JP2008267912A - Underwater anechoic chamber and electromagnetic noise measuring method - Google Patents

Underwater anechoic chamber and electromagnetic noise measuring method Download PDF

Info

Publication number
JP2008267912A
JP2008267912A JP2007109515A JP2007109515A JP2008267912A JP 2008267912 A JP2008267912 A JP 2008267912A JP 2007109515 A JP2007109515 A JP 2007109515A JP 2007109515 A JP2007109515 A JP 2007109515A JP 2008267912 A JP2008267912 A JP 2008267912A
Authority
JP
Japan
Prior art keywords
anechoic chamber
electromagnetic noise
underwater
electromagnetic
wave absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007109515A
Other languages
Japanese (ja)
Other versions
JP5298454B2 (en
Inventor
Ikuo Iwasaki
郁夫 岩崎
Yuji Sasaki
裕司 佐々木
Tomoyuki Katagiri
智之 片桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2007109515A priority Critical patent/JP5298454B2/en
Publication of JP2008267912A publication Critical patent/JP2008267912A/en
Application granted granted Critical
Publication of JP5298454B2 publication Critical patent/JP5298454B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive underwater anechoic chamber capable of satisfactorily shielding electromagnetic noise to obtain high reliability in measurement accuracy and easily located with satisfactory convenience. <P>SOLUTION: An inner circumferential surface of an anechoic chamber body 2 having polyhedral container shape with pressure resistance is covered with an electromagnetic wave absorbing body 3. The underwater anechoic chamber is sunk into the water so that the electromagnetic noise of a sample to be tested, accommodated in the underwater anechoic chamber, is measured. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、外部からの電磁ノイズの影響を受けることを減少させた水中電波暗室及び電磁ノイズ計測方法に関するものである。   The present invention relates to an underwater anechoic chamber and an electromagnetic noise measurement method that are less affected by electromagnetic noise from the outside.

電磁両立性、すなわち電気・電子機器から発せられる電磁ノイズが他のどのような機器、システムに対しても影響を与えず、又、他の機器、システムからの電磁ノイズを受けても電子・電気機器が支障なく作動する耐性を試験する際に、供試体である電気・電子機器を収納する電波暗室が従来から使用されている。   Electromagnetic compatibility, that is, electromagnetic noise emitted from electrical / electronic equipment does not affect any other equipment / system, and even if it receives electromagnetic noise from other equipment / system, electronic / electrical Conventionally, an anechoic chamber for storing electrical and electronic devices as test specimens has been used to test the resistance of the devices to operate without hindrance.

而して、斯かる電波暗室は、従来は電磁ノイズの少ない山中(丹沢等)に設置されるか、或は市街地に暗室を設けて、暗室建屋の壁面、天井面を電磁波吸収体で覆い、電磁ノイズのレベルを減少させるようにしている。又、電波暗室の先行技術文献としては、例えば、特許文献1〜4等がある。
特開2001−244686号公報 特開2002−57487号公報 特開2005−347524号公報 特開2007−27274号公報
Thus, such an anechoic chamber is conventionally installed in a mountain (Tanzawa etc.) where there is little electromagnetic noise, or a dark room is provided in an urban area, and the walls and ceiling surface of the dark room building are covered with an electromagnetic wave absorber, The level of electromagnetic noise is reduced. Moreover, as prior art documents of the anechoic chamber, there are, for example, Patent Documents 1 to 4 and the like.
JP 2001-244686 A JP 2002-57487 A JP 2005-347524 A JP 2007-27274 A

