JP2008266242A - Method for producing difluoromethyl heterocyclic compound - Google Patents

Method for producing difluoromethyl heterocyclic compound Download PDF

Info

Publication number
JP2008266242A
JP2008266242A JP2007113435A JP2007113435A JP2008266242A JP 2008266242 A JP2008266242 A JP 2008266242A JP 2007113435 A JP2007113435 A JP 2007113435A JP 2007113435 A JP2007113435 A JP 2007113435A JP 2008266242 A JP2008266242 A JP 2008266242A
Authority
JP
Japan
Prior art keywords
group
general formula
trifluoromethyl
heterocyclic compound
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007113435A
Other languages
Japanese (ja)
Inventor
Kenji Uneyama
健治 宇根山
Atsushi Takagi
淳 高城
Koji Fujitani
幸治 藤谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Denka Kogyo Co Ltd
Original Assignee
Kanto Denka Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Denka Kogyo Co Ltd filed Critical Kanto Denka Kogyo Co Ltd
Priority to JP2007113435A priority Critical patent/JP2008266242A/en
Publication of JP2008266242A publication Critical patent/JP2008266242A/en
Pending legal-status Critical Current

Links

Landscapes

  • Quinoline Compounds (AREA)
  • Pyridine Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an α-difluoromethyl heterocyclic compound. <P>SOLUTION: The method for producing the α-difluoromethyl heterocyclic compound represented by general formula (3) (wherein, R<SP>1</SP>represents a triorganosilyl group or a hydrogen; R<SP>2</SP>, R<SP>3</SP>, R<SP>4</SP>and R<SP>5</SP>may each be the same or different and represent each a hydrogen or a monovalent organic group; and any of R<SP>2</SP>, R<SP>3</SP>, R<SP>4</SP>and R<SP>5</SP>may mutually be bonded to form a bivalent or higher-valent organic group) is carried out as follows: a trifluoromethyl compound represented by general formula (1) äwherein, R<SP>2</SP>, R<SP>3</SP>, R<SP>4</SP>and R<SP>5</SP>are each as described in the general formula (3)} is reacted with a halogenated triorganosilane represented by general formula (2): (R<SP>6</SP>)<SB>3</SB>SiX (wherein, R<SP>6</SP>s represent each independently a methyl group, an ethyl group, a propyl group, an isopropyl group or a phenyl group; and X represents chlorine, bromine or iodine) in the presence of a low-valent metal and a solvent. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、α-ジフルオロメチル複素環化合物の製造方法、特にα-ジフルオロ(水素)メチル複素環化合物およびα-ジフルオロ(シリル)メチル複素環化合物の製造方法に関する。α-ジフルオロメチル複素環化合物は有機化合物中にジフルオロメチル基を導入する反応試剤または医薬・農薬などの有機化合物の製造中間体として有用である。   The present invention relates to a method for producing an α-difluoromethyl heterocyclic compound, and more particularly to a method for producing an α-difluoro (hydrogen) methyl heterocyclic compound and an α-difluoro (silyl) methyl heterocyclic compound. The α-difluoromethyl heterocyclic compound is useful as a reaction reagent for introducing a difluoromethyl group into an organic compound or as an intermediate for producing organic compounds such as pharmaceuticals and agricultural chemicals.

近年、ジフルオロメチレン基を有する化合物は特有の生物学的活性を持つことからその合成法が注目されている。これまで、カルボニル基、チオカルボニル基またはチオセタール基にDAST(ジメチルアミノサルファトリフルオライド)や同様の作用をする酸化的フッ素化剤を反応させてジフルオロメチレン基に変換することがしばしば行われている。また、ハロジフルオロメチル基を脱ハロゲンしてジフルオロメチレン基とする方法もよく知られている。しかしながら、トリフルオロメチル基からの選択的脱モノフルオリネーションは殆ど知られていない。   In recent years, since a compound having a difluoromethylene group has a specific biological activity, its synthesis method has attracted attention. Until now, the carbonyl group, thiocarbonyl group or thiocetal group is frequently converted to a difluoromethylene group by reacting with DAST (dimethylaminosulfur trifluoride) or an oxidative fluorinating agent having the same action. A method of dehalogenating a halodifluoromethyl group to form a difluoromethylene group is also well known. However, little is known about selective demonofluorination from trifluoromethyl groups.

上記の方法は収率のよい優れた方法であるが、高価なフッ素化剤は工業的には一般的とは言い難い方法であるので、それに代わる合成方法の出現が望ましい。
したがって、本発明では、従来多くの反応で行われている操作を適用することで工業的プロセスを構成できる、α-ジフルオロメチル複素環化合物の製造方法を提供する。
Although the above method is an excellent method with a good yield, an expensive fluorinating agent is a method that is difficult to say industrially general, and therefore, the appearance of an alternative synthetic method is desirable.
Therefore, the present invention provides a method for producing an α-difluoromethyl heterocyclic compound that can constitute an industrial process by applying operations conventionally performed in many reactions.

本発明者らは、トリフルオロメチル複素環化合物とハロゲン化トリアルキルシランを低原子価金属と溶媒の存在下で反応させると下記一般式(4)及び(5)で表されるα-ジフルオロ(水素)メチル複素環化合物およびα-ジフルオロ(シリル)メチル複素環化合物が生成することを見いだし本発明に至った。
すなわち本発明は、以下のものを提供する。
When the present inventors reacted a trifluoromethyl heterocyclic compound and a halogenated trialkylsilane in the presence of a low-valent metal and a solvent, α-difluoro (R) represented by the following general formulas (4) and (5) The inventors have found that hydrogen) methyl heterocyclic compounds and α-difluoro (silyl) methyl heterocyclic compounds are formed, and have reached the present invention.
That is, the present invention provides the following.

