, but the present invention is not limited to these examples. In addition, each measuring method of the physical property measured in the following Examples and Comparative Examples is as follows.
(1) Measurement of imidation rate 1 g of the product pellets was dissolved in 5 cc of dichloromethane, and IR spectrum was measured at room temperature using Travel IR manufactured by SensIR Technologies. From the obtained spectrum, determined with the absorption intensity (Abs Ester) attributed to the ester carbonyl group of 1720 cm -1, the imidization ratio from the ratio of the absorption intensity assignable to an imide carbonyl group of 1660cm -1 (Abs imide) It was. Here, the imidation rate refers to the proportion of the imide carbonyl group in all carbonyl groups.
(2) Measurement of ratio of acid component remaining in resin 0.3 g of product pellets were dissolved in 37.5 ml of dichloromethane, and 37.5 ml of methanol was added. To this solution, 2 drops of 1 wt% phenolphthalein ethanol solution was added, 5 ml of 0.1N sodium hydroxide aqueous solution was added, and the mixture was stirred for 1 hour. 0.1N hydrochloric acid was added dropwise to this solution, and the amount of 0.1N hydrochloric acid added (Aml) until the reddish purple color of the solution disappeared was measured.

次に、ジクロロメタン37.5mlとメタノール37.5mlの混合液に1wt%フェノールフタレインエタノール溶液を2滴添加した。これに0.1N水酸化ナトリウム水溶液5mlを添加して1時間攪拌した。この溶液に0.1N塩酸を滴下して溶液の赤紫色が消失するまでの0.1N塩酸の滴下量(Bml)を測定した。   Next, 2 drops of 1 wt% phenolphthalein ethanol solution was added to a mixed solution of 37.5 ml of dichloromethane and 37.5 ml of methanol. To this, 5 ml of 0.1N sodium hydroxide aqueous solution was added and stirred for 1 hour. 0.1N hydrochloric acid was added dropwise to this solution, and the amount of 0.1N hydrochloric acid added (Bml) until the reddish purple color of the solution disappeared was measured.

樹脂中に残存する酸成分(カルボキシル基及び酸無水物由来のもの)の割合をCmmol/gとし、次式で求めた。   The ratio of the acid component (derived from a carboxyl group and an acid anhydride) remaining in the resin was defined as Cmmol / g, and the following formula was used.

C=0.1×((5−A−B)/0.3)
(3)バラツキ
本実施例、比較例においては、製造開始1時間後から1分毎に30分間ペレットを採取し、上記方法でイミド化率及び酸成分の割合を測定した。得られた測定値の最大値と最小値の差をそれぞれイミド化率のバラツキ、及び、酸成分のバラツキとした。
C = 0.1 × ((5-AB) /0.3)
(3) Variation In this example and comparative example, pellets were collected every 1 minute from 1 hour after the start of production, and the imidization rate and the ratio of acid components were measured by the above methods. The difference between the maximum value and the minimum value of the measured values obtained was regarded as the variation in the imidization rate and the variation in the acid component, respectively.

(4)樹脂劣化異物数の評価
A4サイズ1枚フィルム中に存在する長手方向長が20μm以上50μm未満の大きさの異物をキーエンス社製デジタルマイクロスコープを用いて倍率400倍にて観察し、SPECTRA−TECH社製顕微赤外分光分析装置を用いてフィルム異物中の樹脂劣化異物とその他の外来異物を分類し、樹脂劣化異物数を数えた。
(4) Evaluation of the number of resin-deteriorated foreign matter Foreign matter having a longitudinal length of 20 μm or more and less than 50 μm present in a single A4 size film was observed at 400 × magnification using a Keyence digital microscope, and SPECTRA -Using a micro-infrared spectroscopic analyzer manufactured by TECH, resin-degraded foreign matters and other foreign foreign matters in the film foreign matters were classified, and the number of resin-deteriorated foreign matters was counted.

