JP2008271662A - Charging device of capacitor - Google Patents

Charging device of capacitor Download PDF

Info

Publication number
JP2008271662A
JP2008271662A JP2007108860A JP2007108860A JP2008271662A JP 2008271662 A JP2008271662 A JP 2008271662A JP 2007108860 A JP2007108860 A JP 2007108860A JP 2007108860 A JP2007108860 A JP 2007108860A JP 2008271662 A JP2008271662 A JP 2008271662A
Authority
JP
Japan
Prior art keywords
inverter
circuit
positive
time
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007108860A
Other languages
Japanese (ja)
Inventor
Takehisa Koganezawa
竹久 小金澤
Masao Azuma
征男 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2007108860A priority Critical patent/JP2008271662A/en
Publication of JP2008271662A publication Critical patent/JP2008271662A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To surely prevent the eccentric magnetization of a transformer even if there is a difference between on-times at each half cycle of an inverter, in a charging system for charging a capacitor until its voltage reaches a charging target voltage by using an LC resonance current at each half cycle via the transformer by an output at each half cycle of the inverter. <P>SOLUTION: An on-time operation circuit 11 outputs a pulse having a width which corresponds to the on-time of an inverter switch according to the charging target voltage of the capacitor. A multiplying circuit 13 obtains an amount of positive or negative magnetic flux generated at the transformer according to the on-time by multiplying the on-time by a DC voltage of the inverter. An adder-subtractor 14 obtains a difference by adding and subtracting the amount of the positive or negative magnetic flux. A zero-comparison circuit 15 determines either positive polarity or negative polarity for an amount of the magnetic flux with a zero as a border. A state change permission circuit 16 latches a determination result of the zero comparison circuit. An on-switch selection circuit 17 selects the polarity of an on-output of the half cycle of the inverter according to a determination result of the state change permission circuit. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電力用コンデンサを設定電圧まで繰り返し充電する充電装置に係り、特に単相インバータの半周期毎の出力でトランスを介してコンデンサを半周期毎のLC共振電流で充電目標電圧まで充電する充電装置に関する。   The present invention relates to a charging device that repeatedly charges a power capacitor to a set voltage, and in particular, charges a capacitor to a charging target voltage with an LC resonance current for each half cycle through a transformer at an output for each half cycle of a single-phase inverter. The present invention relates to a charging device.

この種の充電装置は、例えば、電力用コンデンサを高圧で初期充電し、このコンデンサからの放電パルスを磁気パルス圧縮してレーザヘッドなどの負荷に高圧大電流でパルス放電させるパルス電源の充電器として設けられる。   This type of charging device is, for example, a charger for a pulse power source that initially charges a power capacitor at a high voltage and compresses a discharge pulse from the capacitor to a pulse such as a laser head at a high voltage and a large current. Provided.

図3は、電力用コンデンサを単相インバータで充電する充電装置の主回路構成図を示す。インバータ部1は、半導体スイッチS1〜S4とダイオードD1〜D4をそれぞれ逆並列接続した4つのアームをブリッジ接続し、スイッチS1、S4とスイッチS2、S3の相補オン動作で単相交流出力を発生する。出力トランス2は、インバータ部1の出力を昇圧した二次出力を得る。整流回路3は、ダイオードD5〜D8をブリッジ接続し、トランス2の出力を全波整流し、電力用コンデンサ4に直流充電電流を供給する。リアクトル5はトランス2の二次出力巻線に直列に介挿され、コンデンサ4とのLC共振動作によって、コンデンサ4との間に半周期の振動電流を発生し、コンデンサ4に充電を得る。   FIG. 3 is a main circuit configuration diagram of a charging device that charges a power capacitor with a single-phase inverter. The inverter unit 1 bridges four arms in which semiconductor switches S1 to S4 and diodes D1 to D4 are connected in antiparallel, and generates a single-phase AC output by complementary ON operations of the switches S1 and S4 and the switches S2 and S3. . The output transformer 2 obtains a secondary output obtained by boosting the output of the inverter unit 1. The rectifier circuit 3 bridges the diodes D5 to D8, full-wave rectifies the output of the transformer 2, and supplies a DC charging current to the power capacitor 4. The reactor 5 is inserted in series with the secondary output winding of the transformer 2, and generates an oscillating current having a half cycle with the capacitor 4 by the LC resonance operation with the capacitor 4, so that the capacitor 4 is charged.

