JP2008266202A - Method for producing aminoimidazole derivative - Google Patents

Method for producing aminoimidazole derivative Download PDF

Info

Publication number
JP2008266202A
JP2008266202A JP2007111041A JP2007111041A JP2008266202A JP 2008266202 A JP2008266202 A JP 2008266202A JP 2007111041 A JP2007111041 A JP 2007111041A JP 2007111041 A JP2007111041 A JP 2007111041A JP 2008266202 A JP2008266202 A JP 2008266202A
Authority
JP
Japan
Prior art keywords
formula
compound represented
substituent
group
derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007111041A
Other languages
Japanese (ja)
Other versions
JP5112737B2 (en
Inventor
Fumiyoshi Komatsu
史宜 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2007111041A priority Critical patent/JP5112737B2/en
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Priority to KR1020117015447A priority patent/KR101161602B1/en
Priority to EP08740560A priority patent/EP2138480B1/en
Priority to CN2012102958548A priority patent/CN102850277A/en
Priority to CN2008800120665A priority patent/CN101663266B/en
Priority to CN201210295851.4A priority patent/CN102850238B/en
Priority to PCT/JP2008/057490 priority patent/WO2008133169A1/en
Priority to KR1020097021314A priority patent/KR101132590B1/en
Priority to AT08740560T priority patent/ATE528283T1/en
Priority to KR1020117015448A priority patent/KR101156497B1/en
Priority to US12/450,730 priority patent/US8273899B2/en
Publication of JP2008266202A publication Critical patent/JP2008266202A/en
Priority to US13/363,091 priority patent/US8785654B2/en
Priority to US13/363,062 priority patent/US8258333B2/en
Application granted granted Critical
Publication of JP5112737B2 publication Critical patent/JP5112737B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an aminoimidazole derivative, by which the aminoimidazole derivative can be obtained from a diaminomaleonitrile as a starting substance. <P>SOLUTION: This method for producing the aminoimidazole derivative represented by the formula (wherein, R<SP>1</SP>and R<SP>3</SP>are each independently H, an alkyl group which may have one or more substituents, or an aryl group which may have one or more substituents; R<SP>4</SP>is -CN or -CONH<SB>2</SB>) comprises a process for reacting a diaminomaleonitrile with an ortho carboxylic acid triester in the presence of a strong acid to obtain an alkyl N-(2-amino-1,2-dicyanovinyl)formimidate derivative, a process for reacting the formimidate derivative with ammonia water, an aqueous amine solution or the like to obtain an N-(2-amino-1,2-dicyanovinyl)formamidine derivative, and a process for cyclizing the formamidine derivative in the presence of a basic aqueous solution, each in the presence of an aprotonic organic solvent. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、アミノイミダゾール誘導体の製造方法に関する。さらに詳細には、ジアミノマレオニトリルを出発物質として、式(V)で表されるアミノイミダゾール誘導体を高収率で得ることができる製造方法に関する。   The present invention relates to a method for producing an aminoimidazole derivative. More specifically, the present invention relates to a production method capable of obtaining an aminoimidazole derivative represented by the formula (V) in a high yield using diaminomaleonitrile as a starting material.

Figure 2008266202
(式(V)中、R1、およびR3は、それぞれ独立に、水素原子、置換基を有してもよいアルキル基、または置換基を有してもよいアリール基である。R4は、−CN、または−CONH2である。)
Figure 2008266202
(In Formula (V), R 1 and R 3 are each independently a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent. R 4 is , -CN, or -CONH 2.)

式(V)で表されるアミノイミダゾール誘導体の一種である、1H−4(5)−アミノイミダゾール−5(4)−カルボキサミド類(以下、AICAと略すことがある。)や、4(5)−アミノ−1H−イミダゾール−5(4)−カルボニトリル類(以下、AICNと略すことがある。)は、抗がん剤ダカルバジン(dacarbazine)及びテモゾロミド(temozoromide)、肝臓保護薬ウラザミド(urazamide)を製造するための有用な中間原料である。   1H-4 (5) -aminoimidazole-5 (4) -carboxamides (hereinafter sometimes abbreviated as AICA), which is a kind of aminoimidazole derivatives represented by the formula (V), and 4 (5). -Amino-1H-imidazole-5 (4) -carbonitriles (hereinafter sometimes abbreviated as AICN) include anticancer drugs dacarbazine and temozoromide, and hepatoprotective drug urazamide. It is a useful intermediate material for manufacturing.