電波暗室を山中に設置する場合は、場所の確保が困難であると共に、交通の利便性が悪い。又、電波暗室を市街地に設置した際には、電柱、埋設送電線、電車、工場等、強電界の電磁ノイズを避けることが困難であり、完全に電磁ノイズを遮蔽できる電波暗室が得られ難い。本願発明者等は、市街地に従来周知構造の電波暗室を設置して完全に遮蔽し、全ての電源を落として外部からどの程度の定常的な電磁ノイズが電波暗室内に入り込むか、計測を行なった。その計測結果は図3〜図5に示されている。図3〜図5において、横軸は周波数(Hz)、縦軸は電磁ノイズの強度(dBμV/m)であり、又、イは電磁ノイズ、ロはNB(ナローバンド)において国際規格で許容される電磁ノイズの閾値、ハはBB(ブロードバンド)において国際規格で許容される電磁ノイズの尖頭値(ピーク値)、ニはBB(ブロードバンド)において国際規格で許容される電磁ノイズの準尖頭値(QP値)である。なお、図3〜図5のグラフは夫々異なる日の異なる時刻に計測したものである。   When installing an anechoic chamber in the mountains, it is difficult to secure a place and the convenience of transportation is poor. Also, when an anechoic chamber is installed in an urban area, it is difficult to avoid electromagnetic noise of strong electric fields, such as utility poles, buried transmission lines, trains, factories, etc., and it is difficult to obtain an anechoic chamber that can completely shield electromagnetic noise. . The inventors of the present application installed an electromagnetic anechoic chamber with a well-known structure in an urban area and completely shielded it, and turned off all power to measure how much stationary electromagnetic noise enters the anechoic chamber from the outside. It was. The measurement results are shown in FIGS. 3 to 5, the horizontal axis represents frequency (Hz), the vertical axis represents electromagnetic noise intensity (dBμV / m), a is electromagnetic noise, and b is allowed by international standards in NB (narrow band). Electromagnetic noise threshold, C is the peak value (peak value) of electromagnetic noise allowed by international standards in BB (broadband), and d is the quasi-peak value of electromagnetic noise allowed by international standards in BB (broadband) ( QP value). The graphs in FIGS. 3 to 5 are measured at different times on different days.

図3〜図5のグラフから、電波暗室を用いることにより、全体の外来電磁ノイズはかなり低減できるが、完全に無くすことはできない。又、電気・電子機器が車載機器のように誤動作を完全に防止する必要がある場合には、自己放射電磁ノイズや外来電磁ノイズに対する高い耐性を要求されると共に、閾値に対する要求が高いため、外来電磁ノイズを更に低減し計測精度を高くする必要がある。更に、電波暗室外の環境の違いにより、日によって電磁ノイズの測定結果が異なるため、斯かる電波暗室の場合には電磁両立性に関する計測精度について高い信頼性を得ることはできない。   From the graphs of FIGS. 3 to 5, the use of the anechoic chamber can considerably reduce the total external electromagnetic noise, but it cannot be completely eliminated. In addition, when electrical and electronic equipment needs to completely prevent malfunctions, such as in-vehicle equipment, it is required to have high resistance against self-radiated electromagnetic noise and external electromagnetic noise, and the demand for threshold is high. It is necessary to further reduce electromagnetic noise and increase measurement accuracy. Furthermore, the measurement results of electromagnetic noise differ depending on the day due to the difference in the environment outside the anechoic chamber. Therefore, in such an anechoic chamber, it is not possible to obtain high reliability with respect to measurement accuracy regarding electromagnetic compatibility.

更に山中に設置した場合でも市街地に設置した場合でも、暗室の建屋設備が高価となる。又、特許文献1〜4の電波暗室でも前記したと同様の問題がある。   Furthermore, whether it is installed in the mountains or in the city, the building facilities for dark rooms are expensive. The anechoic chambers of Patent Documents 1 to 4 have the same problem as described above.

本発明は、斯かる実情に鑑み、外来電磁ノイズの遮蔽を良好に行なうことができて計測精度の高い信頼性を得ることができると共に、場所の確保が容易で利便性が良く、しかも安価な水中電波暗室及び電磁ノイズ計測方法を提供することを目的としてなしたものである。   In view of such circumstances, the present invention can well shield external electromagnetic noise, obtain high reliability with high measurement accuracy, and can easily secure a place, is convenient, and is inexpensive. The object is to provide an underwater anechoic chamber and an electromagnetic noise measurement method.

本発明の水中電波暗室は、耐水圧性の暗室本体の内周面を電磁波吸収体により覆ったことを特徴とするものである。暗室本体は多面体容器状とすることが好ましい。   The underwater anechoic chamber of the present invention is characterized in that the inner peripheral surface of a water-resistant darkroom body is covered with an electromagnetic wave absorber. The dark room body is preferably a polyhedral container.

本発明では、水中電波暗室を水中に沈下させて水中電波室に収納した供試体の電磁ノイズを計測することができる。   In the present invention, it is possible to measure the electromagnetic noise of a specimen that has been submerged in an underwater anechoic chamber and stored in the underwater anechoic chamber.

