JP2008273451A - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP2008273451A
JP2008273451A JP2007121393A JP2007121393A JP2008273451A JP 2008273451 A JP2008273451 A JP 2008273451A JP 2007121393 A JP2007121393 A JP 2007121393A JP 2007121393 A JP2007121393 A JP 2007121393A JP 2008273451 A JP2008273451 A JP 2008273451A
Authority
JP
Japan
Prior art keywords
vehicle
groove
tire
main groove
pneumatic tire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007121393A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kojima
弘行 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2007121393A priority Critical patent/JP2008273451A/en
Publication of JP2008273451A publication Critical patent/JP2008273451A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Tires In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pneumatic tire capable of improving snow traction performance while maintaining dry performance and wet performance. <P>SOLUTION: The pneumatic tire has an unsymmetrical tread pattern of different groove arrangements on the both sides of the tire equator E. Straight main grooves 2a-2d extending to the tire peripheral direction are arranged on the both sides of the tire equator E. A groove area ratio in a grounded area on the vehicular outside bounded by the tire equator E is made smaller than a groove area ratio in a grounded area on the vehicular inside. In the pneumatic tire, a plurality of projecting parts 3a-3d respectively extending to the tire width direction are provided on groove bottoms of the main grooves 2a-2d while the heights of the projecting parts 3a, 3d in the main grooves 2a, 2d of the vehicular outside are made higher than the heights of the projecting parts 3a, 3b in the main grooves 2a, 2b of the vehicular inside. The number of the projecting parts in the main grooves of the vehicular outside is made larger than that of the projecting parts in the main grooves of the vehicular inside. Further, amplitude of the projecting parts in the main grooves of the vehicular outside is made larger than that of the projecting parts in the main grooves of the vehicular inside. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、非対称トレッドパターンを有する空気入りタイヤに関し、更に詳しくは、ドライ性能とウエット性能を維持しながらスノートラクション性能を改善することを可能にした空気入りタイヤに関する。   The present invention relates to a pneumatic tire having an asymmetric tread pattern, and more particularly to a pneumatic tire capable of improving snow traction performance while maintaining dry performance and wet performance.

オールシーズンタイヤやスノータイヤにおいて、ドライ性能とウエット性能を両立するために、タイヤ赤道の両側で溝配置が異なる非対称トレッドパターンを採用し、トレッド部のタイヤ赤道の両側にそれぞれタイヤ周方向に延びるストレート状の主溝を配置すると共に、タイヤ赤道を境にして車両外側の接地領域内の溝面積比率を車両内側の接地領域内の溝面積比率よりも小さくすることが行われている(例えば、特許文献1及び特許文献2参照)。   For all-season tires and snow tires, in order to achieve both dry performance and wet performance, the asymmetric tread pattern with different groove arrangement on both sides of the tire equator is adopted, and straights extending in the tire circumferential direction on both sides of the tire equator of the tread part respectively. The groove area ratio in the ground contact area outside the vehicle is made smaller than the groove area ratio in the ground contact area inside the vehicle (for example, patent) Reference 1 and Patent Document 2).

しかしながら、ドライ性能とウエット性能を重視した場合、トレッド部におけるタイヤ幅方向の溝成分が必然的に少なくなり、スノートラクション性能を十分に確保することが難しい。一方、スノートラクション性能を重視するとドライ性能とウエット性能の両立が困難になる。
特開平11−321245号公報 特開2003−326917号公報
However, when the dry performance and the wet performance are emphasized, the groove component in the tire width direction in the tread portion is inevitably reduced, and it is difficult to sufficiently secure the snow traction performance. On the other hand, if importance is attached to snow traction performance, it becomes difficult to achieve both dry performance and wet performance.
Japanese Patent Laid-Open No. 11-32245 JP 2003-326917 A

本発明の目的は、ドライ性能とウエット性能を維持しながらスノートラクション性能を改善することを可能にした空気入りタイヤを提供することにある。   An object of the present invention is to provide a pneumatic tire that can improve snow traction performance while maintaining dry performance and wet performance.

上記目的を達成するための本発明の空気入りタイヤは、タイヤ赤道の両側で溝配置が異なる非対称トレッドパターンを有し、トレッド部のタイヤ赤道の両側にそれぞれタイヤ周方向に延びるストレート状の主溝を配置すると共に、タイヤ赤道を境にして車両外側の接地領域内の溝面積比率を車両内側の接地領域内の溝面積比率よりも小さくした空気入りタイヤにおいて、前記主溝の溝底にそれぞれタイヤ幅方向に延びる複数個の凸部を設けると共に、車両外側の主溝における凸部の高さを車両内側の主溝における凸部の高さよりも相対的に高くしたことを特徴とするものである。   In order to achieve the above object, the pneumatic tire of the present invention has an asymmetric tread pattern in which the groove arrangement is different on both sides of the tire equator, and straight main grooves extending in the tire circumferential direction on both sides of the tire equator of the tread portion, respectively. A pneumatic tire in which the groove area ratio in the ground contact area outside the vehicle is smaller than the groove area ratio in the ground contact area inside the vehicle with the tire equator as a boundary. A plurality of convex portions extending in the width direction are provided, and the height of the convex portion in the main groove on the vehicle outer side is relatively higher than the height of the convex portion in the main groove on the vehicle inner side. .

また、上記目的を達成するための本発明の空気入りタイヤは、タイヤ赤道の両側で溝配置が異なる非対称トレッドパターンを有し、トレッド部のタイヤ赤道の両側にそれぞれタイヤ周方向に延びるストレート状の主溝を配置すると共に、タイヤ赤道を境にして車両外側の接地領域内の溝面積比率を車両内側の接地領域内の溝面積比率よりも小さくした空気入りタイヤにおいて、前記主溝の溝底にそれぞれタイヤ幅方向に延びる複数個の凸部を設けると共に、車両外側の主溝における凸部の個数を車両内側の主溝における凸部の個数よりも相対的に多くしたことを特徴とするものである。   In addition, the pneumatic tire of the present invention for achieving the above object has an asymmetric tread pattern in which the groove arrangement is different on both sides of the tire equator, and each has a straight shape extending in the tire circumferential direction on both sides of the tire equator of the tread portion. In the pneumatic tire in which the main groove is disposed and the groove area ratio in the ground contact area outside the vehicle is smaller than the groove area ratio in the ground contact area inside the vehicle at the tire equator, A plurality of convex portions each extending in the tire width direction are provided, and the number of convex portions in the main groove on the vehicle outer side is relatively larger than the number of convex portions in the main groove on the vehicle inner side. is there.

