JP2008267285A - Cooling control device for butterfly type exhaust throttle valve - Google Patents

Cooling control device for butterfly type exhaust throttle valve Download PDF

Info

Publication number
JP2008267285A
JP2008267285A JP2007112070A JP2007112070A JP2008267285A JP 2008267285 A JP2008267285 A JP 2008267285A JP 2007112070 A JP2007112070 A JP 2007112070A JP 2007112070 A JP2007112070 A JP 2007112070A JP 2008267285 A JP2008267285 A JP 2008267285A
Authority
JP
Japan
Prior art keywords
exhaust
throttle valve
valve
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007112070A
Other languages
Japanese (ja)
Inventor
Takayuki Hosoki
貴之 細木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007112070A priority Critical patent/JP2008267285A/en
Publication of JP2008267285A publication Critical patent/JP2008267285A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling control device for butterfly type exhaust throttle valve not disturbing normal behavior even if the same is exposed to high temperature exhaust gas. <P>SOLUTION: An exhaust emission control device for an internal combustion engine provided with an exhaust emission control filter 132 installed in an exhaust gas passage 122 of the internal combustion engine, and the butterfly type exhaust throttle valve 134 provided on a downstream side thereof, is provided with a circulation channel 140 communicating to a through hole 134 C formed on a valve shaft 134B of the exhaust throttle valve and circulating cooling water of the internal combustion engine, and a water quantity adjusting valve 142 provided in the circulation channel. The device is provided with a control means controlling opening of the water quantity adjusting valve 142 to make cooling water of predetermined quantity to the through hole 134B during regeneration of the exhaust emission control filter. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、バタフライ型排気絞り弁の冷却制御装置、特に、内燃機関の排気通路に設置された排気浄化フィルタと、該排気浄化フィルタの下流側に配設されたバタフライ型排気絞り弁を備える内燃機関の排気浄化装置におけるバタフライ型排気絞り弁の冷却制御装置に関する。   The present invention relates to a cooling control device for a butterfly type exhaust throttle valve, and in particular, an internal combustion engine provided with an exhaust purification filter installed in an exhaust passage of an internal combustion engine, and a butterfly type exhaust throttle valve disposed downstream of the exhaust purification filter. The present invention relates to a cooling control device for a butterfly type exhaust throttle valve in an exhaust purification device of an engine.

一般に、内燃機関、特にディーゼルエンジンにおいては、排気中に含まれる粒子状物質(パティキュレートマター、以下、PMと称す)の除去が重要な課題となっている。このため大気中に粒子状物質が放出されないように内燃機関の排気系に粒子状物質の捕集を行う排気浄化フィルタ(例えば、ディーゼルパティキュレートフィルタ、以下、DPFとも称す)を設ける技術が存在する。   In general, in an internal combustion engine, particularly a diesel engine, removal of particulate matter (particulate matter, hereinafter referred to as PM) contained in exhaust gas is an important issue. For this reason, there is a technique for providing an exhaust purification filter (for example, diesel particulate filter, hereinafter also referred to as DPF) for collecting particulate matter in the exhaust system of the internal combustion engine so that particulate matter is not released into the atmosphere. .

このDPFでは、PMの堆積量が過大となるとフィルタに目詰まりを生じ、これに起因する出力低下により燃費の悪化を招いたり、フィルタの毀損を生じるおそれがある。そこで、このような目詰まりを解除する技術として、内燃機関の排気通路にバタフライ型排気絞り弁を設け、排気の流量を絞って背圧を上昇させることにより排気温度を上昇させ、DPFを再生する技術が知られている。   In this DPF, if the amount of accumulated PM is excessive, the filter is clogged, and there is a possibility that the fuel consumption is deteriorated due to the output reduction resulting from this, or the filter is damaged. Therefore, as a technique for removing such clogging, a butterfly type exhaust throttle valve is provided in the exhaust passage of the internal combustion engine, and the exhaust gas temperature is increased by reducing the flow rate of the exhaust gas to increase the exhaust pressure, thereby regenerating the DPF. Technology is known.

ところで、このようなバタフライ型排気絞り弁は高温の排気ガスによる熱負荷を受けることから、その弁軸を支持するブッシュなどが耐熱限度を超えバタフライ型排気絞り弁の正常な動作が困難となるおそれがある。   By the way, such a butterfly type exhaust throttle valve receives a thermal load due to high-temperature exhaust gas, so that the bushing supporting the valve shaft exceeds the heat resistance limit, and normal operation of the butterfly type exhaust throttle valve may be difficult. There is.