充電制御回路6は、インバータの半導体スイッチS1〜S4のうち、スイッチS1,S4オンと、スイッチS3,S2オンを交互に繰り返し制御し、インバータ部1の半周期出力でコンデンサ4を1回充電させる。この充電動作は、
(モード1)スイッチS1,S4をオンさせて充電動作を開始し、コンデンサ4の充電電圧が目標値に達する時点でスイッチS1,S4をオフさせて充電動作を停止する。この充電完了後、コンデンサ4は負荷側に放電する。
The charge control circuit 6 alternately controls the switches S1, S4 on and the switches S3, S2 on among the semiconductor switches S1 to S4 of the inverter, and charges the capacitor 4 once with the half-cycle output of the inverter unit 1. . This charging operation is
(Mode 1) The charging operation is started by turning on the switches S1 and S4, and the charging operation is stopped by turning off the switches S1 and S4 when the charging voltage of the capacitor 4 reaches the target value. After this charging is completed, the capacitor 4 is discharged to the load side.

(モード2)モード1の終了後、スイッチS3,S2をオンさせて充電動作を開始し、コンデンサ4の充電電圧が目標値に達する時点でスイッチS3,S2をオフさせて充電動作を停止する。この充電完了後、コンデンサ4は負荷側に放電する。   (Mode 2) After the end of mode 1, the switches S3 and S2 are turned on to start the charging operation, and when the charging voltage of the capacitor 4 reaches the target value, the switches S3 and S2 are turned off to stop the charging operation. After this charging is completed, the capacitor 4 is discharged to the load side.

この充電動作において、モード1とモード2での充電電流の大きさや充電期間に差があると、トランスに電圧の直流分が加わり、トランスの鉄心が偏磁する。最悪の場合、トランスが磁気飽和し、インバータに過大な電流が流れる。また、所定の充電動作も不能となる。   In this charging operation, if there is a difference in the magnitude of the charging current between mode 1 and mode 2 or the charging period, a DC component of the voltage is applied to the transformer, and the iron core of the transformer is demagnetized. In the worst case, the transformer is magnetically saturated, and an excessive current flows through the inverter. Also, the predetermined charging operation is disabled.

トランスの偏磁を防止する回路として、トランスに流れる正負の一次電流を検出し、この正負の電流差に応じてインバータ(またはプッシュプル回路)のアームのオン期間(PWM波形の幅、スイッチ期間)を補正する方式がある(例えば、特許文献1、特許文献2参照)。
特開2004−15900号公報 特開平9−168278号公報
As a circuit to prevent transformer magnetism, positive and negative primary currents flowing in the transformer are detected, and the ON period of the inverter (or push-pull circuit) arm (PWM waveform width, switch period) according to this positive / negative current difference There is a method of correcting (see, for example, Patent Document 1 and Patent Document 2).
JP 2004-15900 A JP-A-9-168278

トランスの電流を検出し、この電流の正負の差分に応じてスイッチ期間を補正する従来の偏磁防止方式では、インバータまたはプッシュプル回路の出力電圧(PWM波形の幅、スイッチ期間)を制御することになる。   In the conventional anti-magnetization method that detects the transformer current and corrects the switch period according to the difference between the positive and negative currents, the output voltage (PWM waveform width, switch period) of the inverter or push-pull circuit is controlled. become.

ここで、パルス電源用の充電装置など、インバータの半周期毎の出力でコンデンサを半周期毎のLC共振電流で充電目標電圧まで充電する充電装置では、コンデンサの充電電圧目標値、充電開始前のコンデンサの残留電圧およびインバータの直流電圧によって、スイッチのオン時間を大きく変化させるため、従来の偏磁防止方式ではこれら充電条件の変更に追従した補正ができない。   Here, in a charging device such as a charging device for a pulse power supply that charges a capacitor to a charging target voltage with an LC resonance current every half cycle with an output every half cycle of the inverter, the charging voltage target value of the capacitor, before charging starts Since the on-time of the switch is largely changed depending on the residual voltage of the capacitor and the DC voltage of the inverter, the conventional anti-bias method cannot make corrections following changes in these charging conditions.

特に、コンデンサから負荷となるパルス発生回路あるいは放電負荷への放電は、コンデンサの半周期充電毎に充電電圧目標値が例えば50〜100%と大きく変化する場合があり、従来のトランスの電流検出による補正では、対応が困難となる。   In particular, the discharge from the capacitor to the pulse generation circuit or the discharge load serving as a load may cause the charge voltage target value to vary greatly, for example, from 50 to 100% for each half-cycle charge of the capacitor. In the correction, it becomes difficult to cope.