更に、上記目的を達成するための本発明の空気入りタイヤは、タイヤ赤道の両側で溝配置が異なる非対称トレッドパターンを有し、トレッド部のタイヤ赤道の両側にそれぞれタイヤ周方向に延びるストレート状の主溝を配置すると共に、タイヤ赤道を境にして車両外側の接地領域内の溝面積比率を車両内側の接地領域内の溝面積比率よりも小さくした空気入りタイヤにおいて、前記主溝の溝底にそれぞれタイヤ幅方向に延びて波形形状を有する複数個の凸部を設けると共に、車両外側の主溝における凸部の振幅を車両内側の主溝における凸部の振幅よりも相対的に大きくしたことを特徴とするものである。   Furthermore, the pneumatic tire of the present invention for achieving the above object has an asymmetric tread pattern in which the groove arrangement is different on both sides of the tire equator, and has a straight shape extending in the tire circumferential direction on both sides of the tire equator of the tread portion. In the pneumatic tire in which the main groove is disposed and the groove area ratio in the ground contact area outside the vehicle is smaller than the groove area ratio in the ground contact area inside the vehicle at the tire equator, Providing a plurality of convex portions each extending in the tire width direction and having a corrugated shape, the amplitude of the convex portion in the main groove on the vehicle outer side is made relatively larger than the amplitude of the convex portion in the main groove on the vehicle inner side. It is a feature.

本発明では、上記のような非対称トレッドパターンを有する空気入りタイヤにおいて、主溝の溝底にタイヤ幅方向に延びる複数個の凸部を形成する。これら凸部は雪面走行時に主溝内に入り込んだ雪を掻いてスノートラクション性能の向上に寄与する。但し、車両内側の主溝及び車両外側の主溝に対して凸部を一様に設けた場合、溝面積比率を大きくした車両内側の接地領域内の排水性を阻害し、ウエット性能を低下させることになる。そこで、車両外側の主溝に設ける凸部によるエッジ効果を車両内側の主溝に設ける凸部のエッジ効果よりも相対的に大きくすることにより、ウエット性能を維持しながらスノートラクション性能を改善することが可能になる。勿論、主溝の溝底に形成された凸部はドライ性能を阻害するものではない。   In the present invention, in the pneumatic tire having the asymmetric tread pattern as described above, a plurality of convex portions extending in the tire width direction are formed at the groove bottom of the main groove. These projections contribute to improving the snow traction performance by scratching the snow that has entered the main groove when running on the snow surface. However, when the convex portions are provided uniformly with respect to the main groove on the vehicle inner side and the main groove on the vehicle outer side, the drainage performance in the ground contact area inside the vehicle with the increased groove area ratio is hindered and the wet performance is reduced. It will be. Therefore, the snow traction performance is improved while maintaining the wet performance by making the edge effect by the convex portion provided in the main groove outside the vehicle relatively larger than the edge effect of the convex portion provided in the main groove inside the vehicle. Is possible. Of course, the convex part formed in the groove bottom of the main groove does not impair the dry performance.

車両外側の主溝における凸部の高さを車両内側の主溝における凸部の高さよりも相対的に高くする場合、車両内側の主溝における凸部の高さを0.3mm以上かつ主溝深さの20%以下とし、車両外側の主溝における凸部の高さを主溝深さの30%以下とすることが好ましい。これにより、スノートラクション性能を改善するに際してウエット性能を十分に維持することができる。また、トレッド部の陸部要素のピッチをタイヤ周方向に変化させた場合において、同一主溝内で大ピッチの陸部要素に隣接する凸部の高さを小ピッチの陸部要素に隣接する凸部の高さをよりも相対的に高くすることが好ましい。このように剛性が高い大ピッチの陸部要素に隣接する凸部を相対的に高くしてエッジ効果を高めることにより、スノートラクション性能の改善効果を高めることができる。   When the height of the convex portion in the main groove on the vehicle outer side is relatively higher than the height of the convex portion in the main groove on the vehicle inner side, the height of the convex portion in the main groove on the vehicle inner side is 0.3 mm or more and the main groove It is preferable that the depth is 20% or less, and the height of the convex portion in the main groove outside the vehicle is 30% or less of the main groove depth. Thereby, the wet performance can be sufficiently maintained when the snow traction performance is improved. Further, when the pitch of the land element in the tread portion is changed in the tire circumferential direction, the height of the convex part adjacent to the large pitch land element is adjacent to the small pitch land element in the same main groove. It is preferable to make the height of the convex portion relatively higher. Thus, the improvement effect of snow traction performance can be enhanced by increasing the edge effect by relatively increasing the convexity adjacent to the land element having a large pitch and high rigidity.

車両外側の主溝における凸部の個数を車両内側の主溝における凸部の個数よりも相対的に多くする場合、車両外側の主溝における凸部の個数を車両内側の主溝における凸部の個数の1.3〜2.0倍とすることが好ましい。これにより、スノートラクション性能とウエット性能をバランス良く改善することができる。また、トレッド部の陸部要素のピッチをタイヤ周方向に変化させた場合において、同一主溝内で大ピッチの陸部要素に隣接する凸部の高さを小ピッチの陸部要素に隣接する凸部の高さをよりも相対的に高くすることが好ましい。このように剛性が高い大ピッチの陸部要素に隣接する凸部を相対的に高くしてエッジ効果を高めることにより、スノートラクション性能の改善効果を高めることができる。   When the number of protrusions in the main groove outside the vehicle is relatively larger than the number of protrusions in the main groove inside the vehicle, the number of protrusions in the main groove outside the vehicle is The number is preferably 1.3 to 2.0 times the number. Thereby, snow traction performance and wet performance can be improved with good balance. Further, when the pitch of the land element in the tread portion is changed in the tire circumferential direction, the height of the convex part adjacent to the large pitch land element is adjacent to the small pitch land element in the same main groove. It is preferable to make the height of the convex portion relatively higher. Thus, the improvement effect of snow traction performance can be enhanced by increasing the edge effect by relatively increasing the convexity adjacent to the land element having a large pitch and high rigidity.

