JP2008267074A - Core-integrated aseismatic structure - Google Patents

Core-integrated aseismatic structure Download PDF

Info

Publication number
JP2008267074A
JP2008267074A JP2007114531A JP2007114531A JP2008267074A JP 2008267074 A JP2008267074 A JP 2008267074A JP 2007114531 A JP2007114531 A JP 2007114531A JP 2007114531 A JP2007114531 A JP 2007114531A JP 2008267074 A JP2008267074 A JP 2008267074A
Authority
JP
Japan
Prior art keywords
seismic
plane
core
planes
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007114531A
Other languages
Japanese (ja)
Other versions
JP5324054B2 (en
Inventor
Hitoshi Goto
仁 後藤
Shozo Maeda
祥三 前田
Toshiyuki Onodera
利之 小野寺
Takako Niwa
貴子 丹羽
Norio Kita
典夫 北
Akihiro Kondo
明洋 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2007114531A priority Critical patent/JP5324054B2/en
Publication of JP2008267074A publication Critical patent/JP2008267074A/en
Application granted granted Critical
Publication of JP5324054B2 publication Critical patent/JP5324054B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Load-Bearing And Curtain Walls (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To secure a height dimension of an opening part, by enhancing a degree of freedom on a planar plan, by integrating aseismatic elements in two directions into a part in one plane, in a structure having a plane having a difference in a distance between the horizontal two directions (the long side and the short side). <P>SOLUTION: This aseismatic structure has a plane shape of combining a plurality of planes 1-3 different in a width and the length in a plurality of directions, and is formed by arranging the aseismatic elements 4-6 of a continuous layer in the respective planes 1-3. Among the plurality of planes, the respective aseismatic elements 4 and 5 in any of the two planes 1 and 2, are arranged for turning in the direction for crossing with the length direction at an interval in the length direction of the respective planes 1 and 2. A core A is constituted by integrating a partial aseismatic element 7 into a part on the plane in at least any one plane among one plane 1 and the other plane 2, by turning the respective aseismatic elements 4 and 5 in the two planes 1 and 2 in the mutually crossing direction. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は耐震壁等の連層の耐震要素がコアを構成するコア集約型耐震構造物に関するものである。   The present invention relates to a core-intensive seismic structure in which a multi-layer seismic element such as a seismic wall constitutes a core.

連層の耐震要素を有する構造物は2方向に分散して配置されるべき耐震要素をコアとして平面上の中心部等、一部に集約させることで、コア以外の領域での平面計画上の自由度が増す利点がある(特許文献1、2参照)。この場合、平面上の外周部には、コアと共に地震時の水平力を分担する多数の柱を配置することが必要になり、形式的にはコア壁を有するチューブ構造となることが多い。   A structure with multiple layers of seismic elements is aggregated in a part of the center such as the center on the plane with the seismic elements that should be distributed in two directions as a core. There is an advantage that the degree of freedom is increased (see Patent Documents 1 and 2). In this case, it is necessary to arrange a large number of pillars that share the horizontal force in the event of an earthquake together with the core on the outer periphery on the plane, and formally a tube structure having a core wall in many cases.

但し、2方向分の耐震要素を平面上の中心部に集約させた構造を採用できる構造物は水平2方向(長辺と短辺)の距離に極端な差がない平面を有する場合に限られ、水平2方向の距離に差がある場合には、長辺方向(桁行方向)の水平力に対する抵抗要素を付加することが不可欠になる(特許文献3参照)。この場合、長辺方向には柱・梁のフレームが耐震要素となる。   However, structures that can adopt a structure in which seismic elements for two directions are concentrated in the center of the plane are limited to those having a plane that does not have an extreme difference in distance between the two horizontal directions (long side and short side). When there is a difference in the distance in the two horizontal directions, it is indispensable to add a resistance element against the horizontal force in the long side direction (column direction) (see Patent Document 3). In this case, the pillar / beam frame is the seismic element in the long side direction.

柱を壁柱状に形成した上で、長辺方向(桁行方向)にも連層の耐震要素を配置すれば、水平2方向の耐震要素を集約させることは可能であるが(特許文献4参照)、長辺と短辺の差が大きくなれば、長辺方向を向く耐震要素の量も多くなるため、結局、長辺方向を向く耐震要素は長辺方向に分散せざるを得ず、構造形式は壁式構造になる。   It is possible to aggregate the seismic elements in the two horizontal directions if the multi-layer seismic elements are also arranged in the long side direction (column direction) after forming the columnar wall shape (see Patent Document 4). As the difference between the long side and the short side increases, the amount of seismic elements facing the long side also increases.As a result, the seismic elements facing the long side must be dispersed in the long side direction. Becomes a wall-type structure.

壁式構造は屋内への柱型と梁型の突出がなく、床の有効面積が拡大される利点がある。反面、図10−(a)に示すように短辺方向(スパン方向)を向く耐震要素(耐震壁)には長辺方向を向く耐震要素としての袖壁が接続するため、短辺方向を向く耐震要素によって区画される領域内の間取り割りの変更が利かない、床面積が削減される等、平面計画上の自由度が制限される不利益がある。   The wall-type structure has no pillar-type and beam-type protrusions indoors, and has the advantage of increasing the effective area of the floor. On the other hand, as shown in FIG. 10- (a), since the sleeve wall as the seismic element facing the long side is connected to the seismic element (seismic wall) facing the short side direction (span direction), it faces the short side direction. There are disadvantages in that the degree of freedom in plan planning is limited, such as a change in the floor plan within the area defined by the seismic elements, and a reduction in floor space.

壁式構造ではまた、スラブに腰壁と垂れ壁が接続し、壁梁が形成されるため、開口部の高さ寸法も制約され、開口部に収納されるサッシの寸法上の自由度も制限される。   The wall-type structure also connects the waist wall and the hanging wall to the slab and forms a wall beam, which restricts the height of the opening and limits the size of the sash that can be stored in the opening. Is done.

特開2003−328586号公報(請求項1、段落0010〜0012、図1〜図3)JP 2003-328586 A (Claim 1, paragraphs 0010 to 0012, FIGS. 1 to 3) 特開2006−45933号公報(請求項1、段落0024〜0029、図1、図2)JP 2006-45933 A (Claim 1, paragraphs 0024 to 0029, FIGS. 1 and 2) 特開2006−328797号公報(請求項1、段落0010〜0014、図1)JP 2006-328797 A (Claim 1, paragraphs 0010 to 0014, FIG. 1) 特許第2914187号公報(請求項1、請求項2、段落0018〜0025、0027〜0040、図1〜図24、図31〜図34)Japanese Patent No. 2914187 (Claim 1, Claim 2, paragraphs 0018-0025, 0027-0040, FIGS. 1-24, 31-34)

以上のように水平2方向(長辺と短辺)の距離に差がある平面を有する構造物では、一平面内の一部に2方向の耐震要素を集約させることが難しいため、平面計画上の自由度と開口部の高さ寸法が常に制約を受けることになる。   As described above, in a structure having a plane with a difference in distance between two horizontal directions (long side and short side), it is difficult to consolidate seismic elements in two directions in a part of one plane. The degree of freedom and the height of the opening are always limited.

本発明は上記背景より、短辺方向を向く耐震要素に長辺方向を向く耐震要素を接続する必要のないコア集約型耐震構造物を提案するものである。   In view of the above background, the present invention proposes a core-intensive seismic structure that does not require a seismic element facing the long side to be connected to the seismic element facing the short side.

請求項1に記載の発明のコア集約型耐震構造物は、幅と長さが相違する複数の平面を複数の方向に組み合わせた平面形を有し、前記各平面内に連層の耐震要素が配置された耐震構造物であり、
前記複数の平面の内、いずれか二つの平面における各耐震要素が各平面の長さ方向に間隔を置き、長さ方向に交差する方向を向いて配列し、
前記二つの平面における各耐震要素が互いに交差する方向を向き、
前記一方の平面と前記他方の平面の内、少なくともいずれか一方の平面における一部の耐震要素が平面上の一部に集約され、コアを構成していることを構成要件とする。
The core-intensive seismic structure according to the first aspect of the present invention has a planar shape in which a plurality of planes having different widths and lengths are combined in a plurality of directions, and a multi-layer seismic element is provided in each plane. It is a seismic structure that is arranged,
Among the plurality of planes, the seismic elements in any two planes are spaced in the length direction of each plane, and arranged in a direction crossing the length direction,
Facing the direction in which the seismic elements in the two planes intersect each other,
Among the one plane and the other plane, a part of the seismic elements in at least one of the planes is aggregated into a part on the plane to constitute a core.

