JP2008268161A - Method and device for estimating battery residual capacity and battery power supply system - Google Patents

Method and device for estimating battery residual capacity and battery power supply system Download PDF

Info

Publication number
JP2008268161A
JP2008268161A JP2007123729A JP2007123729A JP2008268161A JP 2008268161 A JP2008268161 A JP 2008268161A JP 2007123729 A JP2007123729 A JP 2007123729A JP 2007123729 A JP2007123729 A JP 2007123729A JP 2008268161 A JP2008268161 A JP 2008268161A
Authority
JP
Japan
Prior art keywords
battery
open circuit
voltage
time
circuit voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007123729A
Other languages
Japanese (ja)
Other versions
JP4865627B2 (en
Inventor
Noriyasu Iwane
典靖 岩根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2007123729A priority Critical patent/JP4865627B2/en
Priority to US12/041,972 priority patent/US7899631B2/en
Priority to EP08004483.7A priority patent/EP1975635B1/en
Priority to CN2008100873568A priority patent/CN101275991B/en
Publication of JP2008268161A publication Critical patent/JP2008268161A/en
Application granted granted Critical
Publication of JP4865627B2 publication Critical patent/JP4865627B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for estimating battery residual capacity, reducing a calculation load, and extremely highly accurately estimating residual capacity of a battery based on stable open circuit voltage, by highly accurately estimating the stable open circuit voltage. <P>SOLUTION: When finishing acquisition of a voltage measurement value (Step S2), optimization is progressed renewing each value of coefficients in the following iterating calculations (Step S4) with an initial value of the coefficients set at Step S3 as a start point. Once an optimum value of each coefficient in the approximation is determined at the Step S4, the stable open circuit voltage is calculated by the optimized reciprocal function using the optimal value at the Step S5. And then based thereon, the battery residual capacity is calculated by the predetermined conversion method (Step S6). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、負荷に電力を供給するバッテリの残存容量を安定開回路電圧に基づいて推定するバッテリ残存容量推定方法等の技術分野に関するものである。   The present invention relates to a technical field such as a battery remaining capacity estimation method that estimates a remaining capacity of a battery that supplies power to a load based on a stable open circuit voltage.

近年電子機器における携帯化、自動車におけるハイブリッド化、アイドルストップ化等により、搭載されるバッテリ電源の充電率あるいは残容量を正確に推定することが益々強く要求されるようになりつつある。この充電率あるいは残容量を推定する方法としては、バッテリの安定開回路電圧(OCV)に基づいて推定する方法が最も簡便であり、実現手段として有効である。   In recent years, there has been an increasing demand for accurate estimation of the charging rate or remaining capacity of an installed battery power source due to portability in electronic devices, hybridization in automobiles, and idling stop. As a method for estimating the charging rate or the remaining capacity, a method of estimating based on the stable open circuit voltage (OCV) of the battery is the simplest and effective as an implementation means.

しかしながら、実際の電源システムの使用環境では、バッテリから頻繁に充放電電流が流されているため、バッテリの内部では常時分極が発生している。そのため、充放電が行われていない期間でも、バッテリ電圧には分極電圧が重畳されており、バッテリ電圧がOCV電圧に一致している状態は殆ど期待できない。   However, in the actual usage environment of the power supply system, since charging / discharging current frequently flows from the battery, polarization always occurs inside the battery. For this reason, even when charging / discharging is not performed, the polarization voltage is superimposed on the battery voltage, and it is hardly expected that the battery voltage matches the OCV voltage.

このような分極による影響を考慮して安定開回路電圧を推定する方法が、例えば特許文献1〜3等に開示されている。特許文献1〜3では、バッテリの充放電分極が時間とともに緩和されて、バッテリ電圧が安定開回路電圧に収束していく電圧挙動を時間の関数として表現している。この時間関数を、バッテリ電圧を比較的短時間測定した結果を用いて学習させることで、長時間経過後の安定開回路電圧を予測する技術が提案されている。   For example, Patent Documents 1 to 3 disclose a method for estimating a stable open circuit voltage in consideration of the influence of such polarization. In Patent Literatures 1 to 3, voltage behavior in which the battery charge / discharge polarization is relaxed with time and the battery voltage converges to a stable open circuit voltage is expressed as a function of time. A technique for predicting a stable open circuit voltage after a long time has been proposed by learning this time function using a result of measuring a battery voltage for a relatively short time.

一例として、特許文献1では、充放電が行われていないときのバッテリの電圧変化V(t)を、時間tに関する一次の逆数関数

Figure 2008268161
で表現している。上記関数を用いて特性関数F(t)=t×dV(t)/dtを定義し、これを基にF(t)を最大とするt=tmax(=a/b)を求め、さらに安定開回路電圧を係数C=2V(tmax)−V(t0)として算出している。 As an example, in Patent Document 1, a battery voltage change V (t) when charging / discharging is not performed is represented by a linear inverse function of time t.
Figure 2008268161
It is expressed with. Using the above function, the characteristic function F (t) = t × dV (t) / dt is defined, and based on this, t = tmax (= a / b) that maximizes F (t) is obtained, and further stable The open circuit voltage is calculated as a coefficient C = 2V (tmax) -V (t0).

また、特許文献2では、充放電が行われていないときのバッテリの電圧変化V(t)を、

Figure 2008268161
として表現し、最小二乗演算により係数α及びOCVの最適値を決定し、係数であるOCVの最適値を安定開回路電圧とする方法が提案されている。 Moreover, in patent document 2, the voltage change V (t) of the battery when charging / discharging is not performed,
Figure 2008268161
And the optimum value of the coefficient α and the OCV is determined by the least square operation, and the optimum value of the OCV as the coefficient is used as a stable open circuit voltage.

さらに、特許文献3では、充放電が行われていないときのバッテリの電圧変化V(t)を、4次以上の指数関数、

Figure 2008268161
を用いて表現し、係数Ai、Bi、V0を最小二乗演算により最適化して決定する方法が提案されている。
特開平7−98367号公報 特開2002−234408号公報 特開2005−43339号公報 Further, in Patent Document 3, a battery voltage change V (t) when charging / discharging is not performed is expressed by an exponential function of a fourth or higher order,
Figure 2008268161
And a method of optimizing and determining the coefficients Ai, Bi, and V0 by least square calculation.
JP-A-7-98367 JP 2002-234408 A JP 2005-43339 A

しかしながら、上記従来の技術では以下のような問題があった。特許文献1では、充放電が行われていないときのバッテリの電圧変化を(式1)を用いて表現しているが、バッテリ電圧の分極緩和挙動は、上記(式1)の逆関数だけで表わせるような単純な挙動ではないことが知られており、特許文献1では十分な精度で安定開回路電圧を予測してバッテリ残存容量を推定することはできないという問題があった。   However, the above conventional techniques have the following problems. In Patent Document 1, the voltage change of the battery when charging / discharging is not performed is expressed by using (Equation 1), but the polarization relaxation behavior of the battery voltage is only the inverse function of (Equation 1). It is known that it is not a simple behavior that can be expressed, and Patent Document 1 has a problem that it is not possible to estimate the remaining battery capacity by predicting the stable open circuit voltage with sufficient accuracy.

また、特許文献1では特性関数を定義し、これに基づいて安定開回路電圧を算出するようにしているが、このような方法では、最小二乗法等によって算出した最適係数を用いて電圧変化を推定する方法に比べ、高い精度で安定開回路電圧を予測することは困難であった。   In Patent Document 1, a characteristic function is defined and a stable open circuit voltage is calculated based on the characteristic function. However, in such a method, a voltage change is calculated using an optimum coefficient calculated by a least square method or the like. Compared to the estimation method, it is difficult to predict a stable open circuit voltage with high accuracy.