本発明の目的は、インバータの半周期毎の出力でトランスを介してコンデンサを半周期毎のLC共振電流で充電目標電圧まで充電する充電方式において、インバータの半周期毎のオン時間に差がある場合にもトランスの偏磁を確実に防止できるコンデンサの充電装置を提供することにある。   An object of the present invention is that there is a difference in on-time for each half cycle of the inverter in a charging method in which a capacitor is charged to a charge target voltage with an LC resonance current for each half cycle via a transformer with an output for each half cycle of the inverter. Even in such a case, it is an object of the present invention to provide a capacitor charging device that can reliably prevent transformer magnetic demagnetization.

本発明は、前記の課題を解決するため、インバータの直流電圧とインバータスイッチのオン時間およびトランスに流れる正負電流極性からトランスに発生する正負磁束量の差分を求め、この差分の正負に応じてインバータの次回の半周期出力を、トランスの鉄心が飽和しない方向の極性になるようにしたもので、以下の構成を特徴とする。   In order to solve the above problems, the present invention obtains the difference between the amount of positive and negative magnetic flux generated in the transformer from the DC voltage of the inverter, the ON time of the inverter switch, and the positive / negative current polarity flowing in the transformer, and the inverter is determined according to the positive / negative of this difference. The next half-cycle output has a polarity in a direction that does not saturate the iron core of the transformer, and has the following configuration.

(1)フルブリッジ構成の単相インバータの半周期毎の出力をインバータスイッチのオン時間で制御し、この出力をトランスを介してリアクトルとコンデンサにLC共振電流を流し、コンデンサを半周期毎に充電目標電圧まで充電する充電装置において、
単相インバータの直流電圧とインバータスイッチのオン時間およびトランスに流れる正負電流極性から、トランスに発生する正負磁束量の差分を求め、この差分の正負に応じてインバータの次回の半周期出力をトランスの鉄心が飽和しない方向の極性にする充電制御回路を備えたことを特徴とする。
(1) The half-cycle output of a full-bridge single-phase inverter is controlled by the on-time of the inverter switch, and this output is supplied to the reactor and capacitor via the transformer to pass LC resonance current, charging the capacitor every half cycle. In a charging device that charges to a target voltage,
The difference in the amount of positive and negative magnetic flux generated in the transformer is determined from the DC voltage of the single-phase inverter, the inverter switch ON time, and the polarity of the positive and negative currents flowing in the transformer, and the next half-cycle output of the inverter is calculated based on the positive and negative of this difference. A charge control circuit is provided that sets the polarity so that the iron core does not saturate.

(2)前記充電制御回路は、
コンデンサの充電目標電圧に応じてインバータの半周期のオン時間を求め、このオン時間に対応する幅のパルスを出力するオン時間演算回路と、
前記オン時間にインバータの直流電圧を係数として乗じることで、インバータの半周期のオン時間に応じてトランスに発生する正または負の磁束量を求める乗算回路と、
正または負の磁束量の加減算でトランスに流れる正負の電流極性別に発生する正負磁束量の差分を求める加減算回路と、
前記加減算回路の算出磁束量がゼロを境にして正負いずれの極性にあるかを判定するゼロ比較回路と、
インバータのオフ期間に、前記ゼロ比較回路の判定結果をラッチする状態変更許可回路と、
状態変更許可回路の判定結果に応じて、インバータの半周期のオン出力の極性を選択するオンスイッチ選択回路と、
を備えたことを特徴とする。
(2) The charge control circuit includes:
An on-time arithmetic circuit for obtaining an on-time of a half cycle of the inverter according to the charging target voltage of the capacitor and outputting a pulse having a width corresponding to the on-time;
Multiplying the on-time by a DC voltage of the inverter as a coefficient to obtain a positive or negative magnetic flux amount generated in the transformer according to the on-time of the half cycle of the inverter;
An addition / subtraction circuit for obtaining a difference between positive and negative magnetic flux amounts generated according to positive and negative current polarities flowing in the transformer by addition / subtraction of positive or negative magnetic flux amount;
A zero comparison circuit for determining whether the calculated magnetic flux amount of the addition / subtraction circuit is positive or negative with respect to zero;
A state change permission circuit that latches the determination result of the zero comparison circuit in an off period of the inverter;
An on-switch selection circuit that selects the polarity of the ON output of the half cycle of the inverter according to the determination result of the state change permission circuit;
It is provided with.