(実施例1)
装置としては、図1に示すものと同等なものを使用した。タンデム型反応押出機に関しては、第1押出機(1)に直径15mm、L/D(押出機の長さLと直径Dの比)30の単軸押出機、第2押出機(2)に直径15mm、L/D(押出機の長さLと直径Dの比)が60の同方向噛合型二軸押出機を使用し第1押出機原料供給口にホッパーから原料樹脂を供給した。1時間あたりの原料樹脂供給量は5kgとした。第1段目反応副原料(イミド化剤)、第2段目反応副原料(エステル化剤)の供給位置は図1に示すものと同等とした。又、第1押出機、第2押出機に於けるベントの位置も図1に示すものと同等とし、各ベントの減圧度は−0.095MPaとした。更に、直径20mm、長さ2.0mの配管で第1押出機と第2押出機を接続し(接続部品(3))、第1押出機の樹脂吐出口と第2押出機原料供給口を接続する部品内圧力制御機構(4)には定流圧力弁を用いた。イミド化された樹脂の比重1.1g/cmを加味すると、この時の接続管内滞留時間はおよそ9分となる。第2押出機から吐出された樹脂(ストランド)は、水槽で冷却した後、ペレタイザーでカッティングしペレットとした。ここで、第1押出機の樹脂の吐出口と第2押出機原料供給口を接続する部品内圧力調整、又は押出変動を見極める為に、第1押出機出口、第1押出機と第2押出機接続部品中央部、第2押出機出口に樹脂圧力計を設けた。
Example 1
An apparatus equivalent to that shown in FIG. 1 was used. As for the tandem type reactive extruder, the first extruder (1) has a diameter of 15 mm and a L / D (the ratio of the length L of the extruder to the diameter D) of 30 and the second extruder (2) has a single screw extruder. A raw resin was supplied from the hopper to the raw material supply port of the first extruder using a same-direction meshing twin screw extruder having a diameter of 15 mm and L / D (ratio of the length L to the diameter D of the extruder) of 60. The amount of raw material resin supplied per hour was 5 kg. The supply positions of the first stage reaction auxiliary material (imidizing agent) and the second stage reaction auxiliary material (esterifying agent) were the same as those shown in FIG. The positions of the vents in the first extruder and the second extruder were also the same as those shown in FIG. 1, and the degree of vacuum of each vent was -0.095 MPa. Further, the first extruder and the second extruder are connected by a pipe having a diameter of 20 mm and a length of 2.0 m (connecting part (3)), and the resin discharge port of the first extruder and the second extruder raw material supply port are connected. A constant flow pressure valve was used for the in-part pressure control mechanism (4) to be connected. Taking into account the specific gravity of 1.1 g / cm 3 of the imidized resin, the residence time in the connecting pipe at this time is about 9 minutes. The resin (strand) discharged from the second extruder was cooled in a water tank and then cut into pellets by a pelletizer. Here, the outlet of the first extruder, the first extruder and the second extruder are used to adjust the pressure in the part connecting the resin discharge port of the first extruder and the raw material supply port of the second extruder, or to determine the fluctuation of the extrusion. A resin pressure gauge was provided at the center of the machine connecting part and at the outlet of the second extruder.

第1押出機に関して、原料樹脂として、市販のメタクリル酸メチル−スチレン共重合体(新日鐵化学(株)製MS−800)を使用し、イミド化剤として、モノメチルアミンを用いてイミド樹脂中間体1を製造した。この際、押出機各バレル温度を250℃、スクリュ回転数は150rpm、原料樹脂供給量は5kg/時間、モノメチルアミンの添加量は原料樹脂100部に対して20部とした。又、定流圧力弁は第2押出機原料供給口直前に設置し、第1押出機出口圧力、第1押出機と第2押出機接続部品中央部圧力(接続部品内圧力)を40MPaになるように調整した。   Regarding the first extruder, a commercially available methyl methacrylate-styrene copolymer (MS-800 manufactured by Nippon Steel Chemical Co., Ltd.) is used as a raw material resin, and an intermediate imide resin using monomethylamine as an imidizing agent. Body 1 was produced. At this time, each barrel temperature of the extruder was 250 ° C., the screw rotation speed was 150 rpm, the raw material resin supply amount was 5 kg / hour, and the addition amount of monomethylamine was 20 parts with respect to 100 parts of the raw material resin. In addition, the constant flow pressure valve is installed immediately before the second extruder raw material supply port, and the pressure at the outlet of the first extruder and the pressure at the central part of the connecting part of the first extruder and the second extruder (pressure in the connecting part) is 40 MPa. Adjusted as follows.

第2押出機に関して、エステル化剤として炭酸ジメチルとトリエチルアミンの混合溶液を用いてイミド樹脂中間体2を製造した。この際、押出機各バレル温度を250℃、スクリュ回転数は150rpm、炭酸ジメチルの添加量は原料樹脂100部に対して8部、トリエチルアミンの添加量は原料樹脂100部に対して2部とした。更に、ベントでエステル化剤を除去し、イミド樹脂を得た。   Regarding the second extruder, an imide resin intermediate 2 was produced using a mixed solution of dimethyl carbonate and triethylamine as an esterifying agent. At this time, each barrel temperature of the extruder was 250 ° C., the screw rotation speed was 150 rpm, the addition amount of dimethyl carbonate was 8 parts with respect to 100 parts of the raw material resin, and the addition amount of triethylamine was 2 parts with respect to 100 parts of the raw material resin. . Furthermore, the esterifying agent was removed with a vent to obtain an imide resin.