本発明の水中電波暗室及び電磁ノイズ計測方法によれば、下記のごとき種々の優れた効果を奏し得る。
I)水は、大地接地(アース)状態にあり、且つ水中電波暗室全体を包囲しているため、シールドとなり、又、空中から水面に向って放射された電磁ノイズの多くは、水面で反射されて水中に入射されず、更に、水中に入射しても急速に減衰して水中電波暗室に到達することを大幅に抑制され、その結果、良好な水中電波暗室を実現できる。
II)供試体から発した電磁ノイズの一部は、電磁波吸収体にぶつかり吸収されるため、電磁波吸収体から供試体に向かい電磁ノイズが放射されることはなく、従って、供試体の発する電磁ノイズを正確に計測でき、計測精度が高く信頼性が良好となる。
III)電磁ノイズが電磁波吸収体に吸収されると熱が発生して電磁波吸収体の温度が上昇するが、暗室本体は水中に浸漬されているため、熱が暗室本体から水中に伝わり、冷却され、従って、暗室本体内は一定温度に保持される結果、供試体は、電磁波吸収体や暗室本体の温度による影響を受けることもない。
IV)電波暗室は水中に設置するため、山中に設置する場合のように場所的な制約も受けることがなく、交通等の利便性も一段と良好である。
VI)海中で使用した場合は、遊休となっている船体ドッグ、港湾倉庫地区、漁港等を有効活用することができる。
According to the underwater anechoic chamber and the electromagnetic noise measurement method of the present invention, various excellent effects as described below can be obtained.
I) Since water is grounded (earth) and surrounds the entire underwater anechoic chamber, it serves as a shield, and most of the electromagnetic noise radiated from the air toward the water surface is reflected by the water surface. It is not incident on the water, and even if it is incident on the water, it is greatly suppressed from rapidly attenuating and reaching the underwater anechoic chamber. As a result, a good underwater anechoic chamber can be realized.
II) Since part of the electromagnetic noise emitted from the specimen is absorbed by the electromagnetic wave absorber, no electromagnetic noise is emitted from the electromagnetic wave absorber toward the specimen. Therefore, the electromagnetic noise emitted by the specimen is not generated. Can be measured accurately, and the measurement accuracy is high and the reliability is good.
III) When electromagnetic noise is absorbed by the electromagnetic wave absorber, heat is generated and the temperature of the electromagnetic wave absorber rises. However, since the dark room body is immersed in water, heat is transferred from the dark room body to the water and cooled. Therefore, as a result of maintaining the inside of the dark room main body at a constant temperature, the specimen is not affected by the temperature of the electromagnetic wave absorber or the dark room main body.
IV) Since the anechoic chamber is installed underwater, it is not subject to location restrictions as in the case of installation in the mountains, and the convenience of transportation and the like is much better.
VI) When used in the sea, it is possible to effectively utilize idle hull dogs, harbor warehouse areas, fishing ports, etc.

以下、本発明の実施の形態を添付図面を参照して説明する。
図1、図2は本発明を実施する形態の一例である。図中、1は水中電波暗室であって、導電性の材料、例えば鋼鉄製で、球形に近い多面体容器状の耐水圧性の暗室本体(図示例では、断面八角形状)2と暗室本体2内の内周面全体を覆うように配置された多数の電磁波吸収体3を備えている。暗室本体2には、開閉扉2aが設けられており、開閉扉2aの内面にも電波吸収体3が貼設されている。電磁波吸収体3は四角錘状で、例えばフェライトにより構成されている。暗室本体2を球形に近い多面体容器状にしたのは、水中では球形に近いほど耐圧強度が強く、又、内部に電磁波吸収体3を敷設するには、内周貼設面を平坦にする必要があるためである。暗室本体2の下部には脚4が固設されており、海底5に沈下した暗室本体2を支持し得るようになっている。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
1 and 2 are examples of embodiments for carrying out the present invention. In the figure, reference numeral 1 denotes an underwater anechoic chamber, which is made of a conductive material, for example, steel, in a polyhedral container-like water-resistant darkroom body (in the illustrated example, an octagonal cross section) 2 and the darkroom body 2 A large number of electromagnetic wave absorbers 3 are provided so as to cover the entire inner peripheral surface. The darkroom body 2 is provided with an opening / closing door 2a, and a radio wave absorber 3 is also attached to the inner surface of the opening / closing door 2a. The electromagnetic wave absorber 3 has a quadrangular pyramid shape, and is made of, for example, ferrite. The dark room body 2 has a nearly spherical polyhedral container shape. In water, the closer to a spherical shape, the stronger the pressure resistance strength, and in order to lay the electromagnetic wave absorber 3 inside, it is necessary to flatten the inner peripheral pasting surface. Because there is. A leg 4 is fixed to the lower part of the dark room main body 2 so that the dark room main body 2 sinking to the seabed 5 can be supported.