(3)前記充電制御回路は、
コンデンサの充電目標電圧に応じてインバータの半周期のオン時間を求め、このオン時間に対応する幅のパルスを出力するオン時間演算回路と、
前記オン時間を積分許可信号とし、この信号期間だけインバータの直流電圧検出値を加減算することで、トランスに流れる正負の電流極性別に発生する正負磁束量の差分を求める加減算回路と、
前記加減算回路の算出磁束量がゼロを境にして正負いずれの極性にあるかを判定するゼロ比較回路と、
インバータのオフ期間に、前記ゼロ比較回路の判定結果をラッチする状態変更許可回路と、
状態変更許可回路の判定結果に応じて、インバータの半周期のオン出力の極性を選択するオンスイッチ選択回路と、
を備えたことを特徴とする。
(3) The charge control circuit includes:
An on-time arithmetic circuit for obtaining an on-time of a half cycle of the inverter according to the charging target voltage of the capacitor and outputting a pulse having a width corresponding to the on-time;
An addition / subtraction circuit for obtaining a difference between positive and negative magnetic flux amounts generated according to positive and negative current polarities flowing in the transformer by adding and subtracting the DC voltage detection value of the inverter only during this signal period, with the ON time as an integration permission signal;
A zero comparison circuit for determining whether the calculated magnetic flux amount of the addition / subtraction circuit is positive or negative with respect to zero;
A state change permission circuit that latches the determination result of the zero comparison circuit in an off period of the inverter;
An on-switch selection circuit that selects the polarity of the ON output of the half cycle of the inverter according to the determination result of the state change permission circuit;
It is provided with.

以上のとおり、本発明によれば、インバータの直流電圧とインバータスイッチのオン時間およびトランスに流れる正負電流極性からトランスに発生する正負磁束量の差分を求め、この差分の正負に応じてインバータの次回の半周期出力を、トランスの鉄心が飽和しない方向の極性になるようにしたため、インバータの半周期毎のオン時間に差がある場合にもトランスの偏磁を確実に防止できる。   As described above, according to the present invention, the difference between the amount of positive and negative magnetic flux generated in the transformer is obtained from the DC voltage of the inverter, the ON time of the inverter switch, and the polarity of positive and negative currents flowing in the transformer, and the next time of the inverter according to the positive and negative of this difference. Since the polarity of the half-cycle output is such that the transformer core does not saturate, even if there is a difference in the on-time for each half-cycle of the inverter, the transformer can be reliably prevented from being magnetized.

また、充電制御回路は、インバータの判周期のオン時間(パルス幅)を基にした演算回路で構成するため、インバータ直流電圧、オン時間演算回路出力がデジタル量の場合に比べて回路処理を簡単化でき、既存の充電制御回路の少しの改造で済む。   In addition, since the charge control circuit is composed of an arithmetic circuit based on the ON time (pulse width) of the inverter cycle, the circuit processing is simpler than when the inverter DC voltage and ON time arithmetic circuit output are digital quantities. And requires only a slight modification of the existing charge control circuit.

(実施形態1)
図1は、本実施形態を示す充電制御回路のブロック構成図であり、図3のインバータ部1の充電制御回路6に代えるものである。
(Embodiment 1)
FIG. 1 is a block configuration diagram of a charge control circuit showing the present embodiment, which replaces the charge control circuit 6 of the inverter unit 1 of FIG.

前記のように、従来の単相インバータでは、スイッチS1,S4のオンと、スイッチS3,S2のオンを交互に繰り返し制御する。これに対して、本実施形態では、インバータの直流電圧とインバータスイッチのオン時間およびトランスに流れる正負電流極性からトランスに発生する正負磁束量の差分を求め、この差分の正負に応じてインバータの次回の半周期出力を、トランスの鉄心が飽和しない方向の極性になるように、スイッチS1,S4のオンと、スイッチS3,S2のオンを選択する。   As described above, in the conventional single-phase inverter, the switches S1 and S4 are turned on and the switches S3 and S2 are turned on alternately and repeatedly. In contrast, in this embodiment, the difference between the amount of positive and negative magnetic flux generated in the transformer is obtained from the DC voltage of the inverter, the ON time of the inverter switch, and the polarity of positive and negative currents flowing through the transformer, and the next time the inverter is operated according to the positive and negative of this difference. The switches S1 and S4 are turned on and the switches S3 and S2 are turned on so that the half-cycle output has a polarity in a direction that does not saturate the iron core of the transformer.