得られたイミド樹脂を100℃で5時間乾燥した後、直径40mm、押出機長さLと直径の比(L/D)が35の単軸押出機と400mm幅のTダイを用いて、280℃で押出し、厚み150μmのフィルムを作成し、A4サイズ1枚のフィルムを観察し、フィルム中における樹脂劣化異物数を確認した。   The obtained imide resin was dried at 100 ° C. for 5 hours, and then 280 ° C. using a single screw extruder having a diameter of 40 mm, an extruder length L / diameter ratio (L / D) of 35, and a 400 mm wide T-die. The film was extruded to create a film having a thickness of 150 μm, and a single A4 size film was observed to confirm the number of resin-deteriorated foreign substances in the film.

上記条件で約2時間の製造を行い、得られたイミド樹脂は、イミド化率75%に対してバラツキは1%、樹脂中に残存する酸成分の割合0.10mmol/gに対してバラツキは0.01mmol/gであった。第1押出機出口圧力、第1押出機と第2押出機接続配管中央部圧力のバラツキは0.1MPaであった。フィルム中の樹脂劣化異物数はA4サイズ1枚当たり0個であった。   Production was carried out for about 2 hours under the above conditions, and the obtained imide resin had a variation of 1% with respect to an imidation rate of 75% and a variation of 0.10 mmol / g of the acid component remaining in the resin. It was 0.01 mmol / g. The variation in the pressure at the outlet of the first extruder and the pressure at the center of the first extruder and the second extruder connecting pipe was 0.1 MPa. The number of resin-deteriorated foreign matters in the film was 0 per A4 size sheet.

(実施例2)
原料樹脂として、市販のポリメタクリル酸メチル(住友化学(株)製スミペックスMG)を使用した以外は、実施例1と同様の方法でイミド樹脂を製造した。
(Example 2)
An imide resin was produced in the same manner as in Example 1 except that a commercially available polymethyl methacrylate (Sumitex MG manufactured by Sumitomo Chemical Co., Ltd.) was used as the raw material resin.

結果、得られたイミド樹脂は、イミド化率75%に対してバラツキは1%、樹脂中に残存する酸成分の割合0.10mmol/gに対してバラツキは0.01mmol/gであった。第1押出機出口圧力、第1押出機と第2押出機接続配管中央部圧力のバラツキは0.1MPaであった。フィルム中の樹脂劣化異物数はA4サイズ1枚当たり0個であった。   As a result, the obtained imide resin had a variation of 1% with respect to an imidization rate of 75%, and a variation of 0.01 mmol / g with respect to the ratio of the acid component remaining in the resin of 0.10 mmol / g. The variation in the pressure at the outlet of the first extruder and the pressure at the center of the first extruder and the second extruder connecting pipe was 0.1 MPa. The number of resin-deteriorated foreign matters in the film was 0 per A4 size sheet.

(実施例3)
1時間あたりの原料樹脂供給量を3kgとした以外は、実施例1と同様の方法でイミド化樹脂を製造した。
(Example 3)
An imidized resin was produced in the same manner as in Example 1 except that the amount of raw material resin supplied per hour was 3 kg.

結果、得られたイミド樹脂は、イミド化率75%に対してバラツキは1%、樹脂中に残存する酸成分の割合0.10mmol/gに対してバラツキは0.01mmol/gであった。第1押出機出口圧力、第1押出機と第2押出機接続配管中央部圧力のバラツキは0.1MPaであった。フィルム中の樹脂劣化異物数はA4サイズ1枚当たり0個であった。   As a result, the obtained imide resin had a variation of 1% with respect to an imidization rate of 75%, and a variation of 0.01 mmol / g with respect to the ratio of the acid component remaining in the resin of 0.10 mmol / g. The variation in the pressure at the outlet of the first extruder and the pressure at the center of the first extruder and the second extruder connecting pipe was 0.1 MPa. The number of resin-deteriorated foreign matters in the film was 0 per A4 size sheet.

(実施例4)
1時間あたりの原料樹脂供給量を3kgとした以外は、実施例2と同様の方法でイミド化樹脂を製造した。
Example 4
An imidized resin was produced in the same manner as in Example 2 except that the supply amount of the raw material resin per hour was 3 kg.