これに対処して、特許文献1には、高温流体が流通する管体に設置され、弁シャフト(弁軸)を備えた弁体と、管体の側方に配置されて弁軸を支持するブッシュとを有する開閉弁構造であって、管体とブッシュとの間に空気や冷却水などの冷媒を流通させる冷媒通路を形成する技術が開示されている。   In response to this, Patent Document 1 discloses a valve body that is installed in a pipe body through which a high-temperature fluid flows, and that has a valve shaft (valve shaft), and is disposed on the side of the pipe body to support the valve shaft. There is disclosed a technique for forming an on-off valve structure having a bush and forming a refrigerant passage through which a refrigerant such as air or cooling water flows between the tube body and the bush.

特開2006−77901号公報JP 2006-77901 A

しかしながら、特許文献1に記載の技術は、管体内を流通する高温の排気ガスの熱がブッシュに伝わるのを抑制し、破損するおそれを軽減することはできるが、再生燃焼用の燃料が添加される排気浄化フィルタの再生時のように、排気絞り弁周りを流通する排気ガスの温度がさらに高温になる場合には、ブッシュへの熱の伝わりを抑制するのみでは十分ではなく、排気絞り弁の開度または閉度の制御にバラツキが生ずる。これは、バタフライ型排気絞り弁の弁軸に歪などが生じ、弁の正常な挙動が阻害されることによるものと推測される。この結果、排気浄化フィルタ内での温度や圧力の制御が不安定となることから内燃機関の燃費の悪化やトルク変動をもたらすことが判明した。   However, although the technique described in Patent Document 1 can suppress the heat of the high-temperature exhaust gas flowing through the pipe from being transmitted to the bush and reduce the risk of breakage, the fuel for regenerative combustion is added. When the temperature of the exhaust gas flowing around the exhaust throttle valve becomes even higher, such as during regeneration of the exhaust purification filter, it is not sufficient to suppress the transfer of heat to the bush. Variation occurs in the control of the opening degree or the closing degree. This is presumed to be due to distortion of the valve shaft of the butterfly type exhaust throttle valve and hindering the normal behavior of the valve. As a result, it has been found that control of temperature and pressure in the exhaust purification filter becomes unstable, resulting in deterioration of fuel consumption and torque fluctuation of the internal combustion engine.

本発明はかかる事情に鑑みなされたもので、その目的は、高温の排気ガスに曝された場合にあっても正常な挙動が阻害されることのないバタフライ型排気絞り弁の冷却制御装置を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a cooling control device for a butterfly-type exhaust throttle valve that does not hinder normal behavior even when exposed to high-temperature exhaust gas. There is to do.

上記目的を達成する本発明の一形態に係るバタフライ型排気絞り弁の冷却制御装置は、内燃機関の排気通路に設置された排気浄化フィルタと、該排気浄化フィルタの下流側に配設されたバタフライ型排気絞り弁を備える内燃機関の排気浄化装置において、前記排気絞り弁の弁軸に形成された貫通孔に連通され、前記内燃機関の冷却水を循環させる循環経路と、該循環経路に設けられた水量調整弁と、前記排気浄化フィルタの再生時に前記貫通孔に所定量の冷却水を流すべく、前記水量調整弁の開度を制御する制御手段とを備えることを特徴とする。   A cooling control device for a butterfly type exhaust throttle valve according to an embodiment of the present invention that achieves the above object includes an exhaust purification filter installed in an exhaust passage of an internal combustion engine, and a butterfly arranged downstream of the exhaust purification filter. In the exhaust gas purification apparatus for an internal combustion engine provided with a type exhaust throttle valve, a circulation path that communicates with a through hole formed in a valve shaft of the exhaust throttle valve and circulates cooling water of the internal combustion engine, and is provided in the circulation path. And a control means for controlling the opening degree of the water amount adjusting valve so that a predetermined amount of cooling water flows through the through hole when the exhaust purification filter is regenerated.

上記構成によれば、排気浄化フィルタの再生時には、バタフライ型排気絞り弁の弁軸に形成された貫通孔に連通された循環経路から内燃機関の冷却水がその貫通孔に循環される。そして、その循環される冷却水は循環経路に設けられた水量調整弁の開度が制御手段により制御されて、所定量とされる。したがって、弁軸に形成された貫通孔に所定量の冷却水が循環されることから、弁軸に歪などが生ずるのが防止され、弁の正常な挙動が阻害されることがない。かくて、内燃機関の燃費の悪化が抑制され、トルクの安定性も向上する。   According to the above configuration, at the time of regeneration of the exhaust purification filter, the cooling water of the internal combustion engine is circulated to the through hole from the circulation path communicated with the through hole formed in the valve shaft of the butterfly type exhaust throttle valve. And the opening degree of the water quantity adjustment valve provided in the circulation path | route is controlled by the control means, and the circulating cooling water is made into predetermined amount. Therefore, since a predetermined amount of cooling water is circulated through the through hole formed in the valve shaft, the valve shaft is prevented from being distorted and the normal behavior of the valve is not hindered. Thus, deterioration of the fuel consumption of the internal combustion engine is suppressed, and torque stability is also improved.