特許文献2では、充放電が行われていないときのバッテリの電圧変化を(式2)を用いて表現し、べき数Dが略−0.5になるときの係数α及びOCVの値を最適値に決定しているが、このように決定した関数でも実際のバッテリ電圧の分極緩和挙動とは全くかけ離れたものになってしまうといった問題があった。   In Patent Document 2, the battery voltage change when charging / discharging is not performed is expressed using (Equation 2), and the coefficient α and the value of OCV when the power number D is approximately −0.5 are optimal. Although the value is determined, there is a problem that even the function thus determined is quite different from the actual polarization relaxation behavior of the battery voltage.

これに対し、特許文献3では、充放電が行われていないときのバッテリの電圧変化を、4次以上の指数関数を用いた(式3)で表現するようにしたことから、極めて高精度に安定開回路電圧を予測することが可能となっている。しかしながら、(式3)では複雑で計算負荷の高い指数関数を多用しているために、計算負荷が極めて高くなってしまうといった問題があった。また更に、指数関数は時間変数の値の変化に従って非常に大きく値が変動し、ときにその演算過程で天文学的数値を示す場合が発生する。これは例えば自動車に搭載されるコントローラのように容量の限定された演算素子を用いる場合には数値が素子の扱える範囲を超えてしまい、安定的に演算を行なうことが困難である、という問題もあった。   On the other hand, in Patent Document 3, the voltage change of the battery when charging / discharging is not performed is expressed by (Equation 3) using an exponential function of the fourth order or higher, so that the accuracy is extremely high. It is possible to predict a stable open circuit voltage. However, (Equation 3) has a problem that the calculation load becomes extremely high because an exponential function that is complicated and has a high calculation load is frequently used. Still further, the exponential function fluctuates greatly as the value of the time variable changes, and sometimes an astronomical value is shown in the calculation process. This is because, for example, when using an arithmetic element with a limited capacity such as a controller mounted on an automobile, the numerical value exceeds the range that the element can handle, and it is difficult to perform stable calculation. there were.

そこで、本発明はこれらの問題を解決するためになされたものであり、安定開回路電圧を高精度に推定可能とすることにより、安定開回路電圧に基づいてバッテリの残存容量を極めて高精度に推定でき、計算負荷の軽いバッテリ残存容量推定方法等を提供することを目的とする。   Therefore, the present invention has been made to solve these problems, and by making it possible to estimate the stable open circuit voltage with high accuracy, the remaining capacity of the battery can be determined with extremely high accuracy based on the stable open circuit voltage. An object of the present invention is to provide a battery remaining capacity estimation method that can be estimated and has a light calculation load.

この発明のバッテリ残存容量推定方法の第1の態様は、負荷に電力を供給するバッテリの残存容量を安定開回路電圧に基づいて推定するバッテリ残存容量推定方法であって、tを前記バッテリの電圧値取得開始からの経過時間、nを2以上の整数、F(t)を前記時間tの任意の関数、Cを定数とするとき、前記バッテリで発生した充放電分極が徐々に解消して前記安定開回路電圧で安定する開回路時電圧変化を、分母が前記時間tのn次の多項式である関数(以下ではn次の逆数関数という)

Figure 2008268161
で近似し、前記n次の逆数関数の係数の値を、前記電圧値取得開始から所定時間内に前記バッテリの電圧値を前記係数の個数以上取得し、取得された前記電圧値を基に、最小二乗法又はカルマンフィルタ演算又はニューラルネットワークによって決定し、前記決定された係数の値を用いて前記n次の逆数関数から前記安定開回路電圧を算出し、前記算出された安定開回路電圧に基づいて前記残存容量を推定する ことを特徴とする。 A first aspect of the battery remaining capacity estimating method of the present invention is a battery remaining capacity estimating method for estimating a remaining capacity of a battery that supplies power to a load based on a stable open circuit voltage, wherein t is a voltage of the battery. The elapsed time from the start of value acquisition, where n is an integer of 2 or more, F (t) is an arbitrary function of the time t, and C is a constant, the charge / discharge polarization generated in the battery is gradually eliminated and the A function in which an open circuit voltage change stabilized by a stable open circuit voltage is a function whose denominator is an nth order polynomial of the time t (hereinafter referred to as an nth order inverse function).
Figure 2008268161
The coefficient value of the n-th order reciprocal function is obtained within a predetermined time from the start of obtaining the voltage value, and the battery voltage value is obtained by the number of the coefficients or more, and based on the obtained voltage value, Determined by a least square method, a Kalman filter operation or a neural network, and calculates the stable open circuit voltage from the n-order reciprocal function using the determined coefficient value, and based on the calculated stable open circuit voltage The remaining capacity is estimated.

この発明のバッテリ残存容量推定方法の他の態様は、前記n次の逆数関数を

Figure 2008268161
とする ことを特徴とする。 In another aspect of the battery remaining capacity estimation method of the present invention, the n-th order reciprocal function is
Figure 2008268161
It is characterized by.

この発明のバッテリ残存容量推定方法の他の態様は、充放電停止から前記バッテリの電圧値取得開始までの時間が、第1の基準時間以下のときは前記開回路時電圧変化を前記n次の逆数関数で近似し、前記電圧値取得開始までの時間が前記第1の基準時間を超えて第2の基準時間以下のときは前記開回路時電圧変化を(n−1)次の前記逆数関数で近似し、以下、前記電圧値取得開始までの時間が所定の基準時間を超える毎に前記逆数関数の次数を1に達するまで順次1ずつ減少させて近似することを特徴とする。   According to another aspect of the battery remaining capacity estimation method of the present invention, when the time from the charge / discharge stop to the start of acquiring the voltage value of the battery is equal to or less than a first reference time, the voltage change during open circuit is changed to the n-th order. When the time until the start of voltage value acquisition exceeds the first reference time and is less than or equal to the second reference time is approximated by an inverse function, the voltage change during open circuit is expressed as the (n-1) th order inverse function. In the following, each time the time until the voltage value acquisition starts exceeds a predetermined reference time, the order of the reciprocal function is sequentially reduced by 1 until it reaches 1 and approximated.

この発明のバッテリ残存容量推定装置の第1の態様は、負荷に電力を供給するバッテリの残存容量を安定開回路電圧に基づいて推定するバッテリ残存容量推定装置であって、前記バッテリの電圧を測定する電圧センサと、前記残存容量を推定するための演算を実行制御する制御部と、を備え、前記制御部は、tを前記バッテリの電圧値取得開始からの経過時間、nを2以上の整数、F(t)を前記時間tの任意の関数、Cを定数とするとき、前記バッテリで発生した充放電分極が徐々に解消して前記安定開回路電圧で安定する開回路時電圧変化を、分母が前記時間tのn次の多項式であるn次の逆数関数

Figure 2008268161
で近似し、前記n次の逆数関数の係数の値を、前記電圧値取得開始から所定時間内に前記バッテリの電圧を前記電圧センサで測定して取得した前記係数の個数以上の電圧値を基に、最小二乗法又はカルマンフィルタ演算又はニューラルネットワークによって決定し、前記決定された係数の値を用いて前記n次の逆数関数から前記安定開回路電圧を算出し、前記算出された安定開回路電圧に基づいて前記バッテリの残存容量を推定している ことを特徴とする。 A first aspect of a battery remaining capacity estimating device according to the present invention is a battery remaining capacity estimating apparatus that estimates a remaining capacity of a battery that supplies power to a load based on a stable open circuit voltage, and measures the voltage of the battery. And a control unit that executes and controls calculation for estimating the remaining capacity, wherein the control unit is t is an elapsed time from the start of acquiring the voltage value of the battery, and n is an integer of 2 or more. , F (t) is an arbitrary function of time t, and C is a constant, the charge-discharge polarization generated in the battery is gradually eliminated and the change in open circuit voltage is stabilized at the stable open circuit voltage. An nth-order reciprocal function whose denominator is an nth-order polynomial of the time t
Figure 2008268161
And the coefficient value of the n-th order reciprocal function is based on a voltage value equal to or greater than the number of coefficients obtained by measuring the voltage of the battery with the voltage sensor within a predetermined time from the start of voltage value acquisition. The stable open circuit voltage is calculated from the n-th reciprocal function using the value of the determined coefficient, determined by a least square method, a Kalman filter operation, or a neural network, and the calculated stable open circuit voltage Based on this, the remaining capacity of the battery is estimated.

