JP2008269913A - Method for manufacturing nickel positive electrode for alkaline storage battery - Google Patents

Method for manufacturing nickel positive electrode for alkaline storage battery Download PDF

Info

Publication number
JP2008269913A
JP2008269913A JP2007110235A JP2007110235A JP2008269913A JP 2008269913 A JP2008269913 A JP 2008269913A JP 2007110235 A JP2007110235 A JP 2007110235A JP 2007110235 A JP2007110235 A JP 2007110235A JP 2008269913 A JP2008269913 A JP 2008269913A
Authority
JP
Japan
Prior art keywords
cobalt
nickel
sintered substrate
positive electrode
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007110235A
Other languages
Japanese (ja)
Other versions
JP5167681B2 (en
Inventor
Toru Kikuyama
亨 菊山
Takahiro Aoyama
高弘 青山
Yasutaka Noguchi
康孝 野口
Yoshitaka Dansui
慶孝 暖水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007110235A priority Critical patent/JP5167681B2/en
Publication of JP2008269913A publication Critical patent/JP2008269913A/en
Application granted granted Critical
Publication of JP5167681B2 publication Critical patent/JP5167681B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for stably manufacturing a nickel hydroxide electrode excellent in life time characteristics for an alkaline storage battery in which a cobalt oxide layer having high density and high conductivity is formed on a surface of a porous nickel sintered substrate, thereby assuring conductivity by improvement of oxidation resistance of the sintered substrate. <P>SOLUTION: The method for manufacturing a nickel positive electrode for an alkaline storage battery includes a first step drying a porous nickel sintered substrate after immersing it in a cobalt nitrate solution, a second step changing cobalt nitrate into cobalt hydroxide by immersing the porous nickel sintered substrate processed in the first step into aqueous alkaline solution, a third step changing the cobalt hydroxide into cobalt oxide by steam-heating of the porous nickel sintered substrate processed in the second step, and a forth step fixing nickel salt by immersing the porous nickel sintered substrate processed in the third step into an acid nickel salt impregnation liquid. The method is characterized in that the aqueous cobalt nitrate solution contains alkaline cations in the first step. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明はアルカリ蓄電池用焼結式ニッケル正極の製造方法に関し、より詳しくはニッケル焼結基板の改良に関するものである。   The present invention relates to a method for producing a sintered nickel positive electrode for an alkaline storage battery, and more particularly to improvement of a nickel sintered substrate.

アルカリ蓄電池は、リチウムイオン二次電池と比べて苛烈な充放電に耐えうることができるので、電気自動車の補助電源や電動工具の主電源として普及している。とりわけ活物質の利用率や導電性が高い焼結式のニッケル正極は、放電特性やサイクル特性を向上させる観点から広く用いられている。   Alkaline storage batteries can withstand severe charging and discharging compared to lithium ion secondary batteries, and are therefore widely used as auxiliary power sources for electric vehicles and main power sources for electric tools. In particular, a sintered nickel positive electrode having a high utilization factor and high conductivity of an active material is widely used from the viewpoint of improving discharge characteristics and cycle characteristics.

焼結式のニッケル正極は、活物質保持体である多孔性ニッケル焼結基板を、硝酸ニッケルなどの酸性ニッケル塩含浸液に浸漬し、多孔性ニッケル焼結基板中の細孔中にニッケル塩を含浸した後、乾燥工程で焼結基板にニッケル塩を定着させ、ついでこのニッケル焼結基板をアルカリ液中に浸漬してニッケル塩を水酸化ニッケルに置換し、活物質化するという活物質の充填操作を複数回繰り返すのが一般的である。   A sintered nickel positive electrode is obtained by immersing a porous nickel sintered substrate, which is an active material holding body, in an acidic nickel salt impregnating solution such as nickel nitrate, and placing nickel salt in the pores of the porous nickel sintered substrate. After impregnation, the nickel salt is fixed to the sintered substrate in the drying process, and then the nickel sintered substrate is immersed in an alkaline solution to replace the nickel salt with nickel hydroxide, and the active material is filled. It is common to repeat the operation multiple times.

多孔性ニッケル焼結基板への活物質の充填操作を複数回繰り返すのは、1回の活物質充填操作では所望の活物質充填量が得られないからであり、複数回繰り返して行うことで所望の活物質充填量が確保できる。活物質の充填効率を上げ、1回の充填操作で基板へ充填される活物質量を増やすために、一般的には高濃度の酸性ニッケル塩含浸液を用いる。具体的には比重1.7〜1.8g/ml程度の硝酸ニッケル水溶液などを用いるのだが、常温では硝酸ニッケル水溶液の比重を1.7〜1.8g/mlとすることはできないため、加温して用いるのが一般的である。   The reason why the porous nickel sintered substrate is filled with the active material a plurality of times is because a desired amount of the active material filling cannot be obtained by a single active material filling operation. The active material filling amount can be secured. In order to increase the filling efficiency of the active material and increase the amount of the active material filled in the substrate by a single filling operation, a high concentration acidic nickel salt impregnating solution is generally used. Specifically, an aqueous nickel nitrate solution having a specific gravity of about 1.7 to 1.8 g / ml is used. However, since the specific gravity of the aqueous nickel nitrate solution cannot be 1.7 to 1.8 g / ml at room temperature, It is common to use it warm.

しかしながら高濃度でpHが低い酸性ニッケル塩含浸液は腐食性が強いので、活物質の充填操作の際に多孔性ニッケル焼結基板を長時間浸漬すると腐食が進み、機械的強度が低下するとともに集電性が低下する。この多孔性ニッケル焼結基板からなるニッケル正極は脆弱なので、これを用いたアルカリ蓄電池を繰り返し充放電すると、ニッケル正極が膨潤して寿命特性が低下するという課題があった。   However, the acidic nickel salt impregnating solution with high concentration and low pH is highly corrosive, so if the porous nickel sintered substrate is immersed for a long time during the filling operation of the active material, the corrosion progresses, the mechanical strength decreases and the concentration increases. Electricity decreases. Since the nickel positive electrode made of this porous nickel sintered substrate is brittle, there has been a problem that when an alkaline storage battery using this is repeatedly charged and discharged, the nickel positive electrode swells and the life characteristics are lowered.