[1] 一般式(1):   [1] General formula (1):

Figure 2008266242
Figure 2008266242

(式中、R、R、R、Rは同一でも異なってもよく水素または一価の有機基を表し、R、R、R、Rのいずれかが互いに結合して二価以上の有機基を形成してもよい)で表されるトリフルオロメチル化合物を一般式(2):
(RSiX (2)
(式中、Rはそれぞれ独立にメチル基、エチル基、プロピル基、イソプロピル基またはフェニル基を表し、Xは塩素、臭素またはヨウ素を表す。)で表されるハロゲン化トリオルガノシランと低原子価金属と溶媒の存在下で反応させることを特徴とする一般式(3):
(In the formula, R 2 , R 3 , R 4 and R 5 may be the same or different and each represents hydrogen or a monovalent organic group, and any one of R 2 , R 3 , R 4 and R 5 is bonded to each other. A divalent or higher valent organic group) may be represented by the general formula (2):
(R 6 ) 3 SiX (2)
(Wherein R 6 independently represents a methyl group, an ethyl group, a propyl group, an isopropyl group or a phenyl group, and X represents chlorine, bromine or iodine) and a low atom General formula (3) characterized by reacting with a valent metal in the presence of a solvent:

Figure 2008266242
Figure 2008266242

(式中、Rはトリオルガノシリル基又は水素を表し、R、R、R、Rは前記のとおりである。)で表されるα-ジフルオロメチル複素環化合物の製造方法。
[2] 前記α-ジフルオロメチル複素環化合物が、一般式(4):
(Wherein, R 1 represents a triorganosilyl group or hydrogen, and R 2 , R 3 , R 4 , and R 5 are as described above).
[2] The α-difluoromethyl heterocyclic compound is represented by the general formula (4):

Figure 2008266242
Figure 2008266242

(式中、R、R、R、Rはそれぞれ式(1)のR、R、R、Rと同じ置換基を表す。)で表されるα-ジフルオロ(水素)メチル複素環化合物および一般式(5): (Wherein, R 2, R 3, R 4, R R 2 5 each formula (1), R 3, R 4, represents the same substituent as R 5.) Represented by α- difluoro (hydrogen ) Methyl heterocyclic compounds and general formula (5):

Figure 2008266242
Figure 2008266242

(式中、Rは式(2)のRと同じ置換基を表し、R、R、R、Rはそれぞれ式(1)のR、R、R、Rと同じ置換基を表す。)で表されるα-ジフルオロ(シリル)メチル複素環化合物の混合物として得られる、[1]の製造方法。 (Wherein, R 6 represents the same substituent as R 6 in formula (2), R 2, R 3, R 4, R 2 of the R 5 each formula (1), R 3, R 4, R 5 And the same substituent as above.), Which is obtained as a mixture of α-difluoro (silyl) methyl heterocyclic compounds represented by formula (1).

本発明は、前記一般式(1)で表されるトリフルオロメチル化合物を前記一般式(2)で表されるハロゲン化トリオルガノシランと低原子価金属と溶媒の存在下で反応させることを特徴とする一般式(3)で表されるα-ジフルオロメチル複素環化合物の製造方法である。   The present invention is characterized in that the trifluoromethyl compound represented by the general formula (1) is reacted in the presence of a halogenated triorganosilane represented by the general formula (2), a low-valent metal, and a solvent. This is a method for producing an α-difluoromethyl heterocyclic compound represented by the general formula (3).

