JP2008268162A - Frequency sweeping type terahertz spectrum measurement device - Google Patents

Frequency sweeping type terahertz spectrum measurement device Download PDF

Info

Publication number
JP2008268162A
JP2008268162A JP2007134766A JP2007134766A JP2008268162A JP 2008268162 A JP2008268162 A JP 2008268162A JP 2007134766 A JP2007134766 A JP 2007134766A JP 2007134766 A JP2007134766 A JP 2007134766A JP 2008268162 A JP2008268162 A JP 2008268162A
Authority
JP
Japan
Prior art keywords
frequency
terahertz
spectrum
rotation angle
sweep
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007134766A
Other languages
Japanese (ja)
Inventor
Junichi Nishizawa
潤一 西澤
Jiro Shibata
治郎 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TERAHERTZ LAB CO
TERAHERTZ LABORATORY CO
Original Assignee
TERAHERTZ LAB CO
TERAHERTZ LABORATORY CO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TERAHERTZ LAB CO, TERAHERTZ LABORATORY CO filed Critical TERAHERTZ LAB CO
Priority to JP2007134766A priority Critical patent/JP2008268162A/en
Publication of JP2008268162A publication Critical patent/JP2008268162A/en
Pending legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem wherein a rotation angle control by a frequency sweep mechanism takes too much time, when a high-speed frequency sweep is needed, and there is a problem in accuracy, when conducting wide band, high-accuracy and high-speed terahertz spectral measurements, according to the frequency variation due to the temperature change and component wear of the frequency sweep mechanism and the rotation angle control type, or the like. <P>SOLUTION: This terahertz spectrum measurement device is using a reference light in a means which carries out intensity compensation of terahertz lights T<SB>0</SB>-T<SB>6</SB>, T<SB>S</SB>and a means which takes a standard frequency from the absorption spectrum of a gas cell and then calibrates the measured spectrum frequency in real-time basis. According to this procedure, the terahertz spectrum measurement device can sweep the rotation angle continuously and at a high speed in the predetermined frequency range, by using a smooth analog drive mechanism, or the like. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、コヒーレントなテラヘルツ波を掃引して採るスペクトル測定装置の周波数校正方法及び手段に関わる。  The present invention relates to a frequency calibration method and means for a spectrum measuring apparatus that sweeps and takes a coherent terahertz wave.

一般に、スペクトル測定における周波数校正は、光源の輝線スペクトル、ガスセルの吸収スペクトルあるいは周波数掃引機構の基準位置センサなどを用いて行われる。
しかしながら、テラヘルツ波が未踏領域の電磁波だったためにテラヘルツスペクトル測定における周波数校正法は未開発であり、特に、広帯域・高精度・高速測定における従来の周波数校正法及び手段は必ずしも適当ではない。
新実験化学講座 基礎技術3光〔1〕p194〜p198 特願2004−16889 特開2000−136965 特開2004−108808 J.Phys.D:Appl.Phys.36(2003)pp.2958−2961 The Japan Academy,Ser.B,Vol.82,No9(2006)
In general, frequency calibration in spectrum measurement is performed using an emission line spectrum of a light source, an absorption spectrum of a gas cell, a reference position sensor of a frequency sweep mechanism, or the like.
However, since the terahertz wave is an electromagnetic wave in an unexplored region, a frequency calibration method in terahertz spectrum measurement has not been developed. In particular, conventional frequency calibration methods and means in wideband, high accuracy, and high speed measurement are not necessarily appropriate.
New Experimental Chemistry Course Basic Technology 3 Light [1] p194-p198 Japanese Patent Application No. 2004-16889 JP 2000-136965 A JP2004-108808 J. et al. Phys. D: Appl. Phys. 36 (2003) p. 2958-2961 The Japan Academy, Ser. B, Vol. 82, No9 (2006)