この課題を解消するために、多孔性ニッケル焼結基板の表面に水酸化コバルトを生成させ、次いでこの基板をアルカリと酸素の共存化で加熱することによって水酸化コバルトをオキシ水酸化コバルトもしくは四三酸化コバルトに変化させて多孔性ニッケル焼結基板の表面を被覆せしめた後、酸性ニッケル塩の含浸を行う方法(例えば特許文献1)が提案されている。さらに特許文献1の方法では電解液に対する防食効果が不十分であれば、まず多孔性ニッケル焼結基板をコバルトが主成分である酸性塩含浸液に浸漬・乾燥して多孔性ニッケル焼結基板の表面にコバルト化合物を固体状態で付着し、次いでアルカリ性のコバルト水溶液に浸漬することによって前工程における付着の欠損部(ピンホール)を覆った後、加熱を行ってコバルト錯イオン(HCoO2-)を酸化析出させて多孔性ニッケル焼結基板の表面を被覆する方法(例えば特許文献2)が有効であると考えられる。
特開昭63−216268号公報 特開平05−089876号公報
In order to solve this problem, cobalt hydroxide is formed on the surface of a porous nickel sintered substrate, and then the substrate is heated in the presence of alkali and oxygen to convert cobalt hydroxide into cobalt oxyhydroxide or There has been proposed a method (for example, Patent Document 1) in which an acidic nickel salt is impregnated after the surface of a porous nickel sintered substrate is coated by changing to cobalt oxide. Furthermore, if the anticorrosion effect on the electrolytic solution is insufficient in the method of Patent Document 1, first, the porous nickel sintered substrate is immersed and dried in an acidic salt impregnating solution containing cobalt as a main component, to thereby obtain a porous nickel sintered substrate. A cobalt compound is attached to the surface in a solid state and then dipped in an alkaline cobalt aqueous solution to cover the defective portion (pinhole) in the previous step, and then heated to oxidize cobalt complex ions (HCoO2 ). It is considered that a method of depositing and covering the surface of the porous nickel sintered substrate (for example, Patent Document 2) is effective.
JP 63-216268 A Japanese Patent Laid-Open No. 05-089876

しかしながら特許文献2の方法を用いても、多孔性ニッケル焼結基板を高温度、高濃度の含浸液からの腐食抑制の効果は見られるものの、充放電のサイクルを繰り返すことによ
り局所的に焼結基板と活物質との導電性の低下が起こり、電池の寿命性能が低下する場合があった。
However, even if the method of Patent Document 2 is used, the porous nickel sintered substrate is locally sintered by repeating the charge / discharge cycle, although the effect of inhibiting the corrosion from the high temperature, high concentration impregnating liquid is seen. In some cases, the conductivity between the substrate and the active material is lowered, and the life performance of the battery is lowered.

本発明はこの課題を解決することを目的になされたもので、多孔性ニッケル焼結基板の表面に、緻密で導電性の高いコバルト酸化物層を形成し、焼結基板の耐酸化性を向上させるとともに焼結基板と活物質との導電性の低下を抑制させ、寿命性能の優れたアルカリ蓄電池用水酸化ニッケル電極を安定に提供することを目的とする。   The present invention was made to solve this problem, and formed a dense and highly conductive cobalt oxide layer on the surface of a porous nickel sintered substrate to improve the oxidation resistance of the sintered substrate. An object of the present invention is to stably provide a nickel hydroxide electrode for an alkaline storage battery having excellent life performance by suppressing a decrease in conductivity between the sintered substrate and the active material.

前記課題を解決するために、本発明のアルカリ蓄電池用ニッケル正極の製造方法は、多孔性ニッケル焼結基板を硝酸コバルト水溶液中に浸漬した後で乾燥する第1の工程と、第1の工程を経た多孔性ニッケル焼結基板をアルカリ水溶液中に浸漬することにより硝酸コバルトを水酸化コバルトに変える第2の工程と、第2の工程を経た多孔性ニッケル焼結基板をスチーム加熱することにより水酸化コバルトをコバルト酸化物に変える第3の工程と、第3の工程を経た多孔性ニッケル焼結基板を酸性ニッケル塩含浸液に浸漬してニッケル塩を定着させる第4の工程とを含み、第1の工程において、硝酸コバルト水溶液中にアルカリカチオンを含ませることを特徴とする。   In order to solve the above-mentioned problems, a method for producing a nickel positive electrode for an alkaline storage battery of the present invention comprises a first step of immersing a porous nickel sintered substrate in a cobalt nitrate aqueous solution and then drying the first step, and a first step. A second step of changing the cobalt nitrate to cobalt hydroxide by immersing the passed porous nickel sintered substrate in an alkaline aqueous solution, and hydroxylating by steam heating the porous nickel sintered substrate having undergone the second step A third step of changing cobalt to cobalt oxide, and a fourth step of fixing the nickel salt by immersing the porous nickel sintered substrate that has undergone the third step in an acidic nickel salt impregnating solution. In the step, an alkali cation is included in the cobalt nitrate aqueous solution.

発明者らが鋭意検討した結果、導電性の高い高次のコバルト酸化物を効率よく得るためには、水酸化コバルト粒子の表面に適量のアルカリ水溶液を持たせてファニキュラ(Funicular)状態にし、高温下で固体・液体・気体の三相界面を形成させるとともに、水酸化コバルトがコバルト錯イオンとして溶出した際にアルカリカチオンを十分に存在させる必要があることを判明した。本発明の場合、第1の工程においてコバルト水溶液中にアルカリカチオンを含有させ、これをコバルト塩とともに定着させることにより、第3の工程において溶出したコバルト錯イオンの近傍にアルカリカチオンが均一かつ豊富に存在することになり、この工程を経た後の多孔性ニッケル焼結基板の表面を、導電性が高く均一な高次コバルト酸化物で効率よく被覆できる。これによって生産設備に過度な負担を掛けることなく、特許文献1や2などの従来技術よりも寿命特性の良いアルカリ蓄電池を提供できると考えられる。   As a result of intensive studies by the inventors, in order to efficiently obtain a high-order cobalt oxide having high conductivity, an appropriate amount of an alkaline aqueous solution is provided on the surface of the cobalt hydroxide particles to form a funicular state, and a high temperature. It was found that a solid, liquid, and gas three-phase interface was formed underneath, and that alkali cations should be sufficiently present when cobalt hydroxide was eluted as a cobalt complex ion. In the case of the present invention, the alkali cation is contained in the cobalt aqueous solution in the first step and fixed together with the cobalt salt, so that the alkali cation is uniformly and abundant in the vicinity of the cobalt complex ion eluted in the third step. Therefore, the surface of the porous nickel sintered substrate after this step can be efficiently coated with a high-order cobalt oxide having high conductivity and uniformity. Thus, it is considered that an alkaline storage battery having better life characteristics than the conventional techniques such as Patent Documents 1 and 2 can be provided without imposing an excessive burden on the production facility.