本発明にかかる一般式(1)で表されるα−トリフルオロメチル複素環化合物は、特に限定されず、R、R、R、Rが水素原子または本発明の条件下で不活性な一価の有機基であればよく、R、R、R、Rのいずれかが互いに結合して二価以上の有機基を形成してもよい。その様な有機基としては、多種多様な芳香族複素環(例えば、キノリン誘導体なども含む)、炭素数1〜20の分岐を有することもあるアルキル基、アルケニル基またはアルキニル基、炭素数1〜20の置換基を有することもあるシクロアルキル基、炭素数1〜20の置換基を有することもあるアリール基、2級ないし3級アミノ基、一般式(6):
−(CHn−R (6)
(式中、R3は炭素数1〜10のシクロアルキル基、アリール基、アルコキシル基、チオアルコキシル基、3級アミノ基、アシル基、アルコキシカルボニル基、複素芳香族基を表し、nは0または1以上の整数を表す。)で表される有機基などを挙げることができる。一般式(1)で表されるα−トリフルオロメチル複素環化合物を具体的に例示すると、α−トリフルオロメチルピリジン、α−トリフルオロメチル−β−フェニルメチルピリジン、α−トリフルオロメチル−β−フェネチルメチルピリジン、α−トリフルオロメチル−β−n−ヘキシルピリジン、α−トリフルオロメチル−β−c−ヘキシルピリジン、α−トリフルオロメチル−β−エトキシカルボニルメチルピリジン、α−トリフルオロメチル−β−2−フリルピリジン、α−トリフルオロメチル−β−2−チエニルピリジン、α−トリフルオロメチル−β−エトキシピリジン、α−トリフルオロメチル−β−t−ブトキシピリジン、α−トリフルオロメチル−β−ヘキソキシピリジン、α−トリフルオロメチル−β−S−t−ブチルピリジン、α−トリフルオロメチル−β−S−フェニルピリジン、α−トリフルオロメチル−β−メトキシエチルピリジン、α−トリフルオロメチル−β−メトキシフェニルピリジン、α−トリフルオロメチル−β−トリフルオロメチルフェニルピリジン、α−トリフルオロメチル−β−クロロフェニルピリジン、α−トリフルオロメチル−β−チオメトキシエチルピリジン、α−トリフルオロメチル−β−ジメチルアミノエチルピリジン、α−トリフルオロメチル−β−N,N−ジフェニルアミノピリジン、α−トリフルオロメチル−β−N,N−ジブチルアミノピリジンなどのピリジン誘導体;α−トリフルオロメチルキノリン、α−トリフルオロメチル−β−フェニルメチルキノリン、α−トリフルオロメチル−β−フェネチルメチルキノリン、α−トリフルオロメチル−β−n−ヘキシルキノリン、α−トリフルオロメチル−β−c−ヘキシルキノリン、α−トリフルオロメチル−β−エトキシカルボニルメチルキノリン、α−トリフルオロメチル−β−2−フリルキノリン、α−トリフルオロメチル−β−2−チエニルキノリン、α−トリフルオロメチル−β−エトキシキノリン、α−トリフルオロメチル−β−t−ブトキシキノリン、α−トリフルオロメチル−β−ヘキシルオキシキノリン、α−トリフルオロメチル−β−S−t−ブチルキノリン、α−トリフルオロメチル−β−S−フェニルキノリン、α−トリフルオロメチル−β−メトキシエチルキノリン、α−トリフルオロメチル−β−メトキシフェニルキノリン、α−トリフルオロメチル−β−トリフルオロメチルフェニルキノリン、α−トリフルオロメチル−β−クロロフェニルキノリン、α−トリフルオロメチル−β−チオメトキシエチルキノリン、α−トリフルオロメチル−β−ジメチルアミノエチルキノリン、α−トリフルオロメチル−β−N,N−ジフェニルアミノキノリン、α−トリフルオロメチル−β−N,N−ジブチルアミノキノリンなどのキノリン誘導体などを挙げることができる。上記のようなβ位置換基の他にγ位、δ位、ε位に置換基を有する化合物も本発明において使用できる。さらに、ひとつ以上の位置にあらゆる組み合わせで置換基を有する化合物も本発明において使用できる。
The α-trifluoromethyl heterocyclic compound represented by the general formula (1) according to the present invention is not particularly limited, and R 2 , R 3 , R 4 , and R 5 are not hydrogen atoms or non-reactive under the conditions of the present invention. Any active monovalent organic group may be used, and any of R 2 , R 3 , R 4 , and R 5 may be bonded to each other to form a divalent or higher valent organic group. Examples of such an organic group include various aromatic heterocycles (including quinoline derivatives and the like), alkyl groups, alkenyl groups, or alkynyl groups that may have 1 to 20 carbon atoms, and 1 to 1 carbon atoms. A cycloalkyl group that may have 20 substituents, an aryl group that may have a substituent of 1 to 20 carbon atoms, a secondary to tertiary amino group, a general formula (6):
- (CH 2) n -R 3 (6)
(In the formula, R 3 represents a cycloalkyl group having 1 to 10 carbon atoms, an aryl group, an alkoxyl group, a thioalkoxyl group, a tertiary amino group, an acyl group, an alkoxycarbonyl group, or a heteroaromatic group, and n is 0 or And an organic group represented by 1). Specific examples of the α-trifluoromethyl heterocyclic compound represented by the general formula (1) include α-trifluoromethylpyridine, α-trifluoromethyl-β-phenylmethylpyridine, α-trifluoromethyl-β. -Phenethylmethylpyridine, α-trifluoromethyl-β-n-hexylpyridine, α-trifluoromethyl-β-c-hexylpyridine, α-trifluoromethyl-β-ethoxycarbonylmethylpyridine, α-trifluoromethyl- β-2-furylpyridine, α-trifluoromethyl-β-2-thienylpyridine, α-trifluoromethyl-β-ethoxypyridine, α-trifluoromethyl-β-t-butoxypyridine, α-trifluoromethyl- β-hexoxypyridine, α-trifluoromethyl-β-St-butylpyridine, α-trif Oromethyl-β-S-phenylpyridine, α-trifluoromethyl-β-methoxyethylpyridine, α-trifluoromethyl-β-methoxyphenylpyridine, α-trifluoromethyl-β-trifluoromethylphenylpyridine, α-trimethyl Fluoromethyl-β-chlorophenylpyridine, α-trifluoromethyl-β-thiomethoxyethylpyridine, α-trifluoromethyl-β-dimethylaminoethylpyridine, α-trifluoromethyl-β-N, N-diphenylaminopyridine, Pyridine derivatives such as α-trifluoromethyl-β-N, N-dibutylaminopyridine; α-trifluoromethylquinoline, α-trifluoromethyl-β-phenylmethylquinoline, α-trifluoromethyl-β-phenethylmethylquinoline , Α-trifluoromethyl-β- n-hexylquinoline, α-trifluoromethyl-β-c-hexylquinoline, α-trifluoromethyl-β-ethoxycarbonylmethylquinoline, α-trifluoromethyl-β-2-furylquinoline, α-trifluoromethyl- β-2-thienylquinoline, α-trifluoromethyl-β-ethoxyquinoline, α-trifluoromethyl-β-t-butoxyquinoline, α-trifluoromethyl-β-hexyloxyquinoline, α-trifluoromethyl-β -St-butylquinoline, α-trifluoromethyl-β-S-phenylquinoline, α-trifluoromethyl-β-methoxyethylquinoline, α-trifluoromethyl-β-methoxyphenylquinoline, α-trifluoromethyl -Β-trifluoromethylphenylquinoline, α-trifluoromethyl-β-chloro Rophenylquinoline, α-trifluoromethyl-β-thiomethoxyethylquinoline, α-trifluoromethyl-β-dimethylaminoethylquinoline, α-trifluoromethyl-β-N, N-diphenylaminoquinoline, α-trifluoro And quinoline derivatives such as methyl-β-N, N-dibutylaminoquinoline. In addition to the β-position substituents as described above, compounds having substituents at the γ-position, δ-position, and ε-position can also be used in the present invention. Furthermore, compounds having substituents in any combination at one or more positions can also be used in the present invention.

本発明にかかる一般式(4)で表されるα−ジフルオロ(水素)メチル複素環化合物または一般式(5)で表されるα−ジフルオロ(シリル)メチル複素環化合物は、それぞれ一般式(1)のR、R、R、Rと同じ置換基R、R、R、Rを持つ対応するα−ジフルオロ(水素)メチル複素環化合物またはα−ジフルオロ(シリル)メチル複素環化合物である。 The α-difluoro (hydrogen) methyl heterocyclic compound represented by the general formula (4) and the α-difluoro (silyl) methyl heterocyclic compound represented by the general formula (5) according to the present invention are each represented by the general formula (1). ) R 2 , R 3 , R 4 , R 5 and a corresponding α-difluoro (hydrogen) methyl heterocyclic compound or α-difluoro (silyl) methyl having the same substituents R 2 , R 3 , R 4 , R 5 It is a heterocyclic compound.