幅と長さが相違する平面とは、例えば長辺と短辺を有する長方形、平行四辺形、台形等の形状を言うが、不整形もあるため、必ずしも全長に亘って一定の幅を有する形状であるとは限らない。幅と長さが相違する複数の平面を複数の方向に組み合わせた平面形とは、二つ以上の平面の中心線が互いに交差する方向に二つ以上の平面を組み合わせた形を言い、各平面の中心線は任意の角度で交差し、直交する場合を含む。平面が平行四辺形の場合で言えば、長辺(底辺)の方向が長さ方向、高さの方向が幅方向になるが、各平面において耐震要素が配列する「長さ方向に交差する方向」はこの幅方向と四辺形の短辺方向を含む。   A plane having a different width and length refers to, for example, a rectangle having a long side and a short side, a parallelogram, a trapezoid, and the like, but because of irregularities, a shape having a constant width over the entire length. Not necessarily. A plane shape in which a plurality of planes having different widths and lengths are combined in a plurality of directions refers to a shape in which two or more planes are combined in a direction in which the center lines of two or more planes intersect each other. This includes the case where the center line intersects at an arbitrary angle and is orthogonal. If the plane is a parallelogram, the direction of the long side (bottom side) is the length direction and the direction of the height is the width direction, but the seismic elements are arranged in each plane. "Includes this width direction and the short side direction of the quadrilateral.

構造物の平面形が複数の平面を組み合わせた形をすることから、平面が複数層(階)に亘る場合、構造物は最下層の平面を、その平面形状のまま複数層重ねた立体形状、または最下層の平面形状を次第に縮小させながら複数層重ねた立体形状になる。   Since the planar shape of the structure is a combination of multiple planes, when the plane spans multiple layers (floors), the structure is a three-dimensional shape in which the lowermost plane is stacked in multiple layers with the planar shape, Alternatively, a three-dimensional shape in which a plurality of layers are stacked while gradually reducing the planar shape of the lowermost layer.

耐震要素が各平面の長さ方向に間隔を置き、長さ方向に交差する方向を向いて配列するとは、構造物の平面形を構成する一平面が例えば長辺方向(桁行方向)と短辺方向(スパン方向)を有する長方形である場合に、耐震要素が長辺方向に間隔を置き、短辺方向に配列することを言う。但し、平面は不整形もあるため、耐震要素の配列方向は必ずしも平面の短辺方向である必要はなく、短辺方向に傾斜した方向も含まれる。   The seismic elements are arranged in the direction of the length of each plane and facing in the direction intersecting the length direction. For example, one plane constituting the planar shape of the structure is the long side direction (column direction) and the short side. In the case of a rectangle having a direction (span direction), it means that the seismic elements are arranged in the short side direction at intervals in the long side direction. However, since the plane is irregular, the arrangement direction of the seismic elements is not necessarily the short side direction of the plane, and includes a direction inclined in the short side direction.

二つの平面における各耐震要素が互いに交差する方向を向くとは、二つの平面の中心線が交差する方向に関係なく、それぞれの耐震要素が互いに交差する方向を向くことを言い、直交する場合を含む。   The direction in which each seismic element in two planes intersects each other means that each seismic element faces in the direction intersecting each other regardless of the direction in which the center lines of the two planes intersect. Including.

耐震要素は水平2方向に均等に分散して配置されることが望ましいことから、いずれか二つの平面における各耐震要素は互いに直交することが合理的であるが、2方向の耐震要素が交差すれば、組み合わせにより直交する場合と同等の抵抗力を発揮できるため、必ずしも直交する必要はない。   Since it is desirable that the seismic elements are equally distributed in two horizontal directions, it is reasonable that the seismic elements in any two planes are orthogonal to each other, but the seismic elements in the two directions cross each other. For example, it is not always necessary to be orthogonal because it can exhibit the same resistance as when orthogonal.

一方の平面と他方の平面の内、少なくともいずれか一方の平面における一部の耐震要素が平面上の一部に集約されるとは、少なくともいずれか一方の平面内に配置されるべき一部の耐震要素が、間隔を置いて配列する耐震要素の位置とは異なる位置に集約して配置されることを言う。この一部の耐震要素は平面上の一部に集約されることで、コアを構成する。コアはいずれかの平面内に配置され、各平面内に配置されることもある。コアの平面形状は問われない。   A part of the seismic elements in at least one of the two planes and the other plane is aggregated into a part on the plane. This means that the seismic elements are collectively arranged at a position different from the positions of the seismic elements arranged at intervals. This part of the seismic elements is integrated into a part on a plane to constitute the core. The core is arranged in any plane and may be arranged in each plane. The planar shape of the core is not limited.

いずれか二つの各平面において各平面の長さ方向に間隔を置き、長さ方向に交差する方向を向いて配列した各耐震要素が互いに交差する方向を向くことで、一方の平面の長辺方向(桁行方向)に作用する、または卓越する水平力に対しては、他方の平面内の耐震要素が抵抗する。同様に他方の平面の長辺方向(桁行方向)に作用する、または卓越する水平力に対しては、一方の平面内の耐震要素が抵抗する。各平面内の耐震要素はそれぞれの平面の短辺方向(スパン方向)に作用する、または卓越する水平力に対して抵抗する。   Longitudinal direction of one plane by facing each other in the direction of the crossing of the seismic elements arranged in the length direction of each plane in each of the two planes and facing the direction crossing the length direction Seismic elements in the other plane resist resistance to horizontal forces acting in the direction of the beam (crossing). Similarly, the seismic element in one plane resists a horizontal force acting in the long side direction (column direction) of the other plane or superior. The seismic elements in each plane act in the short side direction (span direction) of the respective plane or resist an excellent horizontal force.

このように二つの平面が対になることで、いずれか一方の平面の耐震要素が互いに他方の平面の耐震性を補う関係が成立するため、各平面内の耐震要素に、それに直交等、交差する方向の袖壁等の耐震要素を接続する必要がなくなる。   As the two planes are paired in this way, a relationship is established in which the seismic elements on one plane supplement each other's seismic resistance on the other plane. It is no longer necessary to connect seismic elements such as sleeve walls in the direction of the direction.

コアを構成する一部の耐震要素は二つの平面内に間隔を置いて配列する各耐震要素の和では負担しきれない分の水平力を負担するが、各耐震要素の和が十分に水平力を負担できる場合には、コアを構成する一部の耐震要素分、構造物は余力を持つことになる。   Some seismic elements that make up the core bear a horizontal force that cannot be borne by the sum of the seismic elements arranged at intervals in two planes, but the sum of the seismic elements is sufficiently horizontal. If it is possible to bear the burden, the structure of the part of the seismic elements constituting the core has a surplus capacity.

従って一方の平面内における耐震要素がその平面の短辺方向(スパン方向)に作用する水平力に対する抵抗力を有し、他方の平面の長辺方向(桁行方向)に作用する水平力に対する抵抗力を有すれば、構造物は二つの平面内に配置される耐震要素のみによって水平2方向の耐震性を保有することになる。   Therefore, the seismic element in one plane has resistance to horizontal force acting in the short side direction (span direction) of the plane, and resistance to horizontal force acting in the long side direction (digit direction) of the other plane. If it has, the structure will possess the earthquake resistance of two horizontal directions only by the earthquake-resistant element arrange | positioned in two planes.

耐震要素は1方向を向く耐震壁やブレース等によって構成され、前記のように耐震要素(耐震壁)の端部にその方向に直交する方向の耐震要素(袖壁)を接続する必要がないため、いずれの平面内においても、短辺方向(スパン方向)を向く耐震要素とスラブのみによって耐震構造物が成立することになる。   The seismic element is composed of a seismic wall or brace facing in one direction, and it is not necessary to connect the seismic element (sleeve wall) in the direction perpendicular to the direction to the end of the seismic element (seismic wall) as described above. In any plane, the seismic structure is formed only by the seismic elements and slabs facing the short side direction (span direction).

この結果、スラブ上の空間は短辺方向(スパン方向)を向く耐震要素のみによって区画され、その区画内に耐震要素が突出することがないため、区画内においては間取り割りの変更が自由になり、平面計画上の自由度が格段に向上する。またスラブには腰壁と垂れ壁を接続する必要もないため、開口部の高さ寸法上の制約も解消され、開口部に収納されるサッシの寸法上の自由度も向上する。   As a result, the space on the slab is partitioned by only the seismic elements facing the short side direction (span direction), and the seismic elements do not protrude into the section, so the layout can be changed freely within the section. The degree of freedom in plan planning will be greatly improved. Further, since it is not necessary to connect the waist wall and the hanging wall to the slab, the restriction on the height of the opening is eliminated, and the degree of freedom in the dimension of the sash accommodated in the opening is improved.