この発明のバッテリ残存容量推定装置の他の態様は、前記制御部は、前記n次の逆数関数として

Figure 2008268161
を用いていることを特徴とする。 In another aspect of the battery remaining capacity estimation device of the present invention, the control unit is configured as the nth-order reciprocal function.
Figure 2008268161
It is characterized by using.

この発明のバッテリ残存容量推定装置の他の態様は、前記制御部は、充放電停止から前記バッテリの電圧値取得開始までの時間が第1の基準時間以下のときは前記開回路時電圧変化を前記n次の逆数関数で近似し、前記電圧値取得開始までの時間が前記第1の基準時間を超えて第2の基準時間以下のときは前記開回路時電圧変化を(n−1)次の前記逆数関数で近似し、以下、前記電圧値取得開始までの時間が所定の基準時間を超える毎に前記逆数関数の次数を1に達するまで順次1ずつ減少させて近似していることを特徴とする。   In another aspect of the battery remaining capacity estimation device according to the present invention, the control unit may change the open circuit voltage change when the time from the charge / discharge stop until the battery voltage value acquisition start is equal to or shorter than a first reference time. Approximating with the nth-order reciprocal function, and when the time until the voltage value acquisition start exceeds the first reference time and is equal to or less than the second reference time, the voltage change during open circuit is (n−1) th order. In the following, approximation is performed by decreasing the order of the inverse function one by one until the time until the voltage value acquisition start exceeds a predetermined reference time until the degree reaches 1. And

この発明のバッテリ電源システムの第1の態様は、前記バッテリと、上記いずれかのバッテリ残存容量推定装置と、を備えることを特徴とする。   According to a first aspect of the battery power supply system of the present invention, the battery and any one of the battery remaining capacity estimation devices described above are provided.

本発明によれば、バッテリの開回路電圧の時間特性を2次以上の逆数関数で近似するようにしたので、短時間内に開回路電圧の収束値を求め、バッテリの充電率を少ない計算負荷で正確にかつ安定的に推定することが可能な充電率推定方法等を提供することが可能となる。   According to the present invention, since the time characteristic of the open circuit voltage of the battery is approximated by a reciprocal function of the second or higher order, the convergence value of the open circuit voltage is obtained within a short time, and the charging rate of the battery is reduced. Thus, it is possible to provide a charging rate estimation method and the like that can be accurately and stably estimated.

図面を参照して本発明の好ましい実施の形態におけるバッテリ残存容量推定方法、バッテリ残存容量推定装置及びバッテリ電源システムの構成について詳細に説明する。なお、同一機能を有する各構成部については、図示及び説明簡略化のため、同一符号を付して示す。   Configurations of a battery remaining capacity estimation method, a battery remaining capacity estimation apparatus, and a battery power supply system according to a preferred embodiment of the present invention will be described in detail with reference to the drawings. In addition, about each structural part which has the same function, the same code | symbol is attached | subjected and shown for simplification of illustration and description.

図2は、本発明の実施の形態に係るバッテリ残存容量推定装置及びバッテリ電源システムの概略の構成を示すブロック図である。本実施形態のバッテリ電源システム100は、バッテリ110 と、充電回路120と、本実施形態のバッテリ残存容量推定装置200とを含んで構成されており、バッテリ110には負荷10が接続されている。   FIG. 2 is a block diagram showing a schematic configuration of the battery remaining capacity estimation device and the battery power supply system according to the embodiment of the present invention. The battery power supply system 100 of this embodiment includes a battery 110, a charging circuit 120, and a battery remaining capacity estimation device 200 of this embodiment, and a load 10 is connected to the battery 110.

また、バッテリ残存容量推定装置200は、制御部210と、記憶部220と電圧センサ230とから構成されるものとしている。制御部210は、本発明のバッテリ残存容量推定方法の一実施形態を用いて残存容量を推定するための演算を実行制御するものであり、さらにバッテリ電源システム100全体の動作を制御するように構成することも可能である。図2では、制御部210が充電回路120を制御してバッテリ110の充電を行わせる構成としている。   Further, the remaining battery capacity estimation device 200 is configured by a control unit 210, a storage unit 220, and a voltage sensor 230. The controller 210 controls the execution of the calculation for estimating the remaining capacity using the embodiment of the battery remaining capacity estimating method of the present invention, and further controls the operation of the battery power supply system 100 as a whole. It is also possible to do. In FIG. 2, the control unit 210 controls the charging circuit 120 to charge the battery 110.

電圧センサ230は、バッテリ110の端子間電圧を測定しており、検出された電圧測定値を制御部210に送出している。記憶部220は、制御部210で処理される残存容量の推定演算等に用いられる各種パラメータや、電圧センサ230で検出された電圧測定値等を保存している。   The voltage sensor 230 measures the voltage between the terminals of the battery 110 and sends the detected voltage measurement value to the control unit 210. The storage unit 220 stores various parameters used for estimation calculation of the remaining capacity processed by the control unit 210, voltage measurement values detected by the voltage sensor 230, and the like.

本実施形態のバッテリ電源システム100を車両用の電源システムに適用した場合には、バッテリ110として車両用の鉛蓄電池を用い、車両に搭載されるモータ等の負荷10に電源を供給するシステムとなる。車両用の鉛蓄電池では、充電回路120としてオルタネータが備えられている。   When the battery power supply system 100 of the present embodiment is applied to a vehicle power supply system, a vehicle lead-acid battery is used as the battery 110, and power is supplied to a load 10 such as a motor mounted on the vehicle. . In a lead storage battery for a vehicle, an alternator is provided as the charging circuit 120.

次に、本実施形態のバッテリ電源システム100において、バッテリ110の残存容量を推定する本実施形態のバッテリ残存容量推定方法について説明する。上述したように、バッテリ110の残存容量は、バッテリ110の安定開回路電圧と強い相関関係があり、安定開回路電圧から残存容量を一意的に算出するような相関式を予め設定しておくことが可能である。このような相関式を用いることにより、バッテリ110の安定開回路電圧を高精度に推定することで、バッテリ110の残存容量を高精度に推定することが可能となる。   Next, the battery remaining capacity estimation method of the present embodiment for estimating the remaining capacity of the battery 110 in the battery power supply system 100 of the present embodiment will be described. As described above, the remaining capacity of the battery 110 has a strong correlation with the stable open circuit voltage of the battery 110, and a correlation equation that uniquely calculates the remaining capacity from the stable open circuit voltage is set in advance. Is possible. By using such a correlation equation, it is possible to estimate the remaining capacity of the battery 110 with high accuracy by estimating the stable open circuit voltage of the battery 110 with high accuracy.

一方、バッテリ110の実際の運用状況では、バッテリ110からの充放電が頻繁に繰り返されているため、ほとんどの期間バッテリ110の内部で分極が発生している状況であり、バッテリ110の電圧にも分極電圧が重畳されている。このような分極の影響は、バッテリ110の充放電を停止すると徐々に減少していくが、その影響が十分小さくなるまでには、十数時間から数日といった極めて長時間を要している。そのため、分極が解消した安定時の開回路電圧を測定することは極めて困難であり、実運用においてはこれを期待することはできない。   On the other hand, in the actual operation state of the battery 110, since charging / discharging from the battery 110 is frequently repeated, polarization is generated in the battery 110 for most of the period. Polarization voltage is superimposed. The influence of such polarization gradually decreases when the charging / discharging of the battery 110 is stopped, but it takes an extremely long time such as several tens of hours to several days until the influence becomes sufficiently small. Therefore, it is extremely difficult to measure the open circuit voltage at the time when the polarization is eliminated, and this cannot be expected in actual operation.

