JP2008270254A - Light-receiving element, optical disc device equipped with this light-receiving element and manufacturing method of light-receiving element - Google Patents

Light-receiving element, optical disc device equipped with this light-receiving element and manufacturing method of light-receiving element Download PDF

Info

Publication number
JP2008270254A
JP2008270254A JP2007107040A JP2007107040A JP2008270254A JP 2008270254 A JP2008270254 A JP 2008270254A JP 2007107040 A JP2007107040 A JP 2007107040A JP 2007107040 A JP2007107040 A JP 2007107040A JP 2008270254 A JP2008270254 A JP 2008270254A
Authority
JP
Japan
Prior art keywords
light receiving
region
receiving element
light
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007107040A
Other languages
Japanese (ja)
Inventor
Shigeru Kanematsu
成 兼松
Kenji Yamauchi
健二 山内
Tamotsu Shinohara
保 篠原
Yoshihiro Fujita
佳宏 藤田
Shuji Yoneda
修二 米田
Yoichi Ejiri
洋一 江尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2007107040A priority Critical patent/JP2008270254A/en
Publication of JP2008270254A publication Critical patent/JP2008270254A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light-receiving element capable of improving a leak current between light-receiving regions without causing deterioration of cross talk characteristics, and to provide an optical disc device equipped with this light-receiving element and a manufacturing method of the light-receiving element. <P>SOLUTION: This light-receiving element 1 has a structure in which a first light-receiving element 4a and a second light-receiving element 4b are formed via a separation region 2 so as to be adjacent to each other, and a reflection preventing film 5 is formed on each of the regions 4a and 4b, wherein a conductive film 6 is provided on the separation region 2 between the first light-receiving region 4a and the second light-receiving region 4b. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、受光領域を複数に分割した構造を有する受光素子、この受光素子を備える光ディスク装置及び受光素子の製造方法に関する。   The present invention relates to a light receiving element having a structure in which a light receiving region is divided into a plurality of parts, an optical disc apparatus including the light receiving element, and a method for manufacturing the light receiving element.

DVDプレーヤーや次世代ディスクプレーヤー等の光ピックアップに用いられる受光素子は、受光領域を複数に分割した構造を有しており、ディスク面によって反射されたレーザ光を受光してRF(Radio Frequency)信号を出力しているだけでなく、レーザ光のスポットをディスク面の溝に追随させるためのトラッキングエラー信号や、レーザ光の焦点をディスク面に合わせるためのフォーカスエラー信号を出力する。   A light receiving element used for an optical pickup such as a DVD player or a next generation disk player has a structure in which a light receiving region is divided into a plurality of parts, and receives a laser beam reflected by a disk surface to receive an RF (Radio Frequency) signal. In addition, a tracking error signal for causing the laser beam spot to follow the groove on the disk surface and a focus error signal for focusing the laser beam on the disk surface are output.

従来の受光素子は、一般に、特許文献1に示すように、p型半導体基板にp型分離領域を隔てて複数のn型半導体領域を有した構造を有している。例えば、図12に示す従来の受光素子101は、p型半導体基体111上にエピタキシャル成長させたn型半導体層112が形成され、このn型半導体層112にp型半導体層115からなる分離領域102を形成すると共にこの分離領域102を介してn型半導体層112よりも濃度が高いn型半導体層103、103を互いに隣接させて形成することによって、複数の受光領域104a、104bを設けた構造を有しており、n型半導体層112とp型半導体基体111との間のPN接合により各受光領域104a、104bにフォトダイオードが形成される。   Conventional light receiving elements generally have a structure in which a p-type semiconductor substrate has a plurality of n-type semiconductor regions separated by a p-type isolation region, as shown in Patent Document 1. For example, in the conventional light receiving element 101 shown in FIG. 12, an n-type semiconductor layer 112 epitaxially grown on a p-type semiconductor substrate 111 is formed, and an isolation region 102 made of a p-type semiconductor layer 115 is formed on the n-type semiconductor layer 112. The n-type semiconductor layers 103 and 103 having a higher concentration than the n-type semiconductor layer 112 are formed adjacent to each other through the isolation region 102, thereby providing a structure in which a plurality of light receiving regions 104a and 104b are provided. A photodiode is formed in each of the light receiving regions 104a and 104b by a PN junction between the n-type semiconductor layer 112 and the p-type semiconductor substrate 111.

さらに、この受光素子101において、発振波長405nm程度の青紫色レーザ光を受光する場合、十分な感度を得にくいため、受光素子101上の層間膜を除去した後に反射防止膜105を設けるようにしている。
特開平7−183563号公報
Further, when the light receiving element 101 receives blue-violet laser light having an oscillation wavelength of about 405 nm, it is difficult to obtain sufficient sensitivity. Therefore, an antireflection film 105 is provided after removing the interlayer film on the light receiving element 101. Yes.
JP-A-7-183563

しかし、受光素子101の反射防止膜105は、SiO膜113とSi膜114との積層膜で形成されているために、ウエハーに拡散等を行う前工程、または組立てを行う後工程の途中で、このSi膜114が帯電してしまい、各受光領域104a、104b間の分離領域102上の表面106の導電型が反転してしまい、受光領域104a、104b間でリーク電流が発生してしまう恐れがあった。 However, since the antireflection film 105 of the light receiving element 101 is formed of a laminated film of the SiO 2 film 113 and the Si 3 N 4 film 114, a pre-process for performing diffusion or the like on the wafer or a post-process for performing assembly. In the middle of this, the Si 3 N 4 film 114 is charged, the conductivity type of the surface 106 on the separation region 102 between the light receiving regions 104a and 104b is reversed, and a leakage current is generated between the light receiving regions 104a and 104b. Could occur.

この反転を防止するための第1の方法として、図13に示す受光素子121のように、それぞれの受光領域104a、104bの間の分離領域102を、LOCOS酸化膜116などの厚い酸化膜とp型半導体層115とで形成する構造にすることが考えられる。この構造の場合、LOCOS酸化膜116を厚く形成することにより、反射防止膜105が帯電することによる分離領域表面106の導電型の反転を防ぐことはできる。しかし、同時に、各受光領域104a、104bに形成されるフォトダイオードにおいて、分離領域102近傍でのレーザ光の入射に対する受光感度が低下してしまい、これら各受光領域104a、104bに形成されるフォトダイオード間のクロストーク特性の悪化を招く虞があった。ここで、フォトダイオード間のクロストーク特性は、図15に示すように、受光素子における分離領域102付近にビームスポットが照射されたときに、受光領域104aに形成されたフォトダイオードよって発生する電流Iaと受光領域104bに形成されるフォトダイオードによる電流Ibとの電流の和が、各受光領域104a,104bに単独でビームスポットが照射されたときの電流Ia,Ibと略同一となることが望ましい。   As a first method for preventing this inversion, as in the light receiving element 121 shown in FIG. 13, the separation region 102 between the light receiving regions 104a and 104b is separated from a thick oxide film such as the LOCOS oxide film 116 and p. It is conceivable to form a structure formed with the type semiconductor layer 115. In the case of this structure, by forming the LOCOS oxide film 116 thick, it is possible to prevent inversion of the conductivity type of the separation region surface 106 due to charging of the antireflection film 105. However, at the same time, in the photodiodes formed in the light receiving regions 104a and 104b, the light receiving sensitivity to the incidence of laser light in the vicinity of the separation region 102 is lowered, and the photodiodes formed in the light receiving regions 104a and 104b. There was a risk of deteriorating the crosstalk characteristics. Here, as shown in FIG. 15, the crosstalk characteristic between the photodiodes is the current Ia generated by the photodiode formed in the light receiving region 104a when the beam spot is irradiated in the vicinity of the separation region 102 in the light receiving element. And the current Ib generated by the photodiode formed in the light receiving region 104b is preferably substantially the same as the currents Ia and Ib when the light receiving regions 104a and 104b are individually irradiated with the beam spots.