ここで、前記制御手段は、前記冷却水の温度が所定値を超えるときは、その温度に対応させて、前記水量調整弁の開度を絞るように制御することが好ましい。   Here, it is preferable that when the temperature of the cooling water exceeds a predetermined value, the control means performs control so as to reduce the opening of the water amount adjustment valve in accordance with the temperature.

この構成によれば、循環量が制限されるので、冷却水の温度が上昇し過ぎることによる内燃機関のオーバーヒートを回避することができる。   According to this configuration, since the circulation amount is limited, it is possible to avoid overheating of the internal combustion engine due to an excessive rise in the temperature of the cooling water.

また、前記制御手段は、前記内燃機関の低温始動時に、前記水量調整弁の開度を全開とするように制御するようにしてもよい。   Further, the control means may perform control so that the opening of the water amount adjustment valve is fully opened when the internal combustion engine is started at a low temperature.

このようにすると、内燃機関の低温始動時には、弁軸に形成された貫通孔に循環される冷却水量が増大され、それが排気ガスにより加熱されるので、内燃機関の暖機が促進される。かくて、エミッションの低減や失火が抑制される。   In this way, when the internal combustion engine is started at a low temperature, the amount of cooling water circulated through the through hole formed in the valve shaft is increased and heated by the exhaust gas, so that warming up of the internal combustion engine is promoted. Thus, emission reduction and misfire are suppressed.

さらに、前記制御手段は、前記内燃機関の高地始動時に、前記水量調整弁の開度を全開とするように制御するようにしてもよい。   Further, the control means may perform control so that the opening of the water amount adjustment valve is fully opened when the internal combustion engine is started at a high altitude.

このようにすると、内燃機関の高地始動時には、弁軸に形成された貫通孔に循環される冷却水量が増大され、それが排気ガスにより加熱されるので、内燃機関の暖機が促進される。かくて、エミッションの低減や失火が抑制される。   In this way, when the internal combustion engine is started at a high altitude, the amount of cooling water circulated through the through hole formed in the valve shaft is increased and heated by the exhaust gas, so that warming up of the internal combustion engine is promoted. Thus, emission reduction and misfire are suppressed.

以下、添付図面を用いて本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1は、本発明を自動車用ディーゼルエンジンに適用した実施形態の概略構成を説明する模式図である。   FIG. 1 is a schematic diagram illustrating a schematic configuration of an embodiment in which the present invention is applied to an automobile diesel engine.

図1において、100はディーゼルエンジン本体、102はエンジン100の吸気通路、104は吸気通路102に設けられたサージタンク、106はサージタンク104と各気筒の吸気ポートとを接続する吸気枝管である。   In FIG. 1, 100 is a diesel engine body, 102 is an intake passage of the engine 100, 104 is a surge tank provided in the intake passage 102, and 106 is an intake branch pipe connecting the surge tank 104 and the intake port of each cylinder. .

本実施形態では、吸気通路102には吸気通路102を流れる吸入空気の流量を絞る吸気絞り弁108、および吸気を冷却するインタクーラ110が設けられている。吸気絞り弁108はソレノイド、バキュームアクチュエータ等の適宜な形式のアクチュエータ108Aを備え、後述する電子制御ユニット(ECU)200からの制御信号に応じた開度をとる。本実施形態では、吸気絞り弁108は、例えば機関低回転時等に吸気圧力を低下させて、後述するEGR通路152を通ってサージタンク104に還流する排気(EGRガス)量を増大させるために用いられる。   In the present embodiment, the intake passage 102 is provided with an intake throttle valve 108 that restricts the flow rate of intake air flowing through the intake passage 102 and an intercooler 110 that cools intake air. The intake throttle valve 108 includes an actuator 108A of an appropriate type such as a solenoid or a vacuum actuator, and takes an opening degree according to a control signal from an electronic control unit (ECU) 200 described later. In the present embodiment, the intake throttle valve 108 reduces the intake pressure, for example, at the time of low engine rotation, and increases the amount of exhaust gas (EGR gas) that returns to the surge tank 104 through the EGR passage 152 described later. Used.

図1に112で示すのは、吸気通路102の吸気入口近傍に設けられたエアフローメータである。本実施形態では、エアフローメータ112は熱線式流量計等のように、吸気通路102を流れる吸入空気の質量流量を測定可能な形式のものが使用されている。吸気通路102に流入した大気は、エアフローメータ112を通過した後、ターボチャージャ130のタービン130Tで駆動されるコンプレッサ130Cにより昇圧され、吸気通路102に設けられたインタクーラ110により冷却された後サージタンク104、枝管106を経て各気筒に吸入される。   In FIG. 1, an air flow meter 112 is provided near the intake inlet of the intake passage 102. In the present embodiment, the air flow meter 112 is of a type that can measure the mass flow rate of the intake air flowing through the intake passage 102, such as a hot-wire flow meter. After the air flowing into the intake passage 102 passes through the air flow meter 112, it is pressurized by the compressor 130C driven by the turbine 130T of the turbocharger 130, cooled by the intercooler 110 provided in the intake passage 102, and then the surge tank 104. Then, it is sucked into each cylinder through the branch pipe 106.