本発明によれば、多孔性ニッケル焼結基板の表面を、アルカリカチオンを含有した高次コバルト酸化物で均一に被覆できるので、この基板の耐酸化性を高めつつ、この基板と活物質との導電性も高められるようになり、結果としてアルカリ蓄電池の寿命特性を向上できる。   According to the present invention, since the surface of the porous nickel sintered substrate can be uniformly coated with the higher cobalt oxide containing alkali cations, the oxidation resistance of the substrate can be improved and the substrate and the active material can be improved. As a result, the conductivity of the alkaline storage battery can be improved.

以下に、本発明を実施するための最良の形態について、詳細に説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail.

第1の発明は、多孔性ニッケル焼結基板を硝酸コバルト水溶液中に浸漬した後で乾燥する第1の工程と、第1の工程を経た多孔性ニッケル焼結基板をアルカリ水溶液中に浸漬することにより硝酸コバルトを水酸化コバルトに変える第2の工程と、第2の工程を経た多孔性ニッケル焼結基板をスチーム加熱することにより前記水酸化コバルトをコバルト酸化物に変える第3の工程と、第3の工程を経た多孔性ニッケル焼結基板を酸性ニッケル塩含浸液に浸漬してニッケル塩を定着させる第4の工程とを含み、第1の工程において、硝酸コバルト水溶液中にアルカリカチオンを含ませることを特徴とするアルカリ蓄電池用ニッケル正極の製造方法に関する。   The first invention includes a first step of drying after a porous nickel sintered substrate is immersed in a cobalt nitrate aqueous solution, and a step of immersing the porous nickel sintered substrate that has undergone the first step in an alkaline aqueous solution. A second step of changing cobalt nitrate to cobalt hydroxide by a third step, a third step of changing the cobalt hydroxide to cobalt oxide by steam heating the porous nickel sintered substrate that has undergone the second step, And a fourth step of fixing the nickel salt by immersing the porous nickel sintered substrate that has undergone the step 3 in an acidic nickel salt impregnating solution. In the first step, an alkali cation is included in the cobalt nitrate aqueous solution. It is related with the manufacturing method of the nickel positive electrode for alkaline storage batteries characterized by the above-mentioned.

第3の工程において、水酸化コバルトがアルカリ水溶液に溶解せずに酸化した場合には結晶性が高く導電性が低いオキシ水酸化コバルトが生成し、酸化条件が不十分な場合には
導電性に乏しい四三酸化コバルトが生成する。しかし水酸化コバルトがアルカリ水溶液にコバルト錯イオンとして溶出して酸素と反応した場合(Co(OH)2+OH-→HCoO2 -+H2O、HCoO2 -+1/4O2+1/2H2O→CoOOH+OH-)、結晶性が低く導電性の高いオキシ水酸化コバルトが生成する。ここで多量のアルカリカチオンを含有できるようにすれば、さらに導電性が高い高次のオキシ水酸化コバルトが生成する。
In the third step, cobalt oxyhydroxide having high crystallinity and low conductivity is produced when cobalt hydroxide is oxidized without being dissolved in an alkaline aqueous solution, and becomes conductive when oxidation conditions are insufficient. Poor cobalt tetroxide is produced. However, when cobalt hydroxide elutes as cobalt complex ions in an aqueous alkali solution and reacts with oxygen (Co (OH) 2 + OH → HCoO 2 + H 2 O, HCoO 2 + 1 / 4O 2 + 1 / 2H 2 O → CoOOH + OH) - ) Cobalt oxyhydroxide with low crystallinity and high conductivity is produced. If a large amount of alkali cations can be contained here, higher-order cobalt oxyhydroxide having higher conductivity is generated.

この効果を得るべく、第2の工程でアルカリカチオンを多く含ませようとすれば、硝酸塩を水酸化物に変える際に用いるアルカリ水溶液を高濃度にする必要が生じる。また第3の工程でアルカリカチオンを多く含ませようとすれば、スチーム加熱を高温にするなど厳しい条件を強いる必要が生じる。これらいずれの選択も、生産設備のメンテナンスを含めて生産性コストを上げる懸念がある。   If an attempt is made to contain a large amount of alkali cations in the second step in order to obtain this effect, it is necessary to increase the concentration of the aqueous alkali solution used when changing nitrates to hydroxides. Further, if a large amount of alkali cations are included in the third step, it is necessary to impose severe conditions such as increasing the temperature of steam heating. Any of these options may raise productivity costs including maintenance of production facilities.

ここで水酸化コバルト粒子の表面に適量のアルカリ水溶液を持たせFunicular状態にし、高温下で固体・液体・気体の三相界面を形成させるとともに、水酸化コバルトがコバルト錯イオンとして溶出した際にアルカリカチオンを十分に存在させることにより、導電性の高い高次のコバルト酸化物が効率よく得られることがわかった。   Here, an appropriate amount of an alkaline aqueous solution is provided on the surface of the cobalt hydroxide particles to form a Funicular state, and a three-phase interface of solid, liquid, and gas is formed at a high temperature, and when cobalt hydroxide is eluted as a cobalt complex ion, It was found that a high-order cobalt oxide with high conductivity can be obtained efficiently by sufficiently containing cations.

本発明の場合、第1の工程においてコバルト水溶液中にアルカリカチオンを含有させ、これをコバルト塩とともに定着させることにより、第3の工程において溶出したコバルト錯イオンの近傍にアルカリカチオンが均一かつ豊富に存在することになり、この工程を経た後の多孔性ニッケル焼結基板の表面を、導電性が高く均一な高次コバルト酸化物で効率よく被覆できる。これにより、続く第4の工程における耐食性が向上するとともに、多孔性ニッケル焼結基板と活物質との導電性の低下を抑制できる。   In the case of the present invention, the alkali cation is contained in the cobalt aqueous solution in the first step and fixed together with the cobalt salt, so that the alkali cation is uniformly and abundant in the vicinity of the cobalt complex ion eluted in the third step. Therefore, the surface of the porous nickel sintered substrate after this step can be efficiently coated with a high-order cobalt oxide having high conductivity and uniformity. Thereby, while the corrosion resistance in the following 4th process improves, the fall of the electroconductivity with a porous nickel sintered substrate and an active material can be suppressed.