図1中、6は暗室本体2内に収納された電気・電子機器である供試体、7は供試体6から発生する電磁ノイズを捕捉するよう、暗室本体2内に収納されたアンテナ、8は水中電波暗室1を締結される海水中に建造された構造物、9は構造物8に支持されて海面上にある海上部計測室、10は海上部計測室9に設置された電源、11はアンテナ7で捕捉された電磁ノイズを受信する計測部、12は電磁ノイズである。供試体6としてはインバータ、高周波回路等がある。   In FIG. 1, 6 is a specimen that is an electrical / electronic device housed in the darkroom body 2, 7 is an antenna housed in the darkroom body 2 so as to capture electromagnetic noise generated from the specimen 6, and 8 is A structure built in the seawater to which the underwater anechoic chamber 1 is fastened, 9 is a seafloor measurement room on the sea surface supported by the structure 8, 10 is a power source installed in the seafloor measurement room 9, 11 is A measuring unit 12 for receiving electromagnetic noise captured by the antenna 7 is electromagnetic noise. Examples of the specimen 6 include an inverter and a high frequency circuit.

次に、上記した実施の形態の作動を説明する。
例えば、供試体6から発せられる電磁ノイズを計測する場合は、開閉扉2aを完全に閉止した状態で、電源10から供試体6に給電を行なって供試体6を作動させ、この際、供試体6から発する電磁ノイズをアンテナ7により捕捉して計測部11へ送信し、周波数と電磁ノイズの強度を計測する。
Next, the operation of the above-described embodiment will be described.
For example, when measuring electromagnetic noise emitted from the specimen 6, the specimen 6 is operated by supplying power from the power source 10 to the specimen 6 with the open / close door 2a completely closed. The electromagnetic noise emitted from 6 is captured by the antenna 7 and transmitted to the measuring unit 11 to measure the frequency and the intensity of the electromagnetic noise.

この際、海水は、大地接地(アース)状態にあり、且つ水中電波暗室1全体を包囲しているため、シールドとなり、又、海上から海水に向って放射された電磁ノイズ12は、海面で反射されて海中に入射されず、又、海中に入射しても急速に減衰する。このため、電磁ノイズが水中電波暗室1に到達することを大幅に抑制され、良好な水中電波暗室1を実現できる。   At this time, since the seawater is in a grounded state (earth) and surrounds the entire underwater anechoic chamber 1, it serves as a shield, and electromagnetic noise 12 radiated from the sea toward the seawater is reflected by the sea surface. It is not incident on the sea and attenuates rapidly even if it enters the sea. For this reason, electromagnetic noise is significantly suppressed from reaching the underwater anechoic chamber 1, and a good underwater anechoic chamber 1 can be realized.

供試体6から発した電磁ノイズは上記したようにアンテナ7により捕捉されるが、アンテナ7により捕捉されなかった電磁ノイズは、電磁波吸収体3にぶつかり吸収される。このため、電磁波吸収体3から供試体6に向かい電磁ノイズが放射されることはない。従って、計測部11で計測される供試体6の電磁ノイズは計測精度が高く信頼性が良好となる。   The electromagnetic noise emitted from the specimen 6 is captured by the antenna 7 as described above, but the electromagnetic noise that has not been captured by the antenna 7 hits the electromagnetic wave absorber 3 and is absorbed. For this reason, electromagnetic noise is not radiated from the electromagnetic wave absorber 3 toward the specimen 6. Therefore, the electromagnetic noise of the specimen 6 measured by the measuring unit 11 has high measurement accuracy and good reliability.