コアを構成する一部の耐震要素は平面上の一箇所に集約される他、複数箇所に集約される。複数のコアに集約される場合には、各コアが独立して水平力に抵抗することによる変形量を抑制するために、請求項2に記載のように複数のコアの脚部間に境界梁が架設される。または請求項3に記載のように複数のコアの頂部間に頂部梁が架設される。   Some seismic elements constituting the core are aggregated at one place on the plane and at a plurality of places. In order to suppress deformation due to each core independently resisting horizontal force when being concentrated in a plurality of cores, a boundary beam is provided between legs of the plurality of cores as claimed in claim 2. Is built. Alternatively, a top beam is provided between the tops of the plurality of cores as described in claim 3.

これらの場合、コアが水平力を受けて曲げ変形しようとするときに、境界梁や頂部梁がコアに曲げ戻しモーメントを作用させ、コアの変形を拘束するように働くため、コアの剛性と耐力、並びに構造物の剛性と耐力が向上する。   In these cases, when the core is subjected to a bending force due to a horizontal force, the boundary beam or the top beam acts to restrain the deformation of the core by acting a bending back moment on the core, so that the rigidity and strength of the core In addition, the rigidity and proof stress of the structure are improved.

構造物が集合住宅の場合、高層化するに従い、いずれかの平面上の上層階が高さ制限や斜線制限を受けることがあり、その場合、その平面を含む構造体(棟)は図10−(b)に示すようにセットバックした立体形状になることがある。セットバックした構造体の平面積は上層階になる程、小さくなることから、その平面内に配置される耐震要素の数(枚数)は上層階程、少なくなる。   If the structure is an apartment house, the upper floor on any plane may be subject to height restrictions or diagonal restrictions as it rises. In that case, the structure (building) that includes the plane is shown in Figure 10- As shown in (b), it may become a three-dimensional shape set back. Since the plane area of the set-back structure becomes smaller as it becomes higher, the number (number) of earthquake-resistant elements arranged in the plane becomes smaller as the upper floor.

従って通常であれば、各層(階)の平面内に床面積に応じた一定量の耐震要素を配置する必要から、上層階程、耐震要素の厚さを大きくせざるを得なくなることがある。その場合、セットバックした構造体の剛心が構造体の前面側(階数の少ない側)へ寄り、構造体の背面側(階数の多い側)に位置する重心との偏心量が大きくなる。偏心量の増大は構造体への捩じれを招き易くし、構造体を振れ易くする。この偏心に対処する必要から、階数が多くなる構面程、耐震要素の厚さ(壁厚)を大きくせざるを得ない。   Therefore, normally, since it is necessary to arrange a certain amount of seismic elements according to the floor area in the plane of each layer (floor), the upper floors and the thickness of the seismic elements may have to be increased. In that case, the stiffness of the set-back structure moves toward the front side of the structure (the side with less floors), and the amount of eccentricity with the center of gravity located on the back side (the side with more floors) of the structure increases. Increasing the amount of eccentricity tends to cause twisting of the structure, and the structure can be easily shaken. Since it is necessary to deal with this eccentricity, the construction surface with a larger number of floors and the thickness of the earthquake-resistant element (wall thickness) must be increased.

これに対し、請求項1では一部の耐震要素が平面上の一部に集約され、コアを構成することで、前記のようにいずれかの平面の耐震要素が他方の平面の耐震性を補う関係が成立するため、セットバックに伴う捩じれを低減することが可能になっている。その結果として請求項4に記載のように一方の平面の耐震要素と他方の平面の耐震要素の内、少なくとも一方の厚さを一定にすることが可能になる。   On the other hand, in claim 1, a part of the seismic elements is concentrated on a part of the plane, and a core is formed, so that the seismic element of one plane supplements the seismic resistance of the other plane as described above. Since the relationship is established, it is possible to reduce the twist associated with the setback. As a result, as described in claim 4, it is possible to make the thickness of at least one of the earthquake-resistant element of one plane and the earthquake-resistant element of the other plane constant.

請求項4では構造体のセットバックに拘らず、各層(階)の平面内の耐震要素の厚さが一定であることで、剛心を構造体の背面側へ接近させることができるため、重心との偏心量を抑え、構造体の捩じりを低減することが可能になる。また耐震要素の厚さが一定であることで、耐震要素が耐震壁の場合に、全耐震壁を一定厚さのプレキャストコンクリートで製作できる利点もある。   In claim 4, since the thickness of the seismic element in the plane of each layer (floor) is constant regardless of the setback of the structure, the rigid center can be brought closer to the back side of the structure. It is possible to reduce the amount of eccentricity and torsion of the structure. In addition, since the thickness of the seismic element is constant, there is an advantage that when the seismic element is a seismic wall, the entire seismic wall can be made of precast concrete having a constant thickness.

構造物は2方向を向く耐震要素を有することで、耐震構造物として構築されるが、上部構造(構造体)と基礎等の下部構造との間、もしくは上部構造の中間層に免震装置を介在させることもできる。その場合、上部構造(構造体)が免震構造化することで、耐震要素の負担が軽減されるため、全耐震要素の量、またはコアを構成する耐震要素の量を低減することが可能である。   The structure is constructed as a seismic structure by having seismic elements facing in two directions, but the seismic isolation device is installed between the upper structure (structure) and the lower structure such as the foundation, or in the middle layer of the upper structure. It can also be interposed. In that case, since the superstructure (structure) is seismically isolated, the burden on seismic elements is reduced, so it is possible to reduce the total amount of seismic elements or the amount of seismic elements that constitute the core. is there.

この場合、免震装置には積層ゴム支承、弾性滑り支承その他の振動絶縁装置が使用されるが、免震装置の主材料がゴムである場合には、免震装置が軸方向の引張力を受けたときに、免震装置の機能が損なわれる可能性がある。   In this case, laminated rubber bearings, elastic sliding bearings, and other vibration isolation devices are used for the seismic isolation device. However, if the main material of the seismic isolation device is rubber, the seismic isolation device has an axial tensile force. When received, the functions of the seismic isolation device may be impaired.

そこで、前記一方、もしくは他方の平面を含む構造体の一部の層に免震装置が設置された場合に、請求項5に記載のようにこの免震装置に支持される上部構造の最下部に、前記免震装置への許容値を超える軸方向引張力の作用を抑制する極厚スラブが構築されれば、免震装置への軸方向引張力の作用を抑止することが可能であり、免震装置の機能の低下を回避することが可能になる。この場合、構造体は免震装置の設置層を挟んで上部構造と下部構造に区分される。   Then, when the seismic isolation device is installed in a part of the layer including the one or the other plane, the lowermost part of the upper structure supported by the seismic isolation device as described in claim 5 In addition, if a very thick slab that suppresses the action of the axial tensile force exceeding the allowable value on the seismic isolation device is constructed, it is possible to suppress the action of the axial tensile force on the seismic isolation device, It becomes possible to avoid a decrease in the function of the seismic isolation device. In this case, the structure is divided into an upper structure and a lower structure with an installation layer of the seismic isolation device interposed therebetween.

免震装置には水平力による構造体の浮き上がり時の他、鉛直方向の振動時に軸方向引張力が作用し得るが、請求項5における「許容値を超える軸方向引張力の作用を抑制する」とは、ある程度、例えば1N/mm程度以下ならば、引張力の作用が許容される場合に、その許容応力度を超える軸方向引張力の作用を抑制することを言う。 The seismic isolation device may be subjected to an axial tensile force during vertical vibration in addition to when the structure is lifted by a horizontal force, but in claim 5, “suppresses an axial tensile force exceeding an allowable value”. "To a certain extent, for example, about 1 N / mm 2 or less" means to suppress the action of the axial tensile force exceeding the allowable stress when the action of the tensile force is allowed.