また、この反転を防止するための第2の方法として、図14に示す受光素子131のように、分離領域102の表面106の不純物濃度をさらに上げて、濃度の高いp型半導体層117を設ける構造とすることが考えられる。この場合、分離領域102の表面濃度を上げることにより、反射防止膜105が帯電することによる分離領域表面106の導電型の反転を防ぐことはできる。しかし、この分離領域102の表面106においてキャリアの再結合が増えてしまうことになるので、同時に分離領域102近傍でのレーザ光の入射に対して各受光領域104a、104bに形成されるフォトダイオードの感度が低下してしまい、これらフォトダイオード間のクロストーク特性の悪化を招く虞があった。また、各受光領域104a、104bに形成されるフォトダイオードの耐圧を確保するために、分離領域102とn型半導体層103との間隔を離す必要が生じ、受光領域104a、104bの寄生容量の増加にもつながる虞があった。   As a second method for preventing this inversion, the impurity concentration of the surface 106 of the isolation region 102 is further increased to provide a high-concentration p-type semiconductor layer 117 as in the light receiving element 131 shown in FIG. It can be considered to be a structure. In this case, by increasing the surface concentration of the separation region 102, it is possible to prevent inversion of the conductivity type of the separation region surface 106 due to charging of the antireflection film 105. However, since recombination of carriers increases on the surface 106 of the separation region 102, at the same time, the photodiodes formed in the light receiving regions 104a and 104b with respect to the incidence of laser light in the vicinity of the separation region 102. Sensitivity is lowered, and there is a possibility that the crosstalk characteristics between the photodiodes are deteriorated. Further, in order to secure the withstand voltage of the photodiodes formed in the light receiving regions 104a and 104b, it is necessary to increase the distance between the isolation region 102 and the n-type semiconductor layer 103, and the parasitic capacitance of the light receiving regions 104a and 104b increases. Could lead to

本発明は、上述の点に鑑み、クロストーク特性の悪化を招くことなく、各受光領域に形成されるフォトダイオード間のリーク電流を抑えた受光素子、この受光素子を備える光ディスク装置、受光素子の製造方法を提供するものである。   In view of the above points, the present invention provides a light receiving element in which leakage current between photodiodes formed in each light receiving region is suppressed without deteriorating crosstalk characteristics, an optical disc apparatus including the light receiving element, and a light receiving element. A manufacturing method is provided.

請求項1に記載の発明は、分離領域を介して第1受光領域及び第2受光領域を互いに隣接させて形成し、これらの領域上に反射防止膜を形成した受光素子において、前記第1受光領域と前記第2受光領域との間の前記反射防止膜上に導電膜を設けたことを特徴とする。   According to a first aspect of the present invention, in the light receiving element in which the first light receiving region and the second light receiving region are formed adjacent to each other through the separation region and an antireflection film is formed on these regions, the first light receiving region is formed. A conductive film is provided on the antireflection film between the region and the second light receiving region.

請求項2に記載の発明は、請求項1に記載の発明において、前記導電膜は、前記第1受光領域と前記分離領域との間の前記反射防止膜上と、前記第2受光領域と前記分離領域との間の前記反射防止膜上とにそれぞれ設けられていることを特徴とする。   The invention according to claim 2 is the invention according to claim 1, wherein the conductive film is formed on the antireflection film between the first light receiving region and the separation region, the second light receiving region, and the second light receiving region. It is respectively provided on the antireflection film between the separation regions.

請求項3に記載の発明は、請求項1または請求項2に記載の発明において、前記導電膜に電圧を印加するコンタクト電極を形成したことを特徴とする。   According to a third aspect of the present invention, in the first or second aspect of the present invention, a contact electrode for applying a voltage to the conductive film is formed.

請求項4に記載の発明は、請求項1〜3のいずれか一項に記載の発明において、前記導電膜は、シリコンに不純物を混入させて形成した膜、または、金属シリサイドにより構成した膜であることを特徴とする。   According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects, the conductive film is a film formed by mixing impurities into silicon or a film formed of metal silicide. It is characterized by being.

請求項5に記載の発明は、光ディスクを保持して回転駆動する駆動手段と、前記光ディスクにレーザ光を照射する発光素子と、前記レーザ光の前記光ディスクによる反射光を受光する受光素子と、前記受光素子における受光結果に応じて前記光ディスクへの記録又は再生を行う処理部とを備えた光ディスク装置において、前記受光素子は、分離領域を介して第1受光領域及び第2受光領域を互いに隣接させて形成しており、これらの領域上に反射防止膜を形成し、前記第1受光領域と前記第2受光領域との間の前記反射防止膜上に導電膜を設けたことを特徴とする。   According to a fifth aspect of the present invention, there is provided a driving unit that holds and rotates an optical disk, a light emitting element that irradiates the optical disk with laser light, a light receiving element that receives reflected light of the laser light from the optical disk, In the optical disc apparatus including a processing unit that performs recording or reproduction on the optical disc according to a light reception result in the light receiving element, the light receiving element causes the first light receiving region and the second light receiving region to be adjacent to each other through the separation region. An antireflection film is formed on these regions, and a conductive film is provided on the antireflection film between the first light receiving region and the second light receiving region.

請求項6に記載の発明は、前記第1導電型の半導体基体と、前記半導体基体に第2導電型の第1半導体層を形成する工程と、前記第1半導体層に形成される第1受光領域及び第2受光領域を分離するための分離領域を形成する工程と、前記第1半導体層上に反射防止膜を形成する工程と、前記第1受光領域が形成される領域と前記第2受光領域が形成される領域との間の前記反射防止膜上に選択的に導電膜を形成する工程と、前記導電膜をマスクとして第2導電型の不純物を注入により前記第1受光領域と前記第2受光領域を形成する工程とを有することを特徴とする。   According to a sixth aspect of the present invention, there is provided the first conductive type semiconductor substrate, a step of forming a second conductive type first semiconductor layer on the semiconductor substrate, and a first light receiving formed on the first semiconductor layer. Forming a separation region for separating the region and the second light receiving region, forming an antireflection film on the first semiconductor layer, a region in which the first light receiving region is formed, and the second light receiving Forming a conductive film selectively on the antireflection film between the region where the region is to be formed, and implanting a second conductivity type impurity using the conductive film as a mask and the first light receiving region and the first And a step of forming two light receiving regions.