第2の発明は、第1の発明において、第1から第3の工程を少なくとも2サイクル繰り返した後で第4の工程を行い、かつアルカリカチオンを1サイクル目のみ含ませることを特徴とする。   A second invention is characterized in that, in the first invention, the first to third steps are repeated at least two cycles, the fourth step is performed, and the alkali cation is included only in the first cycle.

2サイクル目以降の第1の工程ではアルカリカチオンを実質上含ませないので、2サイクル目以降に形成される高次コバルト酸化物の導電性は、1サイクル目の第1から第3の工程において形成されたアルカリカチオンを多く含む導電性の高い高次コバルト酸化物よりも低いが、表面積は比較的小さいので溶出しにくい。一方で多孔性ニッケル焼結基板を直接に被覆する導電性の高い高次コバルト酸化物は微結晶化であり表面積が大きいので、第4の工程において多孔性ニッケル焼結基板の腐食を抑制しつつも多量の溶出を伴うことになり、多孔性ニッケル焼結基板と活物質との導電性を確保することが困難になる。この現象を回避するには、アルカリカチオンを多く含む高次コバルト酸化物の被覆量を増やす必要があるが、コストの高いコバルトを多く用いることになる。そこで1サイクル目に形成した導電性の高い高次コバルト酸化物の上に、導電性は低いが表面積の比較的小さい(すなわち溶出しにくい)高次コバルト酸化物をさらに形成することにより、1サイクル目に形成した導電性の高い高次コバルト酸化物を保護する犠牲被膜として機能する。   In the first step after the second cycle, an alkali cation is substantially not included. Therefore, the conductivity of the higher cobalt oxide formed after the second cycle is determined in the first to third steps of the first cycle. Although it is lower than the highly conductive high-order cobalt oxide containing a large amount of alkali cations formed, it is difficult to elute because the surface area is relatively small. On the other hand, the highly conductive high-order cobalt oxide that directly covers the porous nickel sintered substrate is microcrystallized and has a large surface area, so that the corrosion of the porous nickel sintered substrate is suppressed in the fourth step. Is accompanied by a large amount of elution, making it difficult to ensure the conductivity between the porous nickel sintered substrate and the active material. In order to avoid this phenomenon, it is necessary to increase the coating amount of the high-order cobalt oxide containing a large amount of alkali cations, but a lot of high-cost cobalt is used. Therefore, by forming a high-order cobalt oxide having a low conductivity but a relatively small surface area (that is, difficult to elute) on the high-conductivity high-order cobalt oxide formed in the first cycle, one cycle is obtained. It functions as a sacrificial coating that protects the highly conductive higher cobalt oxide formed in the eye.

なお第2の発明において、2サイクル目以降の第1の工程ではアルカリカチオンを実質的に含ませないようにするが、具体的には隣接する工程からの飛沫が混入するレベルである0.01重量%以下とするのが好ましい。   In the second invention, alkali cations are not substantially contained in the first step after the second cycle. Specifically, 0.01 is a level at which splashes from adjacent steps are mixed. It is preferable to set it as the weight% or less.

第3の発明は、第1の発明において、アルカリカチオンとしてカリウムイオン、ナトリウムイオンおよびリチウムイオンのうち少なくとも1つを含ませることを特徴とする。これらのアルカリカチオンは、コバルト化合物が酸化される際にコバルト酸化物の結晶格子内に取り込まれ、結晶格子の間隔を広げて高次コバルト酸化物の導電性を高める効果が高いので好ましい。   A third invention is characterized in that, in the first invention, at least one of potassium ion, sodium ion and lithium ion is contained as an alkali cation. These alkali cations are preferable because they are taken into the crystal lattice of the cobalt oxide when the cobalt compound is oxidized, and the effect of increasing the conductivity of the higher cobalt oxide by increasing the interval of the crystal lattice.

第4の発明は、第1の発明において、第3の工程の後におけるアルカリカチオンの量をコバルトイオンに対して2.5重量%以上、20重量%以下とすることを特徴とする。この値が2.5重量%未満だと、高次コバルト酸化物へのアルカリカチオンの含有度合が低下して本発明の効果が薄れる。一方でこの値が20重量%を超えると、c軸が過度に長いオキシ水酸化コバルトが増加して活物質の充填性が低下するので好ましくない。   The fourth invention is characterized in that, in the first invention, the amount of alkali cations after the third step is 2.5 wt% or more and 20 wt% or less with respect to cobalt ions. When this value is less than 2.5% by weight, the content of the alkali cation in the higher cobalt oxide is lowered and the effect of the present invention is diminished. On the other hand, when this value exceeds 20% by weight, cobalt oxyhydroxide having an excessively long c-axis is increased, and the filling property of the active material is lowered.

次に、本発明の上述以外の構成要件について詳述する。   Next, constituent features other than those described above will be described in detail.

多孔性ニッケル焼結基板は、ニッケル粉末、水、増粘剤、パンチング芯材を原材料として、乾燥、焼結の処理によって作製できる。厚みの好適範囲は400〜600μmであり、空孔体積比率の好適範囲は80〜90%である。   The porous nickel sintered substrate can be produced by drying and sintering processes using nickel powder, water, a thickener, and a punching core as raw materials. The preferable range of the thickness is 400 to 600 μm, and the preferable range of the pore volume ratio is 80 to 90%.

第1の工程に用いる硝酸コバルト水溶液中の濃度の好適範囲は0.5〜1.5mol/Lであり、乾燥温度の好適範囲は90〜110℃である。また第2の工程に用いるアルカリ水溶液としては、具体的に水酸化ナトリウムなどの水溶液が好適であり、その濃度の好適範囲は10〜30重量%であり、温度の好適範囲は60〜90℃である。さらに第4の工程で用いる酸性ニッケル塩含浸液としては、具体的に硝酸ニッケルなどの水溶液が好適であり、比重の好適範囲は1.5〜1.8g/mlである。   The suitable range of the concentration in the cobalt nitrate aqueous solution used in the first step is 0.5 to 1.5 mol / L, and the preferred range of the drying temperature is 90 to 110 ° C. Further, as the alkaline aqueous solution used in the second step, an aqueous solution such as sodium hydroxide is specifically suitable, the preferred range of the concentration is 10 to 30% by weight, and the preferred range of the temperature is 60 to 90 ° C. is there. Further, as the acidic nickel salt impregnating liquid used in the fourth step, specifically, an aqueous solution such as nickel nitrate is preferable, and a preferable range of specific gravity is 1.5 to 1.8 g / ml.