図1に114で示すのは、各気筒内に燃料を直接に噴射する燃料噴射弁である。燃料噴射弁114は、高圧燃料を貯留する共通の蓄圧室(コモンレール)116に接続されている。機関100の燃料は不図示の高圧燃料ポンプにより昇圧されてコモンレール116に供給され、コモンレール116から各燃料噴射弁114を介して直接各気筒内に噴射される。   Reference numeral 114 in FIG. 1 denotes a fuel injection valve that directly injects fuel into each cylinder. The fuel injection valve 114 is connected to a common pressure accumulation chamber (common rail) 116 that stores high-pressure fuel. The fuel of the engine 100 is boosted by a high-pressure fuel pump (not shown), supplied to the common rail 116, and directly injected into each cylinder from the common rail 116 through each fuel injection valve 114.

また、図1に120で示すのは各気筒の排気ポートと排気通路122とを接続する排気マニホルドであり、その後流に上述のターボチャージャ130が配置されている。ターボチャージャ130は排気通路122の排気により駆動される排気タービン130Tと、この排気タービン130Tにより駆動される吸気コンプレッサ130Cとを備えていること前述の通りである。   Further, reference numeral 120 in FIG. 1 is an exhaust manifold that connects the exhaust port of each cylinder and the exhaust passage 122, and the turbocharger 130 described above is disposed downstream thereof. As described above, the turbocharger 130 includes the exhaust turbine 130T driven by the exhaust gas in the exhaust passage 122 and the intake compressor 130C driven by the exhaust turbine 130T.

また、本実施形態では、ターボチャージャ130下流側の排気通路122に、触媒(例えば、三元触媒)を含むDPF132が配置されると共に、その下流に排気通路122を流れる排気流量を制御するためのバタフライ型の排気絞り弁134が配置されている。この排気絞り弁134は、吸気絞り弁108と同様にアクチュエータ134Aを備え、ECU200からの制御信号に応じて全開位置と所定の開度の閉弁位置とをとる。本実施形態では排気絞り弁134は、触媒の早期活性化やDPF132の再生のために排気温度を上昇させる際に用いられる。   In the present embodiment, a DPF 132 including a catalyst (for example, a three-way catalyst) is disposed in the exhaust passage 122 on the downstream side of the turbocharger 130, and an exhaust flow for controlling the exhaust flow rate flowing through the exhaust passage 122 downstream thereof is controlled. A butterfly type exhaust throttle valve 134 is disposed. The exhaust throttle valve 134 includes an actuator 134A, similar to the intake throttle valve 108, and takes a fully open position and a closed position with a predetermined opening according to a control signal from the ECU 200. In the present embodiment, the exhaust throttle valve 134 is used when raising the exhaust temperature for early activation of the catalyst and regeneration of the DPF 132.

さらに、本実施形態では、図2に示すように、バタフライ型の排気絞り弁134の弁軸134Bにその軸線に沿って貫通形成された貫通孔134Cに連通され,エンジン100の冷却水を循環させる循環経路140が設けられている。この循環経路140は、エンジン100の、例えば、シリンダヘッド内の冷却通路から分岐されて、シリンダブロック内の冷却通路に戻されるべく接続されており、その途中に水量調整弁142が設けられている。そして、水量調整弁142もアクチュエータ134Aを備え、ECU200からの制御信号に応じてその開度が制御される。   Further, in the present embodiment, as shown in FIG. 2, the valve shaft 134B of the butterfly type exhaust throttle valve 134 is communicated with a through hole 134C formed through the axis to circulate the cooling water of the engine 100. A circulation path 140 is provided. The circulation path 140 is connected to be branched from a cooling passage in the engine 100, for example, in a cylinder head and returned to the cooling passage in the cylinder block, and a water amount adjustment valve 142 is provided in the middle thereof. . The water amount adjustment valve 142 is also provided with an actuator 134A, and its opening degree is controlled in accordance with a control signal from the ECU 200.