現在は、テラヘルツスペクトルの周波数校正において、既存のテラヘルツ光源が一般化していないため所望のテラヘルツ輝線スペクトルを得ることは困難である。
また、周波数掃引機構の基準位置に対応させて周波数掃引する場合は、該周波数掃引機構の温度変化や部材磨耗、位置センサ感度、及び、PID回転角制御方式などによる周波数変動があるため、広帯域・高精度・高速のテラヘルツスペクトル測定に当たっては精度上の問題がある。
更に、化学反応の追跡や移動物体のテラヘルツスペクトル測定など高速の周波数掃引が必要になる場合は、該周波数掃引機構による回折格子などの回転角制御に時間がかかり過ぎる。
本発明の目的は、上記の欠点を除くために、テラヘルツ光の強度補正手段と所望の吸収スペクトルを有するガスセル・周波数掃引機構・周波数掃引方法・周波数校正方法を用いて、広帯域・高精度・高速の周波数掃引式テラヘルツスペクトル測定装置を提供することにある。
At present, in the frequency calibration of the terahertz spectrum, it is difficult to obtain a desired terahertz emission line spectrum because an existing terahertz light source is not generalized.
Further, when frequency sweeping is performed in correspondence with the reference position of the frequency sweeping mechanism, there is a frequency variation due to temperature change of the frequency sweeping mechanism, member wear, position sensor sensitivity, PID rotation angle control method, etc. There is a problem of accuracy in terahertz spectrum measurement with high accuracy and high speed.
Furthermore, when a high-speed frequency sweep is required, such as tracking a chemical reaction or measuring a terahertz spectrum of a moving object, it takes too much time to control the rotation angle of a diffraction grating or the like by the frequency sweep mechanism.
The purpose of the present invention is to eliminate the above-mentioned drawbacks by using a gas cell having a terahertz light intensity correction means and a desired absorption spectrum, a frequency sweeping mechanism, a frequency sweeping method, and a frequency calibration method. It is an object to provide a frequency sweep type terahertz spectrum measuring apparatus.

請求項1記載の発明は、測定試料のテラヘルツスペクトルを周波数校正する場合において、試料に周波数掃引して照射するテラヘルツ光から参照光を分岐して、
該テラヘルツ光の強度補正する手段と、水蒸気等ガスの種類・気圧・温度等が設定された1式以上のガスセルの吸収スペクトルから基準周波数を採る手段に用いて、該周波数校正していることを特徴とする。
In the invention according to claim 1, in the case of frequency calibration of the terahertz spectrum of the measurement sample, the reference light is branched from the terahertz light that is irradiated by sweeping the frequency of the sample,
The frequency calibration is carried out using the means for correcting the intensity of the terahertz light and the means for taking the reference frequency from the absorption spectrum of one or more gas cells in which the type, pressure, temperature, etc. of the gas such as water vapor are set. Features.

この発明によると、試料に照射されるテラヘルツ光の強度が周波数掃引に伴って変動したとしても強度補正されるのでスペクトル測定への影響が避けられる。
また、ガスセルの有する基準周波数測定が該テラヘルツスペクトル測定と同時に行われるので、テラヘルツスペクトルの周波数校正が正確である。
ガスセルの代わりにスペクトルの半値幅は大きいが、液体セル、固体セルを適宜利用することも可能である。
According to the present invention, even if the intensity of the terahertz light irradiated to the sample fluctuates with the frequency sweep, the intensity is corrected, so that the influence on the spectrum measurement is avoided.
In addition, since the reference frequency measurement of the gas cell is performed simultaneously with the terahertz spectrum measurement, the frequency calibration of the terahertz spectrum is accurate.
Instead of the gas cell, the half width of the spectrum is large, but a liquid cell or a solid cell can be used as appropriate.

請求項2記載の発明は、校正する1周波数を、校正曲線の制御点区間すなわち2つの該基準周波数の間、あるいは、複数の該基準周波数に隣接させていることを特徴とする。  The invention according to claim 2 is characterized in that one frequency to be calibrated is adjacent to a control point section of a calibration curve, that is, between the two reference frequencies, or adjacent to a plurality of the reference frequencies.

