JP2008270401A - Method for producing al-based iii nitride crystal - Google Patents

Method for producing al-based iii nitride crystal Download PDF

Info

Publication number
JP2008270401A
JP2008270401A JP2007109073A JP2007109073A JP2008270401A JP 2008270401 A JP2008270401 A JP 2008270401A JP 2007109073 A JP2007109073 A JP 2007109073A JP 2007109073 A JP2007109073 A JP 2007109073A JP 2008270401 A JP2008270401 A JP 2008270401A
Authority
JP
Japan
Prior art keywords
iii nitride
crystal
raw material
aln
group iii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007109073A
Other languages
Japanese (ja)
Inventor
Kenji Kohiro
健司 小廣
Masahiko Hata
雅彦 秦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2007109073A priority Critical patent/JP2008270401A/en
Publication of JP2008270401A publication Critical patent/JP2008270401A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To inexpensively provide Al-based III nitride crystal of high purity. <P>SOLUTION: (1) An Al-based III nitride producing method is the method for allowing an Al raw material containing a halogen gas to act with a nitrogen raw material containing ammonia, on a crystal surface. (2) The Al-based III nitride producing method described in (1) is the method where the halogen gas is chlorine. (3) The Al-based III nitride producing method described in (1) or (2) is the method where the Al raw material is AlCl<SB>3</SB>. (4) The Al-based III nitride producing method described in (1), (2), or (3) is the method where the Al-based III nitride is AlN. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、Al系III族窒化物結晶の製造方法に関する。   The present invention relates to a method for producing an Al-based group III nitride crystal.

AlN、GaN、InN、AlGaN、GaInN、AlInN、AlInGaNなどのIII族窒化物結晶は、LEDなどの発光素子、HEMTなどの電子素子を形成するための材料として期待され、使用されている。これらの中で基板レベルの大型結晶製造が実用化の域にあるのはGaNのみで、主にハイドライド気相成長(HVPE)法により製造されている。GaNの成長法としては、有機金属気相成長(MOVPE)法、分子線エピタキシー(MBE)法、パルスレーザー積層(PLD)法などもあるが、HVPE法は他の方法と比較して、成長速度を早くすることができるため、基板として使用可能な厚さの結晶を低コストで製造することができる(特許文献1)。   Group III nitride crystals such as AlN, GaN, InN, AlGaN, GaInN, AlInN, and AlInGaN are expected and used as materials for forming light emitting elements such as LEDs and electronic elements such as HEMTs. Of these, only GaN is in the range of practical use for manufacturing large crystals at the substrate level, and is mainly manufactured by the hydride vapor phase epitaxy (HVPE) method. GaN growth methods include metalorganic vapor phase epitaxy (MOVPE), molecular beam epitaxy (MBE), and pulsed laser deposition (PLD), but HVPE grows faster than other methods. Therefore, a crystal having a thickness that can be used as a substrate can be manufactured at a low cost (Patent Document 1).

Al系III族窒化物結晶の製造方法としては、前述のHVPE法、MOVPE法、MBE法、PLD法の他、昇華法などが提案されている。HVPE法、MOVPE法、MBE法、PLD法は昇華法と比較して、高純度な原料が手に入りやすいなど利点が多い。また、HVPE法が他の方法と比較して成長速度を早くできる点は、GaNの場合と同様である。しかしながら、HVPE法であっても、Al系III族窒化物の成長速度はGaNの場合と比較すると著しく遅く、実用化には至っていない。   As a method for producing an Al-based group III nitride crystal, a sublimation method and the like have been proposed in addition to the HVPE method, MOVPE method, MBE method, and PLD method described above. Compared with the sublimation method, the HVPE method, the MOVPE method, the MBE method, and the PLD method have many advantages such as easy acquisition of high-purity raw materials. Further, the point that the HVPE method can increase the growth rate as compared with other methods is the same as in the case of GaN. However, even with the HVPE method, the growth rate of the Al-based group III nitride is significantly slower than that of GaN, and has not been put into practical use.