そこで、本実施形態のバッテリ残存容量推定方法では、充放電停止後の開回路電圧の時間変動を高精度に近似できる関数を用い、これを電圧センサ230で検出した電圧測定値を用いて学習させることで、バッテリ110が安定したときの開回路電圧を高精度に推定できるようにしている。   Therefore, in the battery remaining capacity estimation method of the present embodiment, a function that can accurately approximate the time variation of the open circuit voltage after stopping charging and discharging is used, and this is learned using the voltage measurement value detected by the voltage sensor 230. Thus, the open circuit voltage when the battery 110 is stabilized can be estimated with high accuracy.

本実施形態のバッテリ残存容量推定方法を、以下に詳細に説明する。本実施形態では、充放電停止後の開回路電圧の時間変化を高精度に近似する関数として、分母が時間tのn次の多項式である次式のような関数(以下ではn次の逆数関数という)を用いている。

Figure 2008268161
ここで、時間tをバッテリ110の電圧値取得開始からの経過時間、V(t)をバッテリ110の開回路電圧、nを2以上の整数、F(t)を時間tの任意の関数、Cを定数としている。 The battery remaining capacity estimation method of this embodiment will be described in detail below. In the present embodiment, as a function that approximates the time change of the open circuit voltage after stopping charging and discharging with high accuracy, a function such as the following equation in which the denominator is an nth order polynomial of time t (hereinafter, an nth order reciprocal function Is used).
Figure 2008268161
Here, the time t is the elapsed time from the start of acquiring the voltage value of the battery 110, V (t) is the open circuit voltage of the battery 110, n is an integer of 2 or more, F (t) is an arbitrary function of the time t, C Is a constant.

本実施形態では、開回路電圧V(t)を(式4)のような逆数関数で表わすようにし、逆数関数の次数nを少なくとも2以上とすることで、バッテリ110の開回路電圧の時間変化を高精度に近似できるようにしている。(式4)では、右辺第1項の逆数関数を用いて充放電停止後の分極電圧の時間変化を近似しており、第2項のF(t)は、必要に応じて任意に設定できるようにしている。   In the present embodiment, the open circuit voltage V (t) is expressed by an inverse function as shown in (Equation 4), and the order n of the inverse function is at least 2 or more, so that the time variation of the open circuit voltage of the battery 110 is changed. Can be approximated with high accuracy. In (Equation 4), the time change of the polarization voltage after charge / discharge stop is approximated using the reciprocal function of the first term on the right side, and F (t) of the second term can be arbitrarily set as necessary. I am doing so.

以下では別の実施形態として、第2項のF(t)を用いない次式の逆数関数を用いたときの、バッテリ残存容量推定方法について説明する。

Figure 2008268161
In the following, as another embodiment, a battery remaining capacity estimation method when using the reciprocal function of the following equation that does not use F (t) of the second term will be described.
Figure 2008268161

バッテリ残存容量推定装置200において実行される本実施形態のバッテリ残存容量推定方法では、バッテリ110からの充放電を停止した後に、電圧センサ230を用いてバッテリ110の開回路電圧を測定し、この電圧測定値をもとに(式5)の係数A、B、Cを決定している。 In the battery remaining capacity estimating method of the present embodiment executed in the battery remaining capacity estimating apparatus 200, after stopping charging / discharging from the battery 110, the open circuit voltage of the battery 110 is measured using the voltage sensor 230, and this voltage is detected. The coefficients A i , B i , and C in (Equation 5) are determined based on the measured values.

(式5)の係数A、B、Cを決定する方法として、最小二乗法又はカルマンフィルタ演算又はニューラルネットワークを用いることができる。例えば最小二乗法を用いた場合には、係数A、B、Cの最適値を求めるために次式のような偏差平方和関数を定義し、これが最小となるまで係数A、B、Cの値を求める。

Figure 2008268161
ここで、Vm(k)は電圧センサ230で取得した電圧測定値を表わしており、tは充放電停止後の電圧測定点の時間を表わしている。電圧測定点は、全部でK点あるものとしている。 As a method for determining the coefficients A i , B i , and C in (Expression 5), a least square method, a Kalman filter operation, or a neural network can be used. If for example, using the least square method, the coefficient A i, B i, define the sum of squared deviations function as following equation to determine the optimum value and C, the coefficient A i far is the smallest, B i , C is obtained.
Figure 2008268161
Here, Vm (k) represents the measured voltage value acquired by the voltage sensor 230, t k denotes the time of the voltage measurement point after stopping charging and discharging. There are a total of K voltage measurement points.

上記(式6)で示される偏差平方和Mを最小にする係数A、B、Cを求める方法としては、Gauss-Newton法あるいはLevenberg-Marquardt法などの予め定めた初期値から順次Mを小さくしていくように係数A、B、Cを最適値に更新していく逐次演算法を用いればよい。 As a method for obtaining the coefficients A i , B i , and C that minimize the deviation sum of squares M shown in the above (formula 6), M is sequentially set from predetermined initial values such as Gauss-Newton method or Levenberg-Marquardt method. A sequential calculation method may be used in which the coefficients A i , B i , and C are updated to optimum values so as to decrease.

2次逆数関数を例に、この関数の最適係数解をGauss-Newton法で求める例を以下に示す。2次逆数関数

Figure 2008268161
は、
Figure 2008268161
と書き替えられる。 Taking the quadratic reciprocal function as an example, an example in which the optimal coefficient solution of this function is obtained by the Gauss-Newton method is shown below. Quadratic reciprocal function
Figure 2008268161
Is
Figure 2008268161
Will be rewritten.

さらに、開回路電圧V(t)をΔT間隔でサンプリングされる離散値とすると、

Figure 2008268161
と書き替えられる。 Furthermore, when the open circuit voltage V (t) is a discrete value sampled at ΔT intervals,
Figure 2008268161
Will be rewritten.

ΔT間隔で実測したバッテリ電圧実測値をVm(n)(n=1〜Ns)とし、上記数式から算出される値との差分を、

Figure 2008268161
とし、 次に、最小二乗法の適用に際し(式6)の各係数α1〜α5に関する偏微分項を下記(式11)によって各サンプリングタイミング毎に求める。
Figure 2008268161
The measured battery voltage measured at ΔT intervals is Vm (n) (n = 1 to Ns), and the difference from the value calculated from the above formula is
Figure 2008268161
Next, when applying the least square method, partial differential terms relating to the coefficients α1 to α5 of (Equation 6) are obtained at each sampling timing by the following (Equation 11).
Figure 2008268161

そして、得られた各サンプリングタイミング毎の各係数α1〜α5に関する偏微分項を基に下記(式12)によって最小二乗法の連立方程式に適合する5×5の正方対称行列であるヘッセ行列B (i,j)を計算する。

Figure 2008268161
And based on the partial differential term regarding each coefficient (alpha) 1- (alpha) 5 for every obtained sampling timing, the Hessian matrix B (5 * 5 square symmetry matrix which fits the simultaneous equations of the least squares method by the following (Formula 12). i, j) is calculated.
Figure 2008268161

さらに、同様に得られた各サンプリングタイミング毎の各係数α1〜α5に関する偏微分項を基に、下記(式13)で示されるdR1〜dR5を計算する。

Figure 2008268161

とすると、係数α1〜α5の逐次計算における補正変分dd1〜dd5は下記(式14)によって
Figure 2008268161
と算出される。 Further, dR1 to dR5 represented by the following (formula 13) are calculated based on the partial differential terms relating to the coefficients α1 to α5 at the respective sampling timings similarly obtained.
Figure 2008268161

Then, the correction variations dd1 to dd5 in the sequential calculation of the coefficients α1 to α5 are expressed by the following (formula 14).
Figure 2008268161
Is calculated.