また、本実施形態では、エンジン排気の一部を吸気系に還流させるEGR装置150が設けられている。EGR装置150は、排気マニホルド120と吸気サージタンク104とを連通する前述のEGR通路152、およびEGR通路152に配置されたEGR制御弁(以下、EGR弁という)154、およびEGR弁154の上流側のEGR通路152に設けられたEGRクーラ156を備えている。EGR弁154は図示しないステッパモータ、ソレノイドアクチュエータ等のアクチュエータを備え、ECU200からの制御信号に応じた開度をとり、EGR通路152を通って吸気サージタンク104に還流されるEGRガス流量を制御する。なお、EGRガスは気筒から排出された高温の排気であるため、多量のEGRガスを吸気に還流させると吸気温度が上昇してしまい、エンジンの吸気体積効率が低下することになる。本実施形態では、これを防止するために、EGR弁154上流側のEGR通路152には水冷または空冷のEGRクーラ156が設けられている。本実施形態では、EGRクーラ156を用いて吸気系に還流するEGRガス温度を低下させることにより、エンジンの吸気体積効率の低下を抑制して比較的多量のEGRガスを還流させることが可能となっている。   In the present embodiment, an EGR device 150 that recirculates part of the engine exhaust to the intake system is provided. The EGR device 150 includes the EGR passage 152 that connects the exhaust manifold 120 and the intake surge tank 104, an EGR control valve (hereinafter referred to as an EGR valve) 154 disposed in the EGR passage 152, and an upstream side of the EGR valve 154. The EGR cooler 156 provided in the EGR passage 152 is provided. The EGR valve 154 includes actuators such as stepper motors and solenoid actuators (not shown), takes an opening degree according to a control signal from the ECU 200, and controls an EGR gas flow rate recirculated to the intake surge tank 104 through the EGR passage 152. . Since the EGR gas is a high-temperature exhaust gas discharged from the cylinder, when a large amount of EGR gas is recirculated to the intake air, the intake air temperature rises, and the intake volume efficiency of the engine decreases. In the present embodiment, in order to prevent this, a water-cooled or air-cooled EGR cooler 156 is provided in the EGR passage 152 upstream of the EGR valve 154. In the present embodiment, by using the EGR cooler 156 to reduce the temperature of the EGR gas recirculated to the intake system, it is possible to recirculate a relatively large amount of EGR gas while suppressing a decrease in the intake volume efficiency of the engine. ing.

さらに、本実施形態のECU200は、公知の構成のマイクロコンピュータとして構成され、CPU、RAM、ROM、入力ポート、出力ポートを双方向性バスで相互に接続した構成とされている。ECU200はエンジン100の燃料噴射制御、回転数制御等の基本制御を行うほか、本実施形態では後述するように、排気絞り弁134の冷却制御を行なう。   Furthermore, the ECU 200 according to the present embodiment is configured as a microcomputer having a known configuration, in which a CPU, a RAM, a ROM, an input port, and an output port are connected to each other via a bidirectional bus. The ECU 200 performs basic control such as fuel injection control and engine speed control of the engine 100, and also performs cooling control of the exhaust throttle valve 134 in this embodiment as will be described later.

これらの制御を行うため、ECU200の入力ポートには、エンジン100のクランク軸近傍に配置された回転数センサからエンジン回転数に対応する信号が入力されている他、エアフローメータ112からエンジン吸入空気量に相当する信号が、また、不図示のアクセルペダル近傍に配置されたアクセル開度センサから運転者のアクセルペダル踏み込み量(アクセル開度)に対応する信号とEGR弁154に配置されたEGR弁開度センサからEGR弁開度を表す信号および不図示の水温センサからの冷却水温信号、同じく不図示の高度センサからの車両の位置高度を表す信号等が、それぞれ入力されている。   In order to perform these controls, a signal corresponding to the engine speed is input to the input port of the ECU 200 from a rotation speed sensor disposed in the vicinity of the crankshaft of the engine 100, and the engine intake air amount from the air flow meter 112 is input. Further, a signal corresponding to the accelerator pedal depression amount (accelerator opening) of the driver from an accelerator opening sensor arranged in the vicinity of an accelerator pedal (not shown) and an EGR valve opening arranged in the EGR valve 154 A signal representing the EGR valve opening degree, a cooling water temperature signal from a water temperature sensor (not shown), a signal representing a vehicle position altitude from an altitude sensor (not shown), and the like are input from the degree sensor.

ECU200の出力ポートは、図示しない燃料噴射回路を介してエンジン100の燃料噴射弁114に接続され、燃料噴射弁114からの燃料噴射量と燃料噴射時期とを制御している。また、ECU200の出力ポートは図示しない駆動回路を介してEGR弁154、吸気絞り弁108、排気絞り弁134および水量調整弁142のアクチュエータに接続され、それぞれの弁開度を制御している。   The output port of the ECU 200 is connected to the fuel injection valve 114 of the engine 100 via a fuel injection circuit (not shown), and controls the fuel injection amount from the fuel injection valve 114 and the fuel injection timing. Further, the output port of the ECU 200 is connected to the actuators of the EGR valve 154, the intake throttle valve 108, the exhaust throttle valve 134, and the water amount adjustment valve 142 via a drive circuit (not shown), and controls the respective valve openings.