主溝に設ける凸部を波形形状とし、車両外側の主溝における凸部の振幅を車両内側の主溝における凸部の振幅よりも相対的に大きくする場合、車両外側の主溝における凸部の振幅を車両内側の主溝における凸部の振幅の1.2〜2.0倍とすることが好ましい。これにより、スノートラクション性能とウエット性能をバランス良く改善することができる。また、トレッド部の陸部要素のピッチをタイヤ周方向に変化させた場合において、同一主溝内で大ピッチの陸部要素に隣接する凸部の振幅を小ピッチの陸部要素に隣接する凸部の振幅をよりも相対的に大きくすることが好ましい。このように剛性が高い大ピッチの陸部要素に隣接する凸部の振幅を相対的に大きくしてエッジ効果を高めることにより、スノートラクション性能の改善効果を高めることができる。   When the convex portion provided in the main groove has a corrugated shape and the amplitude of the convex portion in the main groove outside the vehicle is relatively larger than the amplitude of the convex portion in the main groove inside the vehicle, The amplitude is preferably 1.2 to 2.0 times the amplitude of the convex portion in the main groove inside the vehicle. Thereby, snow traction performance and wet performance can be improved with good balance. Further, when the pitch of the land element in the tread is changed in the tire circumferential direction, the amplitude of the convex part adjacent to the large pitch land element in the same main groove is changed to the convex part adjacent to the small pitch land element. It is preferable to make the amplitude of the portion relatively larger. Thus, the effect of improving snow traction performance can be enhanced by increasing the edge effect by relatively increasing the amplitude of the convex portion adjacent to the land element having a large pitch and high rigidity.

なお、凸部によるエッジ効果を調整するための上記3つの手法はそれぞれ単独で用いることが可能であるが、それらを組み合わせて用いても良い。これらを組み合わせることでスノートラクション性能を更に改善することが可能になる。   Note that the above three methods for adjusting the edge effect due to the convex portions can be used alone, but may be used in combination. By combining these, it becomes possible to further improve the snow traction performance.

以下、本発明の構成について添付の図面を参照しながら詳細に説明する。   Hereinafter, the configuration of the present invention will be described in detail with reference to the accompanying drawings.

図1は本発明の実施形態からなる空気入りタイヤのトレッドパターンを示すものである。図1において、INは車両装着時の車両内側であり、OUTは車両装着時の車両外側である。図2は図1の空気入りタイヤのトレッド部を示す断面図である。但し、図2は溝の一部を省略して示している。   FIG. 1 shows a tread pattern of a pneumatic tire according to an embodiment of the present invention. In FIG. 1, IN is the inside of the vehicle when the vehicle is mounted, and OUT is the outside of the vehicle when the vehicle is mounted. FIG. 2 is a cross-sectional view showing a tread portion of the pneumatic tire of FIG. However, in FIG. 2, a part of the groove is omitted.

図1に示すように、トレッド部1には、タイヤ周方向にストレート状に延びる4本の主溝2a〜2dが形成され、これら主溝2a〜2dにより車両内側から外側に向かって5列の陸部10,20,30,40,50が区分されている。主溝2a〜2dは溝深さが8.0mm〜9.0mm、溝幅が10mm〜12mmである。   As shown in FIG. 1, the tread portion 1 is formed with four main grooves 2a to 2d extending straight in the tire circumferential direction, and these main grooves 2a to 2d form five rows from the vehicle inner side toward the outer side. Land portions 10, 20, 30, 40, and 50 are divided. The main grooves 2a to 2d have a groove depth of 8.0 mm to 9.0 mm and a groove width of 10 mm to 12 mm.

最も車両内側に位置する陸部10にはタイヤ周方向に延びる細溝11と、タイヤ幅方向に延びて陸部10をブロック状に分断する複数本のラグ溝12と、ラグ溝12の相互間においてタイヤ幅方向に延びる複数本の細溝13とが形成されている。陸部20にはタイヤ周方向に対して傾斜しながら湾曲する複数本の湾曲溝21が形成されている。陸部30にはタイヤ周方向に延びる準主溝31と、タイヤ周方向に対して傾斜する複数本の傾斜溝32と、タイヤ周方向に対して傾斜しつつ湾曲する複数本の湾曲溝33が形成されている。傾斜溝32は準主溝31よりも車両内側に位置し、湾曲溝33は準主溝31よりも車両外側に位置している。陸部40にはタイヤ周方向に延びる浅溝41と、タイヤ周方向に傾斜しつつ浅溝41の両側に位置する複数本の傾斜溝42が形成されている。最も車両外側に位置する陸部50にはタイヤ周方向に延びる細溝51と、タイヤ幅方向に延びて陸部50をブロック状に分断する複数本のラグ溝52と、ラグ溝52の相互間においてタイヤ幅方向に延びる複数本の細溝53とが形成されている。   A narrow groove 11 extending in the tire circumferential direction, a plurality of lug grooves 12 extending in the tire width direction and dividing the land portion 10 into a block shape, and the lug grooves 12 between the land portions 10 located on the innermost side of the vehicle. Are formed with a plurality of narrow grooves 13 extending in the tire width direction. A plurality of curved grooves 21 that are curved while being inclined with respect to the tire circumferential direction are formed in the land portion 20. The land portion 30 includes a quasi-main groove 31 extending in the tire circumferential direction, a plurality of inclined grooves 32 that are inclined with respect to the tire circumferential direction, and a plurality of curved grooves 33 that are curved while being inclined with respect to the tire circumferential direction. Is formed. The inclined groove 32 is located on the vehicle inner side than the semi-main groove 31, and the curved groove 33 is located on the vehicle outer side than the semi-main groove 31. The land portion 40 is formed with a shallow groove 41 extending in the tire circumferential direction and a plurality of inclined grooves 42 positioned on both sides of the shallow groove 41 while being inclined in the tire circumferential direction. The land portion 50 located on the outermost side of the vehicle has a narrow groove 51 extending in the tire circumferential direction, a plurality of lug grooves 52 extending in the tire width direction and dividing the land portion 50 into blocks, and the lug grooves 52 between each other. Are formed with a plurality of narrow grooves 53 extending in the tire width direction.