上記dd1〜dd5が十分小さくなるまで、下記(式15)に従って係数α1〜α5を更新し、(式9)から(式15)までを繰り返し演算していく。

Figure 2008268161
The coefficients α1 to α5 are updated in accordance with the following (Equation 15) until the above dd1 to dd5 become sufficiently small, and (Equation 9) to (Equation 15) are repeatedly calculated.
Figure 2008268161

上記のような最小二乗法により、(式5)の逆数関数で表わされる開回路電圧V(t)が電圧測定値Vm(k)に高精度に一致するよう近似されるとともに、長時間の開回路電圧の変化を高精度に推定することが可能となる。本実施形態のバッテリ残存容量推定方法では、上記の計算過程で指数関数を一切用いていないことから、開回路電圧の近似式の係数を最適化する演算処理の負荷が大幅に軽減されている。   By the least square method as described above, the open circuit voltage V (t) represented by the reciprocal function of (Equation 5) is approximated to the voltage measurement value Vm (k) with high accuracy, and the open circuit voltage V It becomes possible to estimate the change of the circuit voltage with high accuracy. In the battery remaining capacity estimation method according to the present embodiment, since no exponential function is used in the above calculation process, the processing load for optimizing the coefficient of the approximate expression of the open circuit voltage is greatly reduced.

開回路電圧を(式5)に示した逆数関数を用いて近似した1例を図3に示す。同図に示す近似式は、以下の2次の逆数関数を用いたものである。

Figure 2008268161
図3では、太い実線310が測定値を示しており、破線320が開回路電圧の(式16)を示している。同図に示すとおり、上記の2次の逆数関数で近似された開回路電圧の式320は、測定値310と極めてよい一致を示している。また、開回路電圧式320と測定値310との一致度を示すRは、0.99525と1に近い値を示している。 An example in which the open circuit voltage is approximated using the reciprocal function shown in (Equation 5) is shown in FIG. The approximate expression shown in the figure uses the following quadratic reciprocal function.
Figure 2008268161
In FIG. 3, the thick solid line 310 indicates the measured value, and the broken line 320 indicates the open circuit voltage (Equation 16). As shown in the figure, the open circuit voltage equation 320 approximated by the above-described quadratic reciprocal function shows a very good agreement with the measured value 310. R 2 indicating the degree of coincidence between the open circuit voltage equation 320 and the measured value 310 is 0.99525 and a value close to 1.

(式5)の係数A、B、Cを決定する他の方法としてはカルマンフィルタ演算とニューラルネットワークがあるが、カルマンフィルタ演算では、係数A、B、Cあるいはこの係数を含む数式を状態ベクトルXとして設定し、状態ベクトルの時系列的な一期先予測を決定するヤコビ行列と、状態ベクトルから観測値であるV(t)を算出する観測方程式を定める。これにより予め定めた係数A、B、Cの初期値とK=1の最初の実測値V(t)からスタートし、電圧実測値の観測数kが進むにつれて実測値Vm(t)と計算値V(t)の誤差が最小となるようにカルマンフィルタアルゴリズムに従ってカルマンゲイン計算、順次状態ベクトルXの更新、状態ベクトルの一期先予測を繰り返すことにより、観測を進めるに従って逐次的に係数A、B、Cを最適値化していける。 As other methods for determining the coefficients A i , B i , and C in (Equation 5), there are a Kalman filter operation and a neural network. In the Kalman filter operation, the coefficients A i , B i , and C or a mathematical expression including these coefficients are in a state. A vector X k is set, and a Jacobian matrix for determining a time-series first-order prediction of the state vector and an observation equation for calculating an observed value V (t k ) from the state vector are determined. As a result, starting from the initial values of predetermined coefficients A i , B i , C and the first actual measurement value V 1 (t 1 ) of K = 1, the actual measurement value Vm (t k ) and the calculated value V (t k ) so that the error is minimized, the Kalman gain calculation, the sequential update of the state vector X k , and the one-point prediction of the state vector are repeated in accordance with the Kalman filter algorithm, so Thus, the coefficients A i , B i and C can be optimized.

また、ニューラルネットワークを用いる場合には、多段パーセプトロンのような適切なネットワークを選択し、予め電圧の実測値とその実測値での最適化された係数A、B、Cの様々な例を十分準備しておき、これらを教師信号としてバックプロパゲーションなどの適切な方法でネットワークを教育することにより、電圧の実測値を入力としてネットワークに与えることによって、係数A、B、Cの最適値を出力として得ることが可能となる。 When a neural network is used, an appropriate network such as a multi-stage perceptron is selected, and various examples of measured values of voltages A i , B i , and C optimized in advance based on actual measured values of voltages are selected. Educate the network by using appropriate methods such as back-propagation using these as teacher signals, and give the measured values of the voltages to the network as inputs to optimize the coefficients A i , B i , and C A value can be obtained as an output.

最小二乗法を用いた本実施形態のバッテリ残存容量推定装置200において実行されるバッテリ残存容量の推定方法を、図1に示す流れ図を用いてさらに詳細に説明する。まずステップS1においてバッテリ110からの充放電の停止が判定されると、ステップS2で電圧センサ230を用いてバッテリ110の電圧(開回路電圧)を測定する。この測定では、開回路電圧を近似する(式4)又は(式5)の逆数関数に含まれている係数の個数以上の電圧測定値を取得する。   The battery remaining capacity estimation method executed in the battery remaining capacity estimation apparatus 200 of this embodiment using the least square method will be described in more detail with reference to the flowchart shown in FIG. First, when it is determined in step S1 that charging / discharging from the battery 110 is stopped, the voltage (open circuit voltage) of the battery 110 is measured using the voltage sensor 230 in step S2. In this measurement, voltage measurement values equal to or greater than the number of coefficients included in the reciprocal function of (Equation 4) or (Equation 5) approximating the open circuit voltage are obtained.

電圧測定値の取得を終了すると、ステップS3において、最小二乗法で最適化する逆数関数の係数の初期値を設定する。ステップS4において、ステップS3で設定された係数の初期値を起点に、以降の繰り返し計算で各係数の値を更新しながら最適化を進めていく。ステップS4で近似式の各係数の最適値が決定されると、ステップS5において、これを用いた最適化された逆数関数で安定開回路電圧を算出する。   When the acquisition of the voltage measurement value is completed, the initial value of the coefficient of the reciprocal function optimized by the least square method is set in step S3. In step S4, the optimization is advanced while updating the value of each coefficient in the subsequent iterative calculation starting from the initial value of the coefficient set in step S3. When the optimum value of each coefficient of the approximate expression is determined in step S4, in step S5, a stable open circuit voltage is calculated with an optimized inverse function using the coefficient.

さらに、ステップS6において、ステップS5で算出した安定開回路電圧をもとに、所定の変換方法でバッテリ残存容量を算出する。安定開回路電圧からバッテリ残存容量への変換は、事前に作成して記憶部220に記憶させた変換式等を用いることができる。   In step S6, the remaining battery capacity is calculated by a predetermined conversion method based on the stable open circuit voltage calculated in step S5. For the conversion from the stable open circuit voltage to the remaining battery capacity, a conversion formula created in advance and stored in the storage unit 220 can be used.

本発明のバッテリ残存容量の推定方法の別の実施形態を、以下に説明する。本実施形態でも、バッテリ110の開回路電圧を近似する関数として、(式4)又は(式5)の逆数関数を用いるものとしており、以下では、1例として(式5)の逆数関数において次数nを4とした例を用いて説明する。このとき、バッテリ110の開回路電圧V(t)は次式のように表わされる。

Figure 2008268161
Another embodiment of the battery remaining capacity estimation method of the present invention will be described below. Also in this embodiment, the reciprocal function of (Equation 4) or (Equation 5) is used as a function that approximates the open circuit voltage of the battery 110. Hereinafter, as an example, the order in the reciprocal function of (Equation 5) is used. This will be described using an example in which n is 4. At this time, the open circuit voltage V (t) of the battery 110 is expressed by the following equation.
Figure 2008268161

充放電停止後のバッテリ110の開回路電圧の変化は、例えば図3に示すように、充放電停止直後に急激な変化を示し、時間の経過とともに緩やかになっていく。図3に示すような開回路電圧の変化を、(式17)を用いることで高精度に近似することが可能である。特に、充放電停止直後の急激な変化を高精度に近似するためには、(式17)のような高次の逆数関数を用いるのが好ましい。   The change in the open circuit voltage of the battery 110 after charging / discharging stops, for example, as shown in FIG. 3, shows a rapid change immediately after stopping charging / discharging, and becomes gradual as time passes. The change in the open circuit voltage as shown in FIG. 3 can be approximated with high accuracy by using (Equation 17). In particular, in order to approximate a rapid change immediately after stopping charging / discharging with high accuracy, it is preferable to use a high-order reciprocal function such as (Equation 17).