昇華法は、前述した他の方法と比較して成長速度が早くはないが、装置が安価なため、結果的に低コストでのAl系III族窒化物結晶の製造が可能と考えられてきた。しかしながら、HVPE法やMBE法ではAlメタルを使用でき、MOVPE法では有機金属を使用できるのに対し、昇華法ではAl系III族窒化物原料が必要となる。   The sublimation method does not have a high growth rate compared with the other methods described above, but since the apparatus is inexpensive, it has been considered that it is possible to produce an Al-based group III nitride crystal at a low cost as a result. . However, Al metal can be used in the HVPE method and MBE method, and an organic metal can be used in the MOVPE method, whereas an Al-based group III nitride material is required in the sublimation method.

特開平11−1399号公報Japanese Patent Laid-Open No. 11-1399

Al系III族窒化物原料は従来、酸素などの不純物を多く含むため、昇華法で得られる結晶も、純度が低く着色してしまう。着色した結晶は、光を吸収してしまうため発光素子の材料として適さない他、格子定数も変わってしまうという欠点があった。
本発明は上記の課題を解決するために成されたものであり、その目的は、純度の高いAl系III族窒化物結晶を低コストで提供することにある。
Since Al-based Group III nitride materials conventionally contain a large amount of impurities such as oxygen, crystals obtained by the sublimation method are also colored with low purity. The colored crystal absorbs light and thus is not suitable as a material for a light emitting element, and has a drawback that the lattice constant is changed.
The present invention has been made to solve the above problems, and an object of the present invention is to provide an Al-based group III nitride crystal having high purity at a low cost.

本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、本発明に至った。   As a result of intensive studies to solve the above problems, the present inventors have reached the present invention.

すなわち、本発明は、〔1〕ハロゲンガスを含むAl原料とアンモニアを含む窒素原料を結晶表面で反応させるAl系III族窒化物の製造方法に係るものである。
また、本発明は、〔2〕前記ハロゲンガスが塩素である〔1〕記載のAl系III族窒化物の製造方法、
〔3〕前記Al原料がAlCl3である〔1〕または〔2〕記載のAl系III族窒化物の製造方法、
〔4〕前記Al系III族窒化物がAlNである〔1〕〜〔3〕のいずれかに記載のAl系III族窒化物の製造方法、
〔5〕ハロゲンガスを含むAl原料とアンモニアを含む窒素原料を反応させる結晶表面の温度を1300℃〜2300℃に制御する〔1〕〜〔4〕のいずれかに記載のAl系III族窒化物の製造方法、
〔6〕前記〔1〕〜〔5〕のいずれかに記載のAl系III族窒化物の製造方法により得られたAl系III族窒化物、
に係るものである。
That is, the present invention relates to [1] a method for producing an Al-based group III nitride in which an Al raw material containing a halogen gas and a nitrogen raw material containing ammonia are reacted on the crystal surface.
The present invention also provides [2] a method for producing an Al-based group III nitride according to [1], wherein the halogen gas is chlorine,
[3] The method for producing an Al-based group III nitride according to [1] or [2], wherein the Al raw material is AlCl 3 ;
[4] The method for producing an Al group III nitride according to any one of [1] to [3], wherein the Al group III nitride is AlN,
[5] The Al group III nitride according to any one of [1] to [4], wherein the temperature of the crystal surface for reacting the Al source containing halogen gas with the nitrogen source containing ammonia is controlled to 1300 ° C to 2300 ° C. Manufacturing method,
[6] Al-based group III nitride obtained by the method for producing an Al-based group III nitride according to any one of [1] to [5],
It is related to.

本発明のAl系III族窒化物の製造方法によれば、ハロゲンガスとアンモニアの反応熱により結晶表面を局所的に高温にすることができる。このことにより、不純物や結晶欠陥が少ないAl系III族窒化物結晶を早い成長速度で製造できるので、工業的に極めて有用である。   According to the method for producing an Al-based group III nitride of the present invention, the crystal surface can be locally heated by the reaction heat of halogen gas and ammonia. As a result, an Al-based group III nitride crystal with few impurities and crystal defects can be produced at a high growth rate, which is extremely useful industrially.

本発明のAl系III族窒化物の製造方法は、ハロゲンガスを含むAl原料とアンモニアを含む窒素原料を結晶表面で反応させる。この方法ではハロゲンガスとアンモニアの反応熱により結晶表面を局所的に高温にすることができるため、不純物や結晶欠陥が少ない結晶を早い成長速度で製造することができる。   In the method for producing an Al-based group III nitride according to the present invention, an Al raw material containing a halogen gas and a nitrogen raw material containing ammonia are reacted on the crystal surface. In this method, since the surface of the crystal can be locally raised by the reaction heat of halogen gas and ammonia, a crystal with few impurities and crystal defects can be produced at a high growth rate.