本発明に使用するハロゲン化トリオルガノシランは、一般式(2):
(RSiX (2)
で表される。この一般式において、R6はそれぞれ独立にメチル基、エチル基、プロピル基、イソプロピル基またはフェニル基を表し、Xは塩素、臭素またはヨウ素を表す。好ましいハロゲン化トリオルガノシランとしては、塩化トリメチルシラン、塩化トリエチルシラン、臭化トリエチルシランなどのハロゲン化トリアルキルシラン;塩化フェニルジメチルシラン、塩化ジフェニルメチルシランなどのハロゲン化アリールシラン、などを挙げることができる。これらの内、塩化トリメチルシランは入手が容易で最も好ましい。
The halogenated triorganosilane used in the present invention has the general formula (2):
(R 6 ) 3 SiX (2)
It is represented by In this general formula, each R 6 independently represents a methyl group, an ethyl group, a propyl group, an isopropyl group or a phenyl group, and X represents chlorine, bromine or iodine. Preferred halogenated triorganosilanes include halogenated trialkylsilanes such as trimethylsilane chloride, triethylsilane chloride, and triethylsilane bromide; halogenated arylsilanes such as phenyldimethylsilane chloride and diphenylmethylsilane chloride. it can. Of these, trimethylsilane chloride is most preferred because it is readily available.

一般式(2)のハロゲン化トリオルガノシランの量は、一般式(1)のトリフルオロメチル化合物の1モルに対して2〜50モル程度使用することが好ましい。
本発明の方法において使用する溶媒は、本発明の反応条件で不活性であればよく、脂肪族炭化水素系溶媒、例えば、ペンタン、ヘキサン、ヘプタン等、芳香族炭化水素類、例えば、ベンゼン、トルエン、キシレン等、ニトリル類、例えば、アセトニトリル、プロピオニトリル、フェニルアセトニトリル、イソブチロニトリル、ベンゾニトリル等、酸アミド類、例えば、ジメチルホルムアミド、ジメチルアセトアミド、メチルホルムアミド、ホルムアミド、ヘキサメチルリン酸トリアミド等、低級エーテル類、例えば、テトラヒドロフラン、1,2−ジメトキシエタン、1,4−ジオキサン、ジエチルエーテル、1,2−エポキシエタン、1,4−ジオキサン、ジブチルエーテル、t−ブチルメチルエーテル、置換テトラヒドロフラン等、などが使用されることができ、ジメチルホルムアミド、テトラヒドロフランが好ましい。これらの溶媒を組み合わせて使用することもできる。
The amount of the halogenated triorganosilane of the general formula (2) is preferably used in an amount of about 2 to 50 mol with respect to 1 mol of the trifluoromethyl compound of the general formula (1).
The solvent used in the method of the present invention may be inert under the reaction conditions of the present invention, and aliphatic hydrocarbon solvents such as pentane, hexane, heptane, etc., aromatic hydrocarbons such as benzene, toluene, etc. , Xylene, etc., nitriles such as acetonitrile, propionitrile, phenylacetonitrile, isobutyronitrile, benzonitrile, etc., acid amides such as dimethylformamide, dimethylacetamide, methylformamide, formamide, hexamethylphosphoric triamide, etc. Lower ethers such as tetrahydrofuran, 1,2-dimethoxyethane, 1,4-dioxane, diethyl ether, 1,2-epoxyethane, 1,4-dioxane, dibutyl ether, t-butyl methyl ether, substituted tetrahydrofuran, etc. ,Such Can be used, dimethylformamide, tetrahydrofuran is preferred. A combination of these solvents can also be used.

溶媒の量は、一般式(1)のトリフルオロメチル化合物の1重量部に対して1〜100重量部程度、好ましくは1〜10重量部である。使用する溶媒はでき得る限り水分を除去した方が好ましいが、必ずしも完全に除く必要はない。工業的に入手可能な溶媒に通常混入している程度の水分は、本製造方法の実施において特に問題にならず、従って水分を除去することなくそのまま使用できる。   The amount of the solvent is about 1 to 100 parts by weight, preferably 1 to 10 parts by weight with respect to 1 part by weight of the trifluoromethyl compound of the general formula (1). It is preferable to remove the water as much as possible, but it is not always necessary to remove it completely. The amount of water that is usually mixed in industrially available solvents is not particularly problematic in the practice of this production method, and can therefore be used as it is without removing the water.

本発明において使用される低原子価金属は、特に限定されないが、金属単体として、例えば、マグネシウム、亜鉛、銅、鉄、カドミウム、スズ、チタン、ナトリウムなど、またはこれらの金属を主成分とする合金、例えば、亜鉛−銅合金、ラネーニッケル、銀−亜鉛合金、銅−マグネシウム合金などが挙げられる。また、酸化状態が複数存在する金属元素の低原子価イオン、例えば、三塩化チタン、二ヨウ化サマリウム、二塩化クロム、金属錯体、例えば、ナトリウムナフタレニド、ナトリウムベンゾフェノンケチル錯体、テトラキス(トリフェニルホスフィン)パラジウムなどが挙げられる。さらにこれら金属単体または合金と金属イオン若しくは金属錯体の混合系、例えば、四塩化チタン−金属亜鉛系、二塩化チタノセン−金属亜鉛系、二ヨウ化サマリウム−金属サマリウム系、二ヨウ化サマリウム−金属マグネシウム系などが挙げられる。これらのうちで、マグネシウムを用いた系、例えば金属マグネシウム、二ヨウ化サマリウム−金属マグネシウム系などが特に好ましいものとして挙げられる。低原子価金属は、単体で用いる場合には、粉末、粒状、塊状、多孔質状、切削屑状、線状など何れの形状でもかまわない。例えば、金属マグネシウムとしては、グリニャール反応において通常使用される公知の形状のマグネシウムがそのまま使用できる。   The low-valent metal used in the present invention is not particularly limited, but as a simple metal, for example, magnesium, zinc, copper, iron, cadmium, tin, titanium, sodium, or an alloy containing these metals as a main component Examples thereof include zinc-copper alloy, Raney nickel, silver-zinc alloy, copper-magnesium alloy and the like. In addition, low-valent ions of metal elements having multiple oxidation states, such as titanium trichloride, samarium diiodide, chromium dichloride, metal complexes such as sodium naphthalenide, sodium benzophenone ketyl complex, tetrakis (triphenyl) Phosphine) palladium and the like. Furthermore, these metal simple substances or alloys and mixed systems of metal ions or metal complexes, for example, titanium tetrachloride-metal zinc system, titanocene dichloride-metal zinc system, samarium diiodide-metal samarium system, samarium diiodide-metal magnesium The system etc. are mentioned. Among these, a system using magnesium, for example, metal magnesium, samarium diiodide-metal magnesium system, and the like are particularly preferable. When used alone, the low-valent metal may be in any shape such as powder, granule, lump, porous, cutting waste, and wire. For example, as the magnesium metal, a known shape magnesium usually used in the Grignard reaction can be used as it is.