以下、本発明の実施例を説明する。   Examples of the present invention will be described below.

(実施例1)
(1)多孔性ニッケル焼結基板の作製
金属ニッケル粉末に増粘剤であるカルボキシメチルセルロース、消泡剤として界面活性剤および水を添加して練合し、ニッケルペーストを作製した。このニッケルペーストを厚み60μmのニッケルめっきを施した鉄製パンチング芯材に塗着してから窒素雰囲気下、900℃〜1100℃で焼結し、空孔体積比率が84%の多孔性ニッケル焼結基板を作製した。
Example 1
(1) Production of Porous Nickel Sintered Substrate A metallic paste was prepared by adding carboxymethyl cellulose as a thickener and surfactant and water as an antifoaming agent to metal nickel powder and kneading. This nickel paste is applied to an iron punching core material plated with nickel having a thickness of 60 μm, and then sintered at 900 ° C. to 1100 ° C. in a nitrogen atmosphere. Was made.

(2)第1の工程
上述の多孔性ニッケル焼結基板を、比重1.13の硝酸コバルト水溶液に0.04mol/Lの硝酸ナトリウムを溶かしたものに浸漬した後、100℃で30分乾燥した。
(2) 1st process After immersing the above-mentioned porous nickel sintered board in what dissolved 0.04 mol / L sodium nitrate in cobalt nitrate aqueous solution of specific gravity 1.13, it dried at 100 ° C for 30 minutes. .

(3)第2の工程
第1の工程を経た多孔性ニッケル焼結基板を、80℃、25重量%の水酸化ナトリウム水溶液に浸漬することにより、多孔性ニッケル焼結基板の表面にナトリウムを含有した水酸化コバルトを生成させた。
(3) Second step The porous nickel sintered substrate that has undergone the first step is immersed in a 25% by weight sodium hydroxide aqueous solution at 80 ° C., thereby containing sodium on the surface of the porous nickel sintered substrate. Cobalt hydroxide was produced.

(4)第3の工程
第2の工程を経た多孔性ニッケル焼結基板の表面が水酸化ナトリウム水溶液で濡れたままの状態で高温槽に投入し、高温槽内の温度が160℃に達するまで昇温した。160℃に達した時点で高温槽内に150℃の高温スチームを5分間投入し、高温槽内の温度を下げることなく相対湿度を18%になるまで加湿した(加湿段階)。その後、高温槽内の温度を下げることなく排気し、10分間をかけて徐々に高温槽内の相対湿度を低下させた(除湿段階)。これにより、多孔性ニッケル焼結基板の表面に生成した水酸化コバルトを高次コバルト酸化物として、緻密なナトリウムを含有したコバルト酸化物で覆われた多孔性ニッケル焼結基板を作製した。原子吸光分析(ICP)の測定結果から、コバルトイオンに対するナトリウムイオンの含有比率を測定したところ、5重量%であった。
(4) Third step The surface of the porous nickel sintered substrate that has undergone the second step is put into a high-temperature bath while being wet with an aqueous sodium hydroxide solution until the temperature in the high-temperature bath reaches 160 ° C. The temperature rose. When the temperature reached 160 ° C., high-temperature steam at 150 ° C. was introduced into the high-temperature bath for 5 minutes, and humidification was performed until the relative humidity reached 18% without lowering the temperature in the high-temperature bath (humidification stage). Then, it exhausted, without lowering | hanging the temperature in a high temperature tank, and the relative humidity in a high temperature tank was gradually reduced over 10 minutes (dehumidification stage). Thus, a porous nickel sintered substrate covered with cobalt oxide containing dense sodium was prepared by using cobalt hydroxide generated on the surface of the porous nickel sintered substrate as a high-order cobalt oxide. From the measurement result of atomic absorption analysis (ICP), the content ratio of sodium ion to cobalt ion was measured and found to be 5% by weight.

(5)第4の工程
第3の工程を経た多孔性ニッケル焼結基板を、80℃の硝酸ニッケルと硝酸コバルトの酸性混合水溶液(硝酸ニッケル:硝酸コバルト=100:1、比重1.7)に浸漬した後、100℃で乾燥することにより、多孔性ニッケル焼結基板の細孔内に硝酸ニッケルと硝酸コバルトを定着させた後、80℃、25重量%の水酸化ナトリウム水溶液に浸漬して、硝酸ニッケルと硝酸コバルトをそれぞれ水酸化物に置換した。これを80℃の温水で洗浄してアルカリ分を除去し、100℃で乾燥することにより、活物質(水酸化ニッケル)を充填し、この操作を6回繰り返し所望の充填量のニッケル正極を作製した。
(5) Fourth Step The porous nickel sintered substrate that has undergone the third step is made into an acidic mixed aqueous solution of nickel nitrate and cobalt nitrate (nickel nitrate: cobalt nitrate = 100: 1, specific gravity 1.7) at 80 ° C. After dipping, the nickel nitrate and cobalt nitrate are fixed in the pores of the porous nickel sintered substrate by drying at 100 ° C., and then immersed in a sodium hydroxide aqueous solution at 80 ° C. and 25 wt%, Nickel nitrate and cobalt nitrate were each replaced with hydroxide. This is washed with hot water at 80 ° C. to remove the alkali, and dried at 100 ° C., and then filled with an active material (nickel hydroxide). did.