前記ハロゲンガスとしては塩素、臭素、沃素からなる群より選ばれる1種以上が挙げられ、好ましくは塩素、臭素からなる群より選ばれる1種以上であり、さらに好ましくは塩素である。   Examples of the halogen gas include one or more selected from the group consisting of chlorine, bromine and iodine, preferably one or more selected from the group consisting of chlorine and bromine, and more preferably chlorine.

前記Al原料としては、塩化物、臭化物、沃化物、有機金属からなる群より選ばれる1種以上が挙げられ、塩化物が好ましい。塩化物としては、AlCl、AlCl2、AlCl3からなる群より選ばれる1種以上が挙げられ、AlCl3が好ましい。 Examples of the Al raw material include one or more selected from the group consisting of chloride, bromide, iodide, and organic metal, and chloride is preferred. Examples of the chloride include one or more selected from the group consisting of AlCl, AlCl 2 and AlCl 3 , with AlCl 3 being preferred.

前記Al系III族窒化物としては、AlN、AlGaN、AlInN、AlGaInNなどが挙げられる。Inを含む窒化物は蒸気圧が高く、高温で揮発する傾向が強いため、AlN、AlGaNが好ましく、AlNが最も好ましい。   Examples of the Al group III nitride include AlN, AlGaN, AlInN, and AlGaInN. Since nitride containing In has a high vapor pressure and has a strong tendency to volatilize at high temperatures, AlN and AlGaN are preferable, and AlN is most preferable.

ハロゲンガスを含むAl原料とアンモニアを含む窒素原料を反応させる結晶表面の温度は、Al系III族窒化物の結晶性や純度に影響を及ぼす。1300℃未満では結晶性が悪くなるため、成長速度を上げることができない。2300℃を超えると、成長速度は十分であるが、装置部材から不純物が混入しやすくなる他、窒素空孔などの結晶欠陥も発生しやすくなる。従って、基板温度は1300℃〜2300℃が好ましく、より好ましくは1400℃〜2250℃である。   The temperature of the crystal surface at which the Al source containing halogen gas reacts with the nitrogen source containing ammonia affects the crystallinity and purity of the Al group III nitride. If the temperature is lower than 1300 ° C., the crystallinity deteriorates, so the growth rate cannot be increased. If the temperature exceeds 2300 ° C., the growth rate is sufficient, but impurities are likely to be mixed from the apparatus members, and crystal defects such as nitrogen vacancies are likely to occur. Therefore, the substrate temperature is preferably 1300 ° C to 2300 ° C, more preferably 1400 ° C to 2250 ° C.

次に、図を引用して、本発明のAl系III族窒化物の製造方法の好ましい実施態様について説明する。
図1に示すサセプタ−9に種結晶10を設置する。種結晶は1300℃以上の高温において安定で、さらに、種結晶の格子定数が製造するAl系III族窒化物の格子定数に近いことが必要である。例えばAlN結晶を製造する場合、AlNが最も好ましいが、SiCなどの使用も可能である。アンモニアガスを使用するため、サファイアは1400℃程度までが限界であり、それ以上の温度で分解してしまうため好ましくない。サセプタ−は回転機構8の他、引き下げ機構7も取り付けられており、固気界面を常に一定に保つことができる。
Next, a preferred embodiment of the method for producing an Al-based group III nitride of the present invention will be described with reference to the drawings.
A seed crystal 10 is placed on the susceptor 9 shown in FIG. The seed crystal is stable at a high temperature of 1300 ° C. or higher, and the seed crystal must have a lattice constant close to that of the Al-based group III nitride produced. For example, when manufacturing an AlN crystal, AlN is most preferable, but SiC or the like can also be used. Since ammonia gas is used, sapphire has a limit of up to about 1400 ° C., which is not preferable because it decomposes at higher temperatures. The susceptor is provided with a pulling mechanism 7 in addition to the rotating mechanism 8, and the solid-gas interface can always be kept constant.