低原子価金属の量は、一般式(1)のトリフルオロメチル化合物の1モルに対して1〜20モル程度使用することが好ましい。
反応温度は−78〜120℃程度であり、反応時間は反応試剤により異なるが、通常10分から20時間程度で行うのが好都合である。反応圧力は常圧付近でよく、その他の反応条件は、当業者に公知の有機マグネシウム化合物を用いる反応の条件が適用できる。
The amount of the low-valent metal is preferably about 1 to 20 mol relative to 1 mol of the trifluoromethyl compound of the general formula (1).
The reaction temperature is about −78 to 120 ° C., and the reaction time varies depending on the reaction reagent, but it is usually convenient to carry out in about 10 minutes to 20 hours. The reaction pressure may be close to normal pressure, and other reaction conditions may be those known to those skilled in the art using organic magnesium compounds.

本発明の方法においては、反応を促進する目的でグリニャール反応で一般的に行われている各種の反応促進法を適用することができる。そのような手段として、例えば、臭素またはヨウ素などのハロゲン、グリニャール試薬、臭化エチル、ヨウ化メチル、ヨウ化メチレン、ヨウ化エチル、β−ブロムエチルエーテルなどの有機ハロゲン化物、あるいはオルト珪酸エチルなどを反応系に添加する方法や攪拌または超音波を照射する方法などを挙げることができる。   In the method of the present invention, various reaction promotion methods generally used in the Grignard reaction can be applied for the purpose of promoting the reaction. Examples of such means include halogens such as bromine or iodine, Grignard reagents, organic halides such as ethyl bromide, methyl iodide, methylene iodide, ethyl iodide, β-bromoethyl ether, or ethyl orthosilicate. And the like, and a method of stirring or irradiating with ultrasonic waves.

本発明の方法により一般式(1)で表されるα−トリフルオロメチル複素環化合物を還元した場合、トリフルオロメチル基以外の部位は変化しない対応する一般式(5)で表されるα−ジフルオロ(シリル)メチル複素環化合物が生成するが、この一般式(5)の化合物から反応試剤および/または反応条件を調整することで、一般式(4)で表されるα−ジフルオロメチル複素環化合物をさらに得ることができる。例えば、一般式(1)で表されるα−トリフルオロメチル複素環化合物としてα−トリフルオロメチルピリジンを使用した場合には、はじめに、α−ジフルオロ(シリル)メチルピリジンが生成するが、α−ジフルオロ(シリル)メチルピリジンは、例えば、酸の存在下、0〜100℃程度の温度で脱シリル化することでα−ジフルオロメチルピリジンとすることができる。一方、トリエチルアミンなどの塩基性化合物を反応系に存在させることことによって、生成物中におけるα−ジフルオロ(シリル)メチルピリジンの比率を高めることができる。この場合の塩基性化合物の使用量は、一般式(1)のトリフルオロメチル化合物の1モルに対して、通常、1〜4モル程度、好ましくは2モル程度である。このように、反応条件を調節することにより、最終的に得られる生成物における一般式(4)で表されるα−ジフルオロメチル複素環化合物と一般式(5)で表されるα−ジフルオロ(シリル)メチル複素環化合物との比率を調整することができる。   When the α-trifluoromethyl heterocyclic compound represented by the general formula (1) is reduced by the method of the present invention, the site other than the trifluoromethyl group does not change, and the α- represented by the corresponding general formula (5) A difluoro (silyl) methyl heterocyclic compound is produced, and the α-difluoromethyl heterocyclic ring represented by the general formula (4) is prepared by adjusting the reaction reagent and / or reaction conditions from the compound of the general formula (5). Further compounds can be obtained. For example, when α-trifluoromethylpyridine is used as the α-trifluoromethyl heterocyclic compound represented by the general formula (1), first, α-difluoro (silyl) methylpyridine is formed. Difluoro (silyl) methylpyridine can be converted to α-difluoromethylpyridine by, for example, desilylation at a temperature of about 0 to 100 ° C. in the presence of an acid. On the other hand, the presence of a basic compound such as triethylamine in the reaction system can increase the ratio of α-difluoro (silyl) methylpyridine in the product. The amount of the basic compound used in this case is usually about 1 to 4 mol, preferably about 2 mol, per 1 mol of the trifluoromethyl compound of the general formula (1). Thus, by adjusting the reaction conditions, the α-difluoromethyl heterocyclic compound represented by the general formula (4) and the α-difluoro (5) represented by the general formula (5) in the final product are obtained. The ratio with the silyl) methyl heterocyclic compound can be adjusted.

本発明の方法により得られた一般式(4)および一般式(5)で表される生成物を含む粗生成物は、目的や用途に応じた精製処理を実施するのが好ましい。該精製処理の手段としては、特に限定されず、通常の抽出操作、またはカラムクロマトグラフィ等を実施するのが好ましい。   The crude product containing the products represented by the general formulas (4) and (5) obtained by the method of the present invention is preferably subjected to a purification treatment according to the purpose and application. The means for the purification treatment is not particularly limited, and it is preferable to carry out a normal extraction operation or column chromatography.

以下に実施例をもって本発明を説明するが、本発明はこれら例の実施態様に限定されるものではない。
なお、生成物の収率は、以下の方法により求めた。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to the embodiments of these examples.
The product yield was determined by the following method.

すなわち、内部標準物質としてベンゾトリフルオライド(0.0365g,0.25mmol)を反応系に添加し、19F NMR分析により目的化合物とベンゾトリフルオライドの積分値比により算出した。なお、生成物の19F NMRデータはベンゾトリフルオライドのケミカルシフトを99ppmとした値である。 That is, benzotrifluoride (0.0365 g, 0.25 mmol) was added to the reaction system as an internal standard substance, and the integrated value ratio of the target compound and benzotrifluoride was calculated by 19 F NMR analysis. The 19 F NMR data of the product is a value obtained by setting the chemical shift of benzotrifluoride to 99 ppm.