式(V)で表されるアミノイミダゾール誘導体の合成法として、例えば、4−ニトロイミダゾール−5−カルボキサミドを接触還元する方法、フェニルアゾマロンアミジンを蟻酸中で還元閉環する方法、α−アミノ−α−シアノアセトアミドを原料とする方法、プリン核を有する化合物を分解する方法などが知られている。しかし、これらは原料の入手容易さや操作の容易さの点で工業的利用に難点がある。   Examples of the method for synthesizing the aminoimidazole derivative represented by the formula (V) include a method in which 4-nitroimidazole-5-carboxamide is catalytically reduced, a method in which phenylazomalonamidine is reductively closed in formic acid, α-amino-α -A method using cyanoacetamide as a raw material, a method for decomposing a compound having a purine nucleus, and the like are known. However, these have difficulty in industrial use in terms of the availability of raw materials and the ease of operation.

工業原料として入手容易なジアミノマレオニトリル(以下、DAMNと略すことがある。)から4,5−ジシアノイミダゾールを合成(特公昭46−4373号公報)し、これを加水分解(特公昭41−21026号公報)して、1H−4(5)−シアノイミダゾール−5(4)−カルボキサミドを合成し、さらにそれをホフマン転位反応させて1H−4(5)−アミノイミダゾール−5(4)−カルボニトリルに変換(特公昭46−10889号公報)し、次いで、それを加水分解して1H−4(5)−アミノイミダゾール−5(4)−カルボキサミドを合成する方法が知られている。しかしながら、この合成法は収率が低い。   4,5-Dicyanoimidazole was synthesized from diaminomaleonitrile (hereinafter sometimes abbreviated as DAMN) which is easily available as an industrial raw material (Japanese Examined Patent Publication No. Sho 46-4373) and hydrolyzed (Japanese Examined Patent Publication No. Sho 41-21026). 1H-4 (5) -Cyanoimidazole-5 (4) -carboxamide, which is further subjected to Hofmann rearrangement reaction to give 1H-4 (5) -aminoimidazole-5 (4) -carboxamide. A method is known in which 1H-4 (5) -aminoimidazole-5 (4) -carboxamide is synthesized by converting it into a nitrile (Japanese Patent Publication No. 46-10889) and then hydrolyzing it. However, this synthesis method has a low yield.

非特許文献1において、N−(2−アミノ−1,2−ジシアノビニル)ホルムアミジンを閉環してAICNを合成できることが報告されている。また、非特許文献2および非特許文献3において、N−(2−アミノ−1,2−ジシアノビニル)−N’−置換−ホルムアミジンを閉環して1−置換−5−アミノイミダゾール−4−カルボニトリルを合成できることが報告されている。
B.L.Booth等(J.Chem.Soc.Perkin Trans.I,1990,1705) B.L.Booth等(J.Chem.Soc.Perkin Trans.I,1992,2120) B.L.Booth等(J.Chem.Soc.Perkin Trans.I,1995,669)
Non-Patent Document 1 reports that AICN can be synthesized by ring-closing N- (2-amino-1,2-dicyanovinyl) formamidine. In Non-Patent Document 2 and Non-Patent Document 3, N- (2-amino-1,2-dicyanovinyl) -N′-substituted-formamidine is closed to give 1-substituted-5-aminoimidazole-4- It has been reported that carbonitrile can be synthesized.
BLBooth et al. (J. Chem. Soc. Perkin Trans. I, 1990, 1705) BLBooth et al. (J. Chem. Soc. Perkin Trans. I, 1992, 2120) BLBooth et al. (J. Chem. Soc. Perkin Trans. I, 1995, 669)