反応炉の加熱は、局所的には、塩素とアンモニアの反応により行われるが、外部に取り付けたヒーター4によりアシストされる。ヒーターによる加熱は1000℃程度で十分であり、高周波誘導加熱、抵抗加熱、ランプ加熱など一般的な方法が使用される。反応容器壁が高温になるホットウォール法でも問題はないが、容器壁への析出物の堆積などを防ぐためにはコールドウォールが好ましい。結晶表面の温度は反応容器1に取り付けられた放射温度計12により計測される。   Heating of the reaction furnace is locally performed by a reaction between chlorine and ammonia, but is assisted by a heater 4 attached to the outside. About 1000 ° C. is sufficient for heating by the heater, and general methods such as high-frequency induction heating, resistance heating, and lamp heating are used. Although there is no problem even in the hot wall method in which the reaction vessel wall becomes high in temperature, a cold wall is preferable in order to prevent deposition of deposits on the vessel wall. The temperature of the crystal surface is measured by a radiation thermometer 12 attached to the reaction vessel 1.

Al原料は塩化物、臭化物、沃化物、有機金属などが挙げられ、どの原料も使用可能であるが、塩化物、特にAlCl3が好ましい。AlCl3は塩化物の中では比較的安定で、純度の高いものも得やすく安価である。また、HVPE法と同様に500℃程度の金属AlにHClガスを反応させて供給しても良い。Al原料はハロゲンガスと混合して結晶表面へ供給される。Al原料供給管2はAlCl3の凝縮を防ぐため200℃程度に保温することが好ましい。 Examples of the Al raw material include chloride, bromide, iodide, and organic metal. Any raw material can be used, but chloride, particularly AlCl 3 is preferable. AlCl 3 is relatively stable among chlorides, and it is easy to obtain a high purity and is inexpensive. Further, as in the HVPE method, HCl gas may be reacted with metal Al at about 500 ° C. and supplied. The Al raw material is mixed with a halogen gas and supplied to the crystal surface. The Al raw material supply pipe 2 is preferably kept at about 200 ° C. in order to prevent condensation of AlCl 3 .

ハロゲンガスとしては塩素、臭素、沃素が挙げられる。アンモニアとの反応性を考えると、臭素、沃素よりも塩素が扱いやすい。また、副反応を考えるとAl原料が塩化物であれば塩素が好ましく、臭化物では臭素が好ましいと考えて差し支えない。   Examples of the halogen gas include chlorine, bromine and iodine. Considering reactivity with ammonia, chlorine is easier to handle than bromine and iodine. Considering the side reaction, if the Al raw material is chloride, chlorine is preferable, and bromide is preferable to be bromine.

結晶表面の温度は前記ヒーターの加熱に加えて、ハロゲンガスとアンモニアの反応熱により制御される。従って、ハロゲンガス流量は結晶表面温度を何℃に制御したいかにより決定し、また、その温度変化に応じて調整しなければならない。Al原料の供給量により成長速度は制御する。   The temperature of the crystal surface is controlled by the reaction heat of the halogen gas and ammonia in addition to the heating of the heater. Therefore, the halogen gas flow rate must be determined depending on how much the crystal surface temperature is to be controlled, and must be adjusted according to the temperature change. The growth rate is controlled by the supply amount of the Al raw material.

図1を参照して、例えば、以下のようにしてAlN単結晶を作製することができる。反応容器1内のサセプタ−9にAlN種結晶10を設置し、アンモニアガス導入口13aからアンモニアを、Al原料導入口13bから窒素を流しながら、ヒーター4により加熱を行う。種結晶が所定の温度に達したら、Al原料導入口から塩素の供給を開始する。塩素の供給開始と同時に、塩素とアンモニアの反応熱により種結晶表面温度が上昇し始める。AlN成長に十分な温度に達したら、塩素にAlCl3を加えた混合ガスを供給して成長を開始する。塩素の供給量とヒーターの出力の調整により、結晶表面温度を例えば1900℃に保ちつつ成長を行う。AlN結晶成長が進行すると、AlN結晶表面位置(固気界面)が上方に移動し、Al原料の噴出し口との距離が変ってしまうため、引き下げ機構7によりサセプタ−を引き下げて、固気界面を一定位置に保って成長を行う。 Referring to FIG. 1, for example, an AlN single crystal can be produced as follows. The AlN seed crystal 10 is placed on the susceptor 9 in the reaction vessel 1 and heated by the heater 4 while flowing ammonia from the ammonia gas inlet 13a and nitrogen from the Al raw material inlet 13b. When the seed crystal reaches a predetermined temperature, supply of chlorine is started from the Al raw material inlet. Simultaneously with the start of supply of chlorine, the seed crystal surface temperature starts to rise due to the reaction heat of chlorine and ammonia. When a temperature sufficient for AlN growth is reached, the growth is started by supplying a mixed gas obtained by adding AlCl 3 to chlorine. Growth is performed while maintaining the crystal surface temperature at, for example, 1900 ° C. by adjusting the supply amount of chlorine and the output of the heater. As AlN crystal growth proceeds, the AlN crystal surface position (solid-gas interface) moves upward and the distance from the Al raw material ejection port changes, so the susceptor is pulled down by the pull-down mechanism 7 and the solid-gas interface is changed. Keep growing at a certain position.