結果、得られたイミド樹脂は、イミド化率75%に対してバラツキは1%、樹脂中に残存する酸成分の割合0.10mmol/gに対してバラツキは0.01mmol/gであった。第1押出機出口圧力、第1押出機と第2押出機接続配管中央部圧力のバラツキは0.1MPaであった。フィルム中の樹脂劣化異物数はA4サイズ1枚当たり0個であった。   As a result, the obtained imide resin had a variation of 1% with respect to an imidization rate of 75%, and a variation of 0.01 mmol / g with respect to the ratio of the acid component remaining in the resin of 0.10 mmol / g. The variation in the pressure at the outlet of the first extruder and the pressure at the center of the first extruder and the second extruder connecting pipe was 0.1 MPa. The number of resin-deteriorated foreign matters in the film was 0 per A4 size sheet.

(比較例1)
第1押出機に直径15mm、L/D(押出機の長さLと直径Dの比)が60の同方向噛合型二軸押出機を使用し、接続部品内圧力を3MPaとした以外は、実施例1と同様の方法でイミド樹脂を製造した。
(Comparative Example 1)
Except for using the same-direction meshing twin screw extruder with a diameter of 15 mm and L / D (ratio of the length L to the diameter D of the extruder) of 60 for the first extruder and setting the internal pressure of the connecting part to 3 MPa, An imide resin was produced in the same manner as in Example 1.

結果、得られたイミド樹脂は、イミド化率60%に対してバラツキは1%、樹脂中に残存する酸成分の割合0.10mmol/gに対してバラツキは0.01mmol/gであった。第1押出機出口圧力、第1押出機と第2押出機接続配管中央部圧力のバラツキは0.1MPaであった。フィルム中の樹脂劣化異物数はA4サイズ1枚当たり15個であった。   As a result, the obtained imide resin had a variation of 1% with respect to the imidization ratio of 60% and a variation of 0.01 mmol / g with respect to the ratio of the acid component remaining in the resin of 0.10 mmol / g. The variation in the pressure at the outlet of the first extruder and the pressure at the center of the first extruder and the second extruder connecting pipe was 0.1 MPa. The number of resin-deteriorated foreign matters in the film was 15 per A4 size sheet.

(比較例2)
第1押出機に直径15mm、L/D(押出機の長さLと直径Dの比)が60の同方向噛合型二軸押出機を使用し、接続部品内圧力を3MPaとした以外は、実施例2と同様の方法でイミド樹脂を製造した。
(Comparative Example 2)
Except for using the same-direction meshing twin screw extruder with a diameter of 15 mm and L / D (ratio of the length L to the diameter D of the extruder) of 60 for the first extruder and setting the internal pressure of the connecting part to 3 MPa, An imide resin was produced in the same manner as in Example 2.

結果、得られたイミド樹脂は、イミド化率60%に対してバラツキは1%、樹脂中に残存する酸成分の割合0.10mmol/gに対してバラツキは0.01mmol/gであった。第1押出機出口圧力、第1押出機と第2押出機接続配管中央部圧力のバラツキは0.1MPaであった。フィルム中の樹脂劣化異物数はA4サイズ1枚当たり15個であった。   As a result, the obtained imide resin had a variation of 1% with respect to the imidization ratio of 60% and a variation of 0.01 mmol / g with respect to the ratio of the acid component remaining in the resin of 0.10 mmol / g. The variation in the pressure at the outlet of the first extruder and the pressure at the center of the first extruder and the second extruder connecting pipe was 0.1 MPa. The number of resin-deteriorated foreign matters in the film was 15 per A4 size sheet.

(比較例3)
接続部品直径を10mm、接続部品長を0.5mとし、接続部品内滞留時間をおよそ0.5分とした以外は、実施例1と同様の条件で行った。
(Comparative Example 3)
The test was performed under the same conditions as in Example 1 except that the connection component diameter was 10 mm, the connection component length was 0.5 m, and the residence time in the connection component was approximately 0.5 minutes.

結果、得られたイミド樹脂は、イミド化率60%に対してバラツキは1%、樹脂中に残存する酸成分の割合0.10mmol/gに対してバラツキは0.01mmol/gであった。第1押出機出口圧力、第1押出機と第2押出機接続配管中央部圧力のバラツキは0.1MPaであった。フィルム中の樹脂劣化異物数はA4サイズ1枚当たり0個であった。   As a result, the obtained imide resin had a variation of 1% with respect to the imidization ratio of 60% and a variation of 0.01 mmol / g with respect to the ratio of the acid component remaining in the resin of 0.10 mmol / g. The variation in the pressure at the outlet of the first extruder and the pressure at the center of the first extruder and the second extruder connecting pipe was 0.1 MPa. The number of resin-deteriorated foreign matters in the film was 0 per A4 size sheet.

(比較例4)
接続部品直径を10mm、接続部品長を0.5mとし、接続部品内滞留時間をおよそ0.5分とした以外は、実施例2と同様の条件で行った。
(Comparative Example 4)
The test was performed under the same conditions as in Example 2 except that the connection component diameter was 10 mm, the connection component length was 0.5 m, and the residence time in the connection component was approximately 0.5 minutes.