特許文献1および特許文献2には、ジアミノマレオニトリルと、塩化水素と、イソブチロニトリルやシアン化水素とを有機溶媒中で反応させて、N−(2−アミノ−1,2−ジシアノビニル)ホルムアミジン誘導体(以下、AMDと略すことがある。)を得、AMDを水酸化ナトリウム水溶液で環化反応させ、AICNやAICAを合成する方法が開示されている。また、特許文献3には、ジアミノマレオニトリルと、ホルムアミドと、オキシ塩化リンとを、テトラヒドロフランなどの溶媒中で反応させて、AMDを得、該AMDの水溶液または水懸濁液に塩基性化合物を作用させて、AICNを合成する方法が開示されている。さらに特許文献4には、AMDを塩基性水溶液中で環化、加水分解してAICAを合成する方法が開示されている。   In Patent Document 1 and Patent Document 2, N- (2-amino-1,2-dicyanovinyl) form is prepared by reacting diaminomaleonitrile, hydrogen chloride, isobutyronitrile and hydrogen cyanide in an organic solvent. A method is disclosed in which an amidine derivative (hereinafter sometimes abbreviated as AMD) is obtained, and AMD is cyclized with an aqueous sodium hydroxide solution to synthesize AICN or AICA. In Patent Document 3, diaminomaleonitrile, formamide, and phosphorus oxychloride are reacted in a solvent such as tetrahydrofuran to obtain AMD, and a basic compound is added to an aqueous solution or suspension of AMD. A method of synthesizing AICN by acting is disclosed. Further, Patent Document 4 discloses a method of synthesizing AICA by cyclizing and hydrolyzing AMD in a basic aqueous solution.

特開2001−158776号公報JP 2001-158776 A WO04/035529WO04 / 035529 特開2002−155059号公報JP 2002-155059 A 特開2001−151760号公報JP 2001-151760 A

本発明の目的は、式(IV)で表される化合物及び/又はその塩を環化させて、式(V)で表されるアミノイミダゾール誘導体を高収率で得ることができる製造方法を提供することにある。
本発明の別の目的は、ジアミノマレオニトリルを出発物質として、式(V)で表されるアミノイミダゾール誘導体を高収率で得ることができる製造方法を提供することにある。
An object of the present invention is to provide a production method capable of obtaining an aminoimidazole derivative represented by the formula (V) in a high yield by cyclizing the compound represented by the formula (IV) and / or a salt thereof. There is to do.
Another object of the present invention is to provide a production method capable of obtaining an aminoimidazole derivative represented by the formula (V) in a high yield using diaminomaleonitrile as a starting material.