オン時間演算回路11は、コンデンサ4の充電目標電圧(目標値)に応じてスイッチS1,S4オン、またはスイッチS3,S2に必要なオン時間を求め、このオン時間に対応する幅のパルスを出力する。インバータ直流電圧検出回路12は、インバータ部1の直流電圧を検出し、この直流電圧の変動によるトランスの磁束変動分を補正する係数として検出する。   The on-time arithmetic circuit 11 obtains the on-time required for the switches S1 and S4 or the switches S3 and S2 according to the charging target voltage (target value) of the capacitor 4, and outputs a pulse having a width corresponding to the on-time. To do. The inverter DC voltage detection circuit 12 detects the DC voltage of the inverter unit 1 and detects it as a coefficient for correcting the magnetic flux fluctuation of the transformer due to the fluctuation of the DC voltage.

乗算回路13は、オン時間演算回路11からのオン時間に電圧検出回路12の出力(係数)を乗じることで、スイッチのオン時間に応じてトランス2に発生する正または負の磁束量を求める。すなわち、トランス2に発生する正または負の磁束量はインバータ直流電圧×スイッチのオン時間で算出される。なお、コンデンサの充電において、充放電の周期が短く(繰り返し周波数が高く)なると、インバータのオン時間も短くなる。例えば、繰り返し周波数10kHzの場合のインバータオン時間は50μsec程度である。この場合、トランス2に発生する正または負の磁束量はインバータ直流電圧の変化をほぼ無視できる。   The multiplication circuit 13 multiplies the on-time from the on-time arithmetic circuit 11 by the output (coefficient) of the voltage detection circuit 12 to obtain the amount of positive or negative magnetic flux generated in the transformer 2 according to the on-time of the switch. That is, the amount of positive or negative magnetic flux generated in the transformer 2 is calculated by inverter DC voltage × switch ON time. In charging the capacitor, if the charge / discharge cycle is short (the repetition frequency is high), the ON time of the inverter is also short. For example, the inverter on time when the repetition frequency is 10 kHz is about 50 μsec. In this case, the amount of positive or negative magnetic flux generated in the transformer 2 can almost ignore the change in the inverter DC voltage.

加減算回路(積分回路)14は、乗算回路13の算出出力を、スイッチS1,S4のオン制御時には加算し、スイッチS3,S2のオン制御時には減算することで、トランス2に流れる正負の電流極性別に発生する正負磁束量の差分を求める。   The addition / subtraction circuit (integration circuit) 14 adds the calculated output of the multiplication circuit 13 when the switches S1 and S4 are on, and subtracts when the switches S3 and S2 are on. Find the difference between the amount of positive and negative magnetic flux generated.

ゼロ比較回路15は、加減算回路14の算出磁束量がゼロを境にして正負いずれの極性にあるかを判定する。状態変更許可回路(ラッチ回路)16は、スイッチS1,S4のオフ期間またはスイッチS3,S2のオフ期間に、ゼロ比較回路15の判定結果(極性)をラッチする。   The zero comparison circuit 15 determines whether the calculated magnetic flux amount of the addition / subtraction circuit 14 is positive or negative with respect to zero. The state change permission circuit (latch circuit) 16 latches the determination result (polarity) of the zero comparison circuit 15 during the off period of the switches S1 and S4 or the off period of the switches S3 and S2.

オンスイッチ選択回路17は、状態変更許可回路(ラッチ回路)16の判定結果に応じて、オン時間演算回路11のオン時間出力(パルス出力)でスイッチS1,S4またはスイッチS3、S2のオン出力に切り替える。   The on-switch selection circuit 17 turns on the switches S1 and S4 or the switches S3 and S2 with the on-time output (pulse output) of the on-time arithmetic circuit 11 according to the determination result of the state change permission circuit (latch circuit) 16. Switch.

以上の構成によるトランスの偏磁防止動作を説明する。検出回路12でインバータ直流電圧を検出し、オン時間演算回路11で求めたスイッチのオン時間によって、乗算回路13にトランスに流れる半周期の電流でトランスに発生する磁束量を求める。すなわち、インバータの動作1回分の電圧の積分値(磁束の変化分)が求まる。これを加減算回路14で前回の動作までの値に加減算する。加算と減算は、例えばスイッチS1,S4がオンの時は加算、スイッチS3,S2がオンの時は減算とする。この結果をゼロ比較回路15でゼロを境にして磁束量の正負を判定する。   An operation of preventing the bias of the transformer having the above configuration will be described. The detection circuit 12 detects the inverter DC voltage, and the amount of magnetic flux generated in the transformer by the half-cycle current flowing through the transformer in the multiplier circuit 13 is determined based on the switch ON time determined by the ON time calculation circuit 11. That is, the integrated value of the voltage for one operation of the inverter (change in magnetic flux) is obtained. This is added / subtracted by the addition / subtraction circuit 14 to the value up to the previous operation. The addition and subtraction are, for example, addition when the switches S1 and S4 are on, and subtraction when the switches S3 and S2 are on. Based on this result, the zero comparison circuit 15 determines whether the amount of magnetic flux is positive or negative at zero.