前述したように、DPF132にはエンジン運転中排気中のPMが捕集され、徐々にDPF132のPM捕集量が増大する。本実施形態では、エンジン100に吸入された吸入空気量の前回再生時からの積算値に基づいて、DPF132のPM捕集量を推定し、それが所定値に到達したときに、排気絞り弁134を閉弁して機関吸気量を低下させると共に、排気系に燃料を添加して排気温度を上昇させることによりDPF132の再生操作を行なうようにしている。なお、上述の吸入空気量の積算値に基づく推定による他に、不図示の差圧センサによりDPF132の前後差圧を計測し、この差圧が大きくなったことでもってPM捕集量の増大を検出することによってもよい。   As described above, PM in the exhaust gas during engine operation is collected in the DPF 132, and the amount of PM collected by the DPF 132 gradually increases. In the present embodiment, the PM collection amount of the DPF 132 is estimated based on the integrated value of the intake air amount taken into the engine 100 from the previous regeneration, and when it reaches a predetermined value, the exhaust throttle valve 134 is reached. Is closed to reduce the intake air amount of the engine, and fuel is added to the exhaust system to raise the exhaust gas temperature so that the DPF 132 is regenerated. In addition to the estimation based on the integrated value of the intake air amount described above, the differential pressure sensor (not shown) measures the differential pressure across the DPF 132, and the increase in the amount of PM trapped due to the increase in the differential pressure. It may be detected.

以下、上記構成になる本実施形態の排気絞り弁134の冷却制御の処理手順について図3のフローチャートを参照して説明する。   A processing procedure for cooling control of the exhaust throttle valve 134 of the present embodiment configured as described above will be described below with reference to the flowchart of FIG.

そこで、ECU200において制御がスタートすると、この制御ルーチンのステップS301において、DPF132の再生が開始されたか否かが判定される。そして、再生開始が判定されるまで待機した後、再生開始と判定されるとステップS302に進み、水量調整弁142が全開にされる。   Therefore, when control is started in ECU 200, it is determined in step S301 of this control routine whether or not regeneration of DPF 132 has started. Then, after waiting until the regeneration start is determined, when it is determined that the regeneration is started, the process proceeds to step S302, and the water amount adjustment valve 142 is fully opened.

そして、次のステップS303において、不図示の水温センサからの冷却水温信号に基づき冷却水の温度が所定値(例えば、80℃)を超えているか否か、換言すると、所定値以内か否かが判定される。冷却水の温度が所定値以内のときは、この制御ルーチンは一旦終了される。すなわち、ステップS302における水量調整弁142の全開状態がそのまま維持される。したがって、排気絞り弁134の弁軸134Bに形成された貫通孔134Cに循環経路140を介してエンジン100の冷却水が循環される。かくて、弁軸134Bは貫通孔134Cに循環される冷却水により効果的に冷却されるので、弁軸134Bに歪などが生ずるのが防止され、排気絞り弁134の正常な挙動が阻害されることがない。   In the next step S303, whether or not the temperature of the cooling water exceeds a predetermined value (for example, 80 ° C.) based on a cooling water temperature signal from a water temperature sensor (not shown), in other words, whether or not it is within a predetermined value. Determined. When the temperature of the cooling water is within a predetermined value, this control routine is temporarily terminated. That is, the fully open state of the water amount adjustment valve 142 in step S302 is maintained as it is. Therefore, the cooling water of the engine 100 is circulated through the through hole 134 </ b> C formed in the valve shaft 134 </ b> B of the exhaust throttle valve 134 via the circulation path 140. Thus, since the valve shaft 134B is effectively cooled by the cooling water circulated through the through hole 134C, the valve shaft 134B is prevented from being distorted and the normal behavior of the exhaust throttle valve 134 is hindered. There is nothing.

一方、ステップS303における判定で、冷却水の温度が所定値を超えているときはステップS304に進み、水量調整弁142の開度が冷却水温に応じて制御され、水量が調整される。このようにすると、冷却水の循環量が制限されるので、冷却水の温度が上昇し過ぎることによるエンジン100のオーバーヒートを回避することができる。   On the other hand, if it is determined in step S303 that the temperature of the cooling water exceeds the predetermined value, the process proceeds to step S304, the opening of the water amount adjusting valve 142 is controlled according to the cooling water temperature, and the water amount is adjusted. In this way, the circulation amount of the cooling water is limited, so that overheating of the engine 100 due to the excessive increase in the temperature of the cooling water can be avoided.