(3)電池の作製
このニッケル正極を長さ260mm、高さ35mmに切断した。一方、一般式がMmNi3.55Co0.75Mn0.4Al0.3(Mmはミッシュメタルで希土類の混合物を示す)で表される水素吸蔵合金100重量部に対して、増粘剤としてカルボキシメチルセルロースを0.15重量%、導電剤としてカーボンブラックを0.3重量%、結着剤としてスチレン−ブタジエン共重合体を0.8重量部および分散媒として水とを混合してペースを作製し、このペーストを厚み60μm、開孔率42%のニッケルめっきを施した鉄製パンチング芯材の両面に塗着し、乾燥、加圧を行い、長さ310mm、幅35mm、厚さ0.3mm、容量3000mAhの負極を作製した。上記の正極aと負極とポリプロピレン製不織布セパレータとを組み合わせて渦巻き状に巻回し、SCサイズの円筒形金属ケースに挿入し、比重1.30の水酸化カリウム水溶液に40g/lの水酸化リチウムを溶解した電解液を所定量注入した後、ケースを封口し、公称容量2.0Ahのアルカリ蓄電池を構成した。これを実施例1とする。
(3) Production of battery This nickel positive electrode was cut into a length of 260 mm and a height of 35 mm. On the other hand, with respect to 100 parts by weight of the hydrogen storage alloy represented by the general formula MmNi 3.55 Co 0.75 Mn 0.4 Al 0.3 (Mm represents a mixture of rare earths with misch metal), 0.15 wt. %, Carbon black as a conductive agent, 0.3% by weight, 0.8 part by weight of a styrene-butadiene copolymer as a binder, and water as a dispersion medium to prepare a pace, and this paste has a thickness of 60 μm Then, it was applied to both surfaces of an iron punched core material plated with nickel with a porosity of 42%, dried and pressurized to produce a negative electrode having a length of 310 mm, a width of 35 mm, a thickness of 0.3 mm, and a capacity of 3000 mAh. . The positive electrode a, the negative electrode and a polypropylene nonwoven fabric separator were combined and wound in a spiral shape, inserted into an SC-sized cylindrical metal case, and 40 g / l lithium hydroxide was added to a potassium hydroxide aqueous solution having a specific gravity of 1.30. After injecting a predetermined amount of the dissolved electrolyte, the case was sealed to constitute an alkaline storage battery with a nominal capacity of 2.0 Ah. This is Example 1.

(実施例2〜5)
実施例1に対し、第1の工程で用いた硝酸ナトリウムの濃度を0.02mol/L(実施例2)、0.08mol/L(実施例3)、0.16mol/L(実施例4)および0.18mol/L(実施例5)と変化させ、ICPの測定結果から求めたコバルトイオンに対するナトリウムイオンの含有比率を2.5重量%(実施例2)、10.0重量%(実施例3)、20.0重量%(実施例4)および21.0重量%(実施例5)とした以外は、実施例1と同様に作製したニッケル正極を用いてアルカリ蓄電池を作製した。これを実施例2〜5とする。
(Examples 2 to 5)
Compared to Example 1, the concentration of sodium nitrate used in the first step was 0.02 mol / L (Example 2), 0.08 mol / L (Example 3), 0.16 mol / L (Example 4). And 0.18 mol / L (Example 5), and the content ratio of sodium ions to cobalt ions determined from ICP measurement results was 2.5% by weight (Example 2), 10.0% by weight (Examples). 3) An alkaline storage battery was produced using a nickel positive electrode produced in the same manner as in Example 1 except that the content was 20.0% by weight (Example 4) and 21.0% by weight (Example 5). Let this be Examples 2-5.

(実施例6〜7)
実施例1に対し、第1の工程で用いた0.04mol/Lの硝酸ナトリウムを、0.05mol/Lの硝酸カリウム(実施例6)、0.05mol/Lの硝酸リチウム(実施例7)とし、ICPの測定結果から求めたコバルトイオンに対するカリウムイオンの含有比率を4.5重量%(実施例6)、リチウムイオンの含有比率を3.5重量%(実施例7)とした以外は、実施例1と同様に作製したニッケル正極を用いてアルカリ蓄電池を作製した。これを実施例6〜7とする。
(Examples 6 to 7)
In contrast to Example 1, 0.04 mol / L sodium nitrate used in the first step was changed to 0.05 mol / L potassium nitrate (Example 6) and 0.05 mol / L lithium nitrate (Example 7). This was carried out except that the content ratio of potassium ions to cobalt ions determined from ICP measurement results was 4.5% by weight (Example 6) and the content ratio of lithium ions was 3.5% by weight (Example 7). An alkaline storage battery was produced using a nickel positive electrode produced in the same manner as in Example 1. Let this be Examples 6-7.

(実施例8)
実施例1と同じ多孔性ニッケル焼結基板を、以下の順に処理した。
(1)実施例1と同様の第1〜3の工程
(2)硝酸ナトリウムを含まないこと以外は実施例1と同様の第1の工程
(3)実施例1と同様の第2〜4の工程
この多孔性ニッケル焼結基板を用いたこと以外は、実施例1と同様に作製したニッケル正極を用いてアルカリ蓄電池を作製した。これを実施例8とする。
(Example 8)
The same porous nickel sintered substrate as in Example 1 was processed in the following order.
(1) First to third steps similar to Example 1 (2) First step similar to Example 1 except that sodium nitrate is not included (3) Second to fourth similar to Example 1 Process An alkaline storage battery was produced using a nickel positive electrode produced in the same manner as in Example 1 except that this porous nickel sintered substrate was used. This is Example 8.

(比較例1)
実施例1に対し、第1の工程において硝酸ナトリウムを含まないようにしたこと以外は、実施例1と同様に作製したニッケル正極を用いてアルカリ蓄電池を作製した。これを比較例1とする。なおICPの測定結果から求めたコバルトイオンに対するナトリウムイオンの含有比率は2.0重量%であった。
(Comparative Example 1)
Compared to Example 1, an alkaline storage battery was produced using a nickel positive electrode produced in the same manner as in Example 1 except that sodium nitrate was not included in the first step. This is referred to as Comparative Example 1. The content ratio of sodium ions to cobalt ions determined from ICP measurement results was 2.0% by weight.

以上の方法により作製した各例の電池について、20℃の雰囲気温度で電流値2.0Aで理論容量の120%まで充電し、電流値2.0Aで電池電圧が0.8Vに至るまで放電するサイクルを繰り返した。放電容量が初期放電容量の80%まで劣化した時のサイクル数を求め、比較例1のサイクル数を100とし、それぞれの電池のサイクル数を指数で示した。この結果を(表1)に示す。   With respect to the battery of each example manufactured by the above method, the battery is charged to 120% of the theoretical capacity at a current value of 2.0 A at an ambient temperature of 20 ° C., and discharged until the battery voltage reaches 0.8 V at a current value of 2.0 A. The cycle was repeated. The number of cycles when the discharge capacity deteriorated to 80% of the initial discharge capacity was determined, and the number of cycles of Comparative Example 1 was set to 100, and the number of cycles of each battery was indicated by an index. The results are shown in (Table 1).