以下、図1〜3を参照して実施例、比較例により本発明をさらに詳しく説明するが、本発明は実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail by way of examples and comparative examples with reference to FIGS. 1 to 3, but the present invention is not limited to the examples.

実施例1
図1を参照して、本発明によりAlN単結晶を製造する方法を説明する。AlN単結晶より切り出した直径2インチのAlN種結晶(0001)面を表面研磨し、エッチングによりダメージ層を除去した後、反応容器1内のサセプタ−9に設置して、サセプタ−を回転させる。アンモニアガス導入口13aからアンモニアを1slm、Al原料導入口13bから窒素を1slmで流しながら、ランプヒーター4により種結晶の加熱を開始する。放射温度計12で計測している種結晶温度が1000℃に到達したら、Al原料導入口13bからの窒素の導入を停止し、替わりに塩素の供給を開始する。塩素供給開始と同時にアンモニアとの反応熱により種結晶温度が上昇し始める。大量の塩素を供給すると反応が爆発的に起こるので、放射温度計12で種結晶温度を確認しながら、徐々に供給量を増やしていく。種結晶温度が1900℃に達したら、塩素にAlCl3ガスを8.2×10-3mol/分で加えた混合ガスを供給して成長を開始する。AlN結晶成長が進行すると、結晶表面位置(固気界面)が上方に移動し、Al原料の噴出し口との距離が変ってしまうため、引き下げ機構7によりサセプタ−を0.15cm/時で引き下げて、固気界面を一定位置に保って成長を行う。上記成長条件で約20時間AlN結晶を成長させた後、AlCl3の供給を停止して成長を終了する。さらに、塩素の供給量を減少させることにより結晶を徐々に冷却し、約1000℃で塩素供給を停止する。その後、ヒーターのパワーを徐々に下げながら、約5時間かけて結晶を室温まで冷却する。冷却後、直径2インチ長さ3cmのAlN単結晶を得ることができる。成長速度は0.15cm/時である。
Example 1
With reference to FIG. 1, a method of manufacturing an AlN single crystal according to the present invention will be described. The surface of the AlN seed crystal (0001) having a diameter of 2 inches cut out from the AlN single crystal is subjected to surface polishing and the damaged layer is removed by etching, and then placed on the susceptor 9 in the reaction vessel 1 and the susceptor is rotated. Heating of the seed crystal is started by the lamp heater 4 while flowing ammonia at 1 slm from the ammonia gas inlet 13a and nitrogen at 1 slm from the Al raw material inlet 13b. When the seed crystal temperature measured by the radiation thermometer 12 reaches 1000 ° C., the introduction of nitrogen from the Al raw material inlet 13b is stopped and the supply of chlorine is started instead. Simultaneously with the start of chlorine supply, the seed crystal temperature begins to rise due to the reaction heat with ammonia. Since a reaction occurs explosively when a large amount of chlorine is supplied, the supply amount is gradually increased while confirming the seed crystal temperature with the radiation thermometer 12. When the seed crystal temperature reaches 1900 ° C., growth is started by supplying a mixed gas obtained by adding AlCl 3 gas to chlorine at 8.2 × 10 −3 mol / min. As the AlN crystal growth proceeds, the crystal surface position (solid-gas interface) moves upward, and the distance from the Al raw material ejection port changes. Therefore, the susceptor is pulled down at 0.15 cm / hour by the pulling mechanism 7. Then, the solid-gas interface is maintained at a fixed position for growth. After growing the AlN crystal for about 20 hours under the above growth conditions, the supply of AlCl 3 is stopped and the growth is terminated. Further, the crystal is gradually cooled by decreasing the supply amount of chlorine, and the supply of chlorine is stopped at about 1000 ° C. Thereafter, the crystal is cooled to room temperature over about 5 hours while gradually decreasing the power of the heater. After cooling, an AlN single crystal having a diameter of 2 inches and a length of 3 cm can be obtained. The growth rate is 0.15 cm / hour.