請求項5では上部構造の最下部に極厚スラブが構築されることで、構造体に作用する転倒モーメントにより構造体が浮き上がりを生じようとするときに、極厚スラブが自身の質量により浮き上がりを阻止する働きをするため、免震装置には一定値以下の引張力、または圧縮力が作用する状態が得られる。極厚スラブはまた、構造体の上部構造の一部になることで、上部構造の剛性を高める機能も発揮するため、境界梁や頂部梁の機能を補うことが可能である。   In claim 5, when an extremely thick slab is constructed at the lowermost part of the upper structure, the extremely thick slab is lifted by its own mass when the structure is about to be lifted by a falling moment acting on the structure. In order to prevent the seismic isolation device, a state where a tensile force or a compressive force below a certain value is applied to the seismic isolation device is obtained. Since the extra-thick slab also becomes a part of the superstructure of the structure, it also functions to increase the rigidity of the superstructure, so that the functions of the boundary beam and the top beam can be supplemented.

二つの平面において各平面の長さ方向に間隔を置き、長さ方向に交差する方向を向いて配列した各耐震要素が互いに交差する方向を向くことで、一方の平面の長辺方向(桁行方向)、及び他方の平面の長辺方向(桁行方向)に作用する水平力に対し、互いの平面の耐震要素を抵抗させることができる。   Two planes are spaced in the length direction of each plane, and the seismic elements arranged in the direction crossing the length direction cross each other, so that the long side direction of one plane (column direction) ) And a horizontal force acting in the long side direction of the other plane (the direction of the spar), the seismic elements on the planes of each other can be made to resist each other.

二つの平面が対になることで、一方の平面の耐震要素が他方の平面の耐震性を補う関係が成立するため、各平面内にコア以外の耐震要素を2方向に向けて配置する必要がなく、いずれの平面内においても、短辺方向(スパン方向)を向く耐震要素とスラブのみによって耐震構造を成立させることができる。   Because the two planes are paired, the relationship that the seismic element on one plane supplements the seismic resistance on the other plane is established, so it is necessary to place seismic elements other than the core in each plane in two directions. In any plane, the seismic structure can be established only by the seismic elements and slabs facing the short side direction (span direction).

この結果、スラブ上の空間は短辺方向(スパン方向)を向く耐震要素のみによって区画され、その区画内に耐震要素が突出することがないため、区画内においては間取り割りの変更が自由になり、平面計画上の自由度が向上する。スラブには腰壁と垂れ壁を接続する必要もないため、開口部の高さ寸法上の制約も解消される。   As a result, the space on the slab is partitioned by only the seismic elements facing the short side direction (span direction), and the seismic elements do not protrude into the section, so the layout can be changed freely within the section. The degree of freedom in plan planning is improved. Since there is no need to connect the waist wall and the hanging wall to the slab, the restriction on the height of the opening is also eliminated.

以下、図面を用いて本発明を実施するための最良の形態を説明する。   Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.

図1−(a)は幅と長さが相違する複数の平面1、2を複数の方向に組み合わせた平面形を有し、各平面1、2内に連層の耐震要素4、5が配置された耐震構造物において、一部の耐震要素7が平面上の一部に集約され、コア7Aを構成しているコア集約型耐震構造物(以下、構造物)の概要例を示す。   1- (a) has a planar shape in which a plurality of planes 1 and 2 having different widths and lengths are combined in a plurality of directions, and multiple seismic elements 4 and 5 are arranged in the planes 1 and 2, respectively. An outline example of a core-intensive seismic structure (hereinafter referred to as a structure) in which a part of the seismic elements 7 is aggregated into a part on a plane and constitutes a core 7A will be shown.

図1−(a)は二つの平面1、2の中心線が互いに直交する方向を向いて組み合わせられた平面形を有する構造物の平面図を示すが、図2、図3に示すように二つの平面1、2の組み合わせ角度は任意である。ここで言う平面1、2は構造物内におけるスラブ8に相当する。   FIG. 1- (a) shows a plan view of a structure having a planar shape in which the center lines of the two planes 1 and 2 are oriented in directions orthogonal to each other. As shown in FIGS. The combination angle of the two planes 1 and 2 is arbitrary. The planes 1 and 2 referred to here correspond to the slab 8 in the structure.

前記複数の平面(スラブ8)1、2の内、いずれか二つの平面1、2における各耐震要素4、5は各平面1、2の長さ方向に間隔を置き、長さ方向に直交する方向等、交差する方向を向いて配列する。この二つの平面1、2における各耐震要素4、5は互いに直交等、交差する方向を向く。この一方の平面1と他方の平面2の内、少なくともいずれか一方の平面における一部の耐震要素7が平面上の一部に集約され、コア7Aを構成する。   Among the plurality of planes (slabs 8) 1 and 2, the seismic elements 4 and 5 on any two planes 1 and 2 are spaced in the length direction of the planes 1 and 2 and orthogonal to the length direction. Arranged in the crossing direction such as the direction. The seismic elements 4 and 5 on the two planes 1 and 2 face each other in a crossing direction such as orthogonal to each other. Among the one plane 1 and the other plane 2, a part of the seismic elements 7 in at least one of the planes is collected into a part on the plane to constitute the core 7 </ b> A.

平面1と平面2はそれぞれ複数層、重なることで、構造体(棟)1Aと構造体(棟)2Aを構成する。耐震要素4と耐震要素5はそれぞれ構造体1Aと構造体2Aの最下層の平面(スラブ8)1、2から立ち上がり、最上層の平面(スラブ8)1、2まで連続し、各層の平面(スラブ8)1、2に接続する。耐震要素4、5は耐震壁やブレース等から構成される。最下層の平面(スラブ8)1、2の少なくとも一部は後述の極厚スラブ12であることもある。   The plane 1 and the plane 2 are overlapped by a plurality of layers, so that a structure (building) 1A and a structure (building) 2A are formed. The seismic element 4 and the seismic element 5 rise from the lowermost planes (slabs 8) 1 and 2 of the structures 1A and 2A and continue to the uppermost planes (slabs 8) 1 and 2, respectively. Slab 8) Connect to 1 and 2. The seismic elements 4 and 5 are composed of seismic walls and braces. At least a part of the lowermost planes (slabs 8) 1 and 2 may be a thick slab 12 described later.

図1−(a)の平面形と同一の平面形を有する従来の壁式構造の例を図10−(a)に示す。ここに示すように従来構造の各平面内に、その短辺方向を向いて配置される耐震要素の両端には、平面の長辺方向の耐震要素として機能する袖壁が耐震要素に直交する方向に接続する。この袖壁は短辺方向を向く耐震要素の長さ方向中間部に接続することもあるため、隣接する耐震要素で区画される領域内での間取り割りの自由な変更を阻害する要因になる。図10−(a)に示す耐震要素(耐震壁)の詳細例を図7−(b)に示す。   An example of a conventional wall-type structure having the same planar shape as that of FIG. 1- (a) is shown in FIG. 10- (a). As shown here, the sleeve walls that function as seismic elements in the long-side direction of the plane are perpendicular to the seismic elements at the ends of the seismic elements that are placed in the plane of the conventional structure and facing the short-side direction. Connect to. Since this sleeve wall may be connected to the middle part in the longitudinal direction of the seismic element facing in the short side direction, it becomes a factor that obstructs the free change of the layout in the area defined by the adjacent seismic elements. A detailed example of the seismic element (seismic wall) shown in FIG. 10- (a) is shown in FIG. 7- (b).

これに対し、図1−(a)に示す例ではY方向を向く平面2内に配置される耐震要素5、5間の領域に、耐震要素5に直交する耐震要素が接続しないため、この領域内での間取り割りの変更を自由に行うことが可能になっている。図1−(a)ではX方向を向く平面1内に複数のコア7A、7Bを配置している関係から、この平面1内に配置された耐震要素4、4間の領域での間取り割りの変更はコア7A、7Bに制約されるが、コア7A、7Bが単数であれば、変更の自由度は増大する。   On the other hand, in the example shown in FIG. 1- (a), the seismic element perpendicular to the seismic element 5 is not connected to the area between the seismic elements 5 and 5 arranged in the plane 2 facing the Y direction. It is possible to change the floor plan freely. In FIG. 1- (a), since a plurality of cores 7A and 7B are arranged in the plane 1 facing the X direction, the floor plan in the region between the seismic elements 4 and 4 arranged in the plane 1 is shown. Although the change is restricted to the cores 7A and 7B, if the number of the cores 7A and 7B is singular, the degree of freedom of change increases.