本発明によれば、分離領域を介して第1受光領域及び第2受光領域を互いに隣接させて形成し、これらの領域上に反射防止膜を形成した受光素子において、第1受光領域と第2受光領域との間の反射防止膜上に導電膜を設けたので、この導電膜によって分離領域表面の反転を抑えることができ、反射防止膜が帯電することによる各受光領域間のリーク電流を抑える。従って、各受光領域間を分離する分離領域の幅をさらに微細化して形成することができ、各受光領域に形成したフォトダイオード間のクロストーク特性を向上することができる。また、図14に示す従来の受光素子131のように、分離領域の表面濃度をあげる必要が無いため、フォトダイオードの耐圧低下やフォトダイオードのカソード−アノード間の容量増加を抑えることができる。   According to the present invention, in the light receiving element in which the first light receiving region and the second light receiving region are formed adjacent to each other through the separation region, and the antireflection film is formed on these regions, the first light receiving region and the second light receiving region are formed. Since the conductive film is provided on the antireflection film between the light receiving region and the conductive film, the inversion of the surface of the separation region can be suppressed by this conductive film, and the leakage current between the light receiving regions due to charging of the antireflection film is suppressed. . Accordingly, the width of the separation region that separates the light receiving regions can be further reduced, and the crosstalk characteristics between the photodiodes formed in the light receiving regions can be improved. Further, unlike the conventional light receiving element 131 shown in FIG. 14, it is not necessary to increase the surface concentration of the isolation region, so that it is possible to suppress a decrease in the breakdown voltage of the photodiode and an increase in the capacitance between the cathode and the anode of the photodiode.

本実施の形態に係る光ディスク装置は、光ディスクを保持して回転駆動する駆動手段と、光ディスクにレーザ光を照射する発光素子と、このレーザ光の光ディスクによる反射光を受光する受光素子と、この受光素子における受光結果に応じて光ディスクへの記録又は再生を行う制御部とを備えており、特に、受光素子に特徴を有するものである。   The optical disk apparatus according to the present embodiment includes a driving unit that holds and rotates the optical disk, a light emitting element that irradiates the optical disk with laser light, a light receiving element that receives the reflected light of the laser light from the optical disk, and the light receiving element. And a control unit that performs recording or reproduction on the optical disc according to the light reception result of the element, and particularly has a feature in the light receiving element.

すなわち、受光素子は、分離領域を介して第1受光領域及び第2受光領域を互いに隣接させて形成し、これらの領域上に反射防止膜を形成し、第1受光領域と第2受光領域との間の分離領域上に導電膜を設けている。   That is, the light receiving element is formed such that the first light receiving region and the second light receiving region are adjacent to each other through the separation region, an antireflection film is formed on these regions, and the first light receiving region, the second light receiving region, A conductive film is provided on the separation region between the two.

このように本実施の形態に係る受光素子には導電膜を設けているので、この導電膜に対して分離領域表面の導電型が反転が発生しないように電位を印加することにより、分離領域表面の反転を抑えることができ、反射防止膜が帯電することによる各受光領域間のリーク電流が抑えられる。従って、各受光領域間を分離する分離領域の幅をさらに微細化して形成することができ、各受光領域に形成したフォトダイオード間のクロストーク特性を向上することができる。   As described above, since the light receiving element according to this embodiment is provided with the conductive film, the surface of the separation region is applied by applying a potential so that the conductivity type of the surface of the separation region is not reversed. And the leakage current between the light receiving regions due to charging of the antireflection film can be suppressed. Accordingly, the width of the separation region that separates the light receiving regions can be further reduced, and the crosstalk characteristics between the photodiodes formed in the light receiving regions can be improved.

さらに、導電膜は、第1受光領域と分離領域との間の反射防止膜上と、第2受光領域と分離領域との間の反射防止膜上とにそれぞれ設けてもよい。   Further, the conductive film may be provided on the antireflection film between the first light receiving region and the separation region and on the antireflection film between the second light receiving region and the separation region, respectively.

このようにすれば、導電膜と分離領域との対向面積部分で形成される寄生容量を低減することができ、光ディスク装置の高速化を図ることができ、青色レーザなどを用いて大容量を記憶する場合に利点がある。   In this way, the parasitic capacitance formed in the area where the conductive film and the isolation region face each other can be reduced, the speed of the optical disk device can be increased, and a large capacity can be stored using a blue laser or the like. There are advantages to doing.

導電膜に電圧を印加するコンタクト電極を導電膜上に備えてもよい。このコンタクト電極は受光領域外に備えることが望ましい。   A contact electrode for applying a voltage to the conductive film may be provided on the conductive film. The contact electrode is preferably provided outside the light receiving region.

このようにすれば、コンタクト電極を介して導電膜に電圧を印加することができ、これによって反射防止膜の帯電による分離領域表面の導電型の反転を防いで受光領域間のリーク電流を抑えることができる。   In this way, a voltage can be applied to the conductive film through the contact electrode, thereby preventing the inversion of the conductivity type on the surface of the separation region due to charging of the antireflection film and suppressing the leakage current between the light receiving regions. Can do.

導電膜は、シリコンに不純物を混入させて形成した膜、または、金属シリサイドにより構成した膜でもよい。例えば、金属と合金化した金属シリサイドとしては、コバルトシリサイド、タングステンシリサイド、チタンシリサイド、モリブデンシリサイド、タンタルシリサイド、ニッケルシリサイドなどであってもよい。また、シリコンに不純物を混入させて形成した膜で導電膜を形成することにより、受光領域の形成と同時に導電膜を形成でき、生産コストを低減することができる。   The conductive film may be a film formed by mixing impurities into silicon or a film formed of metal silicide. For example, the metal silicide alloyed with metal may be cobalt silicide, tungsten silicide, titanium silicide, molybdenum silicide, tantalum silicide, nickel silicide, or the like. In addition, when the conductive film is formed using a film formed by mixing impurities into silicon, the conductive film can be formed at the same time as the light receiving region is formed, and the production cost can be reduced.

また、本実施の形態に係る受光素子の製造方法は、前記第1導電型の半導体基体と、前記半導体基体に第2導電型の第1半導体層を形成する工程と、前記第1半導体層に形成される第1受光領域及び第2受光領域を分離するための分離領域を形成する工程と、前記第1半導体層上に反射防止膜を形成する工程と、前記第1受光領域が形成される領域と前記第2受光領域が形成される領域との間の前記反射防止膜上に選択的に導電膜を形成する工程と、前記導電膜をマスクとして第2導電型の不純物を注入により前記第1受光領域と前記第2受光領域を形成する工程とを有することを特徴とする。   The method for manufacturing a light receiving element according to the present embodiment includes the step of forming a first conductive type semiconductor substrate, a second conductive type first semiconductor layer on the semiconductor substrate, and the first semiconductor layer. Forming a separation region for separating the first light receiving region and the second light receiving region to be formed; forming an antireflection film on the first semiconductor layer; and forming the first light receiving region. Forming a conductive film selectively on the antireflection film between a region and a region where the second light receiving region is formed, and implanting a second conductivity type impurity by using the conductive film as a mask. A step of forming one light receiving region and the second light receiving region.

本実施の形態に係る受光素子の製造方法によれば、分離領域上に形成した導電膜をマスクとして利用することにより自己整合的に第1受光領域と第2受光領域とを形成することができる。   According to the method for manufacturing a light receiving element according to the present embodiment, the first light receiving region and the second light receiving region can be formed in a self-aligning manner by using the conductive film formed on the isolation region as a mask. .