この発明によると、例えば、該1周波数校正は、該ガスセルで採った複数の該基準周波数を制御点とする3次のスプライン関数などで設定した校正曲線を用いて行うが、制御点が水蒸気などテラヘルツ吸収スペクトルの多いガスセルから適宜用意され、校正される周波数の極近い両隣り、あるいは、近くに複数隣接してあるので補間がより正確になる。
また、周波数掃引における機械的・光学的な材料品質の誤差や経時変化、あるいは、位置制御特性・温度特性などの変化があっても、該基準周波数が試料のテラヘルツスペクトル測定と同期して校正曲線上に設定されるので高精度の周波数校正が可能である。
According to the present invention, for example, the one-frequency calibration is performed using a calibration curve set by a cubic spline function or the like having a plurality of the reference frequencies taken by the gas cell as control points. Interpolation becomes more accurate because gas cells having a large terahertz absorption spectrum are appropriately prepared and are adjacent to each other in the vicinity of the frequency to be calibrated or adjacent to each other.
In addition, even if there are mechanical and optical material quality errors and changes over time in frequency sweep, or changes in position control characteristics and temperature characteristics, the reference frequency is synchronized with the terahertz spectrum measurement of the sample. Since it is set above, high-precision frequency calibration is possible.

請求項3記載の発明は、周波数掃引において、周波数を設定する回折格子などの回転角制御をしないで、所定の周波数の区間を円滑なアナログ駆動機構などを用いて連続且つ高速に回転角掃引していることを特徴とする。  According to a third aspect of the present invention, in the frequency sweep, the rotation angle of the predetermined frequency section is continuously and rapidly swept using a smooth analog drive mechanism without performing the rotation angle control of a diffraction grating or the like for setting the frequency. It is characterized by.

この発明によると、例えば、デジタル制御による正確な回転角の位置決めが不要になり、ボイスコイルモータ、圧電アクチュエータ、バネなどの器材を備えた円滑な周波数掃引機構による周波数掃引に同期して測定試料やガスセルのスペクトルが測定されるので、テラヘルツスペクトルを採る時間が大幅に短縮され、且つ、高精度・小型・低価格のテラヘルツスペクトル測定装置が実現できる。
例えば、ボールねじやリニアモータなどのアナログ伝導機構が、ステッピングモータやデジタル電源などにより機構的・電気的な離散値で駆動されている場合でも、量子化レベルを多く取れば、即ち、該掃引周波数のサンプリング間隔より充分細かい周波数駆動手段になっていれば本発明は同様に適用できる。
According to the present invention, for example, positioning of an accurate rotation angle by digital control becomes unnecessary, and a measurement sample or a sample is synchronized with a frequency sweep by a smooth frequency sweep mechanism including equipment such as a voice coil motor, a piezoelectric actuator, and a spring. Since the spectrum of the gas cell is measured, the time for taking the terahertz spectrum is greatly shortened, and a terahertz spectrum measuring apparatus with high accuracy, small size, and low price can be realized.
For example, even when an analog conduction mechanism such as a ball screw or a linear motor is driven with a mechanical / electrical discrete value by a stepping motor or a digital power source, if the quantization level is increased, that is, the sweep frequency If the frequency driving means is sufficiently finer than the sampling interval, the present invention can be similarly applied.

本発明によれば、周波数掃引における機械的・光学的な材料品質の誤差や経時変化、あるいは、測定環境により位置制御特性・温度特性などに変化があっても、高品質のテラヘルツスペクトル測定ができるという利点がある。  According to the present invention, it is possible to perform high-quality terahertz spectrum measurement even if there is an error in mechanical and optical material quality in frequency sweeping, a change over time, or a change in position control characteristics and temperature characteristics depending on the measurement environment. There is an advantage.

テラヘルツスペクトル測定において、テラヘルツ光の強度補正する手段と、ガスセルの吸収スペクトルから基準周波数を採る手段を適用するが、以下の実施例で説明する。  In terahertz spectrum measurement, means for correcting the intensity of terahertz light and means for taking a reference frequency from the absorption spectrum of the gas cell are applied, which will be described in the following examples.

図1は、本発明の請求項1に関する1実施例で、周波数掃引式テラヘルツスペクトル測定装置の概略図であって、符号は図3と同様である。  FIG. 1 is a schematic diagram of a frequency sweep type terahertz spectrum measuring apparatus according to an embodiment of the present invention relating to claim 1, and the reference numerals are the same as those in FIG.