本発明者は、前記目的を達成するために鋭意検討した結果、式(IV)で表される化合物及び/又はその塩を塩基性水溶液の存在下に環化させる工程(C)において、アルコールなどのプロトン性有機溶媒を多量に用いると副生成物が生成しやすく、収率を高くすることに限界があることを見出した。そこで、本発明者は、式(IV)で表される化合物及び/又はその塩を塩基性水溶液の存在下に環化させる工程(C)において、非プロトン性有機溶媒を用いたところ、副生成物が大幅に減り、式(V)で表されるアミノイミダゾール誘導体が高収率で得られることを見出した。
また、ジアミノマレオニトリルと、式(I)で表される化合物とを、強酸の存在下で反応させて、式(II)で表される化合物を得る工程(A)、 式(II)で表される化合物と、式(III)で表される化合物とを、反応させて、式(IV)で表される化合物及び/又はその塩を得る工程(B)、 および式(IV)で表される化合物及び/又はその塩を塩基性水溶液の存在下に環化させる工程(C)のいずれにおいても、非プロトン性有機溶媒を用いることによって、ジアミノマレオニトリルから式(V)で表されるアミノイミダゾール誘導体を短時間に高収率でワンポット合成できることを見出した。本発明はこれらの知見に基づいてさらに検討した結果完成したものである。
As a result of intensive studies to achieve the above object, the present inventor, in the step (C) of cyclizing the compound represented by the formula (IV) and / or a salt thereof in the presence of a basic aqueous solution, alcohol and the like When a large amount of the protic organic solvent is used, a by-product is easily generated, and it has been found that there is a limit to increasing the yield. Accordingly, the present inventor used an aprotic organic solvent in the step (C) of cyclizing the compound represented by the formula (IV) and / or a salt thereof in the presence of a basic aqueous solution to produce a by-product. It was found that the product was greatly reduced and the aminoimidazole derivative represented by the formula (V) was obtained in high yield.
In addition, a process represented by formula (II) in which the compound represented by formula (II) is obtained by reacting diaminomaleonitrile with a compound represented by formula (I) in the presence of a strong acid. The compound represented by formula (III) and the compound represented by formula (IV) and / or a salt thereof are reacted with the compound represented by formula (III), and the formula (IV) In any of the steps (C) in which the compound and / or the salt thereof are cyclized in the presence of a basic aqueous solution, an amino compound represented by the formula (V) is obtained from diaminomaleonitrile by using an aprotic organic solvent. It was found that imidazole derivatives can be synthesized in a single pot in a short time with a high yield. The present invention has been completed as a result of further studies based on these findings.

すなわち、本発明は、以下の態様を含む。
(1) 式(IV)で表される化合物及び/又はその塩を塩基性水溶液の存在下に環化させる工程(C)を、非プロトン性有機溶媒の存在下で行うことを含む、 式(V)で表されるアミノイミダゾール誘導体の製造方法。
That is, the present invention includes the following aspects.
(1) The step (C) of cyclizing the compound represented by the formula (IV) and / or a salt thereof in the presence of a basic aqueous solution is performed in the presence of an aprotic organic solvent. A process for producing an aminoimidazole derivative represented by V).

Figure 2008266202
(式(IV)中、R1およびR3は、それぞれ独立に、水素原子、置換基を有してもよいアルキル基、または置換基を有してもよいアリール基である。)
Figure 2008266202
(In Formula (IV), R 1 and R 3 are each independently a hydrogen atom, an alkyl group that may have a substituent, or an aryl group that may have a substituent.)

Figure 2008266202
(式(V)中、R1およびR3は、式(IV)中のものと同じものを表す。R4は、−CN、または−CONH2である。)
Figure 2008266202
(In formula (V), R 1 and R 3 represent the same as those in formula (IV). R 4 is —CN or —CONH 2. )

(2) ジアミノマレオニトリルと、式(I)で表される化合物とを、強酸の存在下で反応させて、式(II)で表される化合物を得る工程(A)、
CR1(OR23 (I)
(式(I)中、R1は、水素原子であり、R2は、それぞれ独立に、置換基を有してもよいアルキル基、または置換基を有してもよいアリール基である。)
(2) Step (A) of obtaining a compound represented by the formula (II) by reacting a diaminomaleonitrile with a compound represented by the formula (I) in the presence of a strong acid.
CR 1 (OR 2 ) 3 (I)
(In Formula (I), R 1 is a hydrogen atom, and each R 2 is independently an alkyl group that may have a substituent, or an aryl group that may have a substituent.)

Figure 2008266202
(式(II)中、R1およびR2は、式(I)中のものと同じものを表す。)

式(II)で表される化合物と、式(III)で表される化合物とを、反応させて、式(IV)で表される化合物及び/又はその塩を得る工程(B)、
NH23 (III)
(式(III)中、R3は、水素原子、置換基を有してもよいアルキル基、または置換基を有してもよいアリール基である。)
Figure 2008266202
(In formula (II), R 1 and R 2 represent the same as those in formula (I).)

A step (B) of obtaining a compound represented by formula (IV) and / or a salt thereof by reacting a compound represented by formula (II) with a compound represented by formula (III);
NH 2 R 3 (III)
(In Formula (III), R 3 is a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent.)