Figure 2008269913
(表1)に示した結果から、第1の工程で硝酸コバルト水溶液にアルカリカチオンを混合させた各実施例の電池は、比較例1と比べて寿命特性が向上した。比較例1ではアルカリカチオンが内部まで十分取り込まれていないのに対し、各実施例では第1の工程でアルカリカチオンを硝酸コバルト水溶液中に混合しており、多孔性ニッケル焼結基板に定着されるコバルト硝酸塩の内部までアルカリカチオンが十分取り込まれた状態となるので、その後の酸化過程でアルカリカチオンを含有した高次コバルト酸化物を多く生成することができる。このアルカリカチオンを含有した高次コバルト酸化物は、結晶性が低く、微細化しているために多くの結晶子界面が形成される。導電性の高い高次コバルト酸化物としての側面と、結晶子界面が電子伝導面として機能する側面との双方が、多孔性ニッケル焼結基板の良好な導電性に寄与する一方、電解液に対する腐食抑制効果も相まって、寿命特性が向上したものと考えられる。この効果はアルカリカチオンがナトリウムイオン、カリウムイオン、リチウムイオンのいずれでも同様である。
Figure 2008269913
From the results shown in (Table 1), the battery of each example in which the alkali cation was mixed with the cobalt nitrate aqueous solution in the first step had improved life characteristics as compared with Comparative Example 1. In Comparative Example 1, the alkali cations are not sufficiently taken up to the inside, whereas in each Example, the alkali cations are mixed in the cobalt nitrate aqueous solution in the first step and fixed to the porous nickel sintered substrate. Since the alkali cations are sufficiently taken up to the inside of the cobalt nitrate, many higher order cobalt oxides containing alkali cations can be generated in the subsequent oxidation process. This high-order cobalt oxide containing an alkali cation has low crystallinity and is miniaturized, so that many crystallite interfaces are formed. Both the side surface as a highly conductive higher cobalt oxide and the side surface where the crystallite interface functions as an electron conducting surface contribute to the good conductivity of the porous nickel sintered substrate, while corrosion against the electrolyte Combined with the suppression effect, it is considered that the life characteristics are improved. This effect is the same regardless of whether the alkali cation is a sodium ion, a potassium ion or a lithium ion.

ただしアルカリカチオンの含有量が少ない実施例2は、第4の工程における耐食性が低下した影響で寿命特性がやや低下した。またアルカリカチオンの含有量が多い実施例5もまた寿命特性がやや低下したが、この現象はオキシ水酸化コバルトのc軸が過度に長くなったために活物質の充填性が低下して充填後の正極の空隙が少なくなり、電解液が十分に行き渡らなかった影響と推測される。よって第3の工程の後におけるアルカリカチオンの量は、コバルトイオンに対して2.5重量%以上、20重量%以下であるのが好ましい。   However, in Example 2 where the alkali cation content was low, the life characteristics were slightly lowered due to the influence of the decrease in the corrosion resistance in the fourth step. Further, Example 5 having a high content of alkali cations also had a slight decrease in life characteristics, but this phenomenon was caused by the fact that the c-axis of cobalt oxyhydroxide was excessively long, so that the filling property of the active material was reduced and It is presumed that the positive electrode voids were reduced and the electrolyte solution was not sufficiently distributed. Therefore, the amount of alkali cations after the third step is preferably 2.5% by weight or more and 20% by weight or less with respect to cobalt ions.

さらに実施例8では、アルカリカチオンを含有した高次コバルト酸化物の表面にアルカリカチオンの含有量の少ないコバルト酸化物層を被覆することにより、より電池特性の良好な結果が得られた。アルカリカチオンを含有したコバルト酸化物は導電性が高い反面、
結晶が微細化しているため表面積は大きくなっており、第4の工程において、耐食性効果はあるものの少なからず高温かつ高濃度の硝酸ニッケル水溶液に溶出する。実施例9のように、アルカリカチオンを含有した高次コバルト酸化物の表面に、アルカリカチオンの含有量の少ないコバルト酸化物(導電性は高くないが結晶性が高く表面積が小さい)の層を被覆することで、第4の工程でアルカリカチオンを含有した高次コバルト酸化物が溶出することを抑制でき、電池構成後も導電性の高い状態を維持することができたことで、寿命特性がさらに向上したものと考えられる。
Furthermore, in Example 8, the result of a more favorable battery characteristic was obtained by coat | covering the cobalt oxide layer with little content of an alkali cation on the surface of the higher order cobalt oxide containing the alkali cation. While cobalt oxide containing alkali cations is highly conductive,
Since the crystals are finer, the surface area is larger, and in the fourth step, although it has a corrosion resistance effect, it elutes into a high-temperature and high-concentration nickel nitrate aqueous solution. As in Example 9, the surface of a high-order cobalt oxide containing an alkali cation is coated with a layer of cobalt oxide having a low alkali cation content (not high conductivity but high crystallinity and low surface area). As a result, it is possible to suppress the elution of higher cobalt oxide containing alkali cations in the fourth step, and to maintain a highly conductive state even after the battery configuration, further improving the life characteristics. It is thought to have improved.

本発明の製造方法を経たニッケル正極を用いたアルカリ蓄電池は寿命特性に優れるので、電気自動車用の補助電源や電動工具の主電源など様々な用途において有用である。   The alkaline storage battery using the nickel positive electrode that has undergone the manufacturing method of the present invention is excellent in life characteristics, and thus is useful in various applications such as an auxiliary power source for electric vehicles and a main power source for electric tools.