電磁ノイズが電磁波吸収体3に吸収されると熱が発生して電磁波吸収体3の温度が上昇するが、暗室本体2は海水に浸漬されているため、熱が暗室本体2から海水に伝わり、冷却される。従って、暗室本体2内は一定温度に保持される結果、供試体6は、電磁波吸収体3や暗室本体2の温度による影響を受けることもない。   When electromagnetic noise is absorbed by the electromagnetic wave absorber 3, heat is generated and the temperature of the electromagnetic wave absorber 3 rises. However, since the darkroom body 2 is immersed in seawater, heat is transferred from the darkroom body 2 to seawater. To be cooled. Therefore, as a result of maintaining the inside of the dark room main body 2 at a constant temperature, the specimen 6 is not affected by the temperature of the electromagnetic wave absorber 3 or the dark room main body 2.

更に、水中電波暗室1は海中に設置するため、山中に設置する場合のように場所的な制約も受けることがなく、交通等の利便性も良好であり、更に又、遊休となっている船体ドッグ、港湾倉庫地区、漁港等を有効活用することができる。   Further, since the underwater anechoic chamber 1 is installed in the sea, it is not subject to location restrictions as in the case of being installed in the mountains, and is convenient for transportation and the like. Dogs, port warehouse areas, fishing ports, etc. can be used effectively.

なお、本発明の水中電波暗室は海中に設置する場合について説明したが、淡水中に設置しても実施できること、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   Although the underwater anechoic chamber of the present invention has been described for installation in the sea, it can be implemented even when installed in fresh water, and various changes can be made without departing from the scope of the present invention. is there.

本発明の水中電波暗室及び電磁ノイズ計測方法を説明するための概要図で、水中電波暗室が海底に沈下した状態を示す概要図である。It is a schematic diagram for demonstrating the underwater anechoic chamber and the electromagnetic noise measuring method of this invention, and is a schematic diagram which shows the state which the underwater anechoic chamber sank on the seabed. 図1の水中電波暗室に使用する電磁波吸収体の斜視図である。It is a perspective view of the electromagnetic wave absorber used for the underwater anechoic chamber of FIG. 従来の市街地に設置した電波暗室で計測した電磁ノイズの一例を示すグラフである。It is a graph which shows an example of the electromagnetic noise measured in the anechoic chamber installed in the conventional city area. 従来の市街地に設置した電波暗室で計測した電磁ノイズの他の例を示すグラフである。It is a graph which shows the other example of the electromagnetic noise measured in the anechoic chamber installed in the conventional city area. 従来の市街地に設置した電波暗室で計測した電磁ノイズの更に他の例を示すグラフである。It is a graph which shows the further another example of the electromagnetic noise measured in the conventional anechoic chamber installed in the urban area.

符号の説明Explanation of symbols

1 水中電波暗室
2 暗室本体
3 電磁波吸収体
6 供試体
1 Underwater Anechoic Chamber 2 Darkroom Body 3 Electromagnetic Wave Absorber 6 Specimen

Claims (3)

耐水圧性の暗室本体の内周面を電磁波吸収体により覆ったことを特徴とする水中電波暗室。   An underwater anechoic chamber characterized in that the inner peripheral surface of a water-resistant darkroom body is covered with an electromagnetic wave absorber. 暗室本体は多面体容器状である請求項1記載の水中電波暗室。   The underwater anechoic chamber according to claim 1, wherein the darkroom body has a polyhedral container shape. 請求項1又は2記載の水中電波暗室を水中に沈下させて暗室本体に収納した供試体の電磁ノイズを計測することを特徴とする電磁ノイズ計測方法。
An electromagnetic noise measuring method, comprising: measuring an electromagnetic noise of a specimen stored in a dark room body by submerging the underwater anechoic chamber according to claim 1 or 2 in water.
JP2007109515A 2007-04-18 2007-04-18 Underwater anechoic chamber Expired - Fee Related JP5298454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007109515A JP5298454B2 (en) 2007-04-18 2007-04-18 Underwater anechoic chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007109515A JP5298454B2 (en) 2007-04-18 2007-04-18 Underwater anechoic chamber

Publications (2)

Publication Number Publication Date
JP2008267912A true JP2008267912A (en) 2008-11-06
JP5298454B2 JP5298454B2 (en) 2013-09-25

Family

ID=40047621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007109515A Expired - Fee Related JP5298454B2 (en) 2007-04-18 2007-04-18 Underwater anechoic chamber

Country Status (1)