本実施形態の空気入りタイヤは、タイヤ赤道Eの両側で溝配置が異なる非対称トレッドパターンを有し、トレッド部1のタイヤ赤道Eの両側にタイヤ周方向に延びるストレート状の主溝2a〜2dを備えている。上記非対称トレッドパターンにおいて、タイヤ赤道Eを境にして車両外側の接地領域内の溝面積比率は車両内側の接地領域内の溝面積比率よりも小さくなっている。なお、トレッド全体での溝面積比率は25%〜45%に設定すれば良い。接地領域とは、タイヤが基づく規格(JATMA、ETRTO又はTRA)にて規定される最大負荷能力に対応する空気圧を充填し、該最大負荷能力の80%の荷重を負荷したときの接地幅TCW内の領域である。   The pneumatic tire of the present embodiment has asymmetric tread patterns with different groove arrangements on both sides of the tire equator E, and has straight main grooves 2a to 2d extending in the tire circumferential direction on both sides of the tire equator E of the tread portion 1. I have. In the asymmetric tread pattern, the groove area ratio in the ground contact area outside the vehicle is smaller than the groove area ratio in the ground contact area inside the vehicle with the tire equator E as a boundary. In addition, what is necessary is just to set the groove area ratio in the whole tread to 25%-45%. The contact area is filled with the air pressure corresponding to the maximum load capacity specified by the standard on which the tire is based (JATMA, ETRTO or TRA), and within the contact width TCW when a load of 80% of the maximum load capacity is applied. It is an area.

上記空気入りタイヤにおいて、主溝2a〜2dの溝底にはそれぞれタイヤ幅方向に延びる複数個の凸部3a〜3dが形成されている。凸部3a〜3dは例えば厚さが1mm〜3mmであり、タイヤ周方向に間隔をおいて配置されている。これら凸部3a〜3dは雪面走行時に主溝内に入り込んだ雪を掻いてスノートラクション性能の向上に寄与するものであるが、車両内側の主溝2a,2b及び車両外側の主溝2c,2dに対して凸部を一様に設けた場合、溝面積比率を大きくした車両内側の接地領域内の排水性を阻害し、ウエット性能を低下させることになる。そこで、後述する手法により、車両外側の主溝2c,2dに設ける凸部3c,3dによるエッジ効果を車両内側の主溝2a,2bに設ける凸部3a,3bのエッジ効果よりも相対的に大きくすることにより、ウエット性能を維持しながらスノートラクション性能を改善している。   In the pneumatic tire, a plurality of convex portions 3a to 3d extending in the tire width direction are formed at the groove bottoms of the main grooves 2a to 2d, respectively. The convex portions 3a to 3d have a thickness of 1 mm to 3 mm, for example, and are arranged at intervals in the tire circumferential direction. These convex portions 3a to 3d scrape the snow that has entered the main groove when running on the snow surface and contribute to improving the snow traction performance. However, the main grooves 2a and 2b on the vehicle inner side and the main grooves 2c on the outer side of the vehicle, When the convex portions are uniformly provided with respect to 2d, the drainage performance in the ground contact area inside the vehicle with the increased groove area ratio is hindered, and the wet performance is deteriorated. Therefore, the edge effect by the convex portions 3c, 3d provided in the main grooves 2c, 2d outside the vehicle is relatively larger than the edge effect of the convex portions 3a, 3b provided in the main grooves 2a, 2b inside the vehicle by a method described later. This improves snow traction performance while maintaining wet performance.

第1の手法として、図2に示すように、車両外側の主溝2c,2dにおける凸部3c,3dの高さHc,Hdを車両内側の主溝2a,2bにおける凸部3a,3bの高さHa,Hbよりも相対的に高くする。これにより、ウエット性能を維持しながらスノートラクション性能を改善することができる。   As a first technique, as shown in FIG. 2, the heights Hc, Hd of the convex portions 3c, 3d in the main grooves 2c, 2d on the vehicle outer side are set to the heights of the convex portions 3a, 3b in the main grooves 2a, 2b on the vehicle inner side. It is relatively higher than Ha and Hb. Thereby, snow traction performance can be improved while maintaining wet performance.

この場合、車両内側の主溝2a,2bにおける凸部3a,3bの高さHa,Hbを0.3mm以上かつ主溝深さDa,Dbの20%以下とし、車両外側の主溝2c,2dにおける凸部3c,3dの高さHc,Hdを主溝深さDc,Ddの30%以下にすると良い。主溝深さDa〜Ddは一定である。この高さHa,Hbが0.3mm未満であるとスノートラクション性能の改善効果が不十分になり、高さHa,Hbが主溝深さDa,Dbの20%を超え、或いは、高さHc,Hdが主溝深さDc,Ddの30%を超えるとウエット性能が低下する。   In this case, the heights Ha and Hb of the convex portions 3a and 3b in the main grooves 2a and 2b on the vehicle inner side are 0.3 mm or more and 20% or less of the main groove depths Da and Db, and the main grooves 2c and 2d on the vehicle outer side are set. The heights Hc and Hd of the protrusions 3c and 3d at the height are preferably 30% or less of the main groove depths Dc and Dd. The main groove depths Da to Dd are constant. If the heights Ha and Hb are less than 0.3 mm, the effect of improving the snow traction performance becomes insufficient, the heights Ha and Hb exceed 20% of the main groove depths Da and Db, or the height Hc. , Hd exceeds 30% of the main groove depths Dc, Dd, the wet performance deteriorates.

凸部3a〜3dの高さHa〜Hdは基本的には同一主溝内で一定とする。しかしながら、所謂ピッチバリエーションに応じて凸部3a〜3dの高さHa〜Hdを同一主溝内で変動させても良い。   The heights Ha to Hd of the convex portions 3a to 3d are basically constant in the same main groove. However, the heights Ha to Hd of the convex portions 3a to 3d may be varied in the same main groove according to so-called pitch variations.