スイッチS1,S4またはスイッチS3,S2のオフ後に、状態変更許可回路(ラッチ回路)16はゼロ比較回路15の判定結果をラッチし、このラッチ状態に応じてオンスイッチ選択回路17がスイッチS1,S4のオンまたはスイッチS3,S2のオンを選択し、選択したスイッチをオン制御する。   After the switches S1 and S4 or the switches S3 and S2 are turned off, the state change permission circuit (latch circuit) 16 latches the determination result of the zero comparison circuit 15, and the on-switch selection circuit 17 switches the switches S1 and S4 according to the latch state. Is turned on or the switches S3 and S2 are turned on, and the selected switch is turned on.

以上により、フルブリッジ構成の単相インバータの半周期毎の出力をインバータスイッチのオン時間で制御し、この出力をトランスを介してリアクトルとコンデンサにLC共振電流を流し、コンデンサを半周期毎に充電目標電圧まで充電する充電装置において、コンデンサの充電電圧目標値、充電開始前のコンデンサの残留電圧およびインバータ直流電圧により、インバータの半周期毎のオン時間が変化する場合にも、トランスの磁束が偏らない方向のスイッチを選択する振り分けによって、トランスの偏磁を確実に防止できる。   As described above, the half-cycle output of a single-phase inverter with a full bridge configuration is controlled by the on-time of the inverter switch, and this output is supplied to the reactor and the capacitor via the transformer, and the LC resonance current is supplied to the capacitor every half cycle. In a charging device that charges to the target voltage, even if the on-time for each half cycle of the inverter changes due to the target value of the capacitor charging voltage, the residual voltage of the capacitor before the start of charging, and the inverter DC voltage, the transformer magnetic flux is biased. By selecting the switch in the non-directional direction, it is possible to reliably prevent the transformer from being demagnetized.

(実施形態2)
図2は、本実施形態を示す制御回路のブロック構成図であり、図1と同等の部分は同一符号で示す。
(Embodiment 2)
FIG. 2 is a block diagram of the control circuit showing this embodiment, and the same parts as those in FIG.

加減算回路(積分回路)14Aは、インバータの直流電圧検出値を、スイッチS1,S4のオン制御時には加算し、スイッチS3,S2のオン制御時には減算し、これらの加減算をオン時間演算回路11の出力パルス期間になる積分許可信号で実行することで、インバータ直流電圧の変動によりトランス2に発生する磁束量の正負変化分を求める。これによりインバータの動作1回分の、電圧の積分値(磁束の変化分)が求まる。   The addition / subtraction circuit (integration circuit) 14A adds the DC voltage detection value of the inverter when the switches S1 and S4 are on, and subtracts when the switches S3 and S2 are on. By executing the integration permission signal during the pulse period, the amount of change in the amount of magnetic flux generated in the transformer 2 due to the fluctuation of the inverter DC voltage is obtained. As a result, the integrated value of the voltage (change in magnetic flux) for one operation of the inverter is obtained.

本実施形態による偏磁防止動作は、加減算回路14Aに得る磁束変化分をゼロ比較回路15でゼロ比較して磁束の正負を判定し、スイッチのオフ後に、状態変更許可回路(ラッチ回路)16を動作させ、スイッチの選択を切り換え、次回インバータ動作時のスイッチを選択する。   In the demagnetization prevention operation according to the present embodiment, the change in magnetic flux obtained by the addition / subtraction circuit 14A is zero-compared by the zero comparison circuit 15 to determine whether the magnetic flux is positive or negative, and after the switch is turned off, the state change permission circuit (latch circuit) 16 is turned on. Operate, switch switch selection, select switch for next inverter operation.

以上によりインバータの半周期毎の出力でトランスを介してコンデンサを半周期毎に充電する充電方式において、コンデンサの充電電圧目標値、充電開始前のコンデンサの残留電圧およびインバータ直流電圧により、インバータの半周期毎のオン時間が変化する場合にも、トランスの磁束が偏らない方向のスイッチをオン制御する振り分けによって、トランスの偏磁を確実に防止できる。   As described above, in the charging method in which the capacitor is charged every half cycle through the transformer at the output of every half cycle of the inverter, the half of the inverter is determined based on the target charging voltage value of the capacitor, the residual voltage of the capacitor before starting charging, and the inverter DC voltage. Even when the on-time for each cycle changes, the bias of the transformer can be reliably prevented by the on-control of the switch in the direction in which the magnetic flux of the transformer does not deviate.