〔実施例1〕
20mlの枝付反応器にマグネシウム(粉状)を(0.0243g,1mmol)秤量し、真空ポンプで減圧乾燥させアルゴン置換した。そこに乾燥ジメチルホルムアミド(DMF)(5ml)および塩化トリメチルシラン(TMSCl)(0.25ml,2mmol)を加え反応器をソニケーターに20分かけた。その後,乾燥トリエチルアミン(0.15ml,1mmol)およびα−トリフルオロメチルピリジン(0.0738g,0.5mmol)加えて常圧、室温条件で30分攪拌した。反応混合液をヘキサンを用いてセライトでろ過し、ろ液を10mlの水で3回洗いDMFを取り除いた。ヘキサンを留去し、1mmHgで減圧蒸留し、α−ジフルオロメチルピリジン(19F−NMR収率で4%)およびα−ジフルオロ(トリメチルシリル)メチルピリジン(19F−NMR収率で53%)を得た。
[Example 1]
Magnesium (powder) (0.0243 g, 1 mmol) was weighed into a 20 ml branched reactor, dried under reduced pressure with a vacuum pump, and purged with argon. Thereto were added dry dimethylformamide (DMF) (5 ml) and trimethylsilane chloride (TMSCl) (0.25 ml, 2 mmol), and the reactor was placed in a sonicator for 20 minutes. Thereafter, dry triethylamine (0.15 ml, 1 mmol) and α-trifluoromethylpyridine (0.0738 g, 0.5 mmol) were added, and the mixture was stirred at normal pressure and room temperature for 30 minutes. The reaction mixture was filtered through celite using hexane, and the filtrate was washed 3 times with 10 ml of water to remove DMF. Hexane was distilled off and distilled under reduced pressure at 1 mmHg to obtain α-difluoromethylpyridine (4% in 19 F-NMR yield) and α-difluoro (trimethylsilyl) methylpyridine (53% in 19 F-NMR yield). It was.

[α−ジフルオロ(トリメチルシリル)メチルピリジンのNMR及びMSデータ]
H NMR δ(300MHz,ppm):
0.21(s,9H),7.29(dd,J=4.8,7.2Hz,1H), 7.52(d,J=7.8Hz,1H),7.77(t,J=7.8Hz,1H),8.64(d,J=5.4Hz,1H)
19F NMR δ(ppm):
47.4(s,2F)
MS(intensity):
201(2),110(100),73(85),45(23)
[α−ジフルオロメチルピリジンのNMRデータ]
19F NMR δ(ppm):
45.9(d,J=56Hz,2F)
〔実施例2〕
20mlの枝付反応器にマグネシウム(粉状)を(0.0243g,1mmol)秤量し、真空ポンプで減圧乾燥させアルゴン置換した。そこに乾燥アセトニトリル(5ml)およびTMSCl(0.25ml,2mmol)を加え反応器をソニケーターに20分かけた。その後,乾燥トリエチルアミン(0.15ml,1mmol)およびα−トリフルオロメチルキノリン(0.0983g,0.5mmol)加えて常圧、室温条件で30分攪拌した。反応混合液をヘキサンによりセライトろ過し、ろ液を10mlの水で3回洗いアセトニトリルを取り除いた。ヘキサンを留去し、1mmHgで減圧蒸留し、α−ジフルオロメチルキノリン(19F−NMR収率で14%)およびα−ジフルオロ(トリメチルシリル)メチルキノリン(19F−NMR収率で20%)を得た。
[NMR and MS data of α-difluoro (trimethylsilyl) methylpyridine]
1 H NMR δ (300 MHz, ppm):
0.21 (s, 9H), 7.29 (dd, J = 4.8, 7.2 Hz, 1H), 7.52 (d, J = 7.8 Hz, 1H), 7.77 (t, J = 7.8 Hz, 1 H), 8.64 (d, J = 5.4 Hz, 1 H)
19 F NMR δ (ppm):
47.4 (s, 2F)
MS (intensity):
201 (2), 110 (100), 73 (85), 45 (23)
[NMR data of α-difluoromethylpyridine]
19 F NMR δ (ppm):
45.9 (d, J = 56Hz, 2F)
[Example 2]
Magnesium (powder) (0.0243 g, 1 mmol) was weighed into a 20 ml branched reactor, dried under reduced pressure with a vacuum pump, and purged with argon. Thereto were added dry acetonitrile (5 ml) and TMSCl (0.25 ml, 2 mmol), and the reactor was placed in a sonicator for 20 minutes. Thereafter, dry triethylamine (0.15 ml, 1 mmol) and α-trifluoromethylquinoline (0.0983 g, 0.5 mmol) were added, and the mixture was stirred at normal pressure and room temperature for 30 minutes. The reaction mixture was filtered through celite with hexane, and the filtrate was washed 3 times with 10 ml of water to remove acetonitrile. Hexane was distilled off and distilled under reduced pressure at 1 mmHg to obtain α-difluoromethylquinoline (14% in 19 F-NMR yield) and α-difluoro (trimethylsilyl) methylquinoline (20% in 19 F-NMR yield). It was.