しかし、開回路電圧の変化は、時間の経過とともに緩やかになっており、充放電を停止してから所定時間経過後からの緩やかな開回路電圧の変化を近似するには、必ずしも高次の逆数関数を用いる必要はない。そこで、本実施形態では、充放電停止からバッテリ110の開回路電圧の測定開始までの時間の長さに応じて、開回路電圧の近似に用いる逆数関数の次数nを減少させるようにしている。   However, the change in the open circuit voltage is gentle with the passage of time, and in order to approximate the gentle change in the open circuit voltage after the lapse of a predetermined time after stopping charging / discharging, it is not always a high-order inverse. There is no need to use a function. Therefore, in the present embodiment, the order n of the reciprocal function used for approximating the open circuit voltage is reduced according to the length of time from the stop of charging / discharging to the start of measurement of the open circuit voltage of the battery 110.

まず、バッテリ110の充放電を停止してから電圧測定値Vm(k)を取得するために電圧センサ230でバッテリ110の電圧測定を開始するまでの時間をtxとすると、時間txが第1の基準時間に達していない場合には、開回路電圧の近似式として、((式17)を用いる。また、時間txが第1の基準時間を超過している場合には、開回路電圧の近似式として、(式17)の逆数関数の次数を1つ減らした次式を用いる。

Figure 2008268161
First, assuming that the time from when the charging / discharging of the battery 110 is stopped until the voltage measurement of the battery 110 is started by the voltage sensor 230 in order to obtain the voltage measurement value Vm (k), the time tx is the first time. When the reference time has not been reached, (Equation 17) is used as an approximate expression of the open circuit voltage. When the time tx exceeds the first reference time, the open circuit voltage is approximated. As an equation, the following equation obtained by reducing the order of the reciprocal function of (Equation 17) by one is used.
Figure 2008268161

さらに、時間txが第2の基準時間を超過している場合には、開回路電圧の近似式として、(式18)の逆数関数の次数を1つ減らした次式を用いる。

Figure 2008268161
Further, when the time tx exceeds the second reference time, the following expression obtained by reducing the order of the reciprocal function of (Expression 18) by 1 is used as an approximate expression of the open circuit voltage.
Figure 2008268161

さらに、時間txが第3の基準時間を超過している場合には、開回路電圧の近似式として、(式19)の逆数関数の次数を1つ減らした次式を用いる。

Figure 2008268161
Further, when the time tx exceeds the third reference time, the following expression obtained by reducing the order of the reciprocal function of (Expression 19) by 1 is used as an approximate expression of the open circuit voltage.
Figure 2008268161

(式20)の次数nは1に達していることから、これ以上次数nを減少させた逆数関数は用いない。   Since the order n in (Equation 20) has reached 1, the reciprocal function in which the order n is further reduced is not used.

上記のように、バッテリ110の充放電停止から電圧測定開始までの時間に従って開回路電圧を近似する逆数関数の次数nを低減することにより、逆数関数の最適近似に要する計算時間を短縮させることが可能となる。   As described above, by reducing the order n of the reciprocal function that approximates the open circuit voltage according to the time from the charge / discharge stop of the battery 110 to the start of voltage measurement, the calculation time required for the optimal approximation of the reciprocal function can be shortened. It becomes possible.

上記の本実施形態におけるバッテリ残存容量の推定方法を、図4に示す流れ図を用いてさらに詳細に説明する。まずステップS11においてバッテリ110からの充放電の停止が判定されると、ステップS12で充放電停止からの経過時間を測定する。   The method for estimating the remaining battery capacity in the present embodiment will be described in more detail with reference to the flowchart shown in FIG. First, when it is determined in step S11 that charging / discharging from the battery 110 is stopped, an elapsed time since charging / discharging is measured in step S12.

充放電停止からの経過時間が所定の時間に達したか否かをステップS13で判定し、所定の時間達したと判定するとステップS14で電圧センサ230を用いてバッテリ110の電圧(開回路電圧)を測定する。この測定では、開回路電圧を近似する(式4)又は(式5)の逆数関数に含まれている係数の個数以上の電圧測定値を取得する。   In step S13, it is determined whether or not the elapsed time from the charge / discharge stop has reached a predetermined time. If it is determined that the predetermined time has been reached, the voltage of the battery 110 (open circuit voltage) is determined using the voltage sensor 230 in step S14. Measure. In this measurement, voltage measurement values equal to or greater than the number of coefficients included in the reciprocal function of (Equation 4) or (Equation 5) approximating the open circuit voltage are obtained.

電圧測定値の取得を終了すると、ステップS15でバッテリ110の電圧測定開始までの経過時間の長さに従って、開回路電圧を近似する(式4)又は(式5)の逆数関数の次数を決定する。ステップS16では、最小二乗法で最適化する逆数関数の係数の初期値を設定する。ステップS17において、ステップS16で設定された係数の初期値を起点に、以降の繰り返し計算で各係数の値を更新しながら最適化を進めていく。ステップS17で近似式の各係数の最適値が決定されると、ステップS18において、これを用いた最適化された逆数関数で安定開回路電圧を算出する。   When the acquisition of the voltage measurement value is completed, the order of the reciprocal function of (Equation 4) or (Equation 5) that approximates the open circuit voltage is determined in step S15 according to the length of the elapsed time until the voltage measurement of the battery 110 starts. . In step S16, the initial value of the coefficient of the inverse function optimized by the least square method is set. In step S17, the optimization is advanced while updating the value of each coefficient in subsequent iterations, starting from the initial value of the coefficient set in step S16. When the optimum value of each coefficient of the approximate expression is determined in step S17, a stable open circuit voltage is calculated with an optimized inverse function using this in step S18.

さらに、ステップS19において、ステップS17で算出した安定開回路電圧をもとに、所定の変換方法でバッテリ残存容量を算出する。安定開回路電圧からバッテリ残存容量への変換は、事前に作成して記憶部220に記憶させた変換式等を用いることができる。   In step S19, the remaining battery capacity is calculated by a predetermined conversion method based on the stable open circuit voltage calculated in step S17. For the conversion from the stable open circuit voltage to the remaining battery capacity, a conversion formula created in advance and stored in the storage unit 220 can be used.

本実施形態のバッテリ残存容量推定方法でも、上記の計算過程で指数関数を一切用いていないことから、開回路電圧の近似式の係数を最適化する演算処理の負荷が大幅に軽減されている。   Even in the battery remaining capacity estimation method of the present embodiment, since no exponential function is used in the above calculation process, the processing load for optimizing the coefficient of the approximate expression of the open circuit voltage is greatly reduced.

上記の通り、本発明に係るバッテリ残存容量推定方法では、バッテリの開回路電圧の時間特性を2次以上の逆数関数で近似するようにしたので、短時間内に開回路電圧の収束値を求め、バッテリの充電率を少ない計算負荷で正確にかつ安定的に推定することが可能となる。また、指数関数を用いた方法では、時間変数の値の変化に従って非常に大きく値が変動し、安定的に演算を行なうのが困難になることがあったが、逆数関数を用いた本発明のバッテリ残存容量推定方法では、安定的に演算を行うことが可能となっている。   As described above, in the battery remaining capacity estimation method according to the present invention, the time characteristic of the open circuit voltage of the battery is approximated by a reciprocal function of the second or higher order, so that the convergence value of the open circuit voltage is obtained within a short time. Thus, it is possible to accurately and stably estimate the charging rate of the battery with a small calculation load. In addition, in the method using the exponential function, the value fluctuates greatly according to the change in the value of the time variable, and it may be difficult to perform stable calculation. In the battery remaining capacity estimation method, it is possible to perform stable calculation.