本発明の実施形態を示す充電制御回路のブロック構成図。The block block diagram of the charge control circuit which shows embodiment of this invention. 本発明の他の実施形態を示す充電制御回路のブロック構成図。The block block diagram of the charge control circuit which shows other embodiment of this invention. 充電装置の主回路構成図。The main circuit block diagram of a charging device.

符号の説明Explanation of symbols

1 インバータ部
2 出力トランス
4 コンデンサ
5 リアクトル
6 充電制御回路
11 オン時間演算回路
12 インバータ直流電圧検出回路
13 乗算回路
14 加減算回路
15 ゼロ比較回路
16 状態変更許可回路
17 オンスイッチ選択回路
DESCRIPTION OF SYMBOLS 1 Inverter part 2 Output transformer 4 Capacitor 5 Reactor 6 Charge control circuit 11 ON time arithmetic circuit 12 Inverter DC voltage detection circuit 13 Multiplication circuit 14 Addition / subtraction circuit 15 Zero comparison circuit 16 State change permission circuit 17 On switch selection circuit

Claims (3)

フルブリッジ構成の単相インバータの半周期毎の出力をインバータスイッチのオン時間で制御し、この出力をトランスを介してリアクトルとコンデンサにLC共振電流を流し、コンデンサを半周期毎に充電目標電圧まで充電する充電装置において、
単相インバータの直流電圧とインバータスイッチのオン時間およびトランスに流れる正負電流極性から、トランスに発生する正負磁束量の差分を求め、この差分の正負に応じてインバータの次回の半周期出力をトランスの鉄心が飽和しない方向の極性にする充電制御回路を備えたことを特徴とするコンデンサの充電装置。
The output of the full-bridge single-phase inverter every half cycle is controlled by the on-time of the inverter switch, and this output is passed through the transformer to the reactor and the capacitor through the LC resonance current, and the capacitor reaches the target charging voltage every half cycle. In a charging device for charging,
The difference in the amount of positive and negative magnetic flux generated in the transformer is determined from the DC voltage of the single-phase inverter, the inverter switch ON time, and the polarity of the positive and negative currents flowing in the transformer, and the next half-cycle output of the inverter is calculated based on the positive and negative of this difference. A capacitor charging device comprising a charge control circuit for setting the polarity so that the iron core does not saturate.
前記充電制御回路は、
コンデンサの充電目標電圧に応じてインバータの半周期のオン時間を求め、このオン時間に対応する幅のパルスを出力するオン時間演算回路と、
前記オン時間にインバータの直流電圧を係数として乗じることで、インバータの半周期のオン時間に応じてトランスに発生する正または負の磁束量を求める乗算回路と、
正または負の磁束量の加減算でトランスに流れる正負の電流極性別に発生する正負磁束量の差分を求める加減算回路と、
前記加減算回路の算出磁束量がゼロを境にして正負いずれの極性にあるかを判定するゼロ比較回路と、
インバータのオフ期間に、前記ゼロ比較回路の判定結果をラッチする状態変更許可回路と、
状態変更許可回路の判定結果に応じて、インバータの半周期のオン出力の極性を選択するオンスイッチ選択回路と、
を備えたことを特徴とする請求項1に記載のコンデンサの充電装置。
The charge control circuit includes:
An on-time arithmetic circuit for obtaining an on-time of a half cycle of the inverter according to the charging target voltage of the capacitor and outputting a pulse having a width corresponding to the on-time;
Multiplying the on-time by a DC voltage of the inverter as a coefficient to obtain a positive or negative magnetic flux amount generated in the transformer according to the on-time of the half cycle of the inverter;
An addition / subtraction circuit for obtaining a difference between positive and negative magnetic flux amounts generated according to positive and negative current polarities flowing in the transformer by addition / subtraction of positive or negative magnetic flux amount;
A zero comparison circuit for determining whether the calculated magnetic flux amount of the addition / subtraction circuit is positive or negative with respect to zero;
A state change permission circuit that latches the determination result of the zero comparison circuit in an off period of the inverter;
An on-switch selection circuit that selects the polarity of the ON output of the half cycle of the inverter according to the determination result of the state change permission circuit;
The capacitor charging device according to claim 1, further comprising:
前記充電制御回路は、
コンデンサの充電目標電圧に応じてインバータの半周期のオン時間を求め、このオン時間に対応する幅のパルスを出力するオン時間演算回路と、
前記オン時間を積分許可信号とし、この信号期間だけインバータの直流電圧検出値を加減算することで、トランスに流れる正負の電流極性別に発生する正負磁束量の差分を求める加減算回路と、
前記加減算回路の算出磁束量がゼロを境にして正負いずれの極性にあるかを判定するゼロ比較回路と、
インバータのオフ期間に、前記ゼロ比較回路の判定結果をラッチする状態変更許可回路と、
状態変更許可回路の判定結果に応じて、インバータの半周期のオン出力の極性を選択するオンスイッチ選択回路と、
を備えたことを特徴とする請求項1に記載のコンデンサの充電装置。
The charge control circuit includes:
An on-time arithmetic circuit for obtaining an on-time of a half cycle of the inverter according to the charging target voltage of the capacitor and outputting a pulse having a width corresponding to the on-time;
An addition / subtraction circuit for obtaining a difference between positive and negative magnetic flux amounts generated according to positive and negative current polarities flowing in the transformer by adding and subtracting the DC voltage detection value of the inverter only during this signal period, with the ON time as an integration permission signal;
A zero comparison circuit for determining whether the calculated magnetic flux amount of the addition / subtraction circuit is positive or negative with respect to zero;
A state change permission circuit that latches the determination result of the zero comparison circuit in an off period of the inverter;
An on-switch selection circuit that selects the polarity of the ON output of the half cycle of the inverter according to the determination result of the state change permission circuit;
The capacitor charging device according to claim 1, further comprising:
JP2007108860A 2007-04-18 2007-04-18 Charging device of capacitor Pending JP2008271662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007108860A JP2008271662A (en) 2007-04-18 2007-04-18 Charging device of capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007108860A JP2008271662A (en) 2007-04-18 2007-04-18 Charging device of capacitor