この例では、YAGレーザ光源Y1、Yから波長1064nmの赤外光がクロムフォルステライト結晶に照射されると、赤外レーザ光源Cr、Crから図示していない回折格子で波長選択され尖鋭化した赤外レーザ光I、Iが出射する。
例えば、Crから波長1217.734nm、周波数246.1884THzのI、Crから波長1222.701nm、周波数245.1884THzのIを出射させ、光混合器Bで角度整合を取ってGaP結晶に入射させると、差周波数である1THzのテラヘルツ光Tが所定の方向に出てくる。
このように、赤外レーザ光Iと赤外レーザ光Iとの差周波数がテラヘルツ光Tの周波数を決定するので、例えば、Iの波長を固定してIの波長を前記赤外レーザ光源Crの中に設置している回折格子の回転角を回転機構Rで変え、上記と同様にGaP結晶に入射させると、IとI差周波数のテラヘルツ光がGaP結晶から所定の方向に出てくる。
尚、IとIの位相相整合は、YAGレーザ光源Y1、Yの図示していないQスイッチのタイミング調整でなされる。
In this example, when the infrared light of a YAG laser light source Y1, Y 2 wavelength 1064nm is irradiated chromium forsterite crystals, pointed to wavelength selection by the diffraction grating (not shown) from the infrared laser light source Cr 1, Cr 2 Infrared laser beams I 1 and I 2 are emitted.
For example, the wavelength from Cr 1 1217.734nm, I 1 frequency 246.1884THz, Cr 2 wavelength 1222.701Nm, is emitted to I 2 frequency 245.1884THz, taking angular alignment with the optical mixer B in GaP crystals When incident, terahertz light T 1 having a difference frequency of 1 THz comes out in a predetermined direction.
Thus, the difference frequency between the infrared laser light I 1 and the infrared laser light I 2 determines the frequency of the terahertz light T 1. For example, the wavelength of I 1 is fixed and the wavelength of I 2 is changed to the red wavelength. When the rotation angle of the diffraction grating installed in the outer laser light source Cr 2 is changed by the rotation mechanism R and incident on the GaP crystal in the same manner as described above, terahertz light having a difference frequency between I 1 and I 2 is predetermined from the GaP crystal. Come out in the direction.
Incidentally, the phase phase matching of I 1 and I 2 is performed by adjusting the timing of the Q switches (not shown) of the YAG laser light sources Y 1 and Y 2 .

テラヘルツ光TはビームスプリッターHで参照光Tと測定用テラヘルツ光Tに分岐され、更に、参照光TはビームスプリッターH、H、Hを用いて、夫々のテラヘルツ光T、T、T、及び強度補正用テラヘルツ光Tに分岐され、水蒸気ガスセルC、一酸化炭素ガスセルC、フロンガスセルCを透過してテラヘルツセンサS〜SとSへ入る。Terahertz light T 1 is branched as reference light T 2 by a beam splitter H 1 to the measuring terahertz light T 3, further, the reference light T 2 are using a beam splitter H 2, H 3, H 4 , each of the terahertz light Terahertz sensors S 2 to S 4 and S are branched into T 4 , T 5 , T 6 , and intensity-correcting terahertz light T 0 and pass through the water vapor gas cell C 1 , the carbon monoxide gas cell C 2 , and the Freon gas cell C 3. Enter 0 .

従って、ガスセルC、C、Cのガス吸収特性はテラヘルツセンサS〜Sで感知され、下記する(図2)の様なスペクトルを呈するので、これを用いて各々の基準周波数を採ることができる。
このとき、ガスセルC、C、Cは、ガス容器G〜Gから所定のガス種類・ガス圧が供給されており、恒温槽w〜wで厳密に温度制御されている。
Accordingly, the gas absorption characteristics of the gas cells C 1 , C 2 , and C 3 are sensed by the terahertz sensors S 2 to S 4 , and exhibit the spectrum as shown in FIG. 2 (FIG. 2). Can be taken.
At this time, the gas cells C 1 , C 2 , and C 3 are supplied with predetermined gas types and gas pressures from the gas containers G 1 to G 3 , and are strictly temperature-controlled in the thermostats w 1 to w 3 . .