[α−ジフルオロ(トリメチルシリル)メチルキノリンのNMR及びMSデータ]
H NMR δ(300MHz,ppm):
0.29(s,9H),7.59(t,J=7.2Hz,1H), 7.67(d,J=8.7Hz,1H),7.74(dt,J=7.8Hz,J=1.8Hz,1H),7.85(d,J=8.1Hz,1H),8.13(d,J=8.4Hz,1H),8.26(d,J=8.7Hz,1H)
19F NMR δ(ppm):
49.4(s,2F)
MS(intensity):
251(33),250(100),220(21),159(36),128(26),73(58)
[α−ジフルオロメチルキノリンのNMR及びMSデータ]
19F NMR δ(ppm):
47.5(d,J=56Hz,2F)
MS(intensity):
179(100),129(30),128(63),101(33)
〔実施例3〕
20mlの枝付反応器にマグネシウム (粉状)を(0.097g,4mmol)秤量し、真空ポンプで減圧乾燥させアルゴン置換した。そこに乾燥DMF(5ml)およびTMSCl(1ml,8mmol)を加え反応器をソニケーターに20分かけた。その後,乾燥トリエチルアミン(0.15ml,1mmol)およびα−トリフルオロメチルピリジン(0.0738g,0.5mmol)加えて常圧、室温条件で30分攪拌した。反応混合液をヘキサンを用いてセライトでろ過し、ろ液を10mlの水で3回洗いDMFを取り除いた。ヘキサンを留去し、1mmHgで減圧蒸留し、α−ジフルオロメチルピリジン(19F−NMR収率で2%)およびα−ジフルオロ(トリメチルシリル)メチルピリジン(19F−NMR収率で56%)を得た。
[NMR and MS data of α-difluoro (trimethylsilyl) methylquinoline]
1 H NMR δ (300 MHz, ppm):
0.29 (s, 9H), 7.59 (t, J = 7.2 Hz, 1H), 7.67 (d, J = 8.7 Hz, 1H), 7.74 (dt, J = 7.8 Hz) , J = 1.8 Hz, 1H), 7.85 (d, J = 8.1 Hz, 1H), 8.13 (d, J = 8.4 Hz, 1H), 8.26 (d, J = 8. (7Hz, 1H)
19 F NMR δ (ppm):
49.4 (s, 2F)
MS (intensity):
251 (33), 250 (100), 220 (21), 159 (36), 128 (26), 73 (58)
[NMR and MS data of α-difluoromethylquinoline]
19 F NMR δ (ppm):
47.5 (d, J = 56Hz, 2F)
MS (intensity):
179 (100), 129 (30), 128 (63), 101 (33)
Example 3
Magnesium (powder) (0.097 g, 4 mmol) was weighed into a 20 ml branched reactor, dried under reduced pressure with a vacuum pump, and purged with argon. Thereto were added dry DMF (5 ml) and TMSCl (1 ml, 8 mmol), and the reactor was placed in a sonicator for 20 minutes. Thereafter, dry triethylamine (0.15 ml, 1 mmol) and α-trifluoromethylpyridine (0.0738 g, 0.5 mmol) were added, and the mixture was stirred at normal pressure and room temperature for 30 minutes. The reaction mixture was filtered through celite using hexane, and the filtrate was washed 3 times with 10 ml of water to remove DMF. Hexane was distilled off and distilled under reduced pressure at 1 mmHg to obtain α-difluoromethylpyridine (2% in 19 F-NMR yield) and α-difluoro (trimethylsilyl) methylpyridine (56% in 19 F-NMR yield). It was.

〔実施例4〕
20mlの枝付反応器にマグネシウム (粉状)を(0.097g,4mmol)秤量し,真空ポンプで減圧乾燥させアルゴン置換した。そこに乾燥N−メチルピロリジノン(NMP)(5ml)およびTMSCl(1ml,8mmol)を加え反応器をソニケーターに20分かけた。その後,乾燥トリエチルアミン(0.15ml,1mmol)およびα−トリフルオロメチルピリジン(0.0738g,0.5mmol)加えて常圧、室温条件で30分攪拌した。反応混合液をヘキサンを用いてセライトでろ過し,ろ液を10mlの水で3回洗いNMPを取り除いた。ヘキサンを留去し,1mmHgで減圧蒸留し、α−ジフルオロメチルピリジン(19F−NMR収率で4%)およびα−ジフルオロ(トリメチルシリル)メチルピリジン(19F−NMR収率で46%)を得た。
Example 4
Magnesium (powder) (0.097 g, 4 mmol) was weighed into a 20 ml branched reactor, dried under reduced pressure with a vacuum pump, and purged with argon. Thereto were added dry N-methylpyrrolidinone (NMP) (5 ml) and TMSCl (1 ml, 8 mmol), and the reactor was placed in a sonicator for 20 minutes. Thereafter, dry triethylamine (0.15 ml, 1 mmol) and α-trifluoromethylpyridine (0.0738 g, 0.5 mmol) were added, and the mixture was stirred at normal pressure and room temperature for 30 minutes. The reaction mixture was filtered through celite using hexane, and the filtrate was washed 3 times with 10 ml of water to remove NMP. Hexane was distilled off and distilled under reduced pressure at 1 mmHg to obtain α-difluoromethylpyridine (4% in 19 F-NMR yield) and α-difluoro (trimethylsilyl) methylpyridine (46% in 19 F-NMR yield). It was.

〔実施例5〕
20mlの枝付反応器にマグネシウム (粉状)を(0.097g,4mmol)秤量し、真空ポンプで減圧乾燥させアルゴン置換した。そこに乾燥DMF(5ml)およびTMSCl(1ml,8mmol)を加え反応器をソニケーターに20分かけた。その後,乾燥トリエチルアミン(0.15ml,1mmol)およびα−トリフルオロメチルピリジン(0.0738g,0.5mmol)加えて常圧、55℃で30分攪拌した。反応混合液をヘキサンを用いてセライトでろ過し、ろ液を10mlの水で3回洗いDMFを取り除いた。ヘキサンを留去し、1mmHgで減圧蒸留し、α−ジフルオロメチルピリジン(19F−NMR収率で4%)およびα−ジフルオロ(シリル)メチルピリジン(19F−NMR収率で53%)を得た。
Example 5
Magnesium (powder) (0.097 g, 4 mmol) was weighed into a 20 ml branched reactor, dried under reduced pressure with a vacuum pump, and purged with argon. Thereto were added dry DMF (5 ml) and TMSCl (1 ml, 8 mmol), and the reactor was placed in a sonicator for 20 minutes. Thereafter, dry triethylamine (0.15 ml, 1 mmol) and α-trifluoromethylpyridine (0.0738 g, 0.5 mmol) were added and stirred at normal pressure and 55 ° C. for 30 minutes. The reaction mixture was filtered through celite using hexane, and the filtrate was washed 3 times with 10 ml of water to remove DMF. Hexane was distilled off and distilled under reduced pressure at 1 mmHg to obtain α-difluoromethylpyridine (4% in 19 F-NMR yield) and α-difluoro (silyl) methylpyridine (53% in 19 F-NMR yield). It was.