Figure 2008266202
(式(IV)中、R1は、式(I)中のものと同じものを表す。R3は式(III)中のものと同じものを表す。)
および
式(IV)で表される化合物及び/又はその塩を塩基性水溶液の存在下に環化させる工程(C)を、いずれも、
非プロトン性有機溶媒の存在下で行うことを含む、式(V)で表されるアミノイミダゾール誘導体の製造方法。
Figure 2008266202
(In formula (IV), R 1 represents the same as in formula (I). R 3 represents the same as in formula (III).)
And the step (C) of cyclizing the compound represented by the formula (IV) and / or a salt thereof in the presence of a basic aqueous solution,
The manufacturing method of the aminoimidazole derivative represented by Formula (V) including performing in presence of an aprotic organic solvent.

Figure 2008266202
(式(V)中、R1は式(I)中のものと同じものを表す。R3は式(III)中のものと同じものを表す。R4は、−CN、または−CONH2である。)
Figure 2008266202
(In formula (V), R 1 represents the same as in formula (I). R 3 represents the same as in formula (III). R 4 represents —CN or —CONH 2. .)

(3) 強酸がトリフルオロ酢酸、メタンスルホン酸、p−トルエンスルホン酸または濃硫酸である前記のアミノイミダゾール誘導体の製造方法。
(4) 工程(B)を、式(II)で表される化合物の非プロトン性有機溶媒溶液もしくは懸濁液と、式(III)で表される化合物の水溶液とを混合することによって、行う、前記のアミノイミダゾール誘導体の製造方法。
(5) 非プロトン性有機溶媒がテトラヒドロフランである、前記のアミノイミダゾール誘導体の製造方法。
(3) The method for producing the aminoimidazole derivative, wherein the strong acid is trifluoroacetic acid, methanesulfonic acid, p-toluenesulfonic acid or concentrated sulfuric acid.
(4) The step (B) is performed by mixing an aprotic organic solvent solution or suspension of the compound represented by the formula (II) with an aqueous solution of the compound represented by the formula (III). , A method for producing the aminoimidazole derivative.
(5) The said aminoimidazole derivative manufacturing method whose aprotic organic solvent is tetrahydrofuran.

本発明の製造方法によって、副生成物が大幅に減り、式(V)で表されるアミノイミダゾール誘導体が高収率で得られる。本発明の製造方法では、出発原料であるジアミノマレオニトリルから、式(V)で表されるアミノイミダゾール誘導体を得るまでの各工程で使用する溶媒を、非プロトン性有機溶媒で統一できるので、ジアミノマレオニトリルから、式(V)で表されるアミノイミダゾール誘導体を短時間に高収率でワンポット合成できる。   By the production method of the present invention, by-products are greatly reduced, and an aminoimidazole derivative represented by the formula (V) is obtained in high yield. In the production method of the present invention, the solvent used in each step until the aminoimidazole derivative represented by the formula (V) is obtained from the starting material diaminomaleonitrile can be unified with the aprotic organic solvent. The aminoimidazole derivative represented by the formula (V) can be synthesized from maleonitrile in a short time with a high yield in one pot.

本発明の製造方法の出発物質である、ジアミノマレオニトリル(DAMN)は、青酸の四量化反応から容易に合成することができ、また工業的に入手可能な化合物である。   Diaminomaleonitrile (DAMN), which is a starting material of the production method of the present invention, can be easily synthesized from a tetramerization reaction of cyanic acid, and is an industrially available compound.

式(I)で表される化合物は、オルト蟻酸トリエステル、オルト酢酸トリエステルなどとして知られるオルトカルボン酸トリエステルである。これらは工業的に入手可能な化合物である。   The compound represented by the formula (I) is orthocarboxylic acid triester known as orthoformate triester, orthoacetate triester and the like. These are industrially available compounds.