結果、得られたイミド樹脂は、イミド化率60%に対してバラツキは1%、樹脂中に残存する酸成分の割合0.10mmol/gに対してバラツキは0.01mmol/gであった。第1押出機出口圧力、第1押出機と第2押出機接続配管中央部圧力のバラツキは0.1MPaであった。フィルム中の樹脂劣化異物数はA4サイズ1枚当たり0個であった。   As a result, the obtained imide resin had a variation of 1% with respect to the imidization ratio of 60% and a variation of 0.01 mmol / g with respect to the ratio of the acid component remaining in the resin of 0.10 mmol / g. The variation in the pressure at the outlet of the first extruder and the pressure at the center of the first extruder and the second extruder connecting pipe was 0.1 MPa. The number of resin-deteriorated foreign matters in the film was 0 per A4 size sheet.

(比較例5)
接続管直径を20mm、接続管長を5.0mとし、接続部品内滞留時間をおよそ20分とした以外は、実施例1と同様の条件で行った。
(Comparative Example 5)
The test was performed under the same conditions as in Example 1 except that the connecting tube diameter was 20 mm, the connecting tube length was 5.0 m, and the residence time in the connecting component was approximately 20 minutes.

結果、得られたイミド樹脂は、イミド化率75%に対してバラツキは1%、樹脂中に残存する酸成分の割合0.10mmol/gに対してバラツキは0.01mmol/gであった。第1押出機出口圧力、第1押出機と第2押出機接続配管中央部圧力のバラツキは0.1MPaであった。フィルム中の樹脂劣化異物数はA4サイズ1枚当たり10個であった。   As a result, the obtained imide resin had a variation of 1% with respect to an imidization rate of 75%, and a variation of 0.01 mmol / g with respect to the ratio of the acid component remaining in the resin of 0.10 mmol / g. The variation in the pressure at the outlet of the first extruder and the pressure at the center of the first extruder and the second extruder connecting pipe was 0.1 MPa. The number of resin-deteriorated foreign matters in the film was 10 per A4 size sheet.

(比較例6)
接続管直径を20mm、接続管長を5.0mとし、接続部品内滞留時間をおよそ20分とした以外は、実施例2と同様の条件で行った。
(Comparative Example 6)
The test was performed under the same conditions as in Example 2 except that the connection pipe diameter was 20 mm, the connection pipe length was 5.0 m, and the residence time in the connection part was about 20 minutes.

結果、得られたイミド樹脂は、イミド化率75%に対してバラツキは1%、樹脂中に残存する酸成分の割合0.10mmol/gに対してバラツキは0.01mmol/gであった。第1押出機出口圧力、第1押出機と第2押出機接続配管中央部圧力のバラツキは0.1MPaであった。フィルム中の樹脂劣化異物数はA4サイズ1枚当たり10個であった。   As a result, the obtained imide resin had a variation of 1% with respect to an imidization rate of 75%, and a variation of 0.01 mmol / g with respect to the ratio of the acid component remaining in the resin of 0.10 mmol / g. The variation in the pressure at the outlet of the first extruder and the pressure at the center of the first extruder and the second extruder connecting pipe was 0.1 MPa. The number of resin-deteriorated foreign matters in the film was 10 per A4 size sheet.

(比較例7)
第1押出機に直径15mm、L/D(押出機の長さLと直径Dの比)が60の同方向噛合型二軸押出機を使用し、接続部品内圧力を3MPaとした以外は、実施例3と同様の方法でイミド樹脂を製造した。
(Comparative Example 7)
Except for using the same-direction meshing twin screw extruder with a diameter of 15 mm and L / D (ratio of the length L to the diameter D of the extruder) of 60 for the first extruder and setting the internal pressure of the connecting part to 3 MPa, An imide resin was produced in the same manner as in Example 3.

結果、得られたイミド樹脂は、イミド化率65%に対してバラツキは1%、樹脂中に残存する酸成分の割合0.10mmol/gに対してバラツキは0.01mmol/gであった。第1押出機出口圧力、第1押出機と第2押出機接続配管中央部圧力のバラツキは0.1MPaであった。フィルム中の樹脂劣化異物数はA4サイズ1枚当たり10個であった。   As a result, the obtained imide resin had a variation of 1% with respect to an imidation ratio of 65%, and a variation of 0.01 mmol / g with respect to the ratio of the acid component remaining in the resin of 0.10 mmol / g. The variation in the pressure at the outlet of the first extruder and the pressure at the center of the first extruder and the second extruder connecting pipe was 0.1 MPa. The number of resin-deteriorated foreign matters in the film was 10 per A4 size sheet.