Claims (2)

一般式(1):
Figure 2008266242
(式中、R、R、R、Rは同一でも異なってもよく水素または一価の有機基を表し、R、R、R、Rのいずれかが互いに結合して二価以上の有機基を形成してもよい)で表されるトリフルオロメチル化合物を一般式(2):
(RSiX (2)
(式中、Rはそれぞれ独立にメチル基、エチル基、プロピル基、イソプロピル基またはフェニル基を表し、Xは塩素、臭素またはヨウ素を表す。)で表されるハロゲン化トリオルガノシランと低原子価金属と溶媒の存在下で反応させることを特徴とする一般式(3):
Figure 2008266242
(式中、Rはトリオルガノシリル基又は水素を表し、R、R、R、Rは前記のとおりである。)で表されるα-ジフルオロメチル複素環化合物の製造方法。
General formula (1):
Figure 2008266242
(In the formula, R 2 , R 3 , R 4 and R 5 may be the same or different and each represents hydrogen or a monovalent organic group, and any one of R 2 , R 3 , R 4 and R 5 is bonded to each other. A divalent or higher valent organic group) may be represented by the general formula (2):
(R 6 ) 3 SiX (2)
(Wherein R 6 independently represents a methyl group, an ethyl group, a propyl group, an isopropyl group or a phenyl group, and X represents chlorine, bromine or iodine) and a low atom General formula (3) characterized by reacting with a valent metal in the presence of a solvent:
Figure 2008266242
(Wherein, R 1 represents a triorganosilyl group or hydrogen, and R 2 , R 3 , R 4 , and R 5 are as described above).
前記α-ジフルオロメチル複素環化合物が、一般式(4):
Figure 2008266242
(式中、R、R、R、Rはそれぞれ式(1)のR、R、R、Rと同じ置換基を表す。)で表されるα-ジフルオロ(水素)メチル複素環化合物および一般式(5):
Figure 2008266242
(式中、Rは式(2)のRと同じ置換基を表し、R、R、R、Rはそれぞれ式(1)のR、R、R、Rと同じ置換基を表す。)で表されるα-ジフルオロ(シリル)メチル複素環化合物の混合物として得られる、請求項1の製造方法。
The α-difluoromethyl heterocyclic compound has the general formula (4):
Figure 2008266242
(Wherein, R 2, R 3, R 4, R R 2 5 each formula (1), R 3, R 4, represents the same substituent as R 5.) Represented by α- difluoro (hydrogen ) Methyl heterocyclic compounds and general formula (5):
Figure 2008266242
(Wherein, R 6 represents the same substituent as R 6 in formula (2), R 2, R 3, R 4, R 2 of the R 5 each formula (1), R 3, R 4, R 5 The production method according to claim 1, which is obtained as a mixture of α-difluoro (silyl) methyl heterocyclic compounds represented by:
JP2007113435A 2007-04-23 2007-04-23 Method for producing difluoromethyl heterocyclic compound Pending JP2008266242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007113435A JP2008266242A (en) 2007-04-23 2007-04-23 Method for producing difluoromethyl heterocyclic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007113435A JP2008266242A (en) 2007-04-23 2007-04-23 Method for producing difluoromethyl heterocyclic compound

Publications (1)

Publication Number Publication Date
JP2008266242A true JP2008266242A (en) 2008-11-06

Family

ID=40046245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007113435A Pending JP2008266242A (en) 2007-04-23 2007-04-23 Method for producing difluoromethyl heterocyclic compound

Country Status (1)

Country Link
JP (1) JP2008266242A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012167047A (en) * 2011-02-14 2012-09-06 Gunma Univ Method for producing difluoromethyl heteroaryl compound

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000229905A (en) * 1999-02-09 2000-08-22 Central Glass Co Ltd Production of difluoromethyl compound
JP2002047293A (en) * 2000-08-01 2002-02-12 Central Glass Co Ltd Method of preparing 2-trialkylsilyl 2,2-difluoroacetate
JP2005511665A (en) * 2001-11-29 2005-04-28 ユニバーシティ・オブ・サザン・カリフォルニア Preparation of fluorinated alkylsilanes mediated by magnesium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000229905A (en) * 1999-02-09 2000-08-22 Central Glass Co Ltd Production of difluoromethyl compound
JP2002047293A (en) * 2000-08-01 2002-02-12 Central Glass Co Ltd Method of preparing 2-trialkylsilyl 2,2-difluoroacetate
JP2005511665A (en) * 2001-11-29 2005-04-28 ユニバーシティ・オブ・サザン・カリフォルニア Preparation of fluorinated alkylsilanes mediated by magnesium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012167047A (en) * 2011-02-14 2012-09-06 Gunma Univ Method for producing difluoromethyl heteroaryl compound

Similar Documents

Publication Publication Date Title
JP3369558B2 (en) Phosphorus compound
CN116897158A (en) Method for preparing organic tin compound
JP2008266242A (en) Method for producing difluoromethyl heterocyclic compound
JPH0786115B2 (en) Method for producing halogenated silane containing tertiary hydrocarbon group
JP3869177B2 (en) Method for producing octafluoro [2,2] paracyclophane
JP3560905B2 (en) Method for producing 2-trialkylsilyl 2,2-difluoroacetic acid ester
JP4079539B2 (en) Method for producing difluoromethyl compound
JP4178369B2 (en) Method for producing silyl (meth) acrylate compound
JP5488786B2 (en) Process for producing azaboracyclopentene compound and synthetic intermediate thereof
JP4978762B2 (en) Method for producing cyclohex-3-en-1-ol derivative
JP2003261569A (en) Heterocyclic compound having ligand, method for producing the same, and metallic element-fixing film given by using the heterocyclic compound
JP2799619B2 (en) Method for producing N, 0-bis (t-butyldimethylsilyl) trifluoroacetamide
JP2011001305A (en) Process for producing azaboracyclopentene compound
JP3564530B2 (en) Method for producing tetrakis (diarylsilyl) benzene
JP4837199B2 (en) Novel biphenyl compound and method for producing the same
JP4113281B2 (en) Method for producing cyclopentenone derivative
JPS63135393A (en) Production of alkylsilyl cyanide
JP2000159714A (en) Production of para-benzyloxystyrene
JP2864985B2 (en) Method for producing tri (secondary alkyl) silane compound
JP2000026339A (en) Multiply substituted condensed polycyclic compound and its production
JP3750357B2 (en) Process for producing optically active β-hydroxyester derivative
JP2002212191A (en) Fluorine-containing diene compound
JP5423212B2 (en) Method for producing aminoazaboracyclopentene compound
JP2652248B2 (en) Process for producing alkoxynitrile compounds
JP4668573B2 (en) Method for producing ketene silyl acetal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100401

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120808