比較例1
図2に示す従来のHVPE装置により、AlN単結晶を製造する方法を説明する。
AlN単結晶より切り出した直径2インチのAlN種結晶(0001)面を表面研磨し、エッチングによりダメージ層を除去した後、反応容器21内のサセプタ−25にAlN種結晶26を設置して、サセプタ−を回転させる。アンモニアガス導入口22bからアンモニアを1slm、塩化水素導入口22cから窒素を1slmで流しながら、抵抗加熱ヒーター23、24により種結晶の加熱を開始する。種結晶温度はサセプタ−に、Al原料ボート温度は原料ボート28に、それぞれ取り付けられた熱電対により測定する。種結晶温度が1200℃、Al原料ボート温度が500℃に到達したら、塩化水素導入口からの窒素の導入量を0.8slmにし、同時に塩化水素供給を0.2slmで開始する。上記成長条件で約10時間AlN結晶を成長させた後、塩化水素の供給を停止して成長を終了する。その後、ヒーターのパワーを徐々に下げながら、約5時間かけて結晶を室温まで冷却する。冷却後、直径2インチ長さ0.3cmのAlN多結晶を得る。実施例1と比較して成長速度が0.03cm/時と著しく遅く、結晶は細かい粒子の塊で、所々にAlのドロップレットも見られる。
Comparative Example 1
A method for producing an AlN single crystal using the conventional HVPE apparatus shown in FIG. 2 will be described.
After polishing the surface of the AlN seed crystal (0001) having a diameter of 2 inches cut out from the AlN single crystal and removing the damaged layer by etching, the AlN seed crystal 26 is placed on the susceptor 25 in the reaction vessel 21, and the susceptor Rotate-. While heating ammonia through the ammonia gas inlet 22b at 1 slm and nitrogen through the hydrogen chloride inlet 22c at 1 slm, heating of the seed crystals is started by the resistance heaters 23 and 24. The seed crystal temperature is measured with a susceptor, and the Al raw material boat temperature is measured with a thermocouple attached to the raw material boat 28, respectively. When the seed crystal temperature reaches 1200 ° C. and the Al material boat temperature reaches 500 ° C., the amount of nitrogen introduced from the hydrogen chloride inlet is set to 0.8 slm, and hydrogen chloride supply is started at 0.2 slm at the same time. After growing the AlN crystal for about 10 hours under the above growth conditions, the supply of hydrogen chloride is stopped and the growth is terminated. Thereafter, the crystal is cooled to room temperature over about 5 hours while gradually decreasing the power of the heater. After cooling, an AlN polycrystal having a diameter of 2 inches and a length of 0.3 cm is obtained. Compared with Example 1, the growth rate is remarkably slow at 0.03 cm / hour, the crystal is a cluster of fine particles, and Al droplets are also observed in some places.

比較例2
塩化水素の供給量を0.02slmとする以外は比較例1と同様な方法で、AlN結晶を製造する。直径2インチ厚さ0.03cmのAlN単結晶薄膜を得る。実施例1と比較して、成長速度は0.003cm/時と著しく遅くなる。
Comparative Example 2
An AlN crystal is produced in the same manner as in Comparative Example 1 except that the supply amount of hydrogen chloride is 0.02 slm. An AlN single crystal thin film having a diameter of 2 inches and a thickness of 0.03 cm is obtained. Compared with Example 1, the growth rate is remarkably slow at 0.003 cm / hour.