Country Link
JP (1) JP5298454B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021129039A (en) * 2020-02-14 2021-09-02 エスペック株式会社 Radio wave shield chamber and radio wave test method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01141365A (en) * 1987-11-27 1989-06-02 Sumitomo Electric Ind Ltd Waveform observing device using optical fiber
JPH08125378A (en) * 1994-10-21 1996-05-17 Tdk Corp Radio wave dark room arrangement
JPH11350616A (en) * 1998-06-05 1999-12-21 Nippon Light Metal Co Ltd Watertight structure
JP2002107398A (en) * 2000-09-29 2002-04-10 Murata Mfg Co Ltd Measuring device for antenna-coupled state, and usage for radio wave anechoic chamber
JP2002165348A (en) * 2000-11-27 2002-06-07 Tech Res & Dev Inst Of Japan Def Agency Compound transmission cable connecting apparatus for remote sensing machine and others
JP2006292449A (en) * 2005-04-07 2006-10-26 Katsumi Fujimura Earthquake prediction/observation device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01141365A (en) * 1987-11-27 1989-06-02 Sumitomo Electric Ind Ltd Waveform observing device using optical fiber
JPH08125378A (en) * 1994-10-21 1996-05-17 Tdk Corp Radio wave dark room arrangement
JPH11350616A (en) * 1998-06-05 1999-12-21 Nippon Light Metal Co Ltd Watertight structure
JP2002107398A (en) * 2000-09-29 2002-04-10 Murata Mfg Co Ltd Measuring device for antenna-coupled state, and usage for radio wave anechoic chamber
JP2002165348A (en) * 2000-11-27 2002-06-07 Tech Res & Dev Inst Of Japan Def Agency Compound transmission cable connecting apparatus for remote sensing machine and others
JP2006292449A (en) * 2005-04-07 2006-10-26 Katsumi Fujimura Earthquake prediction/observation device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021129039A (en) * 2020-02-14 2021-09-02 エスペック株式会社 Radio wave shield chamber and radio wave test method
JP7307687B2 (en) 2020-02-14 2023-07-12 エスペック株式会社 Radio wave shield chamber and radio wave test method

Also Published As

Publication number Publication date
JP5298454B2 (en) 2013-09-25

Similar Documents

Publication Publication Date Title
JP6324673B2 (en) Manhole cover with antenna
KR200394533Y1 (en) Monitoring system of the various marine installation under the sea and on the sea
CN106872831B (en) Interference source determines method in highly sensitive antenna of receiving device band in microwave load satellite
CN112731311A (en) Radar product reliability verification complex comprehensive environment and construction method
JP5298454B2 (en) Underwater anechoic chamber
CN102955091B (en) Shielding shelter low frequency shield effectiveness test and evaluation method under the condition of whole cabin
JP4275115B2 (en) Embedded radio equipment
CN203881957U (en) Detector based on neutrino and used for detecting nuclear submarine
CN107271791A (en) A kind of indoor electromagnetic radiation Forecasting Methodology of wall towards communication base station
CN207396665U (en) For the Intelligence Ultrasound wave sensor of power equipment Partial Discharge Detection
US9772288B1 (en) Autonomous biobuoy systems and methods
KR100796625B1 (en) Antenna chamber of hemi-sphere
KR101380694B1 (en) Distance measuring method using electromagnetic wave
Savage et al. An alternative EM shielding effectiveness measurement method for buildings
CN207601336U (en) Magnetic field monitors system
Krzysztofik et al. Some Consideration on Shielding Effectiveness Testing by Means of the Nested Reverberation Chambers.
KR101851229B1 (en) Real-time observing system of marine environment and whales
KR101580661B1 (en) Anechoic chamber
CN107167231A (en) A kind of interference shielding device measured for acoustic sensor self noise
JP2010281585A (en) Device for measuring liquid surface position
KR20220069142A (en) Device for measuring electromagnetic shielding effectiveness
Abouhamad et al. Leak detection in buried pipes using ground penetrating radar—A comparative study
Cavallini et al. Experience on measuring partial discharges in paper/oil medium-voltage distribution transformers
Solcanu et al. The results of the electromagnetic field measurements performed on a military maritime ship to determine the effectiveness of a radio-absorbent material
ES2340227T3 (en) DEVICE FOR THE PERFORMANCE OF A COMPATIBILITY SYSTEM TEST.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130603

LAPS Cancellation because of no payment of annual fees