センサSは、テラヘルツ光TがYAGレーザ光源Y1、Y、クロムフォルステライトレーザ光源Cr、Cr、テラヘルツ光源GaP、光学系部品等が経時変化や周波数特性で出力変動するので強度補正に用いている。In the sensor S 0 , the intensity of the terahertz light T 1 is corrected because the YAG laser light sources Y 1 and Y 2 , the chrome forsterite laser light sources Cr 1 and Cr 2 , the terahertz light source GaP, optical system components, and the like fluctuate in output due to changes with time and frequency characteristics. Used for.

回折格子の回転角を回転機構Rで変えてテラヘルツ光Tの周波数を掃引すると、夫々の周波数に対して測定試料Xを透過したテラヘルツ光TsがテラヘルツセンサSで感知されテラヘルツスペクトルが計測される。When the rotation angle of the diffraction grating is changed by the rotation mechanism R and the frequency of the terahertz light T 3 is swept, the terahertz light Ts transmitted through the measurement sample X is detected by the terahertz sensor S 1 for each frequency, and the terahertz spectrum is measured. The

以上の説明の様に、本発明によるテラヘルツスペクトル測定は、参照光を用いて強度補正とガスセルの吸収スペクトルに基づいた周波数校正の測定が同時にできるので、測定系の機械的・光学的な材料品質の誤差や経時変化、あるいは、測定環境によって位置制御特性・温度特性などに変化があっても正確にできる。  As described above, in the terahertz spectrum measurement according to the present invention, the intensity correction and the frequency calibration measurement based on the absorption spectrum of the gas cell can be performed simultaneously using the reference light, so that the mechanical and optical material quality of the measurement system Even if there is a change in position control characteristics, temperature characteristics, etc. depending on the measurement error, changes over time, or the measurement environment, it can be accurately performed.

図2は、本発明の請求項2に関する実施例で、テラヘルツスペクトル測定の周波数校正についての説明図である。
横軸はガスセルの吸収スペクトルの周波数Fで、縦軸は光吸収率δでありガスセルをδ〜δ、試料はδxで示し、ガスセルC〜Cのスペクトル図はt〜t、測定試料Xのスペクトル図はtで示している。
ここで、F〜F10がガスセル、Fが測定試料に現れたテラヘルツ吸収スペクトルで、FはF〜F10を用いて正確に周波数校正されるものである。
周波数校正の手順については、(図3)で説明する。
FIG. 2 is an explanatory diagram for frequency calibration of terahertz spectrum measurement in an embodiment relating to claim 2 of the present invention.
The horizontal axis is the frequency F of the absorption spectrum of the gas cell, the vertical axis is the light absorption rate δ, the gas cell is indicated by δ 1 to δ 3 , the sample is indicated by δx, and the spectrum diagrams of the gas cells C 1 to C 3 are t 1 to t 3. , spectrum of the measurement sample X is shown by t X.
Here, F 1 to F 10 are gas cells, F X is a terahertz absorption spectrum that appears in a measurement sample, and F X is accurately frequency calibrated using F 1 to F 10 .
The frequency calibration procedure will be described with reference to FIG.

図3は、本発明の請求項2に関する実施例で、周波数校正の手順について説明している。、横軸はテラヘルツ周波数掃引機構の掃引周波数fを示し、縦軸がガスセルの吸収スペクトルの周波数Fある。
例えば、周波数掃引機構の掃引周波数fがテラヘルツ光Tの周波数掃引を来たし、図3(1)に表した関係でガスセルの吸収スペクトルFを得ている場合、測定試料におけるテラヘルツ吸収スペクトルの周波数Fxは、図3(1)のfとFの関係から算出した校正曲線図Lのfを用いて正確に測定できるというものである。
校正曲線は所定の区間を複数個のfとFの関係を用いたスプライン関数で設定して使用することも可能である。
FIG. 3 shows an embodiment relating to claim 2 of the present invention and describes the procedure of frequency calibration. The horizontal axis represents the sweep frequency f of the terahertz frequency sweep mechanism, and the vertical axis represents the frequency F of the absorption spectrum of the gas cell.
For example, when the sweep frequency f of the frequency sweep mechanism is the frequency sweep of the terahertz light T 1 and the absorption spectrum F of the gas cell is obtained in the relationship shown in FIG. 3A, the frequency Fx of the terahertz absorption spectrum in the measurement sample. is that can be accurately measured using a f X calibration curves L calculated from the relationship of f and F in FIG. 3 (1).
The calibration curve can also be used by setting a predetermined section with a plurality of spline functions using the relationship between f and F.