次に、上述の実施形態に付加的に実行される機関始動時の制御の処理手順について図4のフローチャートを参照して説明する。ECU200において制御がスタートすると、この制御ルーチンのステップS401において、エンジン100の低温始動時であるか、又は、高地始動時であるかが判定される。いずれもが否定のときは、この制御ルーチンは終了される。   Next, a control processing procedure at the time of engine start that is additionally executed in the above-described embodiment will be described with reference to a flowchart of FIG. When control is started in the ECU 200, it is determined in step S401 of this control routine whether the engine 100 is at a low temperature start or a high altitude start. If both are negative, the control routine is terminated.

そして、ステップS401において、いずれかが肯定のときはステップS402に進み、水量調整弁142が全開にされる。かくて、エンジン100の低温始動時、又は高地始動時には、水量調整弁142の開度が全開にされるので、弁軸134Bに形成された貫通孔134Cに循環される冷却水量が増大され、それが排気通路122を通過する排気ガスにより加熱されるので、エンジン100の暖機が促進される。かくて、低温始動時及び高地始動時におけるエミッションの低減や失火が抑制される。   And in step S401, when either is affirmed, it progresses to step S402 and the water quantity adjustment valve 142 is fully opened. Thus, when the engine 100 is started at a low temperature or at a high altitude, the opening of the water amount adjustment valve 142 is fully opened, so that the amount of cooling water circulated through the through hole 134C formed in the valve shaft 134B is increased. Is heated by the exhaust gas passing through the exhaust passage 122, so that warm-up of the engine 100 is promoted. Thus, emission reduction and misfire during starting at low temperatures and starting at high altitudes are suppressed.

本発明に係る排気絞り弁の冷却制御装置の実施形態の概略を示す模式図である。It is a schematic diagram which shows the outline of embodiment of the cooling control apparatus of the exhaust throttle valve which concerns on this invention. 本発明に係る排気絞り弁の冷却制御装置における排気絞り弁部位の実施形態を示す部分断面図である。It is a fragmentary sectional view showing an embodiment of an exhaust throttle valve part in a cooling control device of an exhaust throttle valve concerning the present invention. 本発明に係る排気絞り弁の冷却制御装置における制御手順の一例を示すフローチャートである。It is a flowchart which shows an example of the control procedure in the cooling control apparatus of the exhaust throttle valve which concerns on this invention. 本発明に係る排気絞り弁の冷却制御装置における付加的な制御手順の一例を示すフローチャートである。It is a flowchart which shows an example of the additional control procedure in the cooling control apparatus of the exhaust throttle valve which concerns on this invention.

符号の説明Explanation of symbols

100 エンジン本体
122 排気通路
134 バタフライ型排気絞り弁
134B 弁軸
134C 貫通孔
136 排気浄化フィルタ(DPF)
140 循環経路
142 水量調整弁
200 電子制御ユニット(ECU)
DESCRIPTION OF SYMBOLS 100 Engine main body 122 Exhaust passage 134 Butterfly type exhaust throttle valve 134B Valve shaft 134C Through-hole 136 Exhaust purification filter (DPF)
140 Circulating path 142 Water amount adjusting valve 200 Electronic control unit (ECU)

Claims (4)

内燃機関の排気通路に設置された排気浄化フィルタと、該排気浄化フィルタの下流側に配設されたバタフライ型排気絞り弁を備える内燃機関の排気浄化装置において、
前記排気絞り弁の弁軸に形成された貫通孔に連通され、前記内燃機関の冷却水を循環させる循環経路と、
該循環経路に設けられた水量調整弁と、
前記排気浄化フィルタの再生時に前記貫通孔に所定量の冷却水を流すべく、前記水量調整弁の開度を制御する制御手段と
を備えることを特徴とするバタフライ型排気絞り弁の冷却制御装置。
In an exhaust gas purification apparatus for an internal combustion engine, comprising an exhaust gas purification filter installed in an exhaust passage of the internal combustion engine, and a butterfly type exhaust throttle valve disposed downstream of the exhaust gas purification filter,
A circulation path that communicates with a through hole formed in the valve shaft of the exhaust throttle valve and circulates cooling water of the internal combustion engine;
A water amount adjusting valve provided in the circulation path;
A butterfly-type exhaust throttle valve cooling control device comprising: control means for controlling an opening degree of the water amount adjustment valve so that a predetermined amount of cooling water flows through the through hole during regeneration of the exhaust purification filter.
前記制御手段は、前記冷却水の温度が所定値を超えるときは、その温度に対応させて、前記水量調整弁の開度を絞るように制御することを特徴とする請求項1に記載のバタフライ型排気絞り弁の冷却制御装置。   2. The butterfly according to claim 1, wherein when the temperature of the cooling water exceeds a predetermined value, the control unit performs control so as to reduce the opening of the water amount adjustment valve in accordance with the temperature. Cooling control device for mold exhaust throttle valve. 前記制御手段は、前記内燃機関の低温始動時に、前記水量調整弁の開度を全開とするように制御することを特徴とする請求項1に記載のバタフライ型排気絞り弁の冷却制御装置。   2. The cooling control apparatus for a butterfly exhaust throttle valve according to claim 1, wherein the control means controls the opening of the water amount adjustment valve to be fully opened when the internal combustion engine is started at a low temperature. 前記制御手段は、前記内燃機関の高地始動時に、前記水量調整弁の開度を全開とするように制御することを特徴とする請求項1に記載のバタフライ型排気絞り弁の冷却制御装置。   2. The cooling control apparatus for a butterfly exhaust throttle valve according to claim 1, wherein the control unit controls the opening of the water amount adjustment valve to be fully opened when the internal combustion engine is started at a high altitude. 3.
JP2007112070A 2007-04-20 2007-04-20 Cooling control device for butterfly type exhaust throttle valve Pending JP2008267285A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007112070A JP2008267285A (en) 2007-04-20 2007-04-20 Cooling control device for butterfly type exhaust throttle valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007112070A JP2008267285A (en) 2007-04-20 2007-04-20 Cooling control device for butterfly type exhaust throttle valve

Publications (1)

Publication Number Publication Date
JP2008267285A true JP2008267285A (en) 2008-11-06

Family

ID=40047092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007112070A Pending JP2008267285A (en) 2007-04-20 2007-04-20 Cooling control device for butterfly type exhaust throttle valve

Country Status (1)

Country Link
JP (1) JP2008267285A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010255535A (en) * 2009-04-25 2010-11-11 Iseki & Co Ltd Diesel engine
CN102251861A (en) * 2011-06-10 2011-11-23 天津大学 Controlled exhaust backpressure valve for engine
JP2012102684A (en) * 2010-11-11 2012-05-31 Ud Trucks Corp Exhaust emission control device for engine
JP2019112951A (en) * 2017-12-20 2019-07-11 株式会社クボタ engine
JP2019112952A (en) * 2017-12-20 2019-07-11 株式会社クボタ engine
JP2019112955A (en) * 2017-12-20 2019-07-11 株式会社クボタ engine
JP2019112953A (en) * 2017-12-20 2019-07-11 株式会社クボタ engine
JP2020002869A (en) * 2018-06-28 2020-01-09 株式会社クボタ engine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010255535A (en) * 2009-04-25 2010-11-11 Iseki & Co Ltd Diesel engine
JP2012102684A (en) * 2010-11-11 2012-05-31 Ud Trucks Corp Exhaust emission control device for engine
CN102251861A (en) * 2011-06-10 2011-11-23 天津大学 Controlled exhaust backpressure valve for engine
JP2019112951A (en) * 2017-12-20 2019-07-11 株式会社クボタ engine
JP2019112952A (en) * 2017-12-20 2019-07-11 株式会社クボタ engine
JP2019112955A (en) * 2017-12-20 2019-07-11 株式会社クボタ engine
JP2019112953A (en) * 2017-12-20 2019-07-11 株式会社クボタ engine
JP2020002869A (en) * 2018-06-28 2020-01-09 株式会社クボタ engine

Similar Documents

Publication Publication Date Title
JP6051989B2 (en) Engine cooling system
JP5038992B2 (en) Diesel engine exhaust gas recirculation system
JP2008267285A (en) Cooling control device for butterfly type exhaust throttle valve
JP5708584B2 (en) Control device for internal combustion engine
JP5491028B2 (en) Method for an internal combustion engine with exhaust recirculation
JP4670884B2 (en) Exhaust gas recirculation device for internal combustion engine
JP2007051586A (en) Exhaust emission control device for diesel engine
JP4802992B2 (en) Exhaust gas recirculation device for internal combustion engine
JP2017036695A (en) Control device of diesel engine
JP2008138621A (en) Exhaust gas throttle valve failure diagnosis device of internal combustion engine
JP5350907B2 (en) Water pump control device
JP5321200B2 (en) Abnormality diagnosis device for exhaust gas recirculation system
JP5332674B2 (en) Exhaust gas recirculation device for internal combustion engine
JP5625716B2 (en) Cooling device for internal combustion engine
JP2017115672A (en) Internal combustion engine
WO2015141756A1 (en) Internal combustion engine
JP2012082723A (en) Cooling device of internal combustion engine
JP5573795B2 (en) Exhaust gas purification system for internal combustion engine
JP5521508B2 (en) Exhaust gas recirculation device for internal combustion engine
JP2010151075A (en) Exhaust gas recirculation device for internal combustion engine
JP3511967B2 (en) Abnormality detection device for particulate filter
JP2009085094A (en) Exhaust gas recirculation device for engine
JP6252067B2 (en) EGR device and exhaust gas recirculation method
JP2005002975A (en) Exhaust purification device for engine
JP2001003816A (en) Egr (exhaust gas recirculation) device with egr gas cooler