図1−(a)に示す耐震要素(耐震壁)4(5)の詳細例を図7−(a)に示す。また耐震要素4(5)の長さ方向の端部は他の部分と同一厚さの柱、もしくは袖壁を内蔵した構造になっている。この内蔵柱41の内部には主筋41aが配筋され、この主筋41aの周りには主筋41aを包囲する主筋拘束筋41bが配筋されており、内蔵柱41の部分は柱としての機能を備えている。   A detailed example of the seismic element (seismic wall) 4 (5) shown in FIG. 1- (a) is shown in FIG. 7- (a). Further, the end of the seismic element 4 (5) in the length direction has a structure in which a column or a sleeve wall having the same thickness as that of the other part is built. The main bar 41a is arranged inside the built-in column 41, and the main bar restraining bar 41b surrounding the main bar 41a is arranged around the main bar 41a. The built-in column 41 has a function as a column. ing.

このように本発明では例えば、コア7A、7B以外の耐震要素4(5)がその本体部分と同一厚さの内蔵柱41を両端に有することで、耐震要素4(5)に直交する方向の袖壁を接続する必要がなく、耐震要素4(5)の平面形状が完全な直線状でよい構造になっている。但し、内蔵柱41を含む耐震要素4(5)は一例であるから、内蔵柱41を含むことと同等の構造であれば、必ずしも内蔵柱41を有する必要はない。   Thus, in the present invention, for example, the seismic elements 4 (5) other than the cores 7A and 7B have the built-in columns 41 having the same thickness as the main body portions at both ends, so that the seismic elements 4 (5) are orthogonal to each other. There is no need to connect the sleeve walls, and the planar shape of the seismic element 4 (5) may be a perfect straight line. However, since the earthquake-resistant element 4 (5) including the built-in column 41 is an example, if the structure is equivalent to including the built-in column 41, the built-in column 41 is not necessarily required.

図2、図3は構造物の具体例として三つの平面1〜3を3方向に組み合わせた平面形を有する14階建ての集合住宅の平面図を示す。図2は2階(基準階)の平面を、図3は10階及び11階の平面を示す。図2、図3中、平面1はX方向を向き、平面2はY方向に対して平面1寄りに傾斜した方向を向いている。図2、図3では三つの平面1〜3から構造物を構成しているが、耐震構造物としては平面1と平面2の二つの平面によっても成立する。図2、図3の例では平面3内に配置された耐震要素6がX方向とY方向のいずれにも交差しているため、この耐震要素6はX方向とY方向の2方向の水平力に対して抵抗でき、平面1、2に対する耐震要素としての機能を発揮する。   2 and 3 are plan views of a 14-story apartment house having a plane shape in which three planes 1 to 3 are combined in three directions as specific examples of the structure. FIG. 2 shows the plane of the second floor (reference floor), and FIG. 3 shows the planes of the tenth and eleventh floors. 2 and 3, the plane 1 faces the X direction, and the plane 2 faces the direction inclined toward the plane 1 with respect to the Y direction. 2 and 3, the structure is constituted by three planes 1 to 3, but the earthquake-resistant structure is also formed by two planes of plane 1 and plane 2. 2 and 3, since the seismic element 6 arranged in the plane 3 intersects both the X direction and the Y direction, the seismic element 6 has two horizontal forces in the X direction and the Y direction. Can function as an earthquake-resistant element for planes 1 and 2.

この構造物の外観を図6に示すが、平面2を含む構造体(棟)2Aはその先端側から、平面1を含む構造体1Aとの接続側へかけてセットバックした外観をし、図2、図3から分かるように低層から上層へかけて平面2の長さが短くなっている。   The appearance of this structure is shown in FIG. 6, and the structure (building) 2A including the plane 2 is set back from the tip side to the connection side with the structure 1A including the plane 1, 2. As can be seen from FIG. 3, the length of the plane 2 is shortened from the lower layer to the upper layer.

図2中、平面1内の耐震要素4は平面1の短辺方向(スパン方向)を向き、長辺方向(桁行方向)に間隔を置いて配列する。エレベータシャフトを通る耐震要素4はエレベータシャフトの位置で分断され、エレベータホールと階段室を区画している。基本的に耐震要素4の両端、すなわち平面1の短辺方向の端部にはそれに直交等、交差する方向の耐震要素は接続しない。   In FIG. 2, the seismic elements 4 in the plane 1 face in the short side direction (span direction) of the plane 1 and are arranged at intervals in the long side direction (column direction). The seismic element 4 passing through the elevator shaft is divided at the position of the elevator shaft, and divides the elevator hall and the staircase. Basically, the seismic elements in the intersecting direction such as orthogonal to the both ends of the seismic element 4, that is, the end in the short side direction of the plane 1 are not connected.

図2において耐震要素4が分断されるエレベータシャフトの周りには耐震要素7からなるコア7Bが配置されている。コア7Bはこの他、平面1内の、平面2寄りのエレベータシャフト周りにも配置されている。コア7Bは四角形以外の形状をすることもあるが、四角形状をする場合には、例えば耐震要素4に平行な耐震要素71とそれに直交等、交差する方向の耐震要素72から構成される。図2、図3では平面1と平面2の双方に交差しながら連続する平面3内にもコア7Bを配置している。   In FIG. 2, a core 7 </ b> B made of the seismic element 7 is arranged around the elevator shaft where the seismic element 4 is divided. In addition, the core 7B is also arranged around the elevator shaft in the plane 1 and near the plane 2. The core 7B may have a shape other than a quadrangle, but in the case of a quadrangle, for example, the core 7B is composed of a seismic element 71 parallel to the seismic element 4 and a seismic element 72 in a direction orthogonal thereto. In FIGS. 2 and 3, the core 7 </ b> B is also disposed in the continuous plane 3 while intersecting both the plane 1 and the plane 2.

図2、図3に示すようにコア7Bが平面1内に複数、配置される場合、図1−(b)に示すように平面1の長辺方向に隣接するコア7B、7Bの脚部間にはコア7Bの変形を拘束する境界梁9が架設されることもある。コア7B、7Bの頂部間には頂部梁10が架設されることもある。図2、図3中、破線で示すように境界梁9は平面1中の平面2寄りのエレベータシャフト周りにおいて、耐震要素4を挟んで隣接するコア7B、7Bの耐震要素72、72間に架設されている。   When a plurality of cores 7B are arranged in the plane 1 as shown in FIGS. 2 and 3, between the legs of the cores 7B and 7B adjacent in the long side direction of the plane 1 as shown in FIG. In some cases, a boundary beam 9 that constrains deformation of the core 7B is installed. A top beam 10 may be installed between the tops of the cores 7B and 7B. 2 and 3, the boundary beam 9 is installed between the earthquake-resistant elements 72 and 72 of the adjacent cores 7B and 7B with the earthquake-resistant element 4 interposed therebetween around the elevator shaft near the plane 2 in the plane 1. Has been.

図2、図3において平面2寄りで隣接するコア7A、7A間の境界梁9はその他のコア7Bまで延長させられ、図8−(a)に示すように基礎梁13として全コア7A、7Bをつなぐように架設されることもある。図8−(a)に示す基礎梁13は上部構造(構造体1A、2A)に一体化する。破線円で示す免震装置11を挟んだ基礎梁13の下方には図5に示すようにこの基礎梁13と対になる、下部構造の基礎梁14が構築される。図8−(b)は(a)の立面図である。免震装置11は基礎梁13と基礎梁14に接合される。   2 and 3, the boundary beam 9 between the adjacent cores 7A and 7A near the plane 2 is extended to the other core 7B, and as shown in FIG. 8A, all the cores 7A and 7B are formed as the base beam 13. It may be erected to connect. The foundation beam 13 shown in FIG. 8A is integrated with the upper structure (structures 1A and 2A). Below the foundation beam 13 sandwiching the seismic isolation device 11 indicated by a broken-line circle, a foundation beam 14 having a lower structure that is paired with the foundation beam 13 is constructed as shown in FIG. FIG. 8- (b) is an elevation view of (a). The seismic isolation device 11 is joined to the foundation beam 13 and the foundation beam 14.

図8−(a)に示すように構造体1A、2Aの下に平面1、2の長さ方向に連続する基礎梁13を構築した場合、構造体1A、2Aは(b)に示すように基礎梁13とそれに連続して立ち上がる耐震要素4、5、及びコア7Bと、各層において耐震要素4、5、及びコア7Bをつなぐスラブ8から構成され、剛性の高い架構として構築される。図8中、太い実線は構造体1A自体が巨大な骨格(フレーム)を形成している様子を示す。   When the foundation beam 13 that is continuous in the length direction of the planes 1 and 2 is constructed under the structures 1A and 2A as shown in FIG. 8A, the structures 1A and 2A are as shown in FIG. It is composed of a foundation beam 13, seismic elements 4 and 5 and a core 7B rising continuously, and a slab 8 connecting the seismic elements 4 and 5 and the core 7B in each layer, and is constructed as a highly rigid frame. In FIG. 8, a thick solid line indicates that the structure 1A itself forms a huge skeleton (frame).