本実施例は逆数関数のみで開回路電圧を近似するものとしているが、適宜他の関数、例えば指数関数等を組み合わせても全く構わない。このときの逆数関数の次数と指数関数の次数は計算負荷と要求精度を勘案して適宜選択される。この場合、一次の逆数関数、3次以下の指数関数の組み合わせであっても一向に構わない。   In this embodiment, the open circuit voltage is approximated only by the reciprocal function, but other functions such as an exponential function may be combined as appropriate. At this time, the order of the reciprocal function and the order of the exponential function are appropriately selected in consideration of the calculation load and the required accuracy. In this case, a combination of a first-order reciprocal function and a third-order or lower exponential function may be used.

なお、本実施の形態における記述は、本発明に係るバッテリ残存容量推定方法、バッテリ残存容量推定装置及びバッテリ電源システムの一例を示すものであり、これに限定されるものではない。本実施の形態におけるバッテリ残存容量推定方法等の細部構成及び詳細な動作等に関しては、本発明の趣旨を逸脱しない範囲で適宜変更可能である。   In addition, the description in this Embodiment shows an example of the battery remaining capacity estimation method, battery remaining capacity estimation apparatus, and battery power supply system which concern on this invention, and is not limited to this. The detailed configuration and detailed operation of the battery remaining capacity estimation method and the like in the present embodiment can be changed as appropriate without departing from the spirit of the present invention.

本発明の第1の実施形態に係るバッテリ残存容量推定方法の処理の流れを示す流れ図である。It is a flowchart which shows the flow of a process of the battery remaining capacity estimation method which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係るバッテリ残存容量推定装置及びバッテリ電源システムの概略の構成を示すブロック図である。1 is a block diagram showing a schematic configuration of a remaining battery capacity estimation device and a battery power supply system according to a first embodiment of the present invention. 開回路電圧の測定値と逆数関数の近似式とを比較する図である。It is a figure which compares the measured value of an open circuit voltage, and the approximate expression of a reciprocal function. 本発明の第2の実施形態に係るバッテリ残存容量推定方法の処理の流れを示す流れ図である。It is a flowchart which shows the flow of a process of the battery remaining capacity estimation method which concerns on the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

10 負荷
100 バッテリ電源システム
110 バッテリ
120 充電回路
200 バッテリ残存容量推定装置
210 制御部
220 記憶部
230 電圧センサ
DESCRIPTION OF SYMBOLS 10 Load 100 Battery power supply system 110 Battery 120 Charging circuit 200 Battery remaining capacity estimation apparatus 210 Control part 220 Storage part 230 Voltage sensor

Claims (7)

負荷に電力を供給するバッテリの残存容量を安定開回路電圧に基づいて推定するバッテリ残存容量推定方法であって、
tを前記バッテリの電圧値取得開始からの経過時間、nを2以上の整数、F(t)を前記時間tの任意の関数、Cを定数とするとき、前記バッテリで発生した充放電分極が徐々に解消して前記安定開回路電圧で安定する開回路時電圧変化を、分母が前記時間tのn次の多項式である関数(以下ではn次の逆数関数という)
Figure 2008268161
で近似し、
前記n次の逆数関数の係数の値を、前記電圧値取得開始から所定時間内に前記バッテリの電圧値を前記係数の個数以上取得し、取得された前記電圧値を基に、最小二乗法又はカルマンフィルタ演算又はニューラルネットワークによって決定し、
前記決定された係数の値を用いて前記n次の逆数関数から前記安定開回路電圧を算出し、
前記算出された安定開回路電圧に基づいて前記残存容量を推定する
ことを特徴とするバッテリ残存容量推定方法。
A battery remaining capacity estimation method for estimating a remaining capacity of a battery that supplies power to a load based on a stable open circuit voltage,
When t is an elapsed time from the start of acquiring the voltage value of the battery, n is an integer of 2 or more, F (t) is an arbitrary function of the time t, and C is a constant, the charge / discharge polarization generated in the battery is A function in which an open circuit voltage change that is gradually resolved and stabilized at the stable open circuit voltage is a function whose denominator is an nth order polynomial of the time t (hereinafter referred to as an nth order reciprocal function).
Figure 2008268161
And approximate with
The value of the coefficient of the nth-order reciprocal function is acquired within the predetermined time from the start of the acquisition of the voltage value, the battery voltage value is equal to or greater than the number of the coefficient, and based on the acquired voltage value, the least square method or Determined by Kalman filter operation or neural network,
The stable open circuit voltage is calculated from the n-th reciprocal function using the determined coefficient value,
The remaining battery capacity is estimated based on the calculated stable open circuit voltage. The remaining battery capacity estimation method, comprising:
前記n次の逆数関数を
Figure 2008268161
とする
ことを特徴とする請求項1に記載のバッテリ残存容量推定方法。
The reciprocal function of order n
Figure 2008268161
The battery remaining capacity estimation method according to claim 1, wherein:
充放電停止から前記バッテリの電圧値取得開始までの時間が、第1の基準時間以下のときは前記開回路時電圧変化を前記n次の逆数関数で近似し、
前記電圧値取得開始までの時間が前記第1の基準時間を超えて第2の基準時間以下のときは前記開回路時電圧変化を(n−1)次の前記逆数関数で近似し、
以下、前記電圧値取得開始までの時間が所定の基準時間を超える毎に前記逆数関数の次数を1に達するまで順次1ずつ減少させて近似する
ことを特徴とする請求項1又は請求項2に記載のバッテリ残存容量推定方法。
When the time from the charge / discharge stop to the start of acquiring the voltage value of the battery is equal to or shorter than the first reference time, the open circuit voltage change is approximated by the nth-order inverse function,
When the time until the voltage value acquisition start exceeds the first reference time and is equal to or less than the second reference time, the open circuit voltage change is approximated by the (n−1) -order reciprocal function,
3. The method according to claim 1, further comprising: approximating the reciprocal function by decreasing the order of the reciprocal function one by one until the voltage value acquisition start time exceeds a predetermined reference time. The battery remaining capacity estimation method as described.
負荷に電力を供給するバッテリの残存容量を安定開回路電圧に基づいて推定するバッテリ残存容量推定装置であって、
前記バッテリの電圧を測定する電圧センサと、
前記残存容量を推定するための演算を実行制御する制御部と、を備え、
前記制御部は、tを前記バッテリの電圧値取得開始からの経過時間、nを2以上の整数、F(t)を前記時間tの任意の関数、Cを定数とするとき、前記バッテリで発生した充放電分極が徐々に解消して前記安定開回路電圧で安定する開回路時電圧変化を、分母が前記時間tのn次の多項式であるn次の逆数関数
Figure 2008268161
で近似し、前記n次の逆数関数の係数の値を、前記電圧値取得開始から所定時間内に前記バッテリの電圧を前記電圧センサで測定して取得した前記係数の個数以上の電圧値を基に、最小二乗法又はカルマンフィルタ演算又はニューラルネットワークによって決定し、前記決定された係数の値を用いて前記n次の逆数関数から前記安定開回路電圧を算出し、前記算出された安定開回路電圧に基づいて前記バッテリの残存容量を推定している
ことを特徴とするバッテリ残存容量推定装置。
A battery remaining capacity estimation device that estimates a remaining capacity of a battery that supplies power to a load based on a stable open circuit voltage,
A voltage sensor for measuring the voltage of the battery;
A control unit that executes and controls a calculation for estimating the remaining capacity,
The control unit generates the battery when t is an elapsed time from the start of acquiring the voltage value of the battery, n is an integer of 2 or more, F (t) is an arbitrary function of the time t, and C is a constant. The n-th order reciprocal function whose denominator is the n-th order polynomial of the time t is the voltage change at the time of open circuit in which the charged / discharge polarization is gradually eliminated and stabilized at the stable open circuit voltage.
Figure 2008268161
And the coefficient value of the n-th order reciprocal function is based on a voltage value equal to or greater than the number of coefficients obtained by measuring the voltage of the battery with the voltage sensor within a predetermined time from the start of voltage value acquisition. The stable open circuit voltage is calculated from the n-th reciprocal function using the value of the determined coefficient, determined by a least square method, a Kalman filter operation, or a neural network, and the calculated stable open circuit voltage The remaining battery capacity is estimated based on the remaining battery capacity estimation apparatus.
前記制御部は、前記n次の逆数関数として
Figure 2008268161
を用いている
ことを特徴とする請求項4に記載のバッテリ残存容量推定装置。
The control unit is configured as the nth-order inverse function.
Figure 2008268161
The battery remaining capacity estimation device according to claim 4, wherein:
前記制御部は、充放電停止から前記バッテリの電圧値取得開始までの時間が第1の基準時間以下のときは前記開回路時電圧変化を前記n次の逆数関数で近似し、前記電圧値取得開始までの時間が前記第1の基準時間を超えて第2の基準時間以下のときは前記開回路時電圧変化を(n−1)次の前記逆数関数で近似し、以下、前記電圧値取得開始までの時間が所定の基準時間を超える毎に前記逆数関数の次数を1に達するまで順次1ずつ減少させて近似している
ことを特徴とする請求項4又は請求項5に記載のバッテリ残存容量推定装置。
The controller obtains the voltage value by approximating the open circuit voltage change by the nth-order reciprocal function when the time from the charge / discharge stop to the battery voltage value acquisition start is equal to or shorter than a first reference time. When the time until the start exceeds the first reference time and is less than or equal to the second reference time, the open circuit voltage change is approximated by the (n-1) th order reciprocal function, and then the voltage value acquisition is performed. 6. The remaining battery according to claim 4, wherein when the time until the start exceeds a predetermined reference time, the order of the reciprocal function is approximated by decreasing by 1 until the degree reaches 1. Capacity estimation device.
前記バッテリと、請求項4から請求項6のいずれか1項に記載のバッテリ残存容量推定装置と、を備える
ことを特徴とするバッテリ電源システム。
A battery power supply system comprising: the battery; and the remaining battery capacity estimation device according to any one of claims 4 to 6.
JP2007123729A 2007-03-29 2007-05-08 Battery remaining capacity estimation method, battery remaining capacity estimation apparatus, and battery power supply system Active JP4865627B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007123729A JP4865627B2 (en) 2007-03-29 2007-05-08 Battery remaining capacity estimation method, battery remaining capacity estimation apparatus, and battery power supply system
US12/041,972 US7899631B2 (en) 2007-03-29 2008-03-04 Method and device for estimating battery residual capacity, and battery power supply system
EP08004483.7A EP1975635B1 (en) 2007-03-29 2008-03-11 Method and device for estimating battery residual capacity, and battery power supply system
CN2008100873568A CN101275991B (en) 2007-03-29 2008-03-21 Method and device for estimating battery residual capacity, and battery power supply system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007086762 2007-03-29
JP2007086762 2007-03-29
JP2007123729A JP4865627B2 (en) 2007-03-29 2007-05-08 Battery remaining capacity estimation method, battery remaining capacity estimation apparatus, and battery power supply system