即ち、トレッド部1の陸部要素のピッチをタイヤ周方向に変化させる場合、同一主溝内で大ピッチの陸部要素に隣接する凸部の高さを小ピッチの陸部要素に隣接する凸部の高さをよりも相対的に高くすることができる。例えば、図3は最も車両外側に位置する主溝2dの溝底に形成された凸部3dとそれに隣接する陸部50を示すものであるが、陸部50のピッチP1,P2がP1<P2の関係にあるとき、それに対応する凸部3dの高さHd1,Hd2をHd1<Hd2とする。このように剛性が高い大ピッチの陸部要素に隣接する凸部を相対的に高くしてエッジ効果を高めることにより、スノートラクション性能の改善効果を高めることができる。この場合においても、タイヤ周方向の同一位置ではHa,Hb<Hc,Hdの関係が満たされるものとする。   That is, when changing the pitch of the land element of the tread portion 1 in the tire circumferential direction, the height of the convex part adjacent to the large pitch land element in the same main groove is set to the convex part adjacent to the small pitch land element. The height of the part can be made relatively higher. For example, FIG. 3 shows the convex portion 3d formed on the groove bottom of the main groove 2d located on the outermost side of the vehicle and the land portion 50 adjacent thereto, but the pitches P1, P2 of the land portion 50 are P1 <P2. When the relationship is satisfied, the heights Hd1 and Hd2 of the convex portions 3d corresponding thereto are set to Hd1 <Hd2. Thus, the improvement effect of snow traction performance can be enhanced by increasing the edge effect by relatively increasing the convexity adjacent to the land element having a large pitch and high rigidity. Even in this case, it is assumed that the relationship of Ha, Hb <Hc, Hd is satisfied at the same position in the tire circumferential direction.

第2の手法として、図1に示すように、車両外側の主溝2c,2dにおける凸部3c,3dの個数を車両内側の主溝2a,2bにおける凸部3a,3bの個数よりも相対的に多くする。これにより、ウエット性能を維持しながらスノートラクション性能を改善することができる。   As a second method, as shown in FIG. 1, the number of the convex portions 3c, 3d in the main grooves 2c, 2d on the vehicle outer side is relative to the number of the convex portions 3a, 3b in the main grooves 2a, 2b on the vehicle inner side. To more. Thereby, snow traction performance can be improved while maintaining wet performance.

この場合、車両外側の主溝2c,2dにおける凸部3c,3dの個数を車両内側の主溝2a,2bにおける凸部3a,3bの個数の1.3〜2.0倍にすると良い。この倍率が上記範囲から外れるとスノートラクション性能とウエット性能との両立効果が不十分になる。また、上記と同様に、トレッド部1の陸部要素のピッチをタイヤ周方向に変化させた場合において、同一主溝内で大ピッチの陸部要素に隣接する凸部の高さを小ピッチの陸部要素に隣接する凸部の高さをよりも相対的に高くしても良い。   In this case, the number of the convex portions 3c, 3d in the main grooves 2c, 2d on the vehicle outer side is preferably 1.3 to 2.0 times the number of the convex portions 3a, 3b in the main grooves 2a, 2b on the vehicle inner side. When this magnification is out of the above range, the effect of achieving both snow traction performance and wet performance becomes insufficient. Similarly to the above, when the pitch of the land element of the tread portion 1 is changed in the tire circumferential direction, the height of the convex part adjacent to the large pitch land element in the same main groove is set to a small pitch. You may make the height of the convex part adjacent to a land part element relatively higher.

第3の手法として、主溝2a〜2dに設ける凸部3a〜3dを波形形状とし、車両外側の主溝2c,2dにおける凸部3c,3dの振幅を車両内側の主溝2a,2bにおける凸部3a,3bの振幅よりも相対的に大きくする。例えば、図4は最も車両内側に位置する主溝2aにおける凸部3aと最も車両外側に位置する主溝2dにおける凸部3dを並べて示すものであるが、凸部3dの振幅Tdを凸部3aの振幅Taよりも大きくする。これにより、ウエット性能を維持しながらスノートラクション性能を改善することができる。   As a third method, the convex portions 3a to 3d provided in the main grooves 2a to 2d are formed in a corrugated shape, and the amplitude of the convex portions 3c and 3d in the main grooves 2c and 2d on the vehicle outer side is set to be convex in the main grooves 2a and 2b on the vehicle inner side. It is relatively larger than the amplitude of the parts 3a and 3b. For example, FIG. 4 shows the convex portion 3a in the main groove 2a located on the innermost side of the vehicle and the convex portion 3d in the main groove 2d located on the outermost side of the vehicle side by side, and the amplitude Td of the convex portion 3d is shown as the convex portion 3a. Is larger than the amplitude Ta. Thereby, snow traction performance can be improved while maintaining wet performance.

この場合、車両外側の主溝2c,2dにおける凸部3c,3dの振幅を車両内側の主溝2a,2bにおける凸部3a,3bの振幅の1.2〜2.0倍にすると良い。この倍率が上記範囲から外れるとスノートラクション性能とウエット性能との両立効果が不十分になる。   In this case, the amplitude of the convex portions 3c and 3d in the main grooves 2c and 2d on the vehicle outer side is preferably 1.2 to 2.0 times the amplitude of the convex portions 3a and 3b in the main grooves 2a and 2b on the vehicle inner side. When this magnification is out of the above range, the effect of achieving both snow traction performance and wet performance becomes insufficient.

また、トレッド部1の陸部要素のピッチをタイヤ周方向に変化させた場合において、同一主溝内で大ピッチの陸部要素に隣接する凸部の振幅を小ピッチの陸部要素に隣接する凸部の振幅をよりも相対的に大きくすることができる。例えば、図5は最も車両外側に位置する主溝2dの溝底に形成された凸部3dとそれに隣接する陸部50を示すものであるが、陸部50のピッチP1,P2がP1<P2の関係にあるとき、それに対応する凸部3dの振幅Td1,Td2をTd1<Td2とする。このように剛性が高い大ピッチの陸部要素に隣接する凸部の振幅を相対的に大きくしてエッジ効果を高めることにより、スノートラクション性能の改善効果を高めることができる。この場合においても、凸部3a,3b,3c,3dの振幅Ta,Tb,Tc,Tdはタイヤ周方向の同一位置ではTa,Tb<Tc,Tdの関係が満たされるものとする。   Further, when the pitch of the land element of the tread portion 1 is changed in the tire circumferential direction, the amplitude of the convex portion adjacent to the large pitch land element is adjacent to the small pitch land element in the same main groove. The amplitude of the convex portion can be made relatively larger. For example, FIG. 5 shows the convex portion 3d formed on the groove bottom of the main groove 2d located on the outermost side of the vehicle and the land portion 50 adjacent thereto, but the pitches P1, P2 of the land portion 50 are P1 <P2. When the relationship is satisfied, the amplitudes Td1 and Td2 of the convex portion 3d corresponding thereto are set to Td1 <Td2. Thus, the effect of improving snow traction performance can be enhanced by increasing the edge effect by relatively increasing the amplitude of the convex portion adjacent to the land element having a large pitch and high rigidity. Even in this case, the amplitudes Ta, Tb, Tc, Td of the convex portions 3a, 3b, 3c, 3d are assumed to satisfy the relationship of Ta, Tb <Tc, Td at the same position in the tire circumferential direction.