この剛性の高い架構全体(構造体1A、2A)は地震時には剛体として挙動し易くなるため、図8では特に短辺方向の転倒に対する安定性を確保している。   Since the entire rigid frame (structures 1A and 2A) is likely to behave as a rigid body in the event of an earthquake, in FIG. 8, the stability against falling in the short side direction is particularly ensured.

従来構造の場合には、コアを免震支持するために、コアの直下に免震装置を配置することが行われるため、抵抗モーメントの腕の長さが短く、抵抗モーメントは有効には作用しない。これに対し、図8では抵抗モーメントが構造体1Aの最下部のスラブ8に接続した、短辺方向両側の基礎梁13、13間に働き、腕の長さが大きくなるため、抵抗モーメントが有効に作用することになる。前記のように最下部のスラブ8の少なくとも一部は極厚スラブ12であることもある。   In the case of the conventional structure, since the seismic isolation device is placed directly under the core in order to support the base in isolation, the resistance moment arm is short and the resistance moment does not work effectively. . On the other hand, in FIG. 8, the resistance moment works between the foundation beams 13 and 13 on both sides in the short side direction, which is connected to the lowermost slab 8 of the structure 1A, and the length of the arm increases, so the resistance moment is effective. Will act. As described above, at least a part of the lowermost slab 8 may be a very thick slab 12.

図8は図2、図3における平面1の、平面2から遠い側のコア7B周りの耐震要素4及びコア7Bと、免震装置11の配置関係を示している。図9−(a)、(b)は平面1の平面2寄りのコア7A周りでのコア7Aと免震装置11の配置関係を示す。後述のように平面2寄りのコア7A周りには極厚スラブ12が構築されることから、免震装置11は極厚スラブ12の下に設置されている。この場合、免震装置11は基礎梁14と極厚スラブ12に接合される。   FIG. 8 shows the positional relationship between the seismic isolation element 11 and the seismic element 4 and the core 7B around the core 7B on the side far from the plane 2 of the plane 1 in FIGS. FIGS. 9A and 9B show the positional relationship between the core 7A and the seismic isolation device 11 around the core 7A near the plane 2 of the plane 1. FIG. Since a very thick slab 12 is constructed around the core 7A near the plane 2 as will be described later, the seismic isolation device 11 is installed under the thick slab 12. In this case, the seismic isolation device 11 is joined to the foundation beam 14 and the thick slab 12.

前記のように剛性の高い構造体1Aは剛体として挙動することから、図9においても免震装置11からの転倒モーメントに対する反力のモーメントが最大になるよう、免震装置11は極厚スラブ12の周辺寄りに配置される。(a)は極厚スラブ12の中心の片側にコア7Aが配置された様子を、(b)は極厚スラブ12の中心にコア7Aの中心が位置する様子を示す。   Since the highly rigid structure 1A behaves as a rigid body as described above, the seismic isolation device 11 has the very thick slab 12 so that the moment of reaction force against the overturning moment from the seismic isolation device 11 is maximized in FIG. It is arranged near the periphery. (A) shows a state in which the core 7A is arranged on one side of the center of the thick slab 12, and (b) shows a state in which the center of the core 7A is located in the center of the thick slab 12.

図9−(a)ではコア7Aの平面形状に関係なく、構造体1Aの抵抗モーメントが最大になるよう、極厚スラブ12の四隅位置に免震装置11を配置している。(b)ではコア7Aが正方形状であることから、水平2方向に有効に抵抗モーメントが発生するよう、コア7Aを構成する耐震要素71、72の延長線上に免震装置11を配置しているが、(b)の場合には極厚スラブ12の四隅位置に免震装置11を配置しても効果は同等である。図9の場合、抵抗モーメントは構造体1Aの最下部のスラブ8である極厚スラブ12の短辺方向両側間に働く。図8−(a)では、平面1の短辺方向両側に基礎梁13、13が位置することで、コア7Bの両側位置に免震装置11を配置することができている。   In FIG. 9- (a), the seismic isolation devices 11 are arranged at the four corner positions of the very thick slab 12 so that the resistance moment of the structure 1A is maximized regardless of the planar shape of the core 7A. In (b), since the core 7A has a square shape, the seismic isolation device 11 is disposed on the extension line of the seismic elements 71 and 72 constituting the core 7A so that a resistance moment is effectively generated in two horizontal directions. However, in the case of (b), the effect is the same even if the seismic isolation devices 11 are arranged at the four corner positions of the very thick slab 12. In the case of FIG. 9, the resistance moment acts between both sides in the short side direction of the very thick slab 12, which is the lowest slab 8 of the structure 1A. In FIG. 8- (a), since the foundation beams 13 and 13 are located on both sides in the short side direction of the plane 1, the seismic isolation devices 11 can be arranged on both sides of the core 7B.

図9の場合にも、免震装置11が圧縮力を受けるときに極厚スラブ12は免震装置11から反力を受ける。極厚スラブ12の上部で引張力が作用する場合に、免震装置11が引張力を受けようとするときには、極厚スラブ12は特に質量が大きいことで、転倒モーメントに抵抗することにより浮き上がりを防止する。結果として免震装置11への引張力の作用が回避される。   Also in the case of FIG. 9, the thick slab 12 receives a reaction force from the seismic isolation device 11 when the seismic isolation device 11 receives a compressive force. When the seismic isolation device 11 tries to receive a tensile force when a tensile force acts on the upper part of the extra-thick slab 12, the extra-thick slab 12 has a particularly large mass, and is lifted by resisting a tipping moment. To prevent. As a result, the action of tensile force on the seismic isolation device 11 is avoided.

図2、図3の場合、平面1(構造体1A)に接続する平面2(構造体2A)は平行四辺形状をしていることから、平面2内の耐震要素5は平面2の短辺方向、すなわち平面1の長辺方向を向き、平面2の長辺方向に間隔を置いて配列している。この耐震要素5の両端にも基本的にそれに交差する方向の耐震要素は接続しない。図2、図3では安全のために、耐震要素5の一方(右側)の端部にこれに交差する方向の、短い長さの耐震要素を接続しているが、この耐震要素は必ずしも必要ではない。   2 and 3, since the plane 2 (structure 2A) connected to the plane 1 (structure 1A) has a parallelogram shape, the seismic element 5 in the plane 2 is in the short side direction of the plane 2 That is, they are arranged in the long side direction of the plane 1 and spaced apart in the long side direction of the plane 2. Neither end of the seismic element 5 is basically connected to the seismic element in the direction intersecting it. In FIG. 2 and FIG. 3, for the sake of safety, a short-length seismic element in a direction intersecting with one (right side) end of the seismic element 5 is connected, but this seismic element is not always necessary. Absent.

平面1内の耐震要素4の端部にそれに交差する耐震要素を接続する必要がなく、平面2内の耐震要素5の端部にそれに交差する耐震要素を接続する必要がないことは、平面1内の耐震要素4の不足分と平面2内の耐震要素5の不足分が平面1内のコア7Aに集約されていることによる。   It is not necessary to connect a seismic element that intersects it to the end of the seismic element 4 in the plane 1, and it is not necessary to connect a seismic element that intersects it to the end of the seismic element 5 in the plane 2. This is because the shortage of the seismic element 4 inside and the shortage of the seismic element 5 inside the plane 2 are concentrated in the core 7A in the plane 1.

前記の通り、平面2を含む構造体(棟)2Aはセットバックしているが、図2、図3では平面2内の耐震要素5の厚さを階数に関係なく一定にし、上階になる程、厚さを大きくすることをしていない。   As described above, the structure (building) 2A including the plane 2 is set back, but in FIGS. 2 and 3, the thickness of the seismic element 5 in the plane 2 is made constant regardless of the number of floors and becomes the upper floor. I did not increase the thickness as much.