Publications (2)

Publication Number Publication Date
JP2008268161A true JP2008268161A (en) 2008-11-06
JP4865627B2 JP4865627B2 (en) 2012-02-01

Family

ID=39995613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007123729A Active JP4865627B2 (en) 2007-03-29 2007-05-08 Battery remaining capacity estimation method, battery remaining capacity estimation apparatus, and battery power supply system

Country Status (2)

Country Link
JP (1) JP4865627B2 (en)
CN (1) CN101275991B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010271755A (en) * 2009-05-19 2010-12-02 Internatl Business Mach Corp <Ibm> Simulation system, method, and program
CN114487835A (en) * 2022-01-17 2022-05-13 国网甘肃省电力公司经济技术研究院 Retired power battery grade division method for particle swarm optimization BIRCH algorithm
CN116699412A (en) * 2023-05-17 2023-09-05 盐城工学院 Residual capacity estimation method of energy storage battery module

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101598769B (en) * 2009-06-29 2011-04-20 杭州电子科技大学 Method for estimating remaining capacity of battery based on sampling points Kalman filtering
JP5520657B2 (en) * 2010-03-30 2014-06-11 古河電気工業株式会社 CHARGE RATE ESTIMATION METHOD, CHARGE RATE ESTIMATION DEVICE, AND SECONDARY BATTERY POWER SUPPLY SYSTEM
JP5307113B2 (en) 2010-12-20 2013-10-02 古河電気工業株式会社 Full charge detection device and full charge detection method
FR3006450B1 (en) * 2013-06-04 2015-05-22 Renault Sa METHOD FOR ESTIMATING THE HEALTH STATUS OF AN ELECTROCHEMICAL CELL FOR STORING ELECTRIC ENERGY

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006129802A1 (en) * 2005-06-03 2006-12-07 The Furukawa Electric Co., Ltd. Charge ratio/remaining capacity estimation method, battery state sensor, and battery power source system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006129802A1 (en) * 2005-06-03 2006-12-07 The Furukawa Electric Co., Ltd. Charge ratio/remaining capacity estimation method, battery state sensor, and battery power source system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010271755A (en) * 2009-05-19 2010-12-02 Internatl Business Mach Corp <Ibm> Simulation system, method, and program
CN114487835A (en) * 2022-01-17 2022-05-13 国网甘肃省电力公司经济技术研究院 Retired power battery grade division method for particle swarm optimization BIRCH algorithm
CN116699412A (en) * 2023-05-17 2023-09-05 盐城工学院 Residual capacity estimation method of energy storage battery module

Also Published As

Publication number Publication date
CN101275991A (en) 2008-10-01
JP4865627B2 (en) 2012-02-01
CN101275991B (en) 2011-09-21

Similar Documents

Publication Publication Date Title
EP1975635B1 (en) Method and device for estimating battery residual capacity, and battery power supply system
CN113466723B (en) Method and device for determining state of charge of battery and battery management system
JP5058814B2 (en) Battery state and parameter estimation system and method
JP4865523B2 (en) Battery charge rate estimation method, battery charge rate estimation device, and battery power supply system
JP4865627B2 (en) Battery remaining capacity estimation method, battery remaining capacity estimation apparatus, and battery power supply system
EP3207388B1 (en) Battery condition monitoring
JP4532416B2 (en) Battery discharge capability determination method, battery discharge capability determination device, and power supply system
US9201119B2 (en) Battery fuel gauge
EP3264562B1 (en) Method for determining an estimated combined battery state-parameter vector
JP6555773B2 (en) Storage power remaining amount estimation device, method for estimating remaining power storage amount of storage battery, and computer program
TWI384246B (en) Apparatus and method for estimating resistance characteristics of battery based on open circuit voltage estimated by battery voltage variation
EP3011350B1 (en) Monitoring charge stored in a battery
JP6404832B2 (en) Method of determining control technical observer for SoC
CN109633477B (en) Real-time monitoring method for health state of battery pack based on EKF-GPR and daily fragment data
KR20180043048A (en) Method for predicting State of Health of Battery
EP3542173A1 (en) Determining a state of health of a battery and providing an alert
KR20080083272A (en) System, method and article of manufacture for determining an estimated battery parameter vector
WO2007100189A1 (en) System and method for determining both an estimated battery state vector and an estimated battery parameter vector
JP6455914B2 (en) Storage power remaining amount estimation device, method for estimating remaining power storage amount of storage battery, and computer program
TW201643458A (en) Battery remaining power predicting device and battery pack
US10436849B2 (en) System and corresponding method for estimating the charge status of a battery
CN109633470B (en) Estimation method for battery real-time full charge time based on EKF-GPR and daily segment data
US11300626B2 (en) Method and system for battery capacity estimation
JP2008096328A (en) Charging rate estimation method, charging rate estimating device, and secondary battery power supply system
US10502789B2 (en) Method and device for determining a parameter of a model of a technical installation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4865627

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350