式(I)中のR1は、水素原子、置換基を有してもよいアルキル基、または置換基を有してもよいアリール基である。
置換基を有してもよいアルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、ペンチル基、ヘキシル基、n−デシル基、メトキシメチル基、メチルチオメチル基、2−ヒドロキシエチル基、2−ヒドロキシプロピル基、4−アセトキシ−3−アセトキシメチル−ブチル基、4−ヒドロキシ−3−ヒドロキシメチル−ブチル基、2−ヒドロキシエトキシメチル基、2−ヒドロキシ−1−ヒドロキシメチル−エトキシメチル基、4−ヒドロキシ−2−ヒドロキシメチル−ブチル基、5−(N−メチルカルバモイルオキシ)ブチル基、ヒドロキシカルボニルメチル基、2−クロロエチル基、2−ジメチルアミノエチル基、N−置換−2−アスパラギル基などが挙げられる。
R 1 in formula (I) is a hydrogen atom, an alkyl group that may have a substituent, or an aryl group that may have a substituent.
Examples of the alkyl group that may have a substituent include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, a pentyl group, a hexyl group, and an n-decyl group. , Methoxymethyl group, methylthiomethyl group, 2-hydroxyethyl group, 2-hydroxypropyl group, 4-acetoxy-3-acetoxymethyl-butyl group, 4-hydroxy-3-hydroxymethyl-butyl group, 2-hydroxyethoxymethyl Group, 2-hydroxy-1-hydroxymethyl-ethoxymethyl group, 4-hydroxy-2-hydroxymethyl-butyl group, 5- (N-methylcarbamoyloxy) butyl group, hydroxycarbonylmethyl group, 2-chloroethyl group, 2 -Dimethylaminoethyl group, N-substituted-2-asparagyl group and the like.

置換基を有してもよいアリール基としては、フェニル基、4−メチルフェニル基、4−クロロフェニル基、2,3−ジメチルフェニル基、3,5−ジメチルフェニル基、2,6−ジメチルフェニル基、4−メトキシフェニル基、3−フェノキシフェニル基、4−フェニルフェニル基、4−(2−クロロフェニル)フェニル基、4−(3−イソオキサゾリルフェニル)フェニル基、3−ベンジルフェニル基、2−ピリジルメチルフェニル基などが挙げられる。これらのうち、R1は、工程(B)のアミジン化反応の効率を考慮すると水素原子が好ましい。R1がメチル基やフェニル基であるときは工程(C)の環化反応時にジシアノイミダゾール誘導体の生成が優先的になる。 As the aryl group which may have a substituent, a phenyl group, 4-methylphenyl group, 4-chlorophenyl group, 2,3-dimethylphenyl group, 3,5-dimethylphenyl group, 2,6-dimethylphenyl group 4-methoxyphenyl group, 3-phenoxyphenyl group, 4-phenylphenyl group, 4- (2-chlorophenyl) phenyl group, 4- (3-isoxazolylphenyl) phenyl group, 3-benzylphenyl group, 2 -A pyridylmethylphenyl group etc. are mentioned. Among these, R 1 is preferably a hydrogen atom in consideration of the efficiency of the amidine reaction in the step (B). When R 1 is a methyl group or a phenyl group, formation of a dicyanoimidazole derivative is preferential during the cyclization reaction in step (C).

式(I)中のR2は、それぞれ独立に、置換基を有してもよいアルキル基、または置換基を有してもよいアリール基である。R2における、置換基を有してもよいアルキル基、または置換基を有してもよいアリール基の具体例としては、上記R1で例示したものと同様のものが挙げられる。式(I)中のR2は、すべて同じものであってもよいし、異なっていてもよい。本発明の製法によると、式(I)中のR2に由来するアルコール(R2OH)が副生する。副生するアルコールを効率的に除去回収しやすいという観点から、R2としては、C1〜C5のアルキル基が好ましく、メチル基又はエチル基が最も好ましい。 R 2 in the formula (I) is each independently an alkyl group which may have a substituent or an aryl group which may have a substituent. Specific examples of the alkyl group which may have a substituent or the aryl group which may have a substituent in R 2 include the same as those exemplified for R 1 above. R 2 in formula (I) may all be the same or different. According to the production method of the present invention, alcohol (R 2 OH) derived from R 2 in formula (I) is by-produced. R 2 is preferably a C1-C5 alkyl group, and most preferably a methyl group or an ethyl group, from the viewpoint that it is easy to efficiently remove and recover by-produced alcohol.