タイヤサイズ295/40R21で、タイヤ赤道の両側で溝配置が異なる非対称トレッドパターンを有し、トレッド部のタイヤ赤道の両側にそれぞれタイヤ周方向に延びるストレート状の主溝を配置すると共に、タイヤ赤道を境にして車両外側の接地領域内の溝面積比率を車両内側の接地領域内の溝面積比率よりも小さくした空気入りタイヤ(図1参照)において、主溝の溝底にそれぞれタイヤ幅方向に延びる複数個の凸部を等間隔に設けると共に、車両外側の主溝における凸部の高さを車両内側の主溝における凸部の高さよりも相対的に高くした実施例1のタイヤを作製した。実施例1において、車両内側の主溝における凸部の高さを1.0mmとし、車両外側の主溝における凸部の高さを2.0mmとした。また、各主溝における凸部の個数は120個とした。なお、主溝の深さは7.5mmである。   The tire size 295 / 40R21 has an asymmetric tread pattern with different groove arrangements on both sides of the tire equator, straight main grooves extending in the tire circumferential direction are arranged on both sides of the tire equator of the tread portion, and the tire equator In a pneumatic tire (see FIG. 1) in which the groove area ratio in the ground contact area outside the vehicle is smaller than the groove area ratio in the ground contact area inside the vehicle, each extends in the tire width direction at the groove bottom of the main groove. A tire of Example 1 was produced in which a plurality of convex portions were provided at equal intervals, and the height of the convex portions in the main groove on the vehicle outer side was relatively higher than the height of the convex portions in the main groove on the vehicle inner side. In Example 1, the height of the convex portion in the main groove inside the vehicle was 1.0 mm, and the height of the convex portion in the main groove outside the vehicle was 2.0 mm. The number of convex portions in each main groove was 120. The depth of the main groove is 7.5 mm.

また、車両内側の主溝における凸部の個数を120個とし、車両外側の主溝における凸部の個数を240個としたこと以外は実施例1と同じ構成を有する実施例2のタイヤを作製した。   Further, the tire of Example 2 having the same configuration as that of Example 1 except that the number of convex portions in the main groove inside the vehicle is 120 and the number of convex portions in the main groove outside the vehicle is 240 is manufactured. did.

更に、各主溝に設ける凸部を波形形状とし、車両内側の主溝における凸部の振幅を1.2mmとし、車両外側の主溝における凸部の振幅を1.5mmとしたこと以外は実施例2と同じ構成を有する実施例3のタイヤを作製した。   In addition, the projecting portion provided in each main groove has a corrugated shape, the amplitude of the projecting portion in the main groove inside the vehicle is 1.2 mm, and the amplitude of the projecting portion in the main groove outside the vehicle is 1.5 mm. A tire of Example 3 having the same configuration as Example 2 was produced.

比較のため、全ての凸部の高さを1mmにしたこと以外は実施例1と同じ構成を有する比較例1のタイヤを作製した。   For comparison, a tire of Comparative Example 1 having the same configuration as that of Example 1 was prepared except that the height of all the convex portions was set to 1 mm.

これらタイヤについて、下記の評価方法により、スノートラクション性能とウエット性能を評価し、その結果を表1に示した。   These tires were evaluated for snow traction performance and wet performance by the following evaluation methods, and the results are shown in Table 1.

スノートラクション性能:
試験タイヤを4輪駆動車に装着し、空気圧240kPaとして、雪上での発進時の反応性をフィーリング評価した。評価結果は、比較例1を100とする指数にて示した。この指数値が大きいほどスノートラクション性能が優れていることを意味する。
Snow traction performance:
The test tire was mounted on a four-wheel drive vehicle, the air pressure was 240 kPa, and the reactivity at the time of starting on snow was evaluated. The evaluation results are shown as an index with Comparative Example 1 as 100. A larger index value means better snow traction performance.

ウエット性能:
試験タイヤを4輪駆動車に装着し、空気圧240kPaとして、ウエット路面での旋回性能をフィーリング評価した。評価結果は、比較例1を100とする指数にて示した。この指数値が大きいほどウエット性能が優れていることを意味する。
Wet performance:
The test tire was mounted on a four-wheel drive vehicle, and the turning performance on a wet road surface was evaluated with a feeling of air pressure of 240 kPa. The evaluation results are shown as an index with Comparative Example 1 as 100. The larger the index value, the better the wet performance.

Figure 2008273451
Figure 2008273451

この表1から明らかなように、実施例1〜3のタイヤは比較例1と同等のウエット性能を維持しながら良好なスノートラクション性能を発揮することができた。   As is apparent from Table 1, the tires of Examples 1 to 3 were able to demonstrate good snow traction performance while maintaining the wet performance equivalent to that of Comparative Example 1.

次に、各主溝に設ける凸部を波形形状とし、同一主溝内で大ピッチの陸部要素に隣接する凸部の振幅を1.5mmとし、同一主溝内で小ピッチの陸部要素に隣接する凸部の振幅を1.2mmとしたこと以外は実施例2と同じ構成を有する実施例4のタイヤを作製した。このタイヤについて上記と同様の評価を行ったところ、ウエット性能の評価値は100であり、スノートラクション性能の評価値は110であった。   Next, the convex portion provided in each main groove has a corrugated shape, the amplitude of the convex portion adjacent to the large pitch land element in the same main groove is 1.5 mm, and the small pitch land element in the same main groove. A tire of Example 4 having the same configuration as that of Example 2 was produced, except that the amplitude of the convex portion adjacent to was set to 1.2 mm. When the tire was evaluated in the same manner as described above, the evaluation value of the wet performance was 100, and the evaluation value of the snow traction performance was 110.