(比較例8)
第1押出機に直径15mm、L/D(押出機の長さLと直径Dの比)が60の同方向噛合型二軸押出機を使用し、接続部品内圧力を3MPaとした以外は、実施例4と同様の方法でイミド樹脂を製造した。
(Comparative Example 8)
Except for using the same-direction meshing twin screw extruder with a diameter of 15 mm and L / D (ratio of the length L to the diameter D of the extruder) of 60 for the first extruder and setting the internal pressure of the connecting part to 3 MPa, An imide resin was produced in the same manner as in Example 4.

結果、得られたイミド樹脂は、イミド化率65%に対してバラツキは1%、樹脂中に残存する酸成分の割合0.10mmol/gに対してバラツキは0.01mmol/gであった。第1押出機出口圧力、第1押出機と第2押出機接続配管中央部圧力のバラツキは0.1MPaであった。フィルム中の樹脂劣化異物数はA4サイズ1枚当たり10個であった。   As a result, the obtained imide resin had a variation of 1% with respect to an imidation ratio of 65%, and a variation of 0.01 mmol / g with respect to the ratio of the acid component remaining in the resin of 0.10 mmol / g. The variation in the pressure at the outlet of the first extruder and the pressure at the center of the first extruder and the second extruder connecting pipe was 0.1 MPa. The number of resin-deteriorated foreign matters in the film was 10 per A4 size sheet.

実施例比較例の結果を下記表にまとめた。   The results of the comparative examples are summarized in the following table.

Figure 2008274186
Figure 2008274186

Figure 2008274186
Figure 2008274186

本発明によるタンデム型反応押出機の構成図である。It is a block diagram of the tandem type | mold reaction extruder by this invention.

符号の説明Explanation of symbols

1 第1押出機
2 第2押出機
3 接続部品
4 第1押出機の樹脂吐出口と第2押出機原料供給口を接続する部品内圧力制御機構
5 第1押出機原料供給口
6 第1押出機吐出口
7 第2押出機原料供給口
8 第1段目反応の副原料供給口
9 第2押出機ベント口
10 第2段目反応の副原料供給口
11 第2押出機ベント口
12 各種添加剤供給口
DESCRIPTION OF SYMBOLS 1 1st extruder 2 2nd extruder 3 Connection component 4 Pressure control mechanism in components which connects the resin discharge port of a 1st extruder, and a 2nd extruder raw material supply port 5 1st extruder raw material supply port 6 1st extrusion Machine discharge port 7 Second extruder raw material supply port 8 Secondary raw material supply port for first stage reaction 9 Second extruder vent port 10 Secondary raw material supply port for second stage reaction 11 Second extruder vent port 12 Various additions Agent supply port

Claims (8)