比較例3
図3に示す従来の昇華法装置により、AlN単結晶を製造する方法を説明する。
AlN単結晶より切り出した直径2インチのAlN種結晶(0001)面を表面研磨し、エッチングによりダメージ層を除去した後、反応容器31内の結晶成長容器35にAlN種結晶33を設置する。成長容器下部にはAlN原料34としてAlN粉末を収納する。反応容器には窒素ガス導入口40aより窒素を導入し、窒素ガス排気口40bより排気する。昇温は、高周波加熱コイル37により行い、AlN種結晶部を2150℃、AlN原料部を2200℃として、AlN結晶の成長を開始する。50時間の結晶成長の後、反応容器を約5時間かけて、室温まで徐々に冷却し、直径2インチ厚さ1.5cmのAlN単結晶を得る。実施例1と比較して、成長速度は0.03cm/時と著しく遅くなる。また、結晶は茶色く着色している。
Comparative Example 3
A method for producing an AlN single crystal using the conventional sublimation apparatus shown in FIG. 3 will be described.
After polishing the surface of the AlN seed crystal (0001) having a diameter of 2 inches cut out from the AlN single crystal and removing the damaged layer by etching, the AlN seed crystal 33 is placed in the crystal growth vessel 35 in the reaction vessel 31. An AlN powder is stored as an AlN raw material 34 in the lower portion of the growth vessel. Nitrogen is introduced into the reaction vessel through the nitrogen gas inlet 40a and exhausted through the nitrogen gas outlet 40b. The temperature is raised by the high frequency heating coil 37, the AlN seed crystal part is set at 2150 ° C., the AlN raw material part is set at 2200 ° C., and the growth of the AlN crystal is started. After 50 hours of crystal growth, the reaction vessel is gradually cooled to room temperature over about 5 hours to obtain an AlN single crystal having a diameter of 2 inches and a thickness of 1.5 cm. Compared to Example 1, the growth rate is remarkably slow at 0.03 cm / hour. The crystals are brown.

本発明のAl系III族窒化物の製造方法で用いる装置の一例An example of an apparatus used in the method for producing an Al-based group III nitride of the present invention ハイドライド気相成長法(HVPE)装置Hydride vapor phase epitaxy (HVPE) equipment 昇華法装置Sublimation method equipment

符号の説明Explanation of symbols

1 反応容器
2 Al原料供給管
3 反応容器台
4 ヒーター
5 反射板
6 結晶回転軸
7 引き下げ機構
8 回転機構
9 サセプタ−
10 種結晶
11 Al系III族窒化物結晶
12 放射温度計
13a アンモニアガス導入口
13b Al原料導入口
13c 反応ガス排気口
21 反応容器
22a 窒素ガス導入口
22b アンモニアガス導入口
22c 塩化水素導入口
22d 窒素ガス排気口
22e 反応ガス排気口
23、24 ヒーター
25 サセプタ−
26 種結晶
27 AlN結晶
28 原料ボート
31 反応容器
32 AlN結晶
33 種結晶
34 AlN原料
35 結晶成長容器
36 種結晶押え治具
37 高周波加熱コイル
38 加熱材
39 放射温度計
40a 窒素ガス導入口
40b 窒素ガス排気口
DESCRIPTION OF SYMBOLS 1 Reaction container 2 Al raw material supply pipe 3 Reaction container stand 4 Heater 5 Reflector 6 Crystal rotating shaft 7 Pulling-down mechanism 8 Rotating mechanism 9 Susceptor
10 seed crystal 11 Al group III nitride crystal 12 radiation thermometer 13a ammonia gas inlet 13b Al raw material inlet 13c reactive gas outlet 21 reaction vessel 22a nitrogen gas inlet 22b ammonia gas inlet 22c hydrogen chloride inlet 22d nitrogen Gas exhaust port 22e Reaction gas exhaust port 23, 24 Heater 25 Susceptor
26 Seed crystal 27 AlN crystal 28 Raw material boat 31 Reaction vessel 32 AlN crystal 33 Seed crystal 34 AlN raw material 35 Crystal growth vessel 36 Seed crystal holding jig 37 High-frequency heating coil 38 Heating material 39 Radiation thermometer 40a Nitrogen gas inlet 40b Nitrogen gas exhaust port

Claims (6)

ハロゲンガスを含むAl原料とアンモニアを含む窒素原料を結晶表面で反応させることを特徴とするAl系III族窒化物の製造方法。   A method for producing an Al-based group III nitride, comprising reacting an Al raw material containing a halogen gas and a nitrogen raw material containing ammonia on the crystal surface. 前記ハロゲンガスが塩素であることを特徴とする請求項1記載のAl系III族窒化物の製造方法。   The method for producing an Al-based group III nitride according to claim 1, wherein the halogen gas is chlorine. 前記Al原料がAlCl3であることを特徴とする請求項1または2記載のAl系III族窒化物の製造方法。 3. The method for producing an Al-based group III nitride according to claim 1, wherein the Al raw material is AlCl 3 . 前記Al系III族窒化物がAlNであることを特徴とする請求項1〜3のいずれかに記載のAl系III族窒化物の製造方法。   The method for producing an Al-based group III nitride according to any one of claims 1 to 3, wherein the Al-based group III nitride is AlN. ハロゲンガスを含むAl原料とアンモニアを含む窒素原料を反応させる結晶表面の温度を1300℃〜2300℃に制御することを特徴とする請求項1〜4のいずれかに記載のAl系III族窒化物の製造方法。   The Al group III nitride according to any one of claims 1 to 4, wherein the temperature of the crystal surface for reacting the Al raw material containing halogen gas and the nitrogen raw material containing ammonia is controlled to 1300 ° C to 2300 ° C. Manufacturing method. 請求項1〜5のいずれかに記載のAl系III族窒化物の製造方法により得られたAl系III族窒化物。   An Al group III nitride obtained by the method for producing an Al group III nitride according to any one of claims 1 to 5.
JP2007109073A 2007-04-18 2007-04-18 Method for producing al-based iii nitride crystal Pending JP2008270401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007109073A JP2008270401A (en) 2007-04-18 2007-04-18 Method for producing al-based iii nitride crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007109073A JP2008270401A (en) 2007-04-18 2007-04-18 Method for producing al-based iii nitride crystal

Publications (1)

Publication Number Publication Date
JP2008270401A true JP2008270401A (en) 2008-11-06

Family

ID=40049543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007109073A Pending JP2008270401A (en) 2007-04-18 2007-04-18 Method for producing al-based iii nitride crystal

Country Status (1)

Country Link
JP (1) JP2008270401A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010541290A (en) * 2007-10-05 2010-12-24 アプライド マテリアルズ インコーポレイテッド Method for depositing III / V compounds

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010541290A (en) * 2007-10-05 2010-12-24 アプライド マテリアルズ インコーポレイテッド Method for depositing III / V compounds

Similar Documents

Publication Publication Date Title
US7524376B2 (en) Method and apparatus for aluminum nitride monocrystal boule growth
JP5571712B2 (en) Large volume delivery method for producing gallium trichloride
TWI399796B (en) Group iii nitride crystal, method of its manufacture, and equipment for manufacturing group iii nitride crystal
JP2007126320A (en) Nitride-based semiconductor substrate and its manufacture method
WO2005071143A1 (en) Process for producing single crystal of gallium-containing nitride
JP2008100890A (en) Method for producing sic single crystal
JP6019542B2 (en) Group III nitride crystal manufacturing method and group III nitride crystal manufacturing apparatus
JP2007055881A (en) Ain crystal, method for growing the same, and ain crystal substrate
JP2007320849A (en) METHOD AND APPARATUS FOR GROWTH OF GaN BULK SINGLE CRYSTAL
JP5651481B2 (en) Group 3B nitride crystal
JP2014047097A (en) Manufacturing method for nitride semiconductor crystal
JP2009221041A (en) Crystal growth method, crystal growth apparatus, and semiconductor device having crystal thin film produced by the same
JP2008270401A (en) Method for producing al-based iii nitride crystal
JP2006021964A (en) Ain single crystal and its growth method
JP2008162855A (en) Method for manufacturing nitride semiconductor substrate, and nitride semiconductor substrate
JP2003286098A (en) Method and apparatus for growing group iii nitride crystal
JP2008230868A (en) Method for growing gallium nitride crystal and gallium nitride crystal substrate
JP5205630B2 (en) Crystal manufacturing method and crystal manufacturing apparatus
JP2009046377A (en) Method for producing nitride semiconductor crystal
JP2009249202A (en) Method for producing aluminum nitride single crystal
JP2007042846A (en) Hydride vapor phase epitaxy apparatus, method of manufacturing group iii nitride semiconductor substrate, and group iii nitride semiconductor substrate
JP5651480B2 (en) Method for producing group 3B nitride crystals
JP5252495B2 (en) Method for producing aluminum nitride single crystal
JP2009221056A (en) Crystal growth method, crystal growth apparatus, and semiconductor device
JP2010037155A (en) Method for producing group iii nitride compound semiconductor crystal