図4は、本発明の請求項3に関する実施例で、試料の反射スペクトル測定における周波数の高速掃引を説明するものである。
前述した様に、周波数掃引機構を用いて測定試料に照射するテラヘルツ光の周波数は、基準周波数であるガスセルの吸収スペクトルによって同時に校正され測定されることになるので、周波数を掃引する回折格子などの回転機構においては、円滑な動作機構であれば、高速掃引でもヒステリシス特性のある掃引で高精度のスペクトル測定が可能である。
例えば、周波数幅のある赤外線レーザ光Crが回折格子Grに入射すると、回折条件を満たした特定周波数の赤外光Iが矢印の方向に出射するが、回折条件の変更すなわち周波数掃引は回転機構Rの図示しないバネ軸受けを中心とする回転で行われる。
回転角およびその掃引速度は、梃子の支点であるバネ軸受けSpの反対側に位置する部材Si、バネ材Sp、ボールねじScなどの伝達機構を介したサーボモータの高速回転によって連続して設定される。
従来は、回転機構Rの回転角を正確に設定して赤外光Iの周波数精度を上げていたので、角度制御に時間がかかり、また、使用する部材の制約や測定環境の整備が大変であった。
FIG. 4 is an embodiment relating to claim 3 of the present invention and explains a high-speed sweep of the frequency in the measurement of the reflection spectrum of the sample.
As described above, the frequency of the terahertz light applied to the measurement sample using the frequency sweep mechanism is simultaneously calibrated and measured by the absorption spectrum of the gas cell, which is the reference frequency. If the rotating mechanism is a smooth operating mechanism, it is possible to perform high-accuracy spectrum measurement with a sweep having hysteresis characteristics even at a high speed sweep.
For example, when an infrared laser beam Cr 2 having a frequency width is incident on the diffraction grating Gr, infrared light I 2 having a specific frequency that satisfies the diffraction condition is emitted in the direction of the arrow, but the change of the diffraction condition, that is, the frequency sweep is rotated. The mechanism R is rotated around a spring bearing (not shown).
Rotation angle and the sweep rate is set continuously by the high-speed rotation of the servo motor through members Si on the opposite side of the spring bearing Sp 1 is a lever fulcrum, the spring member Sp, a transmission mechanism such as a ball screw Sc Is done.
Conventionally, since the rotation angle of the rotating mechanism R to accurately set had increased frequency accuracy of the infrared light I 2, it takes time to angle control, also hard to develop constraints and measurement environment of the member to be used Met.

図において、符合は図1に同様であり、テラヘルツ光源GaPに同時に照射して差周波数のテラヘルツ光を発生させる別の赤外光Iは省略している。
GaPから出射されたテラヘルツ光Tは、ハーフミラーHを通して測定試料Xに照射され、その反射光TsをセンサSで感知して図4(1)のスペクトル図が測定される。
一方、参照光Tは図1と同様であり、ガスセルCによる周波数校正は、例えば、図4(2)を用いて図3と同様の処理で行われる。
In the figure, the reference numerals are the same as those in FIG. 1, and another infrared light I 1 that simultaneously irradiates the terahertz light source GaP to generate terahertz light having a difference frequency is omitted.
The terahertz light T 1 emitted from the GaP is irradiated to the measurement sample X through the half mirror H 1 , and the reflected light Ts is sensed by the sensor S 1 to measure the spectrum diagram of FIG.
On the other hand, the reference beam T 2 are the same as that of FIG. 1, the frequency calibration by gas cell C 1 is carried out, for example, the same processing as FIG. 3 with reference to FIG. 4 (2).

水蒸気など卑近なガスセルの吸収スペクトルを基準周波数に用いて、また、簡便なアナログ周波数掃引機構などを用いることによって、高速・高精度のテラヘルツスペクトルが採れるので、製造工程や野外での計測など、広い分野での利用が可能である。  By using the absorption spectrum of an imminent gas cell such as water vapor as a reference frequency and using a simple analog frequency sweep mechanism, a high-speed and high-accuracy terahertz spectrum can be obtained. It can be used in the field.