Claims (4)

多孔性ニッケル焼結基板を硝酸コバルト水溶液中に浸漬した後で乾燥する第1の工程と、第1の工程を経た多孔性ニッケル焼結基板をアルカリ水溶液中に浸漬することにより硝酸コバルトを水酸化コバルトに変える第2の工程と、
第2の工程を経た多孔性ニッケル焼結基板をスチーム加熱することにより前記水酸化コバルトをコバルト酸化物に変える第3の工程と、
第3の工程を経た多孔性ニッケル焼結基板を酸性ニッケル塩含浸液に浸漬してニッケル塩を定着させる第4の工程と、
を含むアルカリ蓄電池用ニッケル正極の製造方法であって、
前記第1の工程において、前記硝酸コバルト水溶液中にアルカリカチオンを含ませることを特徴とする、アルカリ蓄電池用ニッケル正極の製造方法。
A first step in which a porous nickel sintered substrate is dipped in a cobalt nitrate aqueous solution and then dried, and a cobalt nickel nitrate substrate which has been subjected to the first step is dipped in an alkaline aqueous solution to hydroxylate cobalt nitrate. A second step to convert to cobalt,
A third step of changing the cobalt hydroxide to cobalt oxide by steam heating the porous nickel sintered substrate that has undergone the second step;
A fourth step of fixing the nickel salt by immersing the porous nickel sintered substrate that has undergone the third step in an acidic nickel salt impregnating solution;
A method for producing a nickel positive electrode for an alkaline storage battery, comprising:
In the first step, an alkali cation is included in the aqueous cobalt nitrate solution, and the method for producing a nickel positive electrode for an alkaline storage battery.
前記第1から第3の工程を少なくとも2サイクル繰り返した後で前記第4の工程を行い、かつ前記アルカリカチオンを1サイクル目のみ含ませることを特徴とする、請求項1記載のアルカリ蓄電池用ニッケル正極の製造方法。 The nickel for alkaline storage batteries according to claim 1, wherein the fourth step is performed after repeating the first to third steps at least two cycles, and the alkali cation is included only in the first cycle. A method for producing a positive electrode. 前記アルカリカチオンとしてカリウムイオン、ナトリウムイオンおよびリチウムイオンのうち少なくとも1つを含ませることを特徴とする、請求項1記載のアルカリ蓄電池用ニッケル正極の製造方法。 The method for producing a nickel positive electrode for an alkaline storage battery according to claim 1, wherein at least one of potassium ion, sodium ion and lithium ion is included as the alkali cation. 前記第3の工程の後における前記アルカリカチオンの量を、コバルトイオンに対して2.5重量%以上、20重量%以下とすることを特徴とする、請求項1記載のアルカリ蓄電池用ニッケル正極の製造方法。 2. The nickel positive electrode for an alkaline storage battery according to claim 1, wherein the amount of the alkali cation after the third step is 2.5 wt% or more and 20 wt% or less with respect to cobalt ions. Production method.
JP2007110235A 2007-04-19 2007-04-19 Method for producing nickel positive electrode for alkaline storage battery Expired - Fee Related JP5167681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007110235A JP5167681B2 (en) 2007-04-19 2007-04-19 Method for producing nickel positive electrode for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007110235A JP5167681B2 (en) 2007-04-19 2007-04-19 Method for producing nickel positive electrode for alkaline storage battery

Publications (2)

Publication Number Publication Date
JP2008269913A true JP2008269913A (en) 2008-11-06
JP5167681B2 JP5167681B2 (en) 2013-03-21

Family

ID=40049168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007110235A Expired - Fee Related JP5167681B2 (en) 2007-04-19 2007-04-19 Method for producing nickel positive electrode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JP5167681B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63216268A (en) * 1987-03-03 1988-09-08 Sanyo Electric Co Ltd Manufacture of nickel hydroxide electrode for alkaline storage battery
JPH117951A (en) * 1997-04-21 1999-01-12 Shin Kobe Electric Mach Co Ltd Nickel plate for alkaline storage battery and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63216268A (en) * 1987-03-03 1988-09-08 Sanyo Electric Co Ltd Manufacture of nickel hydroxide electrode for alkaline storage battery
JPH117951A (en) * 1997-04-21 1999-01-12 Shin Kobe Electric Mach Co Ltd Nickel plate for alkaline storage battery and manufacture thereof

Also Published As

Publication number Publication date
JP5167681B2 (en) 2013-03-21

Similar Documents

Publication Publication Date Title
JP5743780B2 (en) Cylindrical nickel-hydrogen storage battery
JPWO2006064979A1 (en) Nickel electrode for alkaline secondary battery, method for producing the same, and alkaline secondary battery
JP3717786B2 (en) Nickel electrode for alkaline storage battery, method for producing nickel electrode for alkaline storage battery, and alkaline storage battery
JP4458725B2 (en) Alkaline storage battery
JP2012134134A (en) Alkaline storage battery
JP2001332257A (en) Non-baking type positive electrode for alkaline battery, its manufacturing method and the alkaline battery using the non-baking type positive electrode
JP5167681B2 (en) Method for producing nickel positive electrode for alkaline storage battery
JP5147235B2 (en) Nickel metal hydride storage battery
JP5096910B2 (en) Alkaline storage battery
JP2003503821A (en) Nickel positive electrode plate for alkaline storage battery and method for producing the same
JP3685704B2 (en) Method for producing nickel electrode for alkaline storage battery
JP3895985B2 (en) Nickel / hydrogen storage battery
JP4115367B2 (en) Hydrogen storage alloy for alkaline storage battery, method for producing the same, and alkaline storage battery
JP3619703B2 (en) Method for producing nickel electrode for alkaline storage battery
JPH1173957A (en) Alkaline storage battery and manufacture of nickel positive pole plate thereof
JP3702107B2 (en) Method for producing sintered nickel electrode for alkaline storage battery
JP3414184B2 (en) Method for producing positive electrode plate for alkaline storage battery
JP2000173606A (en) Sintered-type nickel hydroxide positive electrode, alkaline storage battery using the positive electrode, and manufacture of sintered type nickel hydroxide positive electrode
JP4215407B2 (en) Hydrogen storage alloy electrode, manufacturing method thereof, and alkaline storage battery
JPH097591A (en) Hydrogen absorbing alloy, its manufacture and hydrogen absorbing alloy electrode using this hydrogen absorbing alloy
JP4357133B2 (en) Hydrogen storage alloy for electrode, hydrogen storage alloy electrode and alkaline storage battery
JP2007258074A (en) Non-sintered nickel electrode for alkaline storage battery and alkaline storage battery using it
JP2008218407A (en) Manufacturing method of nickel positive electrode for alkaline storage battery, and alkaline storage battery
JP4301778B2 (en) Method for producing sintered nickel positive electrode for alkaline secondary battery
JP3459525B2 (en) Method for producing hydrogen storage alloy for hydrogen storage alloy electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100312

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160111

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees