JP2008267269A - Exhaust treatment device for engine - Google Patents

Exhaust treatment device for engine Download PDF

Info

Publication number
JP2008267269A
JP2008267269A JP2007111147A JP2007111147A JP2008267269A JP 2008267269 A JP2008267269 A JP 2008267269A JP 2007111147 A JP2007111147 A JP 2007111147A JP 2007111147 A JP2007111147 A JP 2007111147A JP 2008267269 A JP2008267269 A JP 2008267269A
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
exhaust
engine
disposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007111147A
Other languages
Japanese (ja)
Inventor
Kiyoshi Amo
清 天羽
Akira Nishioka
明 西岡
Hiroshi Yokota
比呂志 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2007111147A priority Critical patent/JP2008267269A/en
Publication of JP2008267269A publication Critical patent/JP2008267269A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust treatment device supplying urea as a reducer for reducing NOx discharged from a diesel engine, vaporizing it and then facilitating hydrolysis by efficiently supplying heater heat, and supplying generated ammonia gas to a NOx removal catalyst. <P>SOLUTION: For gasifying an urea water spray 35 serving as the reducer into the ammonia gas with a heater 43, a swirling flow is formed in a heat transfer tube 42, and a heat transfer tube throttle 48, a collision member 49 and a hydrolysis catalyst 44 are arranged. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、エンジン用排気処理装置に係り、特に還元剤として尿素水を用い、排気中の窒素酸化物を効率良く除去するための排気処理装置において、発熱体であるヒータ熱によって、尿素水を効率よく気化促進させる技術に関する。   The present invention relates to an exhaust treatment apparatus for an engine, and in particular, in an exhaust treatment apparatus for efficiently removing nitrogen oxides in exhaust using urea water as a reducing agent, urea water is removed by heater heat as a heating element. It relates to technology that promotes efficient vaporization.

ディーゼルエンジン等の排気に含まれる窒素酸化物(以下、NOxという)を除去する方法として、排気が流通する煙道内に、NOxを選択的に還元剤と反応させる選択還元触媒を配置し、この上流側の排気中に還元剤(例えば炭化水素,アンモニアまたはその前駆体)を添加し、還元剤を選択還元触媒上でNOxと還元反応させて、NOxの排出濃度を低減させる技術が知られている。   As a method for removing nitrogen oxides (hereinafter referred to as NOx) contained in exhaust gas from a diesel engine or the like, a selective reduction catalyst that selectively reacts NOx with a reducing agent is disposed in a flue through which exhaust gas flows, and this upstream A technique is known in which a reducing agent (for example, hydrocarbon, ammonia or a precursor thereof) is added to the exhaust on the side, and the reducing agent is subjected to a reduction reaction with NOx on a selective reduction catalyst to reduce the NOx emission concentration. .

この選択還元型触媒を用いるNOx低減手法をSCR(Selective Catalytic
Reduction)と呼び、還元剤として尿素を用いるものは、尿素SCRと呼ぶ。
SCR (Selective Catalytic) is a NOx reduction method using this selective reduction catalyst.
Reduction), and urea that uses urea as a reducing agent is called urea SCR.

この尿素SCRを車両に適用する例として、噴射ノズルから煙道内へ尿素水を噴射するとともに、排気熱を利用して尿素を加水分解し、生成されたアンモニアを用いてNOxを低減する技術が知られている(例えば、非特許文献1参照)。この場合、例えば、尿素水をタンクに貯蔵しておき、タンクから供給された尿素水と車両側から供給される圧縮空気とを混合室内で混合し、これを煙道内の噴射ノズルから排気中に噴射する。ここで、尿素水量は、電磁弁の駆動パルス幅を制御して調整し、圧縮空気量は電子制御により調圧する。   As an example of applying this urea SCR to a vehicle, a technique is known in which urea water is injected into a flue from an injection nozzle, urea is hydrolyzed using exhaust heat, and NOx is reduced using generated ammonia. (See, for example, Non-Patent Document 1). In this case, for example, the urea water is stored in a tank, the urea water supplied from the tank and the compressed air supplied from the vehicle side are mixed in the mixing chamber, and this is discharged into the exhaust from the injection nozzle in the flue. Spray. Here, the urea water amount is adjusted by controlling the drive pulse width of the solenoid valve, and the compressed air amount is regulated by electronic control.

また、エンジンの排気煙道と排気煙道に設けられた脱硝触媒反応器と、尿素水を噴射して供給する噴射弁とを備えた排気処理装置であって、排気ガスの分流手段を設け、分流排気ガスの通路に尿素水を噴射する第1の噴射弁によって、噴射された尿素水を加熱して尿素蒸気とする気化器を設け、気化器の下流側に尿素水を噴射する第2の噴射弁を設置し、低排気温度のときに第1の噴射弁から噴射した尿素水噴霧から生成された尿素蒸気を排気煙道に供給し、高排気温度のときに第2の噴射弁から噴射した尿素水噴霧を排気煙道に供給する構成のエンジン用排気処理装置がある(たとえば、特許文献1参照)。   Further, an exhaust treatment device comprising an exhaust flue of an engine, a denitration catalyst reactor provided in the exhaust flue, and an injection valve for injecting and supplying urea water, provided with an exhaust gas diversion means, The first injection valve that injects urea water into the flow path of the split flow exhaust gas is provided with a vaporizer that heats the injected urea water to form urea vapor, and the second injector injects urea water downstream of the vaporizer. An injection valve is installed, urea vapor generated from urea water spray injected from the first injection valve at low exhaust temperature is supplied to the exhaust flue, and injection from the second injection valve at high exhaust temperature There is an engine exhaust treatment device configured to supply the urea water spray that has been supplied to the exhaust flue (see, for example, Patent Document 1).

特開2006−170013号公報JP 2006-170013 A 自動車技術Vol.57,No.9(2003)pp.94〜99Automotive Technology Vol. 57, no. 9 (2003) p. 94-99

ところで、上記のようなSCR装置では、エンジンから排出されるNOxに見合った所定量の尿素水を脱硝触媒へほぼ均一に添加させ、速やかに加水分解させアンモニアを生成し、脱硝触媒上でNOxと反応できるようにすることが求められる。また、より効率的にNOx低減を行うためには、尿素水を脱硝触媒に到達する前にアンモニア化し、アンモニアを脱硝触媒にほぼ均一に分散させることが好ましい。   By the way, in the SCR device as described above, a predetermined amount of urea water commensurate with NOx discharged from the engine is almost uniformly added to the denitration catalyst and rapidly hydrolyzed to produce ammonia, and NOx and NOx on the denitration catalyst. It is required to be able to react. In order to reduce NOx more efficiently, it is preferable to ammonia the urea water before reaching the denitration catalyst and to disperse the ammonia almost uniformly in the denitration catalyst.

例えば、非特許文献1において、圧縮空気と混合された尿素水は煙道内に延在させて設けられた配管の先端の噴射ノズルを脱硝触媒上流側の煙道内中心部付近に配設することによって、脱硝触媒への尿素水の分散性を向上している。ここで、噴射された噴霧は排気熱を利用して尿素水を加水分解させ、これにより生じるアンモニアによってNOxを低減している。これは、高排気温度のときは、NOx低減に関して効果的であると言えるが、低排気温度の場合は煙道内に噴射された尿素水の排気熱による加水分解が促進できないために、NOx低減効果が低下することが懸念される。   For example, in Non-Patent Document 1, the urea water mixed with compressed air is disposed in the vicinity of the center of the flue upstream of the denitration catalyst by placing an injection nozzle at the tip of a pipe provided extending in the flue. The dispersibility of urea water in the denitration catalyst is improved. Here, the spray sprayed hydrolyzes urea water using exhaust heat, and NOx is reduced by ammonia generated thereby. This can be said to be effective in terms of NOx reduction at high exhaust temperatures. However, in the case of low exhaust temperatures, hydrolysis due to the exhaust heat of urea water injected into the flue cannot be promoted. There is a concern about the decline.

また、特許文献1においては、低排気温度のときに第1の噴射弁から噴射した尿素水噴霧を気化器にて尿素蒸気を生成した後に排気煙道内に供給し、高排気温度のときに第2の噴射弁から噴射した尿素水噴霧を排気煙道内に直接供給するものがある。これは、エンジンの低排気温度から高排気温度までのエンジンの全運転領域において、高い脱硝性能を得ることが可能であると推察する。気化器は伝熱管とヒータで構成され、尿素水の気化促進のために伝熱管内に流入させた排気に旋回流を形成させ、この旋回流れ中に第1の噴射弁から噴射された尿素水噴霧を供給している。これによって、尿素水噴霧中の尿素水液滴を伝熱管内壁面へ誘導し、伝熱管内壁面上に液滴を接触する時間を確保し気化促進を図っている。   Further, in Patent Document 1, urea water spray injected from a first injection valve at a low exhaust temperature is supplied into an exhaust flue after generating urea vapor by a vaporizer, and the urea spray is supplied at a high exhaust temperature. There are some which supply urea water spray injected from the injection valve 2 directly into the exhaust flue. This presumes that high NOx removal performance can be obtained in the entire engine operating range from the low exhaust temperature to the high exhaust temperature of the engine. The carburetor is composed of a heat transfer tube and a heater, and forms a swirl flow in the exhaust gas flowing into the heat transfer tube to promote vaporization of urea water, and urea water injected from the first injection valve during this swirl flow Supplying spray. As a result, urea water droplets during the spraying of urea water are guided to the inner wall surface of the heat transfer tube, and the time for contacting the droplets on the inner wall surface of the heat transfer tube is secured to promote vaporization.

しかし、第1の噴射弁から噴射される尿素水噴霧中の噴霧粒径には分布がある。分布を持った噴霧液滴は微小液滴から粗大液滴まで存在するために、すべての噴霧液滴が伝熱管内を流れる旋回流に同伴して伝熱管内壁面上を通過するとは限らない。すなわち、第1の噴射弁から所定圧力にて噴射された噴霧中の粗大液滴(質量の重い液滴)は所定流速にて噴射された場合に前記旋回流と同伴せずに、噴射方向下流側に直線的に噴射され、伝熱管内壁面へ接触することなく気化器を通過することが懸念される。これによって、噴霧中の粗大液滴の気化促進が図られず、尿素水の気化促進が低下することが懸念される。   However, there is a distribution in the spray particle size in the urea water spray injected from the first injection valve. Since spray droplets having a distribution exist from minute droplets to coarse droplets, all the spray droplets do not always pass along the inner wall surface of the heat transfer tube along with the swirling flow flowing in the heat transfer tube. That is, coarse droplets (droplets with heavy mass) injected from the first injection valve at a predetermined pressure do not accompany the swirl flow and are downstream in the injection direction when injected at a predetermined flow velocity. There is a concern that it will be sprayed linearly to the side and pass through the vaporizer without contacting the inner wall surface of the heat transfer tube. As a result, vaporization of coarse droplets during spraying is not promoted, and there is a concern that the promotion of vaporization of urea water is reduced.

そこで、エンジンの低排気温度から高排気温度を含む全運転領域にて、煙道内へ噴射供給される尿素水を効率よく加水分解させ、アンモニアを生成し、高いNOx低減率(脱硝率)を確保することが必要であり、そのためには、低排気温度時のNOx低減率の確保が重要である。低排気温度時のNOx低減率の確保には、尿素水を加水分解にてアンモニアガス化して脱硝触媒へ供給することが重要である。   Therefore, urea water injected into the flue is efficiently hydrolyzed and ammonia is generated in the entire operation range from low exhaust temperature to high exhaust temperature of the engine, and a high NOx reduction rate (denitration rate) is ensured. In order to achieve this, it is important to secure a NOx reduction rate at a low exhaust temperature. In order to secure a NOx reduction rate at a low exhaust temperature, it is important to convert urea water into ammonia gas by hydrolysis and supply it to the denitration catalyst.

本発明の目的は、伝熱管とヒータで構成される気化器内に噴射供給される尿素水噴霧中の伝熱管内壁面へ接触しない噴霧(主に噴霧粗大液滴群)に対して、ヒータ熱を効率よく供給し、気化させたのちに加水分解促進を図り、生成されたアンモニアガスを脱硝触媒へ供給できることができる排気処理装置を提供することにある。   An object of the present invention is to provide a heater heat for spraying (mainly sprayed coarse droplet group) that does not contact the inner wall surface of the heat transfer tube during the urea water spray injected into the vaporizer composed of the heat transfer tube and the heater. It is an object of the present invention to provide an exhaust treatment apparatus that can efficiently supply and vaporize and then promote hydrolysis and supply the generated ammonia gas to a denitration catalyst.

前記目的を達成するために、本発明のエンジン用排気処理装置は、排気中の窒素酸化物を還元するためのエンジン用排気処理装置であって、排気中に尿素水を噴射するための噴射弁と、前記噴射弁から噴射された尿素水を気化するためのヒータ付設の気化器とを有し、前記気化器は伝熱管外周部にヒータが配設されて構成され伝熱管内には尿素水と排気ガスが通過し前記気化器で気化した尿素水を煙道内に供給するエンジン用排気処理装置において、前記伝熱管内に多孔板である衝突部材を配設したものである。   In order to achieve the above object, an exhaust treatment apparatus for an engine according to the present invention is an exhaust treatment apparatus for an engine for reducing nitrogen oxide in exhaust gas, and an injection valve for injecting urea water into the exhaust gas. And a vaporizer with a heater for vaporizing the urea water injected from the injection valve, and the vaporizer is configured such that a heater is disposed on the outer periphery of the heat transfer tube, and the urea water is contained in the heat transfer tube. In the engine exhaust treatment apparatus for supplying urea water vaporized by the carburetor into the flue, a collision member which is a perforated plate is disposed in the heat transfer tube.

このとき、前記伝熱管内に絞りを配設し、その下流側に前記衝突部材を配設するとよい。   At this time, it is preferable to arrange a throttle in the heat transfer tube and arrange the collision member downstream thereof.

また、伝熱管上流端部に伝熱管内にて排気ガスを旋回させるための固定旋回翼を配設するとよい。   Moreover, it is good to arrange | position the fixed swirl | blade for swirling exhaust gas in a heat exchanger tube in the heat exchanger tube upstream end part.

また、前記絞り及び前記衝突部材は、伝熱管内壁面と接触するごとく伝熱管軸流方向に所定長さを有する平行部を有し、前記平行部によって前記絞り又は前記衝突部材を伝熱管内に固定するとともに、伝熱管内壁面と前記絞り及び前記衝突部材に接触する接触面積を拡大するとよい。   The throttle and the impingement member have a parallel portion having a predetermined length in the axial direction of the heat transfer tube as they come into contact with the inner wall surface of the heat transfer tube, and the constriction or the collision member is brought into the heat transfer tube by the parallel portion. While fixing, it is good to enlarge the contact area which contacts a heat-transfer tube inner wall surface, the said aperture_diaphragm | restriction, and the said collision member.

また、気化器である伝熱管外周部に配設されたヒータ外周部に外筒を配設し、ヒータ外周部と外筒内壁面の間に空間である断熱層を形成するとともに、前記断熱層は伝熱管内部と伝熱管出口部で連通するとよい。   In addition, an outer cylinder is disposed on the outer periphery of the heater disposed on the outer periphery of the heat transfer tube, which is a vaporizer, and a heat insulating layer that is a space is formed between the outer periphery of the heater and the inner wall surface of the outer cylinder, and the heat insulating layer It is good to communicate with the inside of the heat transfer tube and the heat transfer tube outlet.

また、前記衝突部材又は前記絞りの下流の前記伝熱管内又はその下流側に加水分解触媒を配設するとよい。   Moreover, it is good to arrange | position a hydrolysis catalyst in the said heat exchanger tube downstream of the said collision member or the said aperture | diaphragm, or its downstream side.

また、前記ヒータにて前記気化器内壁面温度を前記気化器内で尿素水が膜沸騰する温度にするとよい。   The temperature of the inner wall surface of the vaporizer may be adjusted to a temperature at which the urea water boils in the vaporizer with the heater.

本発明によれば、低排気温度時に気化器である伝熱管内を通過する尿素水噴霧に効率的にヒータ熱を供給することが実現でき、尿素水噴霧を効率的に気化させてアンモニアを生成したのちに脱硝触媒へ供給するため、低排気温度時の高い脱硝性能を確保することができる。よって、エンジンの低排気温度から高排気温度の全運転領域において、高い脱硝率を確保できる。   According to the present invention, it is possible to efficiently supply heater heat to the urea water spray that passes through the heat transfer tube, which is a vaporizer, at a low exhaust temperature, and ammonia is generated by efficiently vaporizing the urea water spray. After that, since it is supplied to the denitration catalyst, high denitration performance at a low exhaust temperature can be ensured. Therefore, a high denitration rate can be ensured in the entire operation region from the low exhaust temperature to the high exhaust temperature of the engine.

以下、本発明の実施例を説明する。   Examples of the present invention will be described below.

図1は本発明の実施形態に係る排気処理装置の全体構成とその周辺構成を示す図であり、図2は図1中に示した排気処理装置のA部に示す尿素添加装置70の外観斜視図を示す。図3(a),(b)はそれぞれ図2中に示した尿素添加装置70の外観斜視図のB方向およびC方向矢視図である。図4は図3(b)中に示す尿素添加装置70のE−E断面図である。図5は図3(a)中に示す尿素添加装置70のD−D断面図である。図6は図5中に示す尿素添加装置70のF部拡大図である。図7(a),(b),(c)はそれぞれ尿素添加装置70の伝熱管42内に配設される伝熱管絞り48,伝熱管衝突部材49,伝熱管旋回翼30の斜視図を示す。また、図8は本発明の尿素添加装置70の伝熱管部の尿素処理率を示す図である。   FIG. 1 is a diagram showing an overall configuration of an exhaust treatment device according to an embodiment of the present invention and its peripheral configuration, and FIG. 2 is an external perspective view of a urea addition device 70 shown in part A of the exhaust treatment device shown in FIG. The figure is shown. FIGS. 3A and 3B are views in the B direction and the C direction of the external perspective view of the urea addition device 70 shown in FIG. 2, respectively. FIG. 4 is an EE cross-sectional view of the urea addition device 70 shown in FIG. FIG. 5 is a DD cross-sectional view of the urea addition device 70 shown in FIG. FIG. 6 is an enlarged view of a portion F of the urea addition device 70 shown in FIG. FIGS. 7A, 7B, and 7C are perspective views of the heat transfer tube throttle 48, the heat transfer tube impingement member 49, and the heat transfer tube swirl blade 30 disposed in the heat transfer tube 42 of the urea addition device 70, respectively. . Moreover, FIG. 8 is a figure which shows the urea treatment rate of the heat exchanger tube part of the urea addition apparatus 70 of this invention.

本実施形態の排気処理装置は、例えば、ディーゼルエンジン1から排出された排気12が流れる煙道内に還元剤となる尿素水を供給するための尿素添加装置70と、その上流に配設され、黒煙粒子等の微粒子を除去するための微粒子除去装置DPF(Diesel
Particulate Filter)17と、尿素添加装置70の下流側に配設され、排気中のNOxを処理するための脱硝触媒(SCR:Selective Catalytic Reduction :選択還元型NOx触媒)18を備えて構成される。
The exhaust treatment device of the present embodiment includes, for example, a urea addition device 70 for supplying urea water as a reducing agent into a flue through which the exhaust 12 discharged from the diesel engine 1 flows, and a black upstream. Fine particle removal device DPF (Diesel) for removing fine particles such as smoke particles
Particulate Filter) 17 and a denitration catalyst (SCR: Selective Catalytic Reduction) 18 for treating NOx in the exhaust gas, which is disposed on the downstream side of urea addition device 70, is configured.

脱硝触媒18は、尿素水およびその蒸気や加水分解触媒反応により生成されたアンモニアによる排気12中のNOxの還元反応を促進させNOxの排出量を低減する機能を備えた触媒である。なお、脱硝触媒18の下流側には、図示しない煙道およびマフラー等が配設され、外気へと連通している。   The denitration catalyst 18 is a catalyst having a function of promoting NOx reduction reaction in the exhaust 12 by urea water, its vapor, and ammonia generated by a hydrolysis catalytic reaction to reduce NOx emission. In addition, on the downstream side of the denitration catalyst 18, a flue, a muffler, and the like (not shown) are disposed and communicate with the outside air.

尿素添加装置70には、その内部に形成された煙道10内に尿素水4を供給するメイン噴射弁26と、サブ噴射弁27が2つ配設されている。メイン噴射弁26は煙道10内に尿素水4を噴射する際に用いられ、サブ噴射弁27は後述する分流させた分流排気14が通過する伝熱管42内へ尿素水4を噴射する際に用いられる。   The urea addition device 70 is provided with two main injection valves 26 for supplying urea water 4 into the flue 10 formed therein and two sub injection valves 27. The main injection valve 26 is used when injecting the urea water 4 into the flue 10, and the sub injection valve 27 is used when injecting the urea water 4 into the heat transfer pipe 42 through which the diverted exhaust gas 14 which will be described later passes. Used.

メイン噴射弁26から噴射される噴霧34は煙道10内に形成された比較的広い空間
36に噴射される。
The spray 34 injected from the main injection valve 26 is injected into a relatively large space 36 formed in the flue 10.

また、尿素添加装置70の煙道10内には、空間36の下流側において、通路断面積が一旦縮小された煙道の絞り20が形成されている。絞り20には、排気13流れに旋回流を生じさせるための主流旋回翼19が配設されている。また、絞り20とその上流側の煙道10内の空間36には、バイパスされた通路である分流通路41が連通されている。この分流通路41は絞り20の上流側にて煙道10内を流れる排気12の流れの軸流方向と対抗するように分流通路入口40が開口して設けられている。分流通路入口40は分流通路41を介してその下流側に配設された旋回室33と連通している。旋回室33内には、伝熱管旋回翼30が配設されている。伝熱管旋回翼30の下流側には伝熱管42が配設され、伝熱管42内部には伝熱管絞り48が2個配設され、さらにその下流側に伝熱管衝突部材49が2つ配設されている。   Further, in the flue 10 of the urea addition device 70, a flue restriction 20 having a passage sectional area once reduced is formed on the downstream side of the space 36. The throttle 20 is provided with a mainstream swirl vane 19 for generating a swirl flow in the exhaust 13 flow. A diversion passage 41 that is a bypassed passage is communicated with the throttle 20 and the space 36 in the flue 10 on the upstream side thereof. The diversion passage 41 is provided with an opening 40 for the diversion passage so as to oppose the axial flow direction of the flow of the exhaust gas 12 flowing in the flue 10 on the upstream side of the throttle 20. The diversion passage inlet 40 communicates with the swirl chamber 33 disposed on the downstream side thereof via the diversion passage 41. A heat transfer tube swirl blade 30 is disposed in the swirl chamber 33. A heat transfer tube 42 is disposed on the downstream side of the heat transfer tube swirl blade 30, two heat transfer tube throttles 48 are disposed inside the heat transfer tube 42, and two heat transfer tube collision members 49 are disposed on the downstream side. Has been.

なお、伝熱管絞り48は筒状の所定長さを持った平行部61を有し、筒状の端部において、筒状の平行部61の中心方向に向かって、所定高さを持った突起60が形成されている。一方、伝熱管衝突部材49は筒状の所定長さを持った平行部63を有し、筒状の平行部63の端部が閉じた形状である。さらに、伝熱管衝突部材49には複数の穴62が穿かれた多孔(穴)構造を有している。   The heat transfer tube restrictor 48 has a parallel portion 61 having a cylindrical predetermined length, and a protrusion having a predetermined height toward the center of the cylindrical parallel portion 61 at the cylindrical end portion. 60 is formed. On the other hand, the heat transfer tube collision member 49 has a parallel portion 63 having a cylindrical predetermined length, and has a shape in which the end of the cylindrical parallel portion 63 is closed. Further, the heat transfer tube collision member 49 has a porous (hole) structure in which a plurality of holes 62 are formed.

さらに、その伝熱管衝突部材49下流側の伝熱管42内部には加水分解触媒44が配設されている。伝熱管42の外周部には発熱体であるヒータ43が配設され、発熱体であるヒータ43を加熱することにより伝熱管42内を流れる噴霧35を気化促進するようになっている。ヒータ43の外周部には外筒47が配設され、ヒータ43が外気と直接、接することが無いようにしている。そして、ヒータ43と外筒47内壁の間には気相である断熱層53を形成する構成である。この断熱層53は後述する外筒底部50と連通する構造である。   Further, a hydrolysis catalyst 44 is disposed inside the heat transfer tube 42 on the downstream side of the heat transfer tube collision member 49. A heater 43, which is a heating element, is disposed on the outer peripheral portion of the heat transfer tube 42, and vaporization of the spray 35 flowing in the heat transfer tube 42 is promoted by heating the heater 43, which is a heating element. An outer cylinder 47 is disposed on the outer periphery of the heater 43 so that the heater 43 does not come into direct contact with the outside air. A heat insulating layer 53 that is a gas phase is formed between the heater 43 and the inner wall of the outer cylinder 47. The heat insulating layer 53 has a structure communicating with an outer cylinder bottom 50 described later.

加水分解触媒44の下流側には外筒47と連通した外筒底部50が配設され、外筒底部50の出口部には加水分解触媒51が配設されている。   An outer cylinder bottom 50 communicating with the outer cylinder 47 is disposed downstream of the hydrolysis catalyst 44, and a hydrolysis catalyst 51 is disposed at the outlet of the outer cylinder bottom 50.

加水分解触媒51の出口部は絞り20の外壁を取り囲んで設けられる壁21の内部に形成される環状空間の整圧室45と連通している。整圧室45は絞り20部に穿かれたアンモニア噴出孔46によって絞り20の内部と連通している。すなわち、絞り20上流側の煙道10内の空間36は分流通路入口40を介してアンモニア噴出孔46と連通するようになっている。ここで、絞り20に穿かれたアンモニア噴出孔46は主流旋回翼19の下流側に配設されている。   The outlet of the hydrolysis catalyst 51 communicates with a pressure regulation chamber 45 in an annular space formed inside the wall 21 provided surrounding the outer wall of the throttle 20. The pressure regulating chamber 45 communicates with the inside of the throttle 20 through an ammonia ejection hole 46 formed in the throttle 20 portion. That is, the space 36 in the flue 10 on the upstream side of the throttle 20 communicates with the ammonia ejection hole 46 via the branch passage entrance 40. Here, the ammonia ejection hole 46 formed in the throttle 20 is disposed on the downstream side of the mainstream swirl vane 19.

次に、尿素水4の各部への供給経路につき説明する。尿素水タンク3内に予め貯蔵された尿素水4はフィルター5を介してポンプ6にて吸引されたのち、ポンプ6から吐出された尿素水4がメイン噴射弁26とサブ噴射弁27に所定圧力にて供給される。ここで、メイン噴射弁26とサブ噴射弁27への調圧はポンプ6下流側のタンク3とを連通する流路途中に配設された圧力調整弁7にて行われる。   Next, the supply path | route to each part of the urea water 4 is demonstrated. The urea water 4 stored in advance in the urea water tank 3 is sucked by the pump 6 through the filter 5, and then the urea water 4 discharged from the pump 6 is applied to the main injection valve 26 and the sub injection valve 27 with a predetermined pressure. Supplied at Here, the pressure adjustment to the main injection valve 26 and the sub injection valve 27 is performed by the pressure adjusting valve 7 disposed in the middle of the flow path communicating with the tank 3 on the downstream side of the pump 6.

本実施例においては、エンジン始動時などの低排気温度,少排気量の低負荷領域から高排気温度,多排気量の高負荷領域までの比較的広い運転領域において、還元剤である尿素水を速やかに所定量、脱硝触媒18へ供給可能とするために、尿素添加装置70から煙道10内へ供給する尿素水の供給形態を変更することを可能としている。   In this embodiment, urea water, which is a reducing agent, is used in a relatively wide operating range from a low exhaust temperature and a low load region with a small exhaust amount to a high exhaust temperature and a high load region with a large exhaust amount. In order to quickly supply a predetermined amount to the denitration catalyst 18, it is possible to change the supply form of urea water supplied from the urea addition device 70 into the flue 10.

すなわち、高排気温度時には、メイン噴射弁26から噴射される尿素水4の噴霧34の供給を主として、噴霧34を煙道10内の比較的広い空間36に噴射したのち、排気13とともに絞り20とその内部に配設された主流旋回翼19を旋回しながら通過することによって、排気13の熱を授受して気化促進を図り、混合促進を図ったのち、脱硝触媒18へ供給し、高い脱硝性能を得る。   That is, at the time of a high exhaust temperature, the spray 34 of the urea water 4 injected from the main injection valve 26 is mainly supplied to the relatively large space 36 in the flue 10, and then the exhaust 20 and the throttle 20. By passing through the mainstream swirl vane 19 disposed inside it, the heat of the exhaust 13 is exchanged to promote vaporization, and after mixing is promoted, it is supplied to the denitration catalyst 18 and has high denitration performance. Get.

一方、低排気温度時は、サブ噴射弁27から噴射される尿素水4の噴霧35の供給を主として、噴霧35を伝熱管42外周部に配設された発熱体であるヒータ43の熱により、伝熱管42内部で積極的に気化させるとともに、加水分解触媒44,51を通過させることにより尿素水4の噴霧35のアンモニアガス化を促進させ、続いて、排気13との混合促進を図ったのち、脱硝触媒18に供給し、高い脱硝性能を得る。   On the other hand, at the time of low exhaust temperature, the supply of the spray 35 of the urea water 4 injected from the sub injection valve 27 is mainly used, and the spray 35 is heated by the heat of the heater 43 which is a heating element disposed on the outer peripheral portion of the heat transfer tube 42. After positively evaporating inside the heat transfer pipe 42 and passing the hydrolysis catalysts 44 and 51, the ammonia gasification of the spray 35 of the urea water 4 is promoted, and then the mixing with the exhaust 13 is promoted. The denitration catalyst 18 is supplied to obtain high denitration performance.

このように本実施形態では、エンジンの運転状態に応じて、尿素添加装置70から煙道10内へ供給する尿素水の供給形態を変更することによって、エンジンの全運転領域において、高い脱硝性能を確保するものである。   As described above, in this embodiment, by changing the supply form of the urea water supplied from the urea addition device 70 into the flue 10 according to the operation state of the engine, high denitration performance is achieved in the entire operation region of the engine. It is to secure.

次に、高排気温度時に主として用いるメイン噴射弁26から供給される尿素水の噴霧
34の脱硝触媒18への供給について説明する。
Next, the supply of the urea water spray 34 supplied from the main injection valve 26 mainly used at the high exhaust temperature to the denitration catalyst 18 will be described.

本実施例の排気処理装置において、DPF17を通過した排気13は、尿素添加装置
70の煙道10内の空間36に供給される。このとき、煙道10内の空間36中に噴射された尿素水噴霧34は、排気13の熱の授受により、噴霧34中の液滴の蒸発とともに加水分解が促進されてアンモニアガスの生成が促進される。
In the exhaust treatment apparatus of the present embodiment, the exhaust 13 that has passed through the DPF 17 is supplied to the space 36 in the flue 10 of the urea addition apparatus 70. At this time, the urea water spray 34 injected into the space 36 in the flue 10 is promoted to hydrolyze along with the evaporation of the droplets in the spray 34 by the transfer of heat of the exhaust gas 13, thereby promoting the generation of ammonia gas. Is done.

さらに空間36の下流側の煙道10には、通路断面積の絞られた絞り20が配設されており、絞り20部には主流旋回翼19が配設されている。よって、排気13の気流に同伴して絞り20部を通過することによって、排気13の流速が増加するとともに、主流旋回翼19を通過することによる絞り20での流れの乱れによって、排気13と噴霧34の混合促進が図られる。   Further, a throttle 20 having a reduced passage cross-sectional area is disposed in the flue 10 on the downstream side of the space 36, and a mainstream swirl vane 19 is disposed in the throttle 20 portion. Therefore, the flow rate of the exhaust gas 13 is increased by passing through the throttle 20 part along with the air flow of the exhaust gas 13, and the turbulence of the flow at the throttle 20 due to passing through the mainstream swirl blade 19 causes the exhaust gas 13 and the spray. 34 is promoted.

以上の排気13流れと絞り20と主流旋回翼19の効果によって、メイン噴射弁26から噴射された噴霧34は、高温の排気13と排気中に含まれる水分によって、加水分解反応が促進されアンモニアガス化が促進されながら、脱硝触媒18へほぼ均一に尿素の噴霧液滴と蒸気およびアンモニアを供給可能となり、高い脱硝性能を得ることができる。   Due to the effects of the exhaust 13 flow, the throttle 20 and the mainstream swirl vane 19, the spray 34 injected from the main injection valve 26 has a hydrolysis reaction accelerated by the high-temperature exhaust 13 and moisture contained in the exhaust, and ammonia gas. As the catalyst is promoted, urea spray droplets, steam and ammonia can be supplied almost uniformly to the denitration catalyst 18, and high denitration performance can be obtained.

次に、低排気温度時に主として用いるサブ噴射弁27から供給される尿素水の噴霧34の脱硝触媒への供給について説明する。   Next, the supply of the urea water spray 34 supplied from the sub-injection valve 27 mainly used at the low exhaust temperature to the denitration catalyst will be described.

分流通路入口40から分流通路41内に流入した排気12から分流した分流排気14は、分流通路41を介して旋回室33に流入する。旋回室33内には伝熱管旋回翼30が配設されている。伝熱管旋回翼30は円筒状のリング38部の端面に複数の翼37形状の突起が形成された構造である。旋回室33側壁面と伝熱管旋回翼30の間には空間が形成され、その空間に分流通路41から流入した分流排気14が流入する。前記空間に流入した分流排気14は伝熱管旋回翼30を通過する際に旋回流を形成されながら伝熱管42内へと流入する。なお、伝熱管旋回翼30を介して伝熱管42内に流入する分流排気14は伝熱管42入口部の周方向から均一に流入することが好ましい。   The diverted exhaust gas 14 diverted from the exhaust 12 flowing into the diversion passage 41 from the diversion passage entrance 40 flows into the swirl chamber 33 via the diversion passage 41. A heat transfer tube swirl vane 30 is disposed in the swirl chamber 33. The heat transfer tube swirl blade 30 has a structure in which a plurality of blade 37-shaped protrusions are formed on the end face of a cylindrical ring 38 portion. A space is formed between the side wall surface of the swirl chamber 33 and the heat transfer tube swirl blade 30, and the diverted exhaust gas 14 flowing from the diversion passage 41 flows into the space. The diverted exhaust gas 14 flowing into the space flows into the heat transfer tube 42 while forming a swirl flow when passing through the heat transfer tube swirl blade 30. It is preferable that the diverted exhaust gas 14 flowing into the heat transfer tube 42 via the heat transfer tube swirl blade 30 flows uniformly from the circumferential direction of the inlet portion of the heat transfer tube 42.

また、旋回室33内に配設された伝熱管旋回翼30のリング38内側を介して、伝熱管42内に向けてサブ噴射弁27から尿素水の噴霧35が噴射される。   Further, the spray 35 of urea water is injected from the sub injection valve 27 toward the inside of the heat transfer tube 42 through the inside of the ring 38 of the heat transfer tube swirl vane 30 disposed in the swirl chamber 33.

ここで、分流排気14が伝熱管旋回翼30を通過することによって、伝熱管42内にて旋回流れを形成しながら流入するため、流れが直角曲り管内を通過する場合に比べて、通路圧損が低減でき、効率良く分流排気14を伝熱管内へ流入させることが可能となる。さらに、伝熱管42内で形成された旋回流れによって、伝熱管42内に噴射された噴霧35が旋回流れに同伴するために、伝熱管42内壁面へ強制的に接触させることが可能であり、噴霧35中の液滴が伝熱管42内に内壁面へ接触させる時間が拡大することができ、効率よく噴霧35を気化可能とすることができる。   Here, since the shunt exhaust 14 passes through the heat transfer tube swirl blade 30 and flows while forming a swirl flow in the heat transfer tube 42, the passage pressure loss is smaller than that when the flow passes through the right angle bend tube. This makes it possible to reduce the flow rate and efficiently flow the diverted exhaust gas 14 into the heat transfer tube. Furthermore, since the spray 35 injected into the heat transfer tube 42 is accompanied by the swirl flow by the swirl flow formed in the heat transfer tube 42, it is possible to forcibly contact the inner wall surface of the heat transfer tube 42, The time for which the droplets in the spray 35 are brought into contact with the inner wall surface in the heat transfer tube 42 can be extended, and the spray 35 can be efficiently vaporized.

さらに、伝熱管42内部には、円周状に連続した突起60を持つ伝熱管絞り48が配設されているため、伝熱管42内で絞り形状を形成する。さらに、伝熱管42内では、伝熱管旋回翼30を伝熱管42入口に配設したために分流排気14の旋回流れが形成され、サブ噴射弁27から噴射された噴霧35の液滴を突起60部の伝熱管42内軸流方向の内壁面上下流域でトラップすることが可能となり、噴霧35液滴の突起60部の上下流領域での滞留時間が大幅に拡大できるために、伝熱管42内での噴霧35の気化促進が図れるものである。   Furthermore, since the heat transfer tube constriction 48 having the circumferentially continuous protrusion 60 is disposed inside the heat transfer tube 42, a constricted shape is formed in the heat transfer tube 42. Further, in the heat transfer tube 42, since the heat transfer tube swirl vane 30 is disposed at the inlet of the heat transfer tube 42, a swirl flow of the diverted exhaust 14 is formed, and droplets of the spray 35 injected from the sub-injection valve 27 are projected 60 parts. It is possible to trap in the upstream and downstream regions of the inner wall surface in the axial flow direction of the heat transfer tube 42 and the residence time of the spray 35 droplets in the upstream and downstream regions of the protrusion 60 can be greatly increased. The vaporization of the spray 35 can be promoted.

ここで、突起60部の上下流領域噴霧液滴がトラップされ集中するために、突起60部でのヒータ43から噴霧35液滴への熱伝達量が多くなり、伝熱管42内壁部の平滑部に比べ、突起60部の上下流領域での伝熱管42内壁面温度が低下する傾向にある。考慮すべき点は、伝熱管42内に配設された伝熱管絞り48の噴霧35液滴が突起60部上下流領域を含む伝熱管42内にてその沸騰形態が核沸騰形態ではなく膜沸騰形態させる点である。そのために、ヒータ43から所定発熱量を供給するとともに、突起60部の高さを適正化し、突起60部上下流領域での噴霧35液滴のトラップ量を適正化することにより実現している。ここで、噴霧35液滴を伝熱管35内壁面上で核沸騰させた場合、伝熱管
42管内壁面と尿素水との間の熱伝達が促進され、伝熱管42内壁面温度が急激に低下し、その内壁面上で尿素が析出するが、噴霧35液滴の伝熱管42内での沸騰形態を膜沸騰形態とすれば、核沸騰形態にした場合に比べて、ヒータ43からの熱伝達率は低下するものの、噴霧35液滴が伝熱管42内で液滴状のまま気化されることによって尿素析出が防止できる。
Here, since the spray droplets in the upstream and downstream regions of the projection 60 are trapped and concentrated, the amount of heat transfer from the heater 43 to the spray 35 droplet in the projection 60 increases, and the smooth portion of the inner wall portion of the heat transfer tube 42 As compared with the above, the inner wall surface temperature of the heat transfer tube 42 in the upstream / downstream region of the protrusion 60 tends to decrease. The point to be considered is that the form of boiling of the spray 35 droplets of the heat transfer tube throttle 48 disposed in the heat transfer tube 42 is not nucleate boiling but film boiling in the heat transfer tube 42 including the upstream and downstream regions of the protrusion 60 part. It is a point to form. For this purpose, a predetermined heat generation amount is supplied from the heater 43, the height of the projection 60 is optimized, and the trap amount of the spray 35 droplets in the upstream and downstream areas of the projection 60 is optimized. Here, when the spray 35 droplets are nucleate boiled on the inner wall surface of the heat transfer tube 35, the heat transfer between the inner wall surface of the heat transfer tube 42 and the urea water is promoted, and the inner wall surface temperature of the heat transfer tube 42 rapidly decreases. Urea precipitates on the inner wall surface, but if the boiling form of the sprayed 35 droplets in the heat transfer tube 42 is the film boiling form, the heat transfer rate from the heater 43 compared to the nucleate boiling form. However, since the sprayed 35 droplets are vaporized in the form of droplets in the heat transfer tube 42, urea precipitation can be prevented.

さらに、伝熱管絞り48は伝熱管42内壁面に沿うように平行部61が形成されている。よって、伝熱管42内壁面と平行部61との接触面積を拡大させた構造であるために、ヒータ43の熱が伝熱管絞り48の突起60部に入熱しやすい構造であり、突起60部の噴霧35液滴の気化による温度低下を防止できる。   Further, the heat transfer tube throttle 48 has a parallel portion 61 formed along the inner wall surface of the heat transfer tube 42. Therefore, since the contact area between the inner wall surface of the heat transfer tube 42 and the parallel portion 61 is enlarged, the heat of the heater 43 is likely to be input to the protrusion 60 portion of the heat transfer tube restrictor 48, It is possible to prevent a temperature drop due to vaporization of the sprayed 35 droplets.

以上によって、伝熱管42内壁面に伝熱管絞り48を配設したことによって、絞り48である突起60の上下流域にトラップされた噴霧35中の液滴にヒータの熱を与える時間と熱が十分に確保でき、気化促進が図られる。本実施例では、2段の伝熱管絞り48を配設しているが、さらに多段にすることによって伝熱管42内壁面での噴霧35のトラップ量を平準化できるとともに、トラップ量および滞留時間を増大できるために、さらなる気化促進が図られる。   As described above, since the heat transfer tube restrictor 48 is disposed on the inner wall surface of the heat transfer tube 42, the time and heat to apply the heat of the heater to the droplets in the spray 35 trapped in the upstream and downstream areas of the protrusion 60 as the restrictor 48 are sufficient. It is possible to secure vaporization and promote vaporization. In this embodiment, a two-stage heat transfer tube restrictor 48 is provided, but by further increasing the number of stages, the trap amount of the spray 35 on the inner wall surface of the heat transfer tube 42 can be leveled, and the trap amount and residence time can be reduced. Since it can be increased, further vaporization is promoted.

さらに、伝熱管42内部の伝熱管絞り48下流側には、複数の穴62が穿かれた多孔
(穴)構造をした伝熱管衝突部材49が配設されている。ここで、伝熱管42内にサブ噴射弁27から噴射された噴霧35中には、伝熱管旋回翼30で形成された伝熱管42内の分流排気14の旋回流には同伴せずにサブ噴射弁27からの噴射方向に沿って飛翔する粗大液滴が存在する。ここで、その粗大液滴は伝熱管衝突部材49に衝突する。衝突部材
49に衝突することにより粗大液滴が微細な液滴に分裂するとともに、衝突した粗大液滴はヒータにより加熱された衝突部材49および分流排気14の熱によって気化促進が図られる。ここで、噴霧35の気化促進によって衝突部材49の温度が低下する傾向にある。上述の伝熱管42内に配設された伝熱管絞り48の噴霧35液滴に対し、突起60部上下流領域を含む伝熱管42内壁と同様に考慮すべき点は、衝突部材49での噴霧35の沸騰形態を膜沸騰させることである。そのために、ヒータ43から所定発熱量を供給するとともに、多孔である衝突部材49の開口率を適正化することによって、衝突部材49に衝突する噴霧35液滴の衝突量の適正化を図っている。これによって、噴霧35液滴を衝突部材49上で膜沸騰できるために、衝突部材49での尿素析出が防止できる。
Furthermore, a heat transfer tube collision member 49 having a porous (hole) structure in which a plurality of holes 62 are formed is disposed on the downstream side of the heat transfer tube constriction 48 inside the heat transfer tube 42. Here, in the spray 35 injected from the sub-injection valve 27 into the heat transfer tube 42, the sub-injection is not accompanied by the swirling flow of the diverted exhaust gas 14 in the heat transfer tube 42 formed by the heat transfer tube swirl blade 30. There are coarse droplets flying along the injection direction from the valve 27. Here, the coarse droplet collides with the heat transfer tube collision member 49. By colliding with the collision member 49, the coarse droplet is split into fine droplets, and the collided coarse droplet is promoted to be vaporized by the heat of the collision member 49 and the shunt exhaust 14 heated by the heater. Here, the temperature of the collision member 49 tends to decrease due to the promotion of vaporization of the spray 35. The point that should be considered in the same manner as the inner wall of the heat transfer tube 42 including the upper and lower regions of the protrusions 60 with respect to the spray 35 droplets of the heat transfer tube constriction 48 disposed in the heat transfer tube 42 described above is the spray on the impingement member 49. 35 boiling forms are film boiling. For this purpose, a predetermined heat generation amount is supplied from the heater 43 and the aperture ratio of the porous collision member 49 is optimized so as to optimize the collision amount of the sprayed 35 droplets colliding with the collision member 49. . Thus, since the sprayed 35 droplets can boil on the collision member 49, urea precipitation on the collision member 49 can be prevented.

さらに、伝熱管衝突部材49には伝熱管42内壁面に沿うように平行部63が形成されている。よって、伝熱管42内壁面と平行部63との接触面積を拡大させた構造であるために、ヒータ43の熱が伝熱管衝突部材49に入熱しやすい構造であり、衝突部材49の噴霧35液滴の気化による温度低下の防止を図っている。   Further, the heat transfer tube collision member 49 is formed with a parallel portion 63 along the inner wall surface of the heat transfer tube 42. Therefore, since the contact area between the inner wall surface of the heat transfer tube 42 and the parallel portion 63 is enlarged, the heat of the heater 43 is easily input to the heat transfer tube collision member 49, and the spray 35 liquid of the collision member 49 It is intended to prevent temperature drop due to vaporization of droplets.

さらに、平行部63は多孔(穴)構造であるために尿素液滴をトラップしやすい凹凸形状を伝熱管42内壁面に形成できる。また、伝熱管42内壁面上に多孔(穴)構造の平行部63によって伝熱管42内壁面上に凹凸が形成できるため、ヒータ43の熱が伝熱管
42内へ伝達しやすくなる(ヒータ43から伝熱管42内を通過する分流排気14への熱伝達率が向上する)。よって、噴霧35の伝熱管42内における気化促進が図られる。
Furthermore, since the parallel part 63 has a porous (hole) structure, an uneven shape that easily traps urea droplets can be formed on the inner wall surface of the heat transfer tube 42. Moreover, since the unevenness can be formed on the inner wall surface of the heat transfer tube 42 by the parallel part 63 having a porous (hole) structure on the inner wall surface of the heat transfer tube 42, the heat of the heater 43 is easily transmitted into the heat transfer tube 42 (from the heater 43). The heat transfer rate to the shunt exhaust 14 passing through the heat transfer tube 42 is improved). Therefore, vaporization promotion of the spray 35 in the heat transfer tube 42 is achieved.

以上によって、伝熱管42内に伝熱管衝突部材49を配設したことによって、衝突部材49に衝突した噴霧35中の粗大液滴を分裂させるとともに気化促進を図るために十分な熱を確保できる。本実施例では、2段の伝熱管衝突部材49を配設しているが、さらに多段にすることによって噴霧35の伝熱管衝突部材49への衝突回数が増大できるために、噴霧35の粗大液滴の分裂による微小液滴の生成と気化促進が図られる。   By arranging the heat transfer tube collision member 49 in the heat transfer tube 42 as described above, sufficient heat can be secured to break up coarse droplets in the spray 35 colliding with the collision member 49 and promote vaporization. In this embodiment, the two-stage heat transfer tube collision member 49 is provided. However, since the number of collisions of the spray 35 against the heat transfer tube collision member 49 can be increased by further increasing the number of stages, the coarse liquid of the spray 35 is increased. Microdroplet generation and vaporization are promoted by droplet breakup.

さらに、伝熱管42内部の伝熱管衝突部材49下流には、伝熱管42内壁面に沿った円筒形状であり円筒垂直断面が格子状の加水分解触媒44が配設されている。この加水分解触媒44はヒータ43の熱を授受しやすくするために母材が金属製のものが好ましい。加水分解触媒44の配設により、その上流に配設された伝熱管絞り48および衝突部材49にて気化しきれなかった噴霧35液滴を気化促進するとともに、気化促進された尿素蒸気および尿素液滴を加水分解し、アンモニア生成することが可能となる。また、ヒータ43を伝熱管42外周に配設し、伝熱管42内部に加水分解触媒44を配設したことにより、加水分解触媒44の活性化温度を容易に形成することができ、排気14の温度が加水分解触媒44の活性化温度以下であってもアンモニアガス15を効率的に生成できる。   Further, a hydrolysis catalyst 44 having a cylindrical shape along the inner wall surface of the heat transfer tube 42 and having a cylindrical vertical cross section is disposed downstream of the heat transfer tube collision member 49 inside the heat transfer tube 42. The hydrolysis catalyst 44 is preferably made of a metal base material so that the heat of the heater 43 can be easily transferred. By disposing the hydrolysis catalyst 44, the spray 35 droplets that could not be vaporized by the heat transfer tube throttle 48 and the collision member 49 disposed upstream thereof are promoted to vaporize, and the vaporized urea vapor and urea liquid are promoted. The droplet can be hydrolyzed to produce ammonia. In addition, since the heater 43 is disposed on the outer periphery of the heat transfer tube 42 and the hydrolysis catalyst 44 is disposed inside the heat transfer tube 42, the activation temperature of the hydrolysis catalyst 44 can be easily formed. Even if the temperature is equal to or lower than the activation temperature of the hydrolysis catalyst 44, the ammonia gas 15 can be efficiently generated.

さらに、伝熱管42内に伝熱管絞り48や衝突部材49を配設することによって、伝熱管48内での尿素噴霧35の気化促進が図れるために伝熱管42を小型化できる。すなわち、同様の伝熱管サイズで比較した場合、伝熱管42内に伝熱管絞り48および衝突部材49を配設しない場合は、加水分解触媒44に気化しない噴霧35が集中するために、加水分解触媒44上で噴霧35が気化しきれずに液流となり、核沸騰状態を形成し熱が急激に奪われ、尿素のみが残留し、尿素析出が発生する場合がある。また、液流がそのまま加水分解触媒44下流に流出し、尿素析出を起こす場合がある。よって、所定量のアンモニアガス15を脱硝触媒18へ供給することができなくなり、脱硝性能が低減する。さらに、加水分解触媒44もしくはその下流で尿素が析出した場合、アンモニアガス15が通過する通路を閉塞してしまい、アンモニアガス15を脱硝触媒18へ供給できなくなる恐れがある。   Furthermore, by disposing the heat transfer tube restrictor 48 and the collision member 49 in the heat transfer tube 42, the vaporization of the urea spray 35 in the heat transfer tube 48 can be promoted, so that the heat transfer tube 42 can be reduced in size. That is, when compared with the same heat transfer tube size, when the heat transfer tube restrictor 48 and the collision member 49 are not disposed in the heat transfer tube 42, the spray 35 that does not vaporize concentrates on the hydrolysis catalyst 44. The spray 35 is not completely vaporized on the liquid 44 and forms a liquid flow, forms a nucleate boiling state, rapidly loses heat, only urea remains, and urea precipitation may occur. In addition, the liquid flow may flow directly downstream of the hydrolysis catalyst 44 and cause urea precipitation. Therefore, a predetermined amount of ammonia gas 15 cannot be supplied to the denitration catalyst 18, and the denitration performance is reduced. Furthermore, when urea is precipitated in the hydrolysis catalyst 44 or downstream thereof, the passage through which the ammonia gas 15 passes may be blocked, and the ammonia gas 15 may not be supplied to the denitration catalyst 18.

しかし、伝熱管42内に伝熱管絞り48や衝突部材49を配設することによって、伝熱管42内での尿素噴霧35の気化する領域を分散できるために、効率的に尿素噴霧35を気化することが可能となり、伝熱管42の小型化が実現できるものである。   However, by arranging the heat transfer tube restrictor 48 and the collision member 49 in the heat transfer tube 42, the region where the urea spray 35 evaporates in the heat transfer tube 42 can be dispersed, so that the urea spray 35 is efficiently vaporized. Thus, the heat transfer tube 42 can be downsized.

なお、本実施例では、伝熱管42内に伝熱管絞り48や衝突部材49を配設する際に、平行部61,63の軸流方向の長さによって伝熱管42内軸流方向における伝熱管絞り
48や衝突部材49の位置決めを行っている。すなわち、伝熱管絞り48と衝突部材49の平行部61の軸流方向下流側の端部がそれぞれ伝熱管絞り48と衝突部材49の軸流方向上流側の端部と接触し、伝熱管42内でのそれぞれの軸流方向の位置が決定している。また、最下流に位置する衝突部材49の平行部63下流側端部は加水分解触媒44と接触することにより伝熱管内で固定されている。ここで、加水分解触媒44は伝熱管42と接触固定されている。
In this embodiment, when the heat transfer tube restrictor 48 and the collision member 49 are disposed in the heat transfer tube 42, the heat transfer tubes in the axial flow direction in the heat transfer tube 42 are determined by the lengths of the parallel portions 61 and 63 in the axial flow direction. The diaphragm 48 and the collision member 49 are positioned. That is, the end portions on the downstream side in the axial flow direction of the parallel portion 61 of the heat transfer tube constriction 48 and the collision member 49 are in contact with the end portions on the upstream side in the axial flow direction of the heat transfer tube constriction 48 and the collision member 49, respectively. The position of each axial flow direction is determined. Further, the downstream end of the parallel part 63 of the collision member 49 located on the most downstream side is fixed in the heat transfer tube by contacting the hydrolysis catalyst 44. Here, the hydrolysis catalyst 44 is fixed in contact with the heat transfer tube 42.

伝熱管42内で気化促進された尿素の蒸気は、分流排気14の熱と発熱体であるヒータ43から伝熱管42内へ供給される熱により加水分解が促進される。さらに、伝熱管
42内とその下流側に配設された加水分解触媒44,51を通過することにより、加水分解反応が一層促進され尿素のアンモニアガス化を図ることが出来る。噴霧35のアンモニアガス化を促進したアンモニアガス15は加水分解触媒51下流に配設された整圧室45に流入し、絞り20に穿たれた複数のアンモニア噴出孔46から主流排気13に誘引されて絞り20内へ供給される。これは、主流排気13の通過する絞り20により伝熱管42の圧力損失が高くなる分、絞り20側の静圧が下がり、伝熱管42の分流排気14の流量が確保されるためである。
The urea vapor promoted for vaporization in the heat transfer tube 42 is hydrolyzed by the heat of the divided exhaust 14 and the heat supplied from the heater 43 as a heating element into the heat transfer tube 42. Furthermore, by passing through the hydrolysis catalysts 44 and 51 disposed in the heat transfer tube 42 and downstream thereof, the hydrolysis reaction is further promoted, and urea can be converted to ammonia gas. The ammonia gas 15 that promotes the ammonia gasification of the spray 35 flows into the pressure regulating chamber 45 disposed downstream of the hydrolysis catalyst 51, and is attracted to the mainstream exhaust 13 through a plurality of ammonia ejection holes 46 formed in the throttle 20. Then, it is supplied into the diaphragm 20. This is because the static pressure on the throttle 20 side is lowered by the amount of pressure loss of the heat transfer tube 42 due to the throttle 20 through which the mainstream exhaust 13 passes, and the flow rate of the split exhaust 14 in the heat transfer tube 42 is secured.

絞り20内を通過することによって、排気12の流速と比べて主流排気13は流速が早くなる。また、配設された主流旋回翼19を通過することで、主流旋回翼19の下流側の主流排気13の流れは局所的に乱れ、旋回流を形成してアンモニアガス15との混合促進が図られ、混合ガス16として脱硝触媒18へ供給される。これによって高い脱硝性能を得ることができる。   By passing through the throttle 20, the flow velocity of the main exhaust 13 becomes faster than the flow velocity of the exhaust 12. Further, by passing through the disposed main flow swirl blade 19, the flow of the main flow exhaust 13 downstream of the main flow swirl blade 19 is locally disturbed to form a swirl flow and promote mixing with the ammonia gas 15. The mixed gas 16 is supplied to the denitration catalyst 18. Thereby, high denitration performance can be obtained.

エンジン1からの排気12は、エンジン1負荷によって温度変化し、排気12の温度が高いときは、尿素水を直接噴射しても、排気12から得られる熱によって尿素水の気化と加水分解反応が速やかに進み、還元剤となるアンモニアガスが脱硝触媒18に必要量供給されるが、排気12の温度が低いときは、尿素水のアンモニアガス化が進まず、脱硝触媒18での還元反応も十分には進まなくなる。このため、一般に排気12の温度が低いときには、NOxの低減率(脱硝率)が悪化する。   The temperature of the exhaust 12 from the engine 1 changes depending on the load of the engine 1, and when the temperature of the exhaust 12 is high, the urea water is vaporized and hydrolyzed by the heat obtained from the exhaust 12 even if the urea water is directly injected. Promptly, a necessary amount of ammonia gas as a reducing agent is supplied to the denitration catalyst 18, but when the temperature of the exhaust 12 is low, ammonia gasification of urea water does not proceed and the reduction reaction at the denitration catalyst 18 is sufficient. Will not proceed. For this reason, generally, when the temperature of the exhaust 12 is low, the NOx reduction rate (denitration rate) deteriorates.

この対策として、伝熱管42を用い、発熱体であるヒータ43による加熱と加水分解触媒44,51による反応促進の2つの機能により、尿素水のアンモニア化を促進し、低温時のNOx除去を補助する。また、排気12の温度が高いときは、分流通路41下流に配設されたサブ噴射弁27からの尿素水の噴霧35の噴射を行わず、排気13中に直接、尿素水噴霧34を噴射するメイン噴射弁26のみを用いて尿素水を添加することで、発熱体であるヒータ43が余計なエネルギー消費を行うことをなくする。さらに、低温時の加熱による反応補助に関しても、排気12全体を加熱するのではなく、分流排気14のみを加熱することで、発熱体であるヒータ43で消費する電力の低減を図っている。   As a countermeasure, the heat transfer tube 42 is used to promote the ammoniating of urea water and assist the removal of NOx at a low temperature by two functions of heating by the heater 43 as a heating element and reaction promotion by the hydrolysis catalysts 44 and 51. To do. Further, when the temperature of the exhaust gas 12 is high, the urea water spray 35 is not directly injected from the sub-injection valve 27 disposed downstream of the branch passage 41, and the urea water spray 34 is directly injected into the exhaust gas 13. By adding urea water using only the main injection valve 26, the heater 43, which is a heating element, does not consume extra energy. Further, with respect to reaction assistance by heating at low temperatures, the entire exhaust 12 is not heated, but only the shunt exhaust 14 is heated, thereby reducing the power consumed by the heater 43 that is a heating element.

次に、伝熱管42の尿素処理率について検討した結果を図8に示す。   Next, the result of examining the urea treatment rate of the heat transfer tube 42 is shown in FIG.

横軸に検討した伝熱管仕様、縦軸に尿素処理率を示す。図8中の「従来」の仕様は、直管の伝熱管42内に噴霧35を所定量噴射した場合であり、「本発明(加水分解触媒無し)」は、直管の伝熱管内に旋回流を形成するとともに、伝熱管絞り48を軸流方向に2段配設し、その下流側に、伝熱管衝突部材49を配設したものである。   The horizontal axis shows the heat transfer tube specifications, and the vertical axis shows the urea treatment rate. The “conventional” specification in FIG. 8 is a case where a predetermined amount of spray 35 is injected into the straight heat transfer tube 42, and “the present invention (without hydrolysis catalyst)” swirls into the straight heat transfer tube. In addition to forming a flow, the heat transfer tube restrictors 48 are arranged in two stages in the axial flow direction, and a heat transfer tube impingement member 49 is arranged downstream thereof.

また、「本発明(加水分解触媒有り)」は、上記「本発明(加水分解触媒無し)」に対して、伝熱管42内の出口部に加水分解触媒44を配設したものである。   The “present invention (with hydrolysis catalyst)” is a configuration in which a hydrolysis catalyst 44 is disposed at the outlet in the heat transfer tube 42 with respect to the “present invention (without hydrolysis catalyst)”.

縦軸の尿素処理率は、噴射した尿素噴霧35中に含有される尿素質量と伝熱管出口部で回収された尿素質量の比をパーセンテージで示したものである。したがって、尿素処理率が高ければ、尿素水噴霧35のアンモニアガス化を促進できたものといえる。ここで、伝熱管42内を通過する分流排気14量と温度、およびヒータ43の消費電力は同条件として評価した。   The urea treatment rate on the vertical axis indicates the ratio of the urea mass contained in the injected urea spray 35 and the urea mass recovered at the heat transfer tube outlet in percentage. Therefore, if the urea treatment rate is high, it can be said that the ammonia gasification of the urea water spray 35 can be promoted. Here, the amount and temperature of the diverted exhaust gas 14 passing through the heat transfer tube 42 and the power consumption of the heater 43 were evaluated under the same conditions.

その結果、「従来」場合の尿素処理率が50%程度に対して、「本発明(加水分解触媒無し)」にすることによって80%程度となり、「本発明(加水分解触媒有り)」ではほぼ100%を実現できることを確認した。すなわち、「本発明(加水分解触媒有り)」の本発明の実施形態の適用によって、尿素水噴霧35をほぼ完全にアンモニアガス化できるものである。   As a result, the urea treatment rate in the case of “conventional” is about 80% by adopting “the present invention (without hydrolysis catalyst)”, and almost “in the present invention (with hydrolysis catalyst)”. It was confirmed that 100% could be realized. That is, by applying the embodiment of the present invention of “the present invention (with hydrolysis catalyst)”, the urea water spray 35 can be almost completely converted to ammonia gas.

次に、第1の実施例では、伝熱管42入口部に伝熱管旋回翼30、その内部に伝熱管絞り48と衝突部材49を配設し、さらにその下流側伝熱管42内部に加水分解触媒44を配設した構成である。しかし、それに限定するものではない。すなわち、第1の実施例の構成の伝熱管旋回翼30および伝熱管絞り48を用いずに、伝熱管衝突部材49を複数段配設したものでも、十分に第1の実施例と同等の尿素処理率を得ることができる。衝突部材49に関する作用効果に関しては、第1の実施例と同様であるために説明を割愛する。   Next, in the first embodiment, the heat transfer tube swirl blade 30 is disposed at the inlet of the heat transfer tube 42, the heat transfer tube constriction 48 and the collision member 49 are disposed therein, and the hydrolysis catalyst is further disposed inside the downstream heat transfer tube 42. 44 is provided. However, it is not limited to that. That is, even if the heat transfer tube impingement member 49 is arranged in a plurality of stages without using the heat transfer tube swirl blade 30 and the heat transfer tube constriction 48 having the configuration of the first embodiment, the urea is sufficiently equivalent to that of the first embodiment. A processing rate can be obtained. Since the operational effects relating to the collision member 49 are the same as those in the first embodiment, the description thereof is omitted.

さらに、第1の実施例では、伝熱管42入口部に伝熱管旋回翼30、その内部に伝熱管絞り48と衝突部材49を配設し、さらにその下流側伝熱管42内部に加水分解触媒44は配設した構成である。しかし、それに限定するものではない。すなわち、第1の実施例の構成の伝熱管42入口部に配設された伝熱管旋回翼30を用いず、伝熱管絞り48と衝突部材49を第1の実施例以上の複数段配設することによっても十分に第1の実施例同等の尿素処理率を得ることができる。伝熱管絞り48および衝突部材49に関する作用効果に関しては、第1の実施例と同様であるために説明を割愛する。   Further, in the first embodiment, the heat transfer tube swirl blade 30 is disposed at the inlet portion of the heat transfer tube 42, the heat transfer tube constriction 48 and the collision member 49 are disposed therein, and the hydrolysis catalyst 44 is disposed inside the downstream heat transfer tube 42. Is an arranged configuration. However, it is not limited to that. That is, without using the heat transfer tube swirl blade 30 disposed at the inlet portion of the heat transfer tube 42 having the configuration of the first embodiment, the heat transfer tube throttle 48 and the collision member 49 are arranged in a plurality of stages higher than the first embodiment. This also makes it possible to obtain a urea treatment rate equivalent to that of the first embodiment. Since the operation and effect related to the heat transfer tube restrictor 48 and the collision member 49 are the same as those in the first embodiment, the description thereof is omitted.

本発明に係る第1の実施例のエンジン用排気処理装置の全体構成を示す図である。1 is a diagram illustrating an overall configuration of an engine exhaust treatment apparatus according to a first embodiment of the present invention. 図1中に示した排気処理装置の尿素添加装置の外観斜視図である。It is an external appearance perspective view of the urea addition apparatus of the exhaust gas processing apparatus shown in FIG. 図2中に示した外観斜視図のB方向矢視図とC方向矢視図である。FIG. 3 is a B direction arrow view and a C direction arrow view of the external perspective view shown in FIG. 2. 図3中E−E断面図を示す図である。It is a figure which shows EE sectional drawing in FIG. 図3中D−D断面図を示す図である。It is a figure which shows DD sectional drawing in FIG. 図5中F部拡大図を示す図である。It is a figure which shows the F section enlarged view in FIG. 本発明に係る伝熱管内に配設された「絞り」と「衝突部材」の斜視図、および伝熱管上流段部に配設された「旋回翼」の斜視図である。FIG. 4 is a perspective view of a “throttle” and a “collision member” disposed in a heat transfer tube according to the present invention, and a perspective view of a “swirl blade” disposed in a heat transfer tube upstream stage. 本発明に係る排気処理装置の効果を示す図である。It is a figure which shows the effect of the exhaust-gas treatment apparatus which concerns on this invention.

符号の説明Explanation of symbols

1 ディーゼルエンジン
3 尿素水タンク
4 尿素水
5 フィルター
6 ポンプ
7 圧力調整弁
12,13,16 排気
14 分流排気
15 アンモニアガス
17 DPF
18 脱硝触媒
19 主流旋回翼
26 メイン噴射弁
27 サブ噴射弁
30 伝熱管旋回翼
40 分流通路入口
41 分流通路
42 伝熱管
43 ヒータ
44 上流加水分解触媒
45 整圧室
46 アンモニア噴出孔
48 伝熱管絞り
49 伝熱管衝突部材
51 加水分解触媒
60 突起部
61,63 平行部
62 穴
70 尿素添加装置
DESCRIPTION OF SYMBOLS 1 Diesel engine 3 Urea water tank 4 Urea water 5 Filter 6 Pump 7 Pressure control valve 12, 13, 16 Exhaust 14 Divided exhaust 15 Ammonia gas 17 DPF
18 DeNOx catalyst 19 Main flow swirl 26 Main injection valve 27 Sub injection valve 30 Heat transfer tube swirl 40 Split flow passage inlet 41 Split flow passage 42 Heat transfer tube 43 Heater 44 Upstream hydrolysis catalyst 45 Pressure regulation chamber 46 Ammonia injection hole 48 Heat transfer tube Restriction 49 Heat transfer tube impingement member 51 Hydrolysis catalyst 60 Projection parts 61, 63 Parallel part 62 Hole 70 Urea addition device

Claims (7)

排気中の窒素酸化物を還元するためのエンジン用排気処理装置であって、排気中に尿素水を噴射するための噴射弁と、前記噴射弁から噴射された尿素水を気化するためのヒータ付設の気化器とを有し、前記気化器は伝熱管外周部にヒータが配設されて構成され伝熱管内には尿素水と排気ガスが通過し前記気化器で気化した尿素水を煙道内に供給するエンジン用排気処理装置において、
前記伝熱管内に多孔板である衝突部材を配設したことを特徴とするエンジン用排気処理装置。
An exhaust treatment apparatus for an engine for reducing nitrogen oxides in exhaust, comprising an injection valve for injecting urea water into the exhaust, and a heater for vaporizing urea water injected from the injection valve The vaporizer has a heater disposed on the outer periphery of the heat transfer tube, and urea water and exhaust gas pass through the heat transfer tube, and the urea water vaporized by the vaporizer enters the flue. In the engine exhaust treatment device to be supplied,
An exhaust processing apparatus for an engine, wherein a collision member which is a perforated plate is disposed in the heat transfer tube.
請求項1に記載のエンジン用排気処理装置において、
前記伝熱管内に絞りを配設し、その下流側に前記衝突部材を配設したことを特徴とするエンジン用排気処理装置。
The engine exhaust treatment apparatus according to claim 1,
An exhaust processing apparatus for an engine, wherein a throttle is disposed in the heat transfer tube, and the collision member is disposed downstream thereof.
請求項2に記載のエンジン用排気処理装置において、
伝熱管上流端部に伝熱管内にて排気ガスを旋回させるための固定旋回翼を配設したことを特徴とするエンジン用排気処理装置。
The exhaust treatment apparatus for an engine according to claim 2,
An exhaust processing apparatus for an engine, characterized in that a fixed swirl vane for swirling exhaust gas in the heat transfer tube is disposed at an upstream end portion of the heat transfer tube.
請求項1乃至3のいずれか1項に記載のエンジン用排気処理装置において、
前記絞り及び前記衝突部材は、伝熱管内壁面と接触するごとく伝熱管軸流方向に所定長さを有する平行部を有し、前記平行部によって前記絞り又は前記衝突部材を伝熱管内に固定するとともに、伝熱管内壁面と前記絞り及び前記衝突部材に接触する接触面積を拡大したことを特徴とするエンジン用排気処理装置。
The engine exhaust treatment apparatus according to any one of claims 1 to 3,
The throttle and the collision member have a parallel portion having a predetermined length in the axial direction of the heat transfer tube as they contact the inner wall surface of the heat transfer tube, and the throttle or the collision member is fixed in the heat transfer tube by the parallel portion. In addition, an exhaust processing apparatus for an engine, wherein a contact area that contacts the inner wall surface of the heat transfer tube, the throttle, and the collision member is enlarged.
請求項1乃至4のいずれか1項に記載のエンジン用排気処理装置において、
気化器である伝熱管外周部に配設されたヒータ外周部に外筒を配設し、ヒータ外周部と外筒内壁面の間に空間である断熱層を形成するとともに、前記断熱層は伝熱管内部と伝熱管出口部で連通したことを特徴とするエンジン用排気処理装置。
The engine exhaust treatment apparatus according to any one of claims 1 to 4,
An outer cylinder is disposed on the outer periphery of the heater disposed on the outer periphery of the heat transfer tube, which is a vaporizer, and a heat insulating layer, which is a space, is formed between the outer periphery of the heater and the inner wall surface of the outer cylinder. An exhaust treatment apparatus for an engine, wherein the exhaust pipe communicates with the inside of the heat tube and the heat transfer tube outlet.
請求項1乃至5のいずれか1項に記載のエンジン用排気処理装置において、
前記衝突部材又は前記絞りの下流の前記伝熱管内又はその下流側に加水分解触媒を配設したことを特徴とするエンジン用排気処理装置。
The engine exhaust treatment apparatus according to any one of claims 1 to 5,
An exhaust treatment apparatus for an engine, wherein a hydrolysis catalyst is disposed in the heat transfer tube downstream of the impingement member or the throttle or on the downstream side thereof.
請求項1乃至6のいずれか1項に記載のエンジン用排気処理装置において、
前記ヒータにて前記気化器内壁面温度を前記気化器内で尿素水が膜沸騰する温度としたことを特徴とするエンジン用排気処理装置。
The engine exhaust treatment apparatus according to any one of claims 1 to 6,
An exhaust treatment apparatus for an engine, characterized in that the inner wall surface temperature of the carburetor is set to a temperature at which the urea water boils in the carburetor by the heater.
JP2007111147A 2007-04-20 2007-04-20 Exhaust treatment device for engine Pending JP2008267269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007111147A JP2008267269A (en) 2007-04-20 2007-04-20 Exhaust treatment device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007111147A JP2008267269A (en) 2007-04-20 2007-04-20 Exhaust treatment device for engine

Publications (1)

Publication Number Publication Date
JP2008267269A true JP2008267269A (en) 2008-11-06

Family

ID=40047079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007111147A Pending JP2008267269A (en) 2007-04-20 2007-04-20 Exhaust treatment device for engine

Country Status (1)

Country Link
JP (1) JP2008267269A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101211198B1 (en) * 2010-11-25 2012-12-11 한국항공우주산업 주식회사 System and method for cooling exhaust gas of helicopter
WO2013004634A3 (en) * 2011-07-01 2013-09-26 Alzchem Ag Ammonia gas generator for producing ammonia in order to reduce nitrogen oxides in exhaust gases
KR200474568Y1 (en) 2012-11-19 2014-09-26 두산엔진주식회사 Urea hydrolysis apparatus for selective catalytic reuction
JP2018076801A (en) * 2016-11-08 2018-05-17 いすゞ自動車株式会社 Exhaust emission control system for internal combustion engine
WO2020075478A1 (en) * 2018-10-09 2020-04-16 株式会社ジャパンエンジンコーポレーション Marine scr system
CN111527287A (en) * 2017-12-27 2020-08-11 五十铃自动车株式会社 Urea water injection device
CN115461131A (en) * 2021-04-01 2022-12-09 北京康肯环保设备有限公司 Treatment device for semiconductor manufacturing waste gas

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101211198B1 (en) * 2010-11-25 2012-12-11 한국항공우주산업 주식회사 System and method for cooling exhaust gas of helicopter
US9731976B2 (en) 2011-07-01 2017-08-15 Alzchem Ag Method for the production of ammonia from an ammonia precursor substance in order to reduce nitrogen oxides in exhaust gases
WO2013004634A3 (en) * 2011-07-01 2013-09-26 Alzchem Ag Ammonia gas generator for producing ammonia in order to reduce nitrogen oxides in exhaust gases
WO2013004629A3 (en) * 2011-07-01 2013-10-03 Alzchem Ag Ammonia gas generator and method for producing ammonia in order to reduce nitrogen oxides in exhaust gases
US9315391B2 (en) 2011-07-01 2016-04-19 Alzchem Ag Ammonia gas generator and method for producing ammonia in order to reduce nitrogen oxides in exhaust gases
US9371240B2 (en) 2011-07-01 2016-06-21 Alzchem Ag Ammonia gas generator for producing ammonia in order to reduce nitrogen oxides in exhaust gases
RU2598467C2 (en) * 2011-07-01 2016-09-27 Альцхем Аг Ammonia gas generator and method for producing ammonia in order to reduce nitrogen oxides in exhaust gases
RU2600051C2 (en) * 2011-07-01 2016-10-20 Альцхем Аг Generator of ammonia gas for ammonia production for reducing nitrogen oxides in exhaust gases
KR200474568Y1 (en) 2012-11-19 2014-09-26 두산엔진주식회사 Urea hydrolysis apparatus for selective catalytic reuction
JP2018076801A (en) * 2016-11-08 2018-05-17 いすゞ自動車株式会社 Exhaust emission control system for internal combustion engine
CN111527287A (en) * 2017-12-27 2020-08-11 五十铃自动车株式会社 Urea water injection device
US11143076B2 (en) * 2017-12-27 2021-10-12 Isuzu Motors Limited Urea water spraying device
WO2020075478A1 (en) * 2018-10-09 2020-04-16 株式会社ジャパンエンジンコーポレーション Marine scr system
CN115461131A (en) * 2021-04-01 2022-12-09 北京康肯环保设备有限公司 Treatment device for semiconductor manufacturing waste gas
CN115461131B (en) * 2021-04-01 2024-01-16 北京康肯环保设备有限公司 Treatment device for semiconductor manufacturing waste gas

Similar Documents

Publication Publication Date Title
US10024213B2 (en) Diesel exhaust fluid deposit mitigation
RU2528933C1 (en) Device to inject fluid into ice off-gases
JP3100191B2 (en) Flue gas denitration equipment
JP2008014213A (en) Exhaust gas processing device
JP2007032472A (en) Exhaust gas treatment device using urea water
RU2455504C1 (en) Device for treatment of exhaust gas of internal combustion engines
US7509799B2 (en) Engine exhaust gas treatment system and exhaust gas treatment process
US9737907B2 (en) Anti-deposit forming surface finish for exhaust system mixer
US8756921B2 (en) Reductant delivery device
JP2008267269A (en) Exhaust treatment device for engine
KR101369597B1 (en) Injection nozzle for supplying reducing agent, and device for treating exhaust gases
US20110131958A1 (en) System and method for mitigating potential for formation of urea deposits in an engine exhaust system during cold ambient conditions
US8631648B2 (en) Diesel turbine SCR catalyst
JP6082968B2 (en) Method of administering urea-based reducing agent to an exhaust gas stream
JP6167031B2 (en) Exhaust gas purification device
JP2011111927A (en) Exhaust emission control device of internal combustion engine
JP2005344597A (en) Exhaust gas treating device for engines
JP4430524B2 (en) Engine exhaust treatment device and treatment method
JP5937517B2 (en) Dosing module that administers urea-based reducing agent to the exhaust gas stream
JP2005127271A (en) Urea water vaporizer
TWI666380B (en) Temperature-based control of reagent distribution
JP2017048787A (en) Methods and systems related to selective catalytic reduction
JP2009062860A (en) Exhaust treatment device for engine
JPH0716431A (en) Flue gas denitrification apparatus
JP2018076801A (en) Exhaust emission control system for internal combustion engine