装置の構成概要を説明した図である。It is the figure explaining the structure outline | summary of an apparatus. ガスセルの吸収スペクトルについて説明した図である。It is a figure explaining the absorption spectrum of the gas cell. スペクトルの校正について説明した図である。It is a figure explaining calibration of a spectrum. 周波数の高速掃引機構について説明した図である。It is a figure explaining the high-speed sweep mechanism of a frequency.

符号の説明Explanation of symbols

、Y YAGレーザ光源
Cr、Cr 赤外レーザ光源
、I 赤外レーザ光
B 混合器
GaP テラヘルツ光源
〜T、Ts テラヘルツ光
R 回転機構
〜H ビームスプリッター
水蒸気ガスセル
一酸化炭素ガスセル
フロンガスセル
〜S テラヘルツセンサ
〜G ガス容器
〜w 恒温槽
X 測定試料
δ、δ〜δ、δ 光吸収率
〜t、t スペクトル図
F、F〜F10、F 吸収スペクトルの周波数
f、f 掃引周波数
Gr 回折格子
L 校正曲線
Sp バネ軸受け
Sp バネ材
Si 部材
Sc ボールねじ
Y 1 , Y 2 YAG laser light source Cr 1 , Cr 2 infrared laser light source I 1 , I 2 infrared laser light B mixer GaP terahertz light source T 0 to T 6 , Ts terahertz light R rotating mechanism H 1 to H 4 beam Splitter C 1 Water vapor gas cell C 2 Carbon monoxide gas cell C 3 Freon gas cell S 0 to S 4 Terahertz sensor G 1 to G 3 Gas container w 1 to w 3 Thermostatic chamber X Measurement samples δ, δ 1 to δ 3 , δ X light absorption rate t 1 ~t 3, t X spectrogram F, F 1 ~F 10, F X absorption spectrum of the frequency f, f X sweep frequency Gr diffraction grating L calibration curve Sp 1 spring bearing Sp spring member Si member Sc ball screw

Claims (3)

測定試料のテラヘルツスペクトルを周波数校正する場合において、
試料に周波数掃引して照射するテラヘルツ光から参照光を分岐して、該テラヘルツ光の強度補正する手段と水蒸気等ガスの種類・気圧・温度等が設定された1式以上のガスセルの吸収スペクトルから基準周波数を採る手段に用いて、該周波数校正していることを特徴とする周波数掃引式テラヘルツスペクトル測定装置。
In frequency calibration of the terahertz spectrum of the measurement sample,
From the absorption spectrum of one or more gas cells in which the reference light is branched from the terahertz light that is irradiated with the frequency sweep to the sample, the intensity of the terahertz light is corrected, and the type, pressure, temperature, etc. of the gas such as water vapor are set. A frequency sweep type terahertz spectrum measuring apparatus characterized in that the frequency is calibrated using means for taking a reference frequency.
校正する1周波数を、校正曲線の制御点区間すなわち2つの該基準周波数の間、あるいは、複数の該基準周波数に隣接させていることを特徴とする請求項1記載の周波数掃引式テラヘルツスペクトル測定装置。  2. The frequency sweep type terahertz spectrum measuring apparatus according to claim 1, wherein one frequency to be calibrated is adjacent to a control point section of a calibration curve, that is, between the two reference frequencies, or adjacent to a plurality of the reference frequencies. . 周波数掃引において、周波数を設定する回折格子などの回転角制御をしないで、所定の周波数の区間を円滑なアナログ駆動機構などを用いて連続且つ高速に回転角掃引していることを特徴とする請求項1、請求項2記載の周波数掃引式テラヘルツスペクトル測定装置。  In the frequency sweep, the rotation angle of the predetermined frequency section is continuously and rapidly swept using a smooth analog drive mechanism without performing the rotation angle control of a diffraction grating or the like for setting the frequency. The frequency sweep type terahertz spectrum measuring apparatus according to claim 1 or 2.
JP2007134766A 2007-04-18 2007-04-18 Frequency sweeping type terahertz spectrum measurement device Pending JP2008268162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007134766A JP2008268162A (en) 2007-04-18 2007-04-18 Frequency sweeping type terahertz spectrum measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007134766A JP2008268162A (en) 2007-04-18 2007-04-18 Frequency sweeping type terahertz spectrum measurement device