次に、車両内側の主溝では、小ピッチの陸部要素に隣接する凸部の高さを0.5mmとし、大ピッチの陸部要素に隣接する凸部の高さを1.0mmとし、車両外側の主溝では、小ピッチの陸部要素に隣接する凸部の高さを1.5mmとし、大ピッチの陸部要素に隣接する凸部の高さを2.0mmとしたこと以外は実施例2と同じ構成を有する実施例5のタイヤを作製した。このタイヤについて上記と同様の評価を行ったところ、ウエット性能の評価値は100であり、スノートラクション性能の評価値は110であった。   Next, in the main groove inside the vehicle, the height of the convex portion adjacent to the small pitch land element is 0.5 mm, the height of the convex portion adjacent to the large pitch land element is 1.0 mm, In the main groove outside the vehicle, the height of the convex portion adjacent to the small pitch land element is 1.5 mm, and the height of the convex portion adjacent to the large pitch land element is 2.0 mm. A tire of Example 5 having the same configuration as that of Example 2 was produced. When the tire was evaluated in the same manner as described above, the evaluation value of the wet performance was 100, and the evaluation value of the snow traction performance was 110.

本発明の実施形態からなる空気入りタイヤのトレッドパターンを示す展開図である。It is an expanded view which shows the tread pattern of the pneumatic tire which consists of embodiment of this invention. 図1の空気入りタイヤのトレッド部を示す断面図である。It is sectional drawing which shows the tread part of the pneumatic tire of FIG. 最も車両外側に位置する主溝の溝底に形成された凸部とそれに隣接する陸部を示す側面図である。It is a side view which shows the convex part formed in the groove bottom of the main groove located in the outermost vehicle side, and the land part adjacent to it. 最も車両内側に位置する主溝における凸部と最も車両外側に位置する主溝における凸部を並べて示す平面図である。FIG. 4 is a plan view showing a convex portion in a main groove located on the innermost side of the vehicle and a convex portion in the main groove located on the outermost side of the vehicle side by side. 最も車両外側に位置する主溝の溝底に形成された凸部とそれに隣接する陸部を示す平面図である。It is a top view which shows the convex part formed in the groove bottom of the main groove located in the vehicle outermost side, and the land part adjacent to it.

符号の説明Explanation of symbols

1 トレッド部
2a〜2d 主溝
3a〜3d 凸部
10,20,30,40,50 陸部
1 tread portion 2a to 2d main groove 3a to 3d convex portion 10, 20, 30, 40, 50 land portion

Claims (9)

タイヤ赤道の両側で溝配置が異なる非対称トレッドパターンを有し、トレッド部のタイヤ赤道の両側にそれぞれタイヤ周方向に延びるストレート状の主溝を配置すると共に、タイヤ赤道を境にして車両外側の接地領域内の溝面積比率を車両内側の接地領域内の溝面積比率よりも小さくした空気入りタイヤにおいて、前記主溝の溝底にそれぞれタイヤ幅方向に延びる複数個の凸部を設けると共に、車両外側の主溝における凸部の高さを車両内側の主溝における凸部の高さよりも相対的に高くした空気入りタイヤ。   Asymmetric tread pattern with different groove arrangement on both sides of the tire equator, straight main grooves extending in the tire circumferential direction are arranged on both sides of the tire equator in the tread part, and grounding outside the vehicle with the tire equator as a boundary In the pneumatic tire in which the groove area ratio in the region is smaller than the groove area ratio in the ground contact area inside the vehicle, a plurality of protrusions extending in the tire width direction are provided on the groove bottom of the main groove, and the vehicle outer side A pneumatic tire in which the height of the convex portion in the main groove is relatively higher than the height of the convex portion in the main groove inside the vehicle. 車両内側の主溝における凸部の高さを0.3mm以上かつ主溝深さの20%以下とし、車両外側の主溝における凸部の高さを主溝深さの30%以下とした請求項1に記載の空気入りタイヤ。   The height of the convex portion in the main groove inside the vehicle is 0.3 mm or more and 20% or less of the main groove depth, and the height of the convex portion in the main groove outside the vehicle is 30% or less of the main groove depth. Item 2. The pneumatic tire according to Item 1. 前記トレッド部の陸部要素のピッチをタイヤ周方向に変化させた場合において、同一主溝内で大ピッチの陸部要素に隣接する凸部の高さを小ピッチの陸部要素に隣接する凸部の高さをよりも相対的に高くした請求項1に記載の空気入りタイヤ。   When the pitch of the land element of the tread portion is changed in the tire circumferential direction, the height of the convex part adjacent to the large pitch land element is set to the convex part adjacent to the small pitch land element in the same main groove. The pneumatic tire according to claim 1, wherein the height of the portion is relatively higher. タイヤ赤道の両側で溝配置が異なる非対称トレッドパターンを有し、トレッド部のタイヤ赤道の両側にそれぞれタイヤ周方向に延びるストレート状の主溝を配置すると共に、タイヤ赤道を境にして車両外側の接地領域内の溝面積比率を車両内側の接地領域内の溝面積比率よりも小さくした空気入りタイヤにおいて、前記主溝の溝底にそれぞれタイヤ幅方向に延びる複数個の凸部を設けると共に、車両外側の主溝における凸部の個数を車両内側の主溝における凸部の個数よりも相対的に多くした空気入りタイヤ。   Asymmetric tread pattern with different groove arrangement on both sides of the tire equator, straight main grooves extending in the tire circumferential direction are arranged on both sides of the tire equator in the tread part, and grounding outside the vehicle with the tire equator as a boundary In the pneumatic tire in which the groove area ratio in the region is smaller than the groove area ratio in the ground contact area inside the vehicle, a plurality of protrusions extending in the tire width direction are provided on the groove bottom of the main groove, and the vehicle outer side A pneumatic tire in which the number of protrusions in the main groove is relatively greater than the number of protrusions in the main groove inside the vehicle. 車両外側の主溝における凸部の個数を車両内側の主溝における凸部の個数の1.3〜2.0倍とした請求項4に記載の空気入りタイヤ。   The pneumatic tire according to claim 4, wherein the number of protrusions in the main groove on the vehicle outer side is 1.3 to 2.0 times the number of protrusions in the main groove on the vehicle inner side. 前記トレッド部の陸部要素のピッチをタイヤ周方向に変化させた場合において、同一主溝内で大ピッチの陸部要素に隣接する凸部の高さを小ピッチの陸部要素に隣接する凸部の高さをよりも相対的に高くした請求項4に記載の空気入りタイヤ。   When the pitch of the land element of the tread portion is changed in the tire circumferential direction, the height of the convex part adjacent to the large pitch land element is set to the convex part adjacent to the small pitch land element in the same main groove. The pneumatic tire according to claim 4, wherein the height of the portion is relatively higher. タイヤ赤道の両側で溝配置が異なる非対称トレッドパターンを有し、トレッド部のタイヤ赤道の両側にそれぞれタイヤ周方向に延びるストレート状の主溝を配置すると共に、タイヤ赤道を境にして車両外側の接地領域内の溝面積比率を車両内側の接地領域内の溝面積比率よりも小さくした空気入りタイヤにおいて、前記主溝の溝底にそれぞれタイヤ幅方向に延びて波形形状を有する複数個の凸部を設けると共に、車両外側の主溝における凸部の振幅を車両内側の主溝における凸部の振幅よりも相対的に大きくした空気入りタイヤ。   Asymmetric tread pattern with different groove arrangement on both sides of the tire equator, straight main grooves extending in the tire circumferential direction are arranged on both sides of the tire equator in the tread part, and grounding outside the vehicle with the tire equator as a boundary In the pneumatic tire in which the groove area ratio in the region is smaller than the groove area ratio in the ground contact area inside the vehicle, a plurality of convex portions each having a corrugated shape extending in the tire width direction are provided at the groove bottom of the main groove. A pneumatic tire provided with the amplitude of the convex portion in the main groove on the vehicle outer side relatively larger than the amplitude of the convex portion in the main groove on the vehicle inner side. 車両外側の主溝における凸部の振幅を車両内側の主溝における凸部の振幅の1.2〜2.0倍とした請求項7に記載の空気入りタイヤ。   The pneumatic tire according to claim 7, wherein the amplitude of the convex portion in the main groove outside the vehicle is 1.2 to 2.0 times the amplitude of the convex portion in the main groove inside the vehicle. 前記トレッド部の陸部要素のピッチをタイヤ周方向に変化させた場合において、同一主溝内で大ピッチの陸部要素に隣接する凸部の振幅を小ピッチの陸部要素に隣接する凸部の振幅をよりも相対的に大きくした請求項4に記載の空気入りタイヤ。   When the pitch of the land element of the tread portion is changed in the tire circumferential direction, the amplitude of the convex part adjacent to the large pitch land element in the same main groove is the convex part adjacent to the small pitch land element. The pneumatic tire according to claim 4, wherein the amplitude of is relatively larger.
JP2007121393A 2007-05-02 2007-05-02 Pneumatic tire Pending JP2008273451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007121393A JP2008273451A (en) 2007-05-02 2007-05-02 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007121393A JP2008273451A (en) 2007-05-02 2007-05-02 Pneumatic tire