第1押出機、第2押出機、第1押出機の樹脂吐出口と第2押出機の原料供給口を接続する部品、及び、第1押出機の樹脂吐出口と第2押出機の原料供給口を接続する部品内圧力制御機構を有し、「第2押出機原料供給口と圧力制御機構の距離」が「第1押出機吐出口と圧力制御機構との距離」よりも短いことを特徴とするタンデム型押出機を用いて、第1押出機において主原料と副原料とを処理する第1段目反応を行い、第2押出機において、第1押出機における反応生成物をさらに他の副原料と処理する第2段目反応を行う熱可塑性樹脂の製造方法であって、第1押出機に単軸押出機を用いることを特徴とする製造方法。   The first extruder, the second extruder, the parts connecting the resin discharge port of the first extruder and the raw material supply port of the second extruder, and the raw material supply of the resin discharge port of the first extruder and the second extruder It has an internal pressure control mechanism that connects the ports, and the “distance between the second extruder raw material supply port and the pressure control mechanism” is shorter than the “distance between the first extruder discharge port and the pressure control mechanism”. Using the tandem type extruder, the first stage reaction in which the main raw material and the auxiliary raw material are processed in the first extruder is performed, and in the second extruder, the reaction product in the first extruder is further converted into another A method for producing a thermoplastic resin that performs a second-stage reaction to be treated with an auxiliary material, wherein a single-screw extruder is used as the first extruder. 第1押出機、第2押出機、第1押出機の樹脂吐出口と第2押出機の原料供給口を接続する部品、及び、第1押出機の樹脂吐出口と第2押出機の原料供給口を接続する部品内圧力制御機構を有し、「第2押出機原料供給口と圧力制御機構の距離」が「第1押出機吐出口と圧力制御機構との距離」よりも短いことを特徴とするタンデム型押出機を用いて、第1押出機において主原料と副原料とを処理する第1段目反応を行い、第2押出機において脱揮を行う熱可塑性樹脂の製造方法であって、第1押出機に単軸押出機を用いることを特徴とする製造方法。   The first extruder, the second extruder, the parts connecting the resin discharge port of the first extruder and the raw material supply port of the second extruder, and the raw material supply of the resin discharge port of the first extruder and the second extruder It has an internal pressure control mechanism that connects the ports, and the “distance between the second extruder raw material supply port and the pressure control mechanism” is shorter than the “distance between the first extruder discharge port and the pressure control mechanism”. A tandem-type extruder, wherein a first stage reaction is performed in which a main raw material and a secondary raw material are processed in a first extruder, and devolatilization is performed in a second extruder. A production method using a single screw extruder for the first extruder. 単軸押出機である第1押出機の、押出機長さLcmと直径Dcmの比であるL/Dが50以下であることを特徴とする、請求項1または2に記載の熱可塑性樹脂の製造方法。   The production of a thermoplastic resin according to claim 1 or 2, wherein the first extruder, which is a single-screw extruder, has a ratio L / D, which is a ratio of the length Lcm to the diameter Dcm, of 50 or less. Method. 第1押出機の樹脂吐出口と第2押出機原料供給口を接続する部品内圧力が20MPa以上、100MPa以下である事を特徴とする、請求項1〜3のいずれかに記載の熱可塑性樹脂の製造方法。   The thermoplastic resin according to any one of claims 1 to 3, wherein the internal pressure of the component connecting the resin discharge port of the first extruder and the second extruder raw material supply port is 20 MPa or more and 100 MPa or less. Manufacturing method. 第1押出機の樹脂吐出口と第2押出機原料供給口を接続する部品の部品内容積をVcm、第1押出機への1分当たりの樹脂供給量をQcmとしたときに、部品内容積を任意に変えることで接続部品内滞留時間V/Qを1分以上15分以下とすることを特徴とした請求項1〜4のいずれかに記載の熱可塑性樹脂の製造方法。 When the internal volume of the part connecting the resin discharge port of the first extruder and the raw material supply port of the second extruder is Vcm 3 , and the resin supply amount per minute to the first extruder is Qcm 3 , the part The method for producing a thermoplastic resin according to any one of claims 1 to 4, wherein the residence time V / Q in the connection component is set to 1 minute or more and 15 minutes or less by arbitrarily changing the internal volume. 第1押出機の樹脂吐出口と第2押出機原料供給口を接続する部品内に樹脂分散機構を設けることを特徴とする請求項1〜5のいずれかに記載の熱可塑性樹脂の製造方法。
The method for producing a thermoplastic resin according to any one of claims 1 to 5, wherein a resin dispersion mechanism is provided in a component connecting the resin discharge port of the first extruder and the raw material supply port of the second extruder.
第1押出機においてアクリル系樹脂とイミド化剤とを処理する第1段目反応を行い、第2押出機において第1押出機における反応生成物をさらにエステル化剤と処理する第2段目反応を行うことを特徴とする、請求項1、3、4、5または6の何れかに記載の熱可塑性樹脂の製造方法。
The first stage reaction in which the acrylic resin and the imidizing agent are treated in the first extruder, and the reaction product in the first extruder is further treated with the esterifying agent in the second extruder. The method for producing a thermoplastic resin according to any one of claims 1, 3, 4, 5 and 6.
熱可塑性樹脂が下記一般式(1)で表される単位と、下記一般式(2)で表される単位及び/又は下記一般式(3)で表される単位とを有するイミド樹脂である事を特徴とする、請求項1〜7の何れかに記載の熱可塑性樹脂の製造方法。
Figure 2008274186
(但し、R及びRは、それぞれ独立に、水素又は炭素数1〜8のアルキル基を示し、Rは、水素、炭素数1〜18のアルキル基、炭素数3〜12のシクロアルキル基、又は炭素数5〜15の芳香環を含む置換基を示す。)
Figure 2008274186
(但し、R及びRは、それぞれ独立に、水素又は炭素数1〜8のアルキル基を示し、Rは、水素、炭素数1〜18のアルキル基、炭素数3〜12のシクロアルキル基、又は炭素数5〜15の芳香環を含む置換基を示す。)
Figure 2008274186
(但し、Rは、水素又は炭素数1〜8のアルキル基を示し、Rは、炭素数6〜10のアリール基を示す。)
The thermoplastic resin is an imide resin having a unit represented by the following general formula (1), a unit represented by the following general formula (2) and / or a unit represented by the following general formula (3). The method for producing a thermoplastic resin according to claim 1, wherein:
Figure 2008274186
(However, R 1 and R 2 each independently represent hydrogen or an alkyl group having 1 to 8 carbon atoms, and R 3 represents hydrogen, an alkyl group having 1 to 18 carbon atoms, or a cycloalkyl having 3 to 12 carbon atoms. Or a substituent containing an aromatic ring having 5 to 15 carbon atoms.)
Figure 2008274186
(However, R 4 and R 5 each independently represent hydrogen or an alkyl group having 1 to 8 carbon atoms, and R 6 represents hydrogen, an alkyl group having 1 to 18 carbon atoms, or a cycloalkyl having 3 to 12 carbon atoms. Or a substituent containing an aromatic ring having 5 to 15 carbon atoms.)
Figure 2008274186
(However, R 7 represents hydrogen or an alkyl group having 1 to 8 carbon atoms, and R 8 represents an aryl group having 6 to 10 carbon atoms.)
JP2007122551A 2007-05-07 2007-05-07 Method for producing thermoplastic resin Pending JP2008274186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007122551A JP2008274186A (en) 2007-05-07 2007-05-07 Method for producing thermoplastic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007122551A JP2008274186A (en) 2007-05-07 2007-05-07 Method for producing thermoplastic resin

Publications (1)

Publication Number Publication Date
JP2008274186A true JP2008274186A (en) 2008-11-13

Family

ID=40052575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007122551A Pending JP2008274186A (en) 2007-05-07 2007-05-07 Method for producing thermoplastic resin

Country Status (1)

Country Link
JP (1) JP2008274186A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008273140A (en) * 2007-03-30 2008-11-13 Kaneka Corp Manufacturing method for thermoplastic resin, and thermoplastic resin
JP2010077360A (en) * 2008-09-29 2010-04-08 Kaneka Corp Process for producing thermoplastic resin
JP2010229237A (en) * 2009-03-26 2010-10-14 Kaneka Corp Method for manufacturing acrylic resin
JP2016155956A (en) * 2015-02-25 2016-09-01 株式会社日本触媒 Method for producing glutarimide resin
WO2023145858A1 (en) * 2022-01-28 2023-08-03 株式会社カネカ Method for producing resin composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008273140A (en) * 2007-03-30 2008-11-13 Kaneka Corp Manufacturing method for thermoplastic resin, and thermoplastic resin
JP2010077360A (en) * 2008-09-29 2010-04-08 Kaneka Corp Process for producing thermoplastic resin
JP2010229237A (en) * 2009-03-26 2010-10-14 Kaneka Corp Method for manufacturing acrylic resin
JP2016155956A (en) * 2015-02-25 2016-09-01 株式会社日本触媒 Method for producing glutarimide resin
WO2023145858A1 (en) * 2022-01-28 2023-08-03 株式会社カネカ Method for producing resin composition

Similar Documents

Publication Publication Date Title
JP5331311B2 (en) Method for producing thermoplastic resin
JP5789292B2 (en) Acrylic resin film
JP5636165B2 (en) Optical film
JP2008274187A (en) Method for producing thermoplastic resin by using tandem type reactive extruder
JP4961164B2 (en) Imide resin and method for producing the same, optical resin composition using the same, and molded article
CN107540779B (en) Methacrylic resin composition, method for producing same, pellet, and molded body
JP2014095926A (en) Optical film
JP2008274186A (en) Method for producing thermoplastic resin
JP5574787B2 (en) Resin composition and production method thereof, molded product, film, optical film, polarizer protective film, polarizing plate
JP2010095567A (en) Resin composition, film, and polarizing plate
JP2008285615A (en) Imide resin with excellent molding stability and method for producing imide resin
JP2006249202A (en) Imide resin and resin composition for optical use using the same
JP5400296B2 (en) Resin composition
JP5261109B2 (en) Method for producing thermoplastic resin
JP2011042764A (en) Method for producing acrylic resin
CN112812219B (en) Methacrylic resin and method for producing same, methacrylic resin composition, molded article, and automobile part
JP5322492B2 (en) Thermoplastic resin composition, optical film and polarizing plate
JP2006273883A (en) Imide resin, optical resin composition by using the same and molded article
JP2006328330A (en) Imide resin, resin composition for optical use, using the same, and molded article
JP5553580B2 (en) Resin composition, molded body, optical film, polarizer protective film, polarizing plate
JP2011037921A (en) Acrylic imide resin and method for producing the same
JP2010077362A (en) Process for producing acrylic resin
JP2011225699A (en) Modified acrylic resin using heterocyclic base catalyst, and method for production thereof
WO2022196644A1 (en) Optical member and method for producing same
JP2006297728A (en) Extrusion method constituted so as to control pressure of vent hole