Publications (1)

Publication Number Publication Date
JP2008268162A true JP2008268162A (en) 2008-11-06

Family

ID=40047844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007134766A Pending JP2008268162A (en) 2007-04-18 2007-04-18 Frequency sweeping type terahertz spectrum measurement device

Country Status (1)

Country Link
JP (1) JP2008268162A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009265367A (en) * 2008-04-25 2009-11-12 Institute Of Physical & Chemical Research Terahertz wave generating method and apparatus
EP2703793A1 (en) 2012-08-30 2014-03-05 ARKRAY, Inc. Terahertz spectrometry device and method, and nonlinear optical crystal inspection device and method
KR20160016384A (en) * 2014-08-05 2016-02-15 서울시립대학교 산학협력단 Terahertz spectrometer for gas analysis
CN114739666A (en) * 2022-03-07 2022-07-12 西安交通大学 Bearing wear manufacturing and detecting integrated device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009265367A (en) * 2008-04-25 2009-11-12 Institute Of Physical & Chemical Research Terahertz wave generating method and apparatus
EP2703793A1 (en) 2012-08-30 2014-03-05 ARKRAY, Inc. Terahertz spectrometry device and method, and nonlinear optical crystal inspection device and method
JP2014062892A (en) * 2012-08-30 2014-04-10 Arkray Inc Terahertz wave spectrometry device and method, and inspection device and method of nonlinear optical crystal
US9091665B2 (en) 2012-08-30 2015-07-28 Arkray, Inc. Terahertz spectrometry device and method, and nonlinear optical crystal inspection device and method
KR20160016384A (en) * 2014-08-05 2016-02-15 서울시립대학교 산학협력단 Terahertz spectrometer for gas analysis
KR101606785B1 (en) * 2014-08-05 2016-03-28 서울시립대학교 산학협력단 Terahertz spectrometer for gas analysis
CN114739666A (en) * 2022-03-07 2022-07-12 西安交通大学 Bearing wear manufacturing and detecting integrated device

Similar Documents

Publication Publication Date Title
US6441900B1 (en) Method and apparatus for calibrating an optical spectrum analyzer in wavelength
US6008902A (en) Method and device for heterodyne interferometer error correction
JP2002374034A (en) Variable wavelength light source device
EP0927333A1 (en) Interferometer with air turbulence compensation
JPH05248817A (en) Interferometer, semiconductor processor and method and apparatus for measuring surface position of substrate
JP2008268162A (en) Frequency sweeping type terahertz spectrum measurement device
Veber et al. Combined Differential scanning calorimetry, Raman and Brillouin spectroscopies: A multiscale approach for materials investigation
US7903238B2 (en) Combination of ellipsometry and optical stress generation and detection
US8665446B2 (en) Apparatus and method for coherent multi-dimensional optical spectroscopy
KR100556586B1 (en) Laser Processing Apparatus using Polygon Mirror with Error Correction Function
KR20130089581A (en) Extending the lifetime of a deep uv laser in a wafer inspection tool
JP4532378B2 (en) Laser light source operation method
JPH07260570A (en) Spectroscope wavelength calibrating method and device therefor
JP2002374033A (en) Variable wavelength light source device
JP2022150579A (en) Optical spectrum analyzer and wave length calibration method
JP4938429B2 (en) Impurity analysis method and apparatus
US8922773B2 (en) System and method for error correction in a polarimeter
US8144335B2 (en) Vibration-insensitive interferometer using high-speed camera and continuous phase scanning method
TW201425906A (en) Ellipsometer and polarization state modulation method for ellipsometer
JP2008537358A (en) Electronic wavelength marker system and method
JP5126705B2 (en) Method and apparatus for detecting and correcting optical path displacement in photoconductive antenna
US7489607B2 (en) Method of inspecting a phase-change type optical recording medium
JP7136959B1 (en) OPTICAL SPECTRUM ANALYZER AND WAVELENGTH CALIBRATION CONTROL METHOD
US20040263867A1 (en) Method and apparatus for the determination of characteristic layer parameters at high temperatures
JP2003090704A (en) Optical heterodyne interferometer