以下、図面を参照して本発明の実施の形態を説明する。まず、本実施の形態に係る受光素子について、詳細に説明する。図1は、本実施の形態に係る受光素子を示す構成図である。本実施の形態は、第1導電型をp型とし、第2導電型をn型とした。   Embodiments of the present invention will be described below with reference to the drawings. First, the light receiving element according to the present embodiment will be described in detail. FIG. 1 is a configuration diagram showing a light receiving element according to the present embodiment. In the present embodiment, the first conductivity type is p-type and the second conductivity type is n-type.

本実施の形態に係る受光素子1は、シリコン基板にp型不純物を添加してなるp型半導体基体11上にエピタキシャル成長させたn型半導体層12が形成されており、このn型半導体層12にこのn型半導体層12よりも不純物濃度が高いn型半導体層3a,3bが形成されると共に、これらのn型半導体層3a,3bを分離するために、n型半導体層12にp型分離領域2が形成される。   In the light receiving element 1 according to the present embodiment, an n-type semiconductor layer 12 is formed by epitaxial growth on a p-type semiconductor substrate 11 formed by adding a p-type impurity to a silicon substrate. N-type semiconductor layers 3a and 3b having an impurity concentration higher than that of n-type semiconductor layer 12 are formed, and in order to separate these n-type semiconductor layers 3a and 3b, a p-type isolation region is formed in n-type semiconductor layer 12. 2 is formed.

ここで、分離領域2を介して分離される領域をそれぞれ第1受光領域4a及び第2受光領域4bとする。第1受光領域4aは、p型半導体基体11、n型半導体層12及びn型半導体層3aから形成され、p型半導体基体11とn型半導体層12との間のPN接合により第1受光領域4aにフォトダイオードが形成される。また、第2受光領域4bは、p型半導体基体11、n型半導体層12及びn型半導体層3bから形成され、p型半導体基体11とn型半導体層12との間のPN接合により第2受光領域4bにフォトダイオードが形成される。なお、これらのフォトダイオードは、p型半導体基体11をアノードとし、n型半導体層12をカソードとしている。   Here, the regions separated via the separation region 2 are referred to as a first light receiving region 4a and a second light receiving region 4b, respectively. The first light receiving region 4 a is formed of a p-type semiconductor substrate 11, an n-type semiconductor layer 12, and an n-type semiconductor layer 3 a, and the first light-receiving region is formed by a PN junction between the p-type semiconductor substrate 11 and the n-type semiconductor layer 12. A photodiode is formed at 4a. The second light receiving region 4 b is formed of the p-type semiconductor substrate 11, the n-type semiconductor layer 12 and the n-type semiconductor layer 3 b, and is secondly formed by a PN junction between the p-type semiconductor substrate 11 and the n-type semiconductor layer 12. A photodiode is formed in the light receiving region 4b. These photodiodes have a p-type semiconductor substrate 11 as an anode and an n-type semiconductor layer 12 as a cathode.

また、これらの受光領域4a、4b及び分離領域2上には反射防止膜5が形成され、さらに、第1受光領域4aと第2受光領域4bとの間の分離領域2上に全面に導電膜6が形成される。   An antireflection film 5 is formed on the light receiving regions 4a and 4b and the separation region 2, and a conductive film is formed on the entire surface of the separation region 2 between the first light receiving region 4a and the second light receiving region 4b. 6 is formed.

導電膜6には、さらに受光領域外において電圧を印加するコンタクト電極が接続されており、配線層からコンタクト電極と分離領域2間に電圧を印加することにより、分離領域2の表面の導電型の反転を防止する。ここで、コンタクト電極を介して導電膜6に印加する電圧としては、分離領域2の表面の導電型の反転が発生しないように、受光領域4a、4bに形成されるフォトダイオードのカソード側の電圧以上を印加するとさらによい。   A contact electrode for applying a voltage is further connected to the conductive film 6 outside the light receiving region. By applying a voltage between the contact electrode and the separation region 2 from the wiring layer, the conductive type on the surface of the separation region 2 can be obtained. Prevent inversion. Here, the voltage applied to the conductive film 6 through the contact electrode is a voltage on the cathode side of the photodiode formed in the light receiving regions 4a and 4b so that the conductivity type inversion of the surface of the isolation region 2 does not occur. It is better to apply the above.

この導電膜6は、多結晶シリコンのポリシリコン膜にAs不純物をイオン注入して形成したものを用いた。なお、金属シリサイド膜としては、コバルトシリサイド、タングステンシリサイド、チタンシリサイド、モリブデンシリサイド、タンタルシリサイド、ニッケルシリサイドなどであってもよい。   The conductive film 6 was formed by implanting As impurities into a polycrystalline silicon polysilicon film. The metal silicide film may be cobalt silicide, tungsten silicide, titanium silicide, molybdenum silicide, tantalum silicide, nickel silicide, or the like.

ここで反射防止膜5は、シリコン酸化膜13とシリコン窒化膜14との積層膜で形成する。例えば、反射防止膜5は、受光領域4a,4bに発振波長405nmの青紫系レーザ光が入射できるように膜厚及び材質を最適化している。特に、反射防止膜5の膜の層数は、上述した2層膜に限定するものではなく、反射防止膜として機能できれば単層膜であってもよいし、三層以上の多層膜で構成したものでもよい。なお、このシリコン窒化膜は、受光素子1を形成するウエハー処理工程のプラズマCVD等のプラズマ処理、組立て工程のスクライブ処理などで帯電しやすいものである。   Here, the antireflection film 5 is formed of a laminated film of the silicon oxide film 13 and the silicon nitride film 14. For example, the thickness and material of the antireflection film 5 are optimized so that blue-violet laser light having an oscillation wavelength of 405 nm can enter the light receiving regions 4a and 4b. In particular, the number of layers of the antireflection film 5 is not limited to the two-layer film described above, and may be a single layer film or a multilayer film of three or more layers as long as it can function as an antireflection film. It may be a thing. The silicon nitride film is easily charged by plasma processing such as plasma CVD in the wafer processing step for forming the light receiving element 1 and scribing processing in the assembly step.

本実施の形態に係る受光素子1によれば、各第1受光領域4aと第2受光領域4b間の、反射防止膜5上の一部にポリシリコン膜を残して導電膜6が形成されており、その導電膜6に分離領域2の表面の導電型が反転が発生しないように電位を印加することにより、分離領域2の表面の反転を抑えることができ、反射防止膜5が帯電することによる各受光領域4a、4b間のリーク電流が抑えられる。従って、各受光領域4a、4b間を分離する分離領域の幅をさらに微細化して形成することができ、各受光領域4a、4bに形成したフォトダイオード間のクロストーク特性を向上することができる。また、図14に示す従来の受光素子131のように、分離領域の表面濃度をあげる必要が無いため、受光素子の耐圧低下や受光素子のカソード−アノード間の容量増加を抑えることができる。   According to the light receiving element 1 according to the present embodiment, the conductive film 6 is formed leaving a polysilicon film in a part on the antireflection film 5 between the first light receiving region 4a and the second light receiving region 4b. In addition, by applying a potential to the conductive film 6 so that the conductivity type of the surface of the isolation region 2 does not invert, the inversion of the surface of the isolation region 2 can be suppressed, and the antireflection film 5 is charged. Leakage current between the light receiving regions 4a and 4b due to is suppressed. Therefore, the width of the separation region for separating the light receiving regions 4a and 4b can be further reduced, and the crosstalk characteristics between the photodiodes formed in the light receiving regions 4a and 4b can be improved. Further, unlike the conventional light receiving element 131 shown in FIG. 14, it is not necessary to increase the surface concentration of the isolation region, so that it is possible to suppress a decrease in breakdown voltage of the light receiving element and an increase in capacitance between the cathode and anode of the light receiving element.

図2に示す受光素子1’は、上述した図1の受光素子1の導電膜6をサイドウォール形状に形成したものである。図2は、本実施の形態に係る他の受光素子1’を示す構成図である。図3は、本実施の形態に係る他の受光素子1’を示す平面図である。   A light receiving element 1 ′ shown in FIG. 2 is obtained by forming the conductive film 6 of the light receiving element 1 of FIG. 1 described above into a sidewall shape. FIG. 2 is a configuration diagram showing another light receiving element 1 ′ according to the present embodiment. FIG. 3 is a plan view showing another light receiving element 1 ′ according to the present embodiment.

本実施の形態に係る受光素子1’は、受光素子1と同様に、受光領域4a、4b及び分離領域2が形成され、これらの領域上に反射防止膜5が形成されるものであり、導電膜の形成を異なるものとしている。すなわち、図2に示すように、受光素子1’は、各受光領域4a,4b間の分離領域2上の全面に形成したポリシリコン膜の中央部分を取り除き、端部分にポリシリコン膜を残して導電膜6’が形成される。言い換えれば、受光素子1の導電膜6の中央部を取り除いた構造である。   As in the light receiving element 1, the light receiving element 1 ′ according to the present embodiment is formed with the light receiving regions 4a and 4b and the separation region 2, and the antireflection film 5 is formed on these regions. The film formation is different. That is, as shown in FIG. 2, the light receiving element 1 ′ removes the central portion of the polysilicon film formed on the entire surface of the separation region 2 between the light receiving regions 4a and 4b, leaving the polysilicon film at the end portion. A conductive film 6 'is formed. In other words, the structure is obtained by removing the central portion of the conductive film 6 of the light receiving element 1.

また、導電膜6’は、図3に示すように、各受光領域外に延伸して形成されており、受光領域4a,4b外の導電膜6’に電圧印加するコンタクト電極10を形成する。このコンタクト電極10は、配線層(図示せず)と電気的に接続する。導電膜6’の幅W1は、狭く形成するほど反射防止膜とによって生じる寄生容量が小さくなる。   Further, as shown in FIG. 3, the conductive film 6 'is formed to extend outside each light receiving region, and forms a contact electrode 10 for applying a voltage to the conductive film 6' outside the light receiving regions 4a and 4b. The contact electrode 10 is electrically connected to a wiring layer (not shown). The narrower the width W1 of the conductive film 6 ', the smaller the parasitic capacitance generated by the antireflection film.

本実施の形態に係る受光素子1’によれば、各受光領域4a,4b間の分離領域2上の一部にポリシリコン膜を残して導電膜6’が形成されており、その導電膜6’に電圧を与えることにより、反射防止膜5の帯電による分離領域2の表面の反転を抑えることができ、受光領域4a、4b間のリーク電流を抑えることができる。従って、各受光領域4a,4b間を分離する分離領域の幅をさらに微細化して形成することができ、各受光領域に形成したフォトダイオード間のクロストーク特性を向上することができる。また、図14に示す従来の受光素子131のように、分離領域の表面濃度をあげる必要が無いため、受光素子の耐圧低下や受光素子のカソード−アノード間の容量増加を抑えることができる。   According to the light receiving element 1 ′ according to the present embodiment, the conductive film 6 ′ is formed leaving a polysilicon film in a part on the separation region 2 between the light receiving regions 4 a and 4 b, and the conductive film 6 By applying a voltage to ', reversal of the surface of the separation region 2 due to charging of the antireflection film 5 can be suppressed, and leakage current between the light receiving regions 4a and 4b can be suppressed. Therefore, the width of the separation region that separates the light receiving regions 4a and 4b can be further reduced, and the crosstalk characteristics between the photodiodes formed in each light receiving region can be improved. Further, unlike the conventional light receiving element 131 shown in FIG. 14, it is not necessary to increase the surface concentration of the isolation region, so that it is possible to suppress a decrease in breakdown voltage of the light receiving element and an increase in capacitance between the cathode and anode of the light receiving element.

さらに、サイドウォール形状の導電膜6’は、分離領域2の表面の電位が、上部のコンタクト電極10に電圧を印加することにより常に反転を抑えられているため、各受光領域4a,4bに形成されるフォトダイオードの各カソード間に電位差が生じた場合でも、MOS動作を防ぐことができる。   Furthermore, the sidewall-shaped conductive film 6 ′ is formed in each of the light receiving regions 4 a and 4 b because the surface potential of the isolation region 2 is always prevented from being inverted by applying a voltage to the upper contact electrode 10. Even when a potential difference occurs between the cathodes of the photodiodes to be operated, the MOS operation can be prevented.

またに、分離領域2上の全面にポリシリコン導電膜を残す場合に比べて、ポリシリコン導電膜6’の反射防止膜5と分離領域2間の対向面積を少なくすることができ、ポリシリコン導電膜6’と分離領域2で形成される寄生容量の増加を抑制することができる。   Further, compared to the case where the polysilicon conductive film is left on the entire surface of the isolation region 2, the facing area between the antireflection film 5 and the isolation region 2 of the polysilicon conductive film 6 ′ can be reduced, and the polysilicon conductive An increase in parasitic capacitance formed by the film 6 ′ and the isolation region 2 can be suppressed.

また、サイドウォール形状の導電膜6’は、全面に形成した導電膜6の幅に比べ、導電膜6’の幅を細く形成できるため、導電膜6’の抵抗は大きくなる。結果として、ポリシリコン導電膜6’と分離領域2で形成される寄生容量に大きな抵抗がつくことになり、この寄生容量が相対的に見えにくい方向になり、受光素子の高速化を図ることができる。   Further, since the conductive film 6 ′ having a sidewall shape can be formed narrower than the width of the conductive film 6 formed on the entire surface, the resistance of the conductive film 6 ′ is increased. As a result, a large resistance is added to the parasitic capacitance formed by the polysilicon conductive film 6 ′ and the isolation region 2, and the parasitic capacitance becomes relatively invisible, so that the speed of the light receiving element can be increased. it can.

しかも、隣接するフォトダイオードのそれぞれのカソード間の結合が、全面にポリシリコン膜を残す導電膜6場合にはこの導電膜6で形成されるのに対して、本受光素子1’の構造では、サイドウォール形状のポリシリコン導電膜6’とその間の絶縁膜による容量で形成されるため、インピーダンスも高くなり、その点でも各受光領域4a,4bに形成されるフォトダイオードの周波数特性が良好になり、青紫色レーザなどを用いて大容量記録に対応可能な高速化を図ることができる。   Moreover, the coupling between the cathodes of adjacent photodiodes is formed by the conductive film 6 in the case of the conductive film 6 leaving the polysilicon film on the entire surface, whereas in the structure of the light receiving element 1 ′, Since it is formed by the capacitance of the side wall-shaped polysilicon conductive film 6 ′ and the insulating film therebetween, the impedance is increased, and the frequency characteristics of the photodiodes formed in the light receiving regions 4a and 4b are also improved in this respect. In addition, it is possible to increase the speed that can cope with large-capacity recording using a blue-violet laser or the like.

上述した本受光素子1を備えた光ディスク装置について説明する。図4は、本実施の形態に係る光ディスク装置の概略構成を示す図である。なお、受光素子1’を備えた光ディスク装置については受光素子1を備えた光ディスク装置と構成が同じであるため、ここでは省略する。   An optical disc apparatus provided with the above-described light receiving element 1 will be described. FIG. 4 is a diagram showing a schematic configuration of the optical disc apparatus according to the present embodiment. The optical disk device provided with the light receiving element 1 ′ has the same configuration as the optical disk device provided with the light receiving element 1, and is therefore omitted here.

本実施の形態に係る光ディスク装置21は、光ディスク25を保持して回転駆動する駆動手段23と、光ディスク25に発振波長405nmの青紫色のレーザ光を照射する発光素子22と、レーザ光の光ディスク25による反射光を受光する受光素子1,と、受光素子における受光結果に応じて光ディスク25への記録又は再生を行う処理部である処理回路24を有している。特に、本受光素子1,は、受光領域を複数(ここでは4つ)に分割した構造を有しており、図1に示すように、分離領域2を介して各受光領域を互いに隣接させて形成し、これらの領域上に反射防止膜5を形成し、受光領域間の反射防止膜5上に導電膜6を設けている。   The optical disc device 21 according to the present embodiment includes a driving unit 23 that holds and rotates the optical disc 25, a light emitting element 22 that irradiates the optical disc 25 with a blue-violet laser beam having an oscillation wavelength of 405 nm, and an optical disc 25 that uses laser light. And a processing circuit 24 that is a processing unit that performs recording or reproduction on the optical disc 25 in accordance with the light reception result of the light receiving element. In particular, the light receiving element 1 has a structure in which a light receiving region is divided into a plurality (here, four), and the light receiving regions are adjacent to each other via a separation region 2 as shown in FIG. The antireflection film 5 is formed on these regions, and the conductive film 6 is provided on the antireflection film 5 between the light receiving regions.

そして、この受光素子1により、光ディスク25面によって反射されたレーザ光を受光してRF(Radio Frequency)信号を出力しているだけでなく、レーザ光のスポットをディスク面の溝に追随させるためのトラッキングエラー信号や、レーザ光の焦点をディスク面に合わせるためのフォーカスエラー信号を出力する。   The light receiving element 1 not only receives the laser light reflected by the surface of the optical disk 25 and outputs an RF (Radio Frequency) signal, but also causes the laser light spot to follow a groove on the disk surface. A tracking error signal and a focus error signal for focusing the laser beam on the disk surface are output.

このように本実施の形態に係る光ディスク装置21は、RF信号や各種エラー信号を出力する受光素子として、上述の特徴ある受光素子1,1’を適用していることから、品質を向上させることができ、また、高速化を図ることができる。   As described above, the optical disc device 21 according to the present embodiment uses the above-described characteristic light receiving elements 1 and 1 ′ as a light receiving element that outputs an RF signal and various error signals, thereby improving the quality. In addition, the speed can be increased.

サイドウォール形状の導電膜6’を備えた受光素子1’の製造方法について図面を参照して具体的に説明する。図5〜図11は、本実施の形態に係るサイドウォール形状の導電膜を備えた受光素子1’の製造方法の工程図を示す。   A method for manufacturing the light receiving element 1 ′ having the sidewall-shaped conductive film 6 ′ will be specifically described with reference to the drawings. 5 to 11 show process diagrams of a method for manufacturing the light receiving element 1 ′ including the sidewall-shaped conductive film according to the present embodiment.

先ず、図5に示すように、シリコン基板にp型不純物を添加してなるp型半導体基体11上にエピタキシャル成長したn型半導体層12を形成する。例えば、n型半導体層12は、1Ωcm、膜厚1μm程度で形成する。   First, as shown in FIG. 5, an n-type semiconductor layer 12 is formed by epitaxial growth on a p-type semiconductor substrate 11 obtained by adding a p-type impurity to a silicon substrate. For example, the n-type semiconductor layer 12 is formed with a thickness of about 1 Ωcm and a thickness of about 1 μm.

次に、図6に示すように、イオン注入により、隣り合う受光領域となる領域間を分離するp型分離領域2が形成される。この分離領域2は、アイソレーション領域である。例えば、p型分離領域は、イオン注入を拡散によって形成していてもよい。   Next, as shown in FIG. 6, a p-type isolation region 2 is formed by ion implantation to separate the regions that are adjacent light receiving regions. This separation region 2 is an isolation region. For example, the p-type isolation region may be formed by ion implantation by diffusion.

次に、図7に示すように、熱酸化などによりシリコン酸化膜13を形成し、その後、CVD(Chemical Vapor Deposition)法によりシリコン窒化膜14を形成する。反射防止膜5は、シリコン酸化膜13とシリコン窒化膜14によって構成する。例えば、シリコン酸化膜13は、10nm程度で成膜し、シリコン窒化膜14は、膜厚50nm程度で成膜する。   Next, as shown in FIG. 7, a silicon oxide film 13 is formed by thermal oxidation or the like, and then a silicon nitride film 14 is formed by a CVD (Chemical Vapor Deposition) method. The antireflection film 5 is composed of a silicon oxide film 13 and a silicon nitride film 14. For example, the silicon oxide film 13 is formed with a thickness of about 10 nm, and the silicon nitride film 14 is formed with a thickness of about 50 nm.

次に、図8に示すように、CVD法によりシリコン酸化膜を形成し、その後、フォトリソグラフィ法により、フォトレジストなどを用いてパターニング処理を行い、例えばクエン酸等のウェットエッチングまたはRIE(Reactive Ion Etching)などのドライエッチングにより分離領域2上の反射防止膜5上にシリコン酸化膜7を選択的に残して形成する。例えば、シリコン酸化膜7は、膜厚200nm程度で成膜する。   Next, as shown in FIG. 8, a silicon oxide film is formed by a CVD method, and then a patterning process is performed by using a photoresist or the like by a photolithography method, for example, wet etching such as citric acid or RIE (Reactive Ion). The silicon oxide film 7 is selectively left on the antireflection film 5 on the isolation region 2 by dry etching such as Etching. For example, the silicon oxide film 7 is formed with a film thickness of about 200 nm.

次に、図9に示すように、CVD法により導電性のポリシリコン膜15を形成する。例えば、ポリシリコン膜15は、膜厚300nm程度で成膜する。   Next, as shown in FIG. 9, a conductive polysilicon film 15 is formed by CVD. For example, the polysilicon film 15 is formed with a film thickness of about 300 nm.

次に、図10に示すように、全面エッチバックを行うことにより、シリコン酸化膜7の側壁にサイドウォール形状のポリシリコン導電膜6’を残して形成する。さらに、砒素(As)不純物のイオン注入を行うことにより、シリコン酸化膜7とサイドウォール形状のポリシリコン導電膜6’が、マスクとなるため自己整合的にn型半導体層3a,3bが形成される。この際、シリコン酸化膜7とサイドウォール形状のポリシリコン導電膜6’直下の各受光領域4a、4bには、n型半導体層3a,3bが形成されない。例えば、As不純物のイオン注入は、エネルギーを30keV、不純物濃度を1E15(1/cm)程度で行う。 Next, as shown in FIG. 10, the entire surface is etched back to form a sidewall-shaped polysilicon conductive film 6 ′ on the side wall of the silicon oxide film 7. Further, by performing ion implantation of arsenic (As) impurities, the silicon oxide film 7 and the sidewall-shaped polysilicon conductive film 6 'serve as a mask, so that the n-type semiconductor layers 3a and 3b are formed in a self-aligning manner. The At this time, the n-type semiconductor layers 3a and 3b are not formed in the light receiving regions 4a and 4b immediately below the silicon oxide film 7 and the sidewall-shaped polysilicon conductive film 6 ′. For example, As impurity ion implantation is performed at an energy of 30 keV and an impurity concentration of about 1E15 (1 / cm 2 ).

次に、図11に示すように、層間膜の形成と拡散したn型半導体層3a,3bの活性化のための熱処理を施したのち、最終的に、第1受光領域4a及び第2受光領域4b上の層間膜を除去し反射防止膜5を露出させる。受光素子1’は、第1受光領域4a及び第2受光領域4b間に分離領域2を挟んで形成され、この分離領域2上に反射防止膜5を介してサイドウォール形状のポリシリコン導電膜6’が形成される。   Next, as shown in FIG. 11, after the heat treatment for forming the interlayer film and activating the diffused n-type semiconductor layers 3a and 3b, the first light receiving region 4a and the second light receiving region are finally obtained. The anti-reflection film 5 is exposed by removing the interlayer film on 4b. The light receiving element 1 ′ is formed with the separation region 2 sandwiched between the first light receiving region 4 a and the second light receiving region 4 b, and a sidewall-shaped polysilicon conductive film 6 is formed on the separation region 2 via an antireflection film 5. 'Is formed.

本受光素子のサイドウォール形状のポリシリコン導電膜6’は、図3に示すように、各受光領域4a,4b外まで延伸して形成され、この受光領域4a、4b外のサイドウォール形状のポリシリコン導電膜6’上にコンタクト電極10を形成して、コンタクト電極10と配線層(図示せず)とを電気的に接続される。よって本実施の形態に係る受光素子1’を得ることができる。   As shown in FIG. 3, the sidewall-shaped polysilicon conductive film 6 'of the present light-receiving element is formed to extend outside the light-receiving regions 4a and 4b, and the sidewall-shaped polysilicon conductive film 6a outside the light-receiving regions 4a and 4b. A contact electrode 10 is formed on the silicon conductive film 6 ′, and the contact electrode 10 and a wiring layer (not shown) are electrically connected. Therefore, the light receiving element 1 ′ according to the present embodiment can be obtained.

なお、本実施の形態に係る受光素子1の製造方法の詳細な説明については省略するも、上述した図5〜図7までの製造工程を行った後、CVD法によりポリシリコン膜15を形成して、エッチバックを行い、ポリシリコン導電膜6を形成する。ポリシリコン導電膜6は、As不純物をイオン注入する場合、マスクとなるため、自己整合的に受光領域4を形成する。本実施の形態に係る受光素子1を得ることができる。   Although a detailed description of the manufacturing method of the light receiving element 1 according to the present embodiment is omitted, after the manufacturing steps shown in FIGS. 5 to 7 are performed, the polysilicon film 15 is formed by the CVD method. Etch back is performed to form a polysilicon conductive film 6. Since the polysilicon conductive film 6 serves as a mask when As impurities are ion-implanted, the light receiving region 4 is formed in a self-aligning manner. The light receiving element 1 according to the present embodiment can be obtained.

本実施の形態に係る受光素子の製造方法によれば、受光領域を形成するためのイオン注入を行う場合、ポリシリコン導電膜がマスクとなり、自己整合的に各受光領域4a,4bにn型半導体層3a,3bを形成することができる。また、半導体基体としては、ガリウム(Ga)、砒素(As)等の半絶縁基体であってもよい。   According to the method for manufacturing a light receiving element according to the present embodiment, when ion implantation for forming a light receiving region is performed, the polysilicon conductive film serves as a mask, and the light receiving regions 4a and 4b are n-type semiconductors in a self-aligning manner. Layers 3a and 3b can be formed. The semiconductor substrate may be a semi-insulating substrate such as gallium (Ga) or arsenic (As).

なお、本実施の形態に係る受光素子において、分離領域は、As不純物をイオン注入して濃度の高いアイソレーション領域として形成したが、LOCOS酸化膜で形成してもよい。   In the light receiving element according to the present embodiment, the isolation region is formed as a high concentration isolation region by ion implantation of As impurities, but may be formed of a LOCOS oxide film.

本発明に係る実施の一形態について具体的に説明したが、本発明は、上述した実施の形態に限定されるものでなく、本発明の技術的思想に基づく各種の変形は可能である。   Although one embodiment according to the present invention has been specifically described, the present invention is not limited to the above-described embodiment, and various modifications based on the technical idea of the present invention are possible.

本実施の形態における受光素子の構成を示す図である。It is a figure which shows the structure of the light receiving element in this Embodiment. 本実施の形態における他の受光素子の構成を示す図である。It is a figure which shows the structure of the other light receiving element in this Embodiment. 図2の受光素子を示す平面図である。It is a top view which shows the light receiving element of FIG. 本実施の形態における光ディスク装置の概略構成を示す図である。It is a figure which shows schematic structure of the optical disk apparatus in this Embodiment. 図2の受光素子の製造工程を示す図である。It is a figure which shows the manufacturing process of the light receiving element of FIG. 図2の受光素子の製造工程を示す図である。It is a figure which shows the manufacturing process of the light receiving element of FIG. 図2の受光素子の製造工程を示す図である。It is a figure which shows the manufacturing process of the light receiving element of FIG. 図2の受光素子の製造工程を示す図である。It is a figure which shows the manufacturing process of the light receiving element of FIG. 図2の受光素子の製造工程を示す図である。It is a figure which shows the manufacturing process of the light receiving element of FIG. 図2の受光素子の製造工程を示す図である。It is a figure which shows the manufacturing process of the light receiving element of FIG. 図2の受光素子の製造工程を示す図である。It is a figure which shows the manufacturing process of the light receiving element of FIG. 従来の受光素子の構成を示す図である。It is a figure which shows the structure of the conventional light receiving element. 従来の受光素子の構成を示す図である。It is a figure which shows the structure of the conventional light receiving element. 従来の受光素子の構成を示す図である。It is a figure which shows the structure of the conventional light receiving element. フォトダイオード間のクロストーク特性を説明するための図である。It is a figure for demonstrating the crosstalk characteristic between photodiodes.