平面2を含む構造体2Aがセットバックした形状をする場合、上階になる程、平面積が小さくなるが、平面積に応じた一定数の耐震要素を配置する必要から、通常は次第に耐震要素の厚さを増す必要がある。その結果として構造体1Aとの接続側寄りに位置する構造体2Aの重心の位置と、それより構造体2Aの端部(前面)側に位置する剛心の位置との間の距離(偏心量)が大きくなり、水平力を受けたときに捩じりを起こし易くなる。   When the structure 2A including the plane 2 has a set back shape, the flat area becomes smaller as the floor becomes higher, but since a certain number of seismic elements according to the flat area need to be arranged, the seismic elements are usually gradually increased. It is necessary to increase the thickness. As a result, the distance (the amount of eccentricity) between the position of the center of gravity of the structure 2A located closer to the connection side with the structure 1A and the position of the rigid center located on the end (front surface) side of the structure 2A. ) Becomes large, and it becomes easy to cause torsion when receiving a horizontal force.

これに対し、図2、図3では構造体2Aがセットバックした形状をしながらも、階数に関係なく平面2内の耐震要素5の厚さが一定であることで、耐震要素5の厚さが増大する場合より剛心が構造体1Aとの接続側へ寄るため、偏心量の増大が抑えられ、捩じりの発生が抑制されている。   On the other hand, in FIGS. 2 and 3, the thickness of the seismic element 5 is constant because the structure 2A is set back in shape, but the thickness of the seismic element 5 in the plane 2 is constant regardless of the floor number. Since the rigid center is closer to the connection side with the structure 1A than the case where the increase is increased, an increase in the amount of eccentricity is suppressed and the occurrence of torsion is suppressed.

図2、図3に示す平面形を有する構造物にX方向に作用する水平力に対しては、平面2内の耐震要素5と、コア7Aを構成する、耐震要素5と平行な耐震要素72が抵抗する。Y方向の水平力に対しては、平面1内の耐震要素4と、コア7Aを構成する、耐震要素4と平行な耐震要素71が抵抗する。すなわち2方向を向いた二つの平面1、2が組み合わせられることにより、一方の平面1(2)の耐震要素4(5)が互いに他方の平面2(1)の耐震性を補う関係が成立する。   2 and 3 with respect to the horizontal force acting in the X direction on the structure having a planar shape, the seismic element 5 in the plane 2 and the seismic element 72 parallel to the seismic element 5 constituting the core 7A. Resists. The seismic element 4 in the plane 1 and the seismic element 71 parallel to the seismic element 4 constituting the core 7A resist the horizontal force in the Y direction. That is, by combining the two planes 1 and 2 facing in two directions, a relationship is established in which the seismic elements 4 (5) on one plane 1 (2) supplement each other with the seismic resistance on the other plane 2 (1). .

図2、図3では構造物全体を地上階等の上部構造と基礎等の下部構造に区分し、その境界に積層ゴム支承や弾性滑り支承等の免震装置11を介在させ、上部構造を免震構造化することにより耐震要素4〜7の負担を軽減している。負担の軽減により免震装置11がない場合より耐震要素4〜7の厚さが抑えられている。免震装置11の平面上の配置位置を図4に示すが、免震装置11は地上階の中間層に介在させられることもある。図4中、○が積層ゴム支承を、◎が弾性滑り支承を示すが、免震装置11の形態は問われない。   2 and 3, the entire structure is divided into an upper structure such as a ground floor and a lower structure such as a foundation, and a seismic isolation device 11 such as a laminated rubber bearing or an elastic sliding bearing is interposed between the upper structure and the upper structure. The seismic structure reduces the burden on seismic elements 4-7. The thickness of the seismic elements 4 to 7 is suppressed by reducing the burden as compared with the case where the seismic isolation device 11 is not provided. Although the arrangement position on the plane of the seismic isolation apparatus 11 is shown in FIG. 4, the seismic isolation apparatus 11 may be interposed in the intermediate | middle layer of a ground floor. In FIG. 4, ◯ indicates a laminated rubber bearing, and ◎ indicates an elastic sliding bearing, but the form of the seismic isolation device 11 is not limited.

図4中、太線で囲い、ハッチングを入れた帯状の領域は積層ゴム支承上の基礎の範囲を示す。この基礎全体の領域を含む範囲には図5に示すように免震装置11に軸方向引張力に対処するために、上部構造(構造体1A、2A)の底板としての極厚スラブ12が構築されている。太線で示した帯状の領域を含め、免震装置11の配置位置を含む格子状の部分は上部構造(構造体1A、2A)に一体化する基礎梁13を示す。   In FIG. 4, a band-like region surrounded by a thick line and hatched indicates the range of the foundation on the laminated rubber bearing. As shown in FIG. 5, a thick slab 12 as a bottom plate of the upper structure (structures 1A, 2A) is constructed to cover the seismic isolation device 11 as shown in FIG. Has been. The grid-like portion including the arrangement position of the seismic isolation device 11 including the band-like region indicated by the thick line indicates the foundation beam 13 integrated with the upper structure (structures 1A, 2A).

極厚スラブ12は図1−(c)に示すように免震装置11上の上部構造の下に構築されることで、水平力に伴って上部構造に作用する転倒モーメントにより免震装置11に引き抜き力が作用することを防止し、免震装置11に主に軸方向圧縮力を作用させる機能を持つ。極厚スラブ12は図5の例では構造体1Aの1層分の高さに相当する3000mmの厚さになっている。   The extra-thick slab 12 is constructed under the upper structure on the seismic isolation device 11 as shown in FIG. 1- (c), so that the seismic isolation device 11 is caused by the overturning moment that acts on the upper structure with a horizontal force. It has the function of preventing the pulling force from acting and causing the seismic isolation device 11 to act mainly on the axial compression force. In the example of FIG. 5, the extra-thick slab 12 has a thickness of 3000 mm corresponding to the height of one layer of the structure 1A.

(a)は本発明の耐震構造物の概要を示した平面図、(b)は耐震構造物に境界梁(基礎梁)と頂部梁を付加し、基礎梁の下に免震装置を配置した様子を示した立面図、(c)は構造体の下に極厚スラブを付加した様子を示した立面図である。(A) is a plan view showing the outline of the seismic structure of the present invention, (b) is a boundary beam (foundation beam) and a top beam added to the seismic structure, and a seismic isolation device is arranged under the foundation beam. The elevation which showed a mode, (c) is the elevation which showed a mode that very thick slab was added under a structure. 本発明の耐震構造物として、三つの平面を3方向に組み合わせた平面形を有する12階建ての集合住宅の例を示した2階(基準階)の平面図である。It is the top view of the 2nd floor (standard floor) which showed the example of the 12-story apartment house which has a plane shape which combined three planes in 3 directions as an earthquake-proof structure of the present invention. 図2に示す構造物の10階及び11階を示した平面図である。It is the top view which showed the 10th floor and the 11th floor of the structure shown in FIG. 図2に示す構造物における免震装置の設置位置を示した下部構造の平面図である。It is a top view of the lower structure which showed the installation position of the seismic isolation apparatus in the structure shown in FIG. 図2に示す構造物における一方の平面(構造体)の立面図である。FIG. 3 is an elevation view of one plane (structure) in the structure shown in FIG. 2. 図2に示す構造物の外観を示した斜視図である。It is the perspective view which showed the external appearance of the structure shown in FIG. (a)は本発明の耐震要素(耐震壁)詳細例を示した平面図、(b)は従来の耐震要素(耐震壁)詳細例を示した平面図である。(A) is the top view which showed the detailed example of the seismic element (seismic wall) of this invention, (b) is the top view which showed the conventional detailed example of the seismic element (seismic wall). (a)は本発明の耐震要素(耐震壁)及びコアと、基礎梁及び免震装置の位置関係を示した平面図、(b)は(a)の立面図である。(A) is the top view which showed the positional relationship of the seismic element (seismic wall) and core of this invention, a foundation beam, and a seismic isolation apparatus, (b) is an elevation view of (a). (a)、(b)は本発明のコアと、極厚スラブ及び免震装置の位置関係を示した平面図である。(A), (b) is the top view which showed the positional relationship of the core of this invention, a very thick slab, and a seismic isolation apparatus. (a)は図1−(a)に示す本発明の構造物に対応した従来の構造物の耐震要素の配置状態を示した平面図、(b)はセットバックした構造体を含む構造物の例を示した立面図である。(A) is the top view which showed the arrangement | positioning state of the seismic element of the conventional structure corresponding to the structure of this invention shown to Fig.1- (a), (b) of the structure containing the structure which set back It is the elevation which showed the example.