Publications (1)

Publication Number Publication Date
JP2008271662A true JP2008271662A (en) 2008-11-06

Family

ID=40050467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007108860A Pending JP2008271662A (en) 2007-04-18 2007-04-18 Charging device of capacitor

Country Status (1)

Country Link
JP (1) JP2008271662A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019205264A (en) * 2018-05-23 2019-11-28 株式会社神戸製鋼所 Power unit for welding and output control method
CN112701937A (en) * 2020-12-16 2021-04-23 河南海格经纬信息技术有限公司 Method for inhibiting DC magnetic bias of DC converter transformer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019205264A (en) * 2018-05-23 2019-11-28 株式会社神戸製鋼所 Power unit for welding and output control method
JP7018354B2 (en) 2018-05-23 2022-02-10 株式会社神戸製鋼所 Welding power supply and output control method.
CN112701937A (en) * 2020-12-16 2021-04-23 河南海格经纬信息技术有限公司 Method for inhibiting DC magnetic bias of DC converter transformer
CN112701937B (en) * 2020-12-16 2023-09-26 河南海格经纬信息技术有限公司 Method for inhibiting DC magnetic bias of DC converter transformer

Similar Documents

Publication Publication Date Title
JP5486604B2 (en) Uninterruptible power system
JP5481939B2 (en) Power supply
JP5489502B2 (en) Power supply
JP2019176605A (en) Zero current detection circuit for bridgeless totem-pole power factor improving converter, and bridgeless totem-pole power factor improving converter
JP2009106038A (en) Switching power supply unit
JP2006166618A (en) Current detection circuit, power supply control circuit, power supply, power supply system, and electronic device
JP6018870B2 (en) DC power supply device and control method thereof
JP4963068B2 (en) Power factor correction circuit
JP4591198B2 (en) Magnetic field detector for DC-DC converter
JP4454530B2 (en) Power factor correction circuit
JP2008271662A (en) Charging device of capacitor
JP2016144303A (en) Electric power supply and electric power supply for welding
JP2012010511A (en) Inverter power supply
JP5510846B2 (en) Resonant type DCDC converter
JP2000014144A (en) Switching power supply
JP2006276341A (en) Image forming apparatus power supply
EP3713063A1 (en) Power conversion device
JP4919858B2 (en) Switching power supply
JP2013062916A (en) Power conversion device
JP5055212B2 (en) Welding power supply and welding machine
JP3190791B2 (en) Control device of resistance welding machine
JP2012019583A (en) Switching power supply device
JP2009207304A (en) Inverter and magnetic deflection suppression method
JP4648871B2 (en) Series type instantaneous voltage drop compensation device
JP2013243859A (en) Inverter gate control circuit and inverter power supply device having the inverter gate control circuit