Publications (1)

Publication Number Publication Date
JP2008273451A true JP2008273451A (en) 2008-11-13

Family

ID=40051980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007121393A Pending JP2008273451A (en) 2007-05-02 2007-05-02 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP2008273451A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010001901A1 (en) 2009-02-20 2010-09-02 The Yokohama Rubber Co., Ltd. tire
WO2010122805A1 (en) * 2009-04-22 2010-10-28 株式会社ブリヂストン Pnuematic tire
JP2012140108A (en) * 2011-01-05 2012-07-26 Toyo Tire & Rubber Co Ltd Pneumatic tire
CN104816594A (en) * 2010-03-29 2015-08-05 株式会社普利司通 Tire
EP3260308A1 (en) * 2016-06-24 2017-12-27 Sumitomo Rubber Industries, Ltd. Tire
JP2018065516A (en) * 2016-10-21 2018-04-26 東洋ゴム工業株式会社 Pneumatic tire

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010001901A1 (en) 2009-02-20 2010-09-02 The Yokohama Rubber Co., Ltd. tire
CN101890881A (en) * 2009-02-20 2010-11-24 横滨橡胶株式会社 Air-inflation tyre
US8573269B2 (en) 2009-02-20 2013-11-05 The Yokohama Rubber Co., Ltd. Pneumatic tire with tread having continuous ribs and a block row
WO2010122805A1 (en) * 2009-04-22 2010-10-28 株式会社ブリヂストン Pnuematic tire
CN104816594A (en) * 2010-03-29 2015-08-05 株式会社普利司通 Tire
US9393839B2 (en) 2010-03-29 2016-07-19 Bridgestone Corporation Tire
JP2012140108A (en) * 2011-01-05 2012-07-26 Toyo Tire & Rubber Co Ltd Pneumatic tire
EP3260308A1 (en) * 2016-06-24 2017-12-27 Sumitomo Rubber Industries, Ltd. Tire
US10710415B2 (en) 2016-06-24 2020-07-14 Sumitomo Rubber Industries, Ltd. Tire
JP2018065516A (en) * 2016-10-21 2018-04-26 東洋ゴム工業株式会社 Pneumatic tire

Similar Documents

Publication Publication Date Title
JP5270417B2 (en) Pneumatic tire
JP4740301B2 (en) Pneumatic tire
JP2010274695A (en) Pneumatic tire
JP4499883B2 (en) Pneumatic tire
JP2007153056A (en) Pneumatic tire
JP2010260471A (en) Pneumatic tire
JP5560894B2 (en) Pneumatic tire
JP4548551B2 (en) Pneumatic tire
JP2010188922A (en) Pneumatic tire
JP2008273451A (en) Pneumatic tire
JP5419752B2 (en) Pneumatic tire
JP2012171478A (en) Pneumatic tire
JP5526998B2 (en) Pneumatic tire
JP2008143240A (en) Pneumatic tire
JP2013039871A (en) Pneumatic tire
JP2005329793A (en) Pneumatic tire
JP6517601B2 (en) Pneumatic tire
JP2010042786A (en) Pneumatic tire
JP2013244931A (en) Tire
JP5762216B2 (en) Pneumatic tire
JP2007015655A (en) Pneumatic tire
JP5461233B2 (en) Pneumatic tire
JP4859102B2 (en) Pneumatic tire
JP5266090B2 (en) Pneumatic tire
JP2010208506A (en) Pneumatic tire