符号の説明Explanation of symbols

1……平面、1A……構造体
2……平面、2A……構造体
3……平面、3A……構造体
4……耐震要素、41……内蔵柱、41a……主筋、41b……主筋拘束筋
5……耐震要素、6……耐震要素
7……耐震要素、7A、7B……コア、71……耐震要素、72……耐震要素
8……スラブ
9……境界梁
10……頂部梁
11……免震装置
12……極厚スラブ
13……基礎梁(上部構造)
14……基礎梁(下部構造)
DESCRIPTION OF SYMBOLS 1 ... Plane, 1A ... Structure 2 ... Plane, 2A ... Structure 3 ... Plane, 3A ... Structure 4 ... Seismic element, 41 ... Built-in column, 41a ... Main reinforcement, 41b ... Main bar restraint 5 …… Seismic element, 6 …… Seismic element 7 …… Seismic element, 7A, 7B …… Core, 71 …… Seismic element, 72 …… Seismic element 8 …… Slab 9 …… Boundary beam 10 …… Top beam 11 …… Seismic isolation device 12 …… Thick slab 13 …… Base beam (superstructure)
14 …… Foundation beam (under structure)

Claims (5)

幅と長さが相違する複数の平面を複数の方向に組み合わせた平面形を有し、前記各平面内に連層の耐震要素が配置された耐震構造物であり、
前記複数の平面の内、いずれか二つの平面における各耐震要素は各平面の長さ方向に間隔を置き、長さ方向に交差する方向を向いて配列し、
前記二つの平面における各耐震要素は互いに交差する方向を向き、
前記一方の平面と前記他方の平面の内、少なくともいずれか一方の平面における一部の耐震要素が平面上の一部に集約され、コアを構成していることを特徴とするコア集約型耐震構造物。
A seismic structure having a planar shape in which a plurality of planes having different widths and lengths are combined in a plurality of directions, and a multi-layer seismic element arranged in each plane,
Among the plurality of planes, each seismic element in any two planes is spaced in the length direction of each plane, arranged in a direction intersecting the length direction,
Each seismic element in the two planes faces in a direction intersecting each other,
A core-intensive seismic structure characterized in that a part of the seismic elements in at least one of the one plane and the other plane is aggregated into a part on the plane to constitute a core. object.
前記一部の耐震要素が平面上、複数のコアに集約され、その複数のコアの脚部間に境界梁が架設されていることを特徴とする請求項1に記載のコア集約型耐震構造物。   2. The core-intensive earthquake-resistant structure according to claim 1, wherein the partial earthquake-resistant elements are integrated into a plurality of cores on a plane, and boundary beams are installed between the legs of the plurality of cores. . 前記一部の耐震要素が平面上、複数のコアに集約され、その複数のコアの頂部間に頂部梁が架設されていることを特徴とする請求項1、もしくは請求項2に記載のコア集約型耐震構造物。   The core aggregation according to claim 1, wherein the part of the seismic elements is aggregated on a plurality of cores on a plane, and a top beam is provided between the tops of the plurality of cores. Type seismic structure. 前記一方の平面の耐震要素と前記他方の平面の耐震要素の内、少なくとも一方の厚さが一定であることを特徴とする請求項1乃至請求項3のいずれかに記載のコア集約型耐震構造物。   The core-intensive earthquake-resistant structure according to any one of claims 1 to 3, wherein a thickness of at least one of the one plane earthquake-resistant element and the other plane earthquake-resistant element is constant. object. 前記一方、もしくは他方の平面を含む構造体の一部の層に免震装置が設置され、この免震装置に支持される上部構造の最下部に、前記免震装置への許容値を超える軸方向引張力の作用を抑制する極厚スラブが構築されていることを特徴とする請求項1乃至請求項4のいずれかに記載のコア集約型耐震構造物。
The seismic isolation device is installed in a part of the structure including the one or the other plane, and an axis exceeding the allowable value for the seismic isolation device is provided at the lowest part of the upper structure supported by the seismic isolation device. The core-intensive seismic structure according to any one of claims 1 to 4, wherein an extremely thick slab that suppresses the action of a directional tensile force is constructed.
JP2007114531A 2007-04-24 2007-04-24 Core-intensive seismic structure Active JP5324054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007114531A JP5324054B2 (en) 2007-04-24 2007-04-24 Core-intensive seismic structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007114531A JP5324054B2 (en) 2007-04-24 2007-04-24 Core-intensive seismic structure

Publications (2)

Publication Number Publication Date
JP2008267074A true JP2008267074A (en) 2008-11-06
JP5324054B2 JP5324054B2 (en) 2013-10-23

Family

ID=40046920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007114531A Active JP5324054B2 (en) 2007-04-24 2007-04-24 Core-intensive seismic structure

Country Status (1)

Country Link
JP (1) JP5324054B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020045669A (en) * 2018-09-18 2020-03-26 株式会社竹中工務店 Base-isolated structure
JP2021032025A (en) * 2019-08-28 2021-03-01 大成建設株式会社 Sliding bearing device, and construction method of base-isolated building

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03183875A (en) * 1989-12-12 1991-08-09 Sumitomo Constr Co Ltd Building construction
JPH05148852A (en) * 1991-11-26 1993-06-15 Taisei Corp Damping pile foundation structure
JPH08254024A (en) * 1995-03-17 1996-10-01 Shimizu Corp Multiple dwelling house
JPH11223033A (en) * 1998-02-06 1999-08-17 Mitsui Constr Co Ltd Plate-like apartment house with multistory parking space
JPH11303429A (en) * 1998-04-24 1999-11-02 Mitsui Constr Co Ltd Structure of apartment house
JP2000017883A (en) * 1998-06-30 2000-01-18 Mitsui Constr Co Ltd Apartment house
JP2000303712A (en) * 1999-04-22 2000-10-31 Kajima Corp Structure of mid-to-high rise building
JP2002227451A (en) * 2001-02-05 2002-08-14 Kajima Corp Seismic control structure

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03183875A (en) * 1989-12-12 1991-08-09 Sumitomo Constr Co Ltd Building construction
JPH05148852A (en) * 1991-11-26 1993-06-15 Taisei Corp Damping pile foundation structure
JPH08254024A (en) * 1995-03-17 1996-10-01 Shimizu Corp Multiple dwelling house
JPH11223033A (en) * 1998-02-06 1999-08-17 Mitsui Constr Co Ltd Plate-like apartment house with multistory parking space
JPH11303429A (en) * 1998-04-24 1999-11-02 Mitsui Constr Co Ltd Structure of apartment house
JP2000017883A (en) * 1998-06-30 2000-01-18 Mitsui Constr Co Ltd Apartment house
JP2000303712A (en) * 1999-04-22 2000-10-31 Kajima Corp Structure of mid-to-high rise building
JP2002227451A (en) * 2001-02-05 2002-08-14 Kajima Corp Seismic control structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020045669A (en) * 2018-09-18 2020-03-26 株式会社竹中工務店 Base-isolated structure
JP7087258B2 (en) 2018-09-18 2022-06-21 株式会社竹中工務店 Seismic isolation structure
JP2021032025A (en) * 2019-08-28 2021-03-01 大成建設株式会社 Sliding bearing device, and construction method of base-isolated building
JP7421886B2 (en) 2019-08-28 2024-01-25 大成建設株式会社 How to construct a seismically isolated building

Also Published As

Publication number Publication date
JP5324054B2 (en) 2013-10-23

Similar Documents

Publication Publication Date Title
JP2007186307A (en) Mast holding device for tower crane
JP4689386B2 (en) Building with seismic isolation piloti floor
JP6835496B2 (en) Wooden laminated building using wooden unit
JP5324054B2 (en) Core-intensive seismic structure
JP5491256B2 (en) Bending deformation control structure
JP6433663B2 (en) building
JP4423640B2 (en) Building structure
TWM636764U (en) Supporting energy dissipation structure
JP6265735B2 (en) Consolidated building
JP5032232B2 (en) Building
JP6178171B2 (en) Reinforcement structure of existing foundation in existing structure
JP6846219B2 (en) Building seismic isolation structure
JP6126941B2 (en) Structure
JP5378242B2 (en) Building frame structure
JP7286904B2 (en) building
JP6951851B2 (en) High-rise earthquake-resistant building
JP2004169420A (en) Structure of building
JP6261955B2 (en) Structure
JP7316910B2 (en) building
JP5592288B2 (en) Seismic isolation building
JP7463877B2 (en) Mixed-structure building
JP2024131415A (en) building
JP5902594B2 (en) Facility with roof frame
JP2651505B2 (en) Frame structure of high-rise building
JP5316885B2 (en) Building seismic control structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130718

R150 Certificate of patent or registration of utility model

Ref document number: 5324054

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250