符号の説明Explanation of symbols

1、1’ 受光素子
2 分離領域
3 フォトダイオード
4 受光領域
5 反射防止膜
6、6’ 導電膜
7 シリコン酸化膜
10 コンタクト電極
11 半導体基体
12 第1半導体層
13 シリコン酸化膜
14 シリコン窒化膜
15 ポリシリコン膜
1, 1 'light receiving element 2 isolation region 3 photodiode 4 light receiving region 5 antireflection film 6, 6' conductive film 7 silicon oxide film 10 contact electrode 11 semiconductor substrate 12 first semiconductor layer 13 silicon oxide film 14 silicon nitride film 15 poly Silicon film

Claims (6)

分離領域を介して第1受光領域及び第2受光領域を互いに隣接させて形成し、これらの領域上に反射防止膜を形成した受光素子において、
前記第1受光領域と前記第2受光領域との間の前記反射防止膜上に導電膜を設けた
ことを特徴とする受光素子。
In the light receiving element in which the first light receiving region and the second light receiving region are formed adjacent to each other through the separation region, and the antireflection film is formed on these regions,
A light receiving element, wherein a conductive film is provided on the antireflection film between the first light receiving region and the second light receiving region.
前記導電膜は、前記第1受光領域と前記分離領域との間の前記反射防止膜上と、前記第2受光領域と前記分離領域との間の前記反射防止膜上とにそれぞれ設けられている
ことを特徴とする請求項1記載の受光素子。
The conductive film is provided on the antireflection film between the first light receiving region and the separation region and on the antireflection film between the second light receiving region and the separation region, respectively. The light receiving element according to claim 1.
前記導電膜に電圧を印加するコンタクト電極を形成した
ことを特徴とする請求項1または請求項2に記載の受光素子。
The light receiving element according to claim 1, wherein a contact electrode for applying a voltage to the conductive film is formed.
前記導電膜は、シリコンに不純物を混入させて形成した膜、または、金属シリサイドにより構成した膜である
ことを特徴とする請求項1〜3のいずれか一項に記載の受光素子。
The light receiving element according to any one of claims 1 to 3, wherein the conductive film is a film formed by mixing impurities into silicon or a film formed of metal silicide.
光ディスクを保持して回転駆動する駆動手段と、前記光ディスクにレーザ光を照射する発光素子と、前記レーザ光の前記光ディスクによる反射光を受光する受光素子と、前記受光素子における受光結果に応じて前記光ディスクへの記録又は再生を行う処理部とを備えた光ディスク装置において、
前記受光素子は、分離領域を介して第1受光領域及び第2受光領域を互いに隣接させて形成しており、これらの領域上に反射防止膜を形成し、前記第1受光領域と前記第2受光領域との間の前記反射防止膜上に導電膜を設けた
ことを特徴とする光ディスク装置。
Drive means for holding and rotating the optical disk, a light emitting element for irradiating the optical disk with laser light, a light receiving element for receiving the reflected light of the laser light from the optical disk, and the light receiving element according to the light receiving result in the light receiving element In an optical disc apparatus provided with a processing unit that performs recording or reproduction on an optical disc,
The light receiving element is formed such that a first light receiving region and a second light receiving region are adjacent to each other via a separation region, an antireflection film is formed on these regions, and the first light receiving region and the second light receiving region are formed. An optical disk device, wherein a conductive film is provided on the antireflection film between the light receiving region.
前記第1導電型の半導体基体と、前記半導体基体に第2導電型の第1半導体層を形成する工程と、
前記第1半導体層に形成される第1受光領域及び第2受光領域を分離するための分離領域を形成する工程と、
前記第1半導体層上に反射防止膜を形成する工程と、
前記第1受光領域が形成される領域と前記第2受光領域が形成される領域との間の前記反射防止膜上に選択的に導電膜を形成する工程と、
前記導電膜をマスクとして第2導電型の不純物を注入により前記第1受光領域と前記第2受光領域を形成する工程とを有する
ことを特徴とする受光素子の製造方法。
Forming a first conductive type semiconductor substrate and a second conductive type first semiconductor layer on the semiconductor substrate;
Forming a separation region for separating the first light receiving region and the second light receiving region formed in the first semiconductor layer;
Forming an antireflection film on the first semiconductor layer;
Selectively forming a conductive film on the antireflection film between a region where the first light receiving region is formed and a region where the second light receiving region is formed;
A method of manufacturing a light receiving element, comprising: forming the first light receiving region and the second light receiving region by implanting a second conductivity type impurity using the conductive film as a mask.
JP2007107040A 2007-04-16 2007-04-16 Light-receiving element, optical disc device equipped with this light-receiving element and manufacturing method of light-receiving element Pending JP2008270254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007107040A JP2008270254A (en) 2007-04-16 2007-04-16 Light-receiving element, optical disc device equipped with this light-receiving element and manufacturing method of light-receiving element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007107040A JP2008270254A (en) 2007-04-16 2007-04-16 Light-receiving element, optical disc device equipped with this light-receiving element and manufacturing method of light-receiving element

Publications (1)

Publication Number Publication Date
JP2008270254A true JP2008270254A (en) 2008-11-06

Family

ID=40049420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007107040A Pending JP2008270254A (en) 2007-04-16 2007-04-16 Light-receiving element, optical disc device equipped with this light-receiving element and manufacturing method of light-receiving element

Country Status (1)

Country Link
JP (1) JP2008270254A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011192838A (en) * 2010-03-15 2011-09-29 Sumitomo Electric Ind Ltd Light-receiving element, light-receiving element array, hybrid detecting device, photo sensor device, and manufacturing method for light-receiving element array

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011192838A (en) * 2010-03-15 2011-09-29 Sumitomo Electric Ind Ltd Light-receiving element, light-receiving element array, hybrid detecting device, photo sensor device, and manufacturing method for light-receiving element array

Similar Documents

Publication Publication Date Title
JP4755577B2 (en) Manufacturing method of backlit photodiode and backlit photo diode auto
TWI298200B (en) Solid-state imaging device and method of manufacturing the same
US6846722B2 (en) Method for isolating a hybrid device in an image sensor
JP3899236B2 (en) Manufacturing method of image sensor
JP4131031B2 (en) Semiconductor device having light receiving element, optical pickup device, and method of manufacturing semiconductor device having light receiving element
US6380603B1 (en) Photosensitive device with internal circuitry that includes on the same substrate
KR100512236B1 (en) Photodiode and its manufacturing method
TWI307968B (en)
US8278130B2 (en) Back side illumination image sensor and method for manufacturing the same
US20080194052A1 (en) Optical semiconductor device and method for fabricating the same
JP4131059B2 (en) Semiconductor device having light receiving element, optical pickup device, and method of manufacturing semiconductor device having light receiving element
JP4671981B2 (en) Optical semiconductor device
WO2007135810A1 (en) Optical semiconductor device and method for manufacturing same
JP2002064218A (en) Light receiving element with built-in circuit, its manufacturing method, and optical device using the same
US7884391B2 (en) Image sensor and method for manufacturing the same
JP2005159366A (en) Photodiode and manufacturing method thereof
JP4835658B2 (en) PIN photodiode and method of manufacturing the same
JP2009260160A (en) Optical semiconductor device
JP2008270254A (en) Light-receiving element, optical disc device equipped with this light-receiving element and manufacturing method of light-receiving element
JP2007317975A (en) Optical semiconductor device
US20040262619A1 (en) Semiconductor device having light-receiving elements and amplifying elements incorporated in the same chip and method of manufacturing the same
JP2004260181A (en) Light receiving element, its fabricating method and optoelectronic integrated circuit applied with light receiving element and its fabricating method
WO2004049460A1 (en) Optical semiconductor device
US20100079633A1 (en) Image sensor and manufacturing method of image sensor
US8569813B2 (en) Inductive load driving circuit