工程(A)では、ジアミノマレオニトリルと、式(I)で表される化合物とを、強酸の存在下で反応させて、式(II)で表される化合物を得る。
式(I)で表される化合物は、DAMNに対して、通常1〜2当量、好ましくは1.05〜1.3当量を使用して反応させる。
In step (A), diaminomaleonitrile and a compound represented by formula (I) are reacted in the presence of a strong acid to obtain a compound represented by formula (II).
The compound represented by the formula (I) is reacted with 1 to 2 equivalents, preferably 1.05 to 1.3 equivalents, with respect to DAMN.

工程(A)に用いられる強酸は、水溶液中でほとんど完全に電離する酸である。具体的には硫酸、臭化水素酸、沃化水素酸、硝酸、塩酸、過塩素酸;メタンスルホン酸、p−トルエンスルホン酸、トリフルオロ酢酸、トルフルオロメタンスルホン酸などが挙げられる。炭酸、酢酸、硼酸、硫化水素などの弱酸は、本発明の製造方法には適さない。強酸の使用量は、DAMNに対して0.2〜0.5モル%が好ましい。強酸の量が多くなりすぎると、副生成物の量が増加傾向になる。   The strong acid used in the step (A) is an acid that is almost completely ionized in an aqueous solution. Specific examples include sulfuric acid, hydrobromic acid, hydroiodic acid, nitric acid, hydrochloric acid, perchloric acid; methanesulfonic acid, p-toluenesulfonic acid, trifluoroacetic acid, trifluoromethanesulfonic acid, and the like. Weak acids such as carbonic acid, acetic acid, boric acid and hydrogen sulfide are not suitable for the production method of the present invention. The amount of strong acid used is preferably 0.2 to 0.5 mol% with respect to DAMN. If the amount of strong acid is too large, the amount of by-products tends to increase.

工程(A)は非プロトン性有機溶媒の存在下で行うことが好ましい。非プロトン性有機溶媒は、プロトン供与性を持たない溶媒である。工程(A)において使用する非プロトン性有機溶媒の量はDAMN1モルに対して、通常0.1〜1L、好ましくは0.1〜0.3Lである。非プロトン性有機溶媒としては、テトラヒドロフラン、ジオキサン、ジエチルエーテル、ジエチレングリコールジメチルエーテルなどのエーテル;アセトンなどのケトンが挙げられる。これらのうち、テトラヒドロフランが好ましい。   The step (A) is preferably performed in the presence of an aprotic organic solvent. An aprotic organic solvent is a solvent that does not have proton donating properties. The amount of the aprotic organic solvent used in the step (A) is usually 0.1 to 1 L, preferably 0.1 to 0.3 L, with respect to 1 mol of DAMN. Examples of the aprotic organic solvent include ethers such as tetrahydrofuran, dioxane, diethyl ether and diethylene glycol dimethyl ether; ketones such as acetone. Of these, tetrahydrofuran is preferred.

工程(A)では、DAMNと式(I)で表される化合物との反応において強酸が存在すればよく、合成原料の添加順序、添加速度など特に制限されない。工程(A)では、通常、先ず反応器に溶媒を仕込み、それに所定量のDAMNおよび式(I)で表される化合物を一緒にまたは別々に添加し、次いで強酸を添加する。強酸添加後、所定の温度に維持し、反応させる。   In the step (A), it is sufficient that a strong acid is present in the reaction between DAMN and the compound represented by the formula (I), and there are no particular limitations on the order of addition and the addition rate of the synthetic raw materials. In step (A), usually the solvent is first charged to the reactor, to which a predetermined amount of DAMN and the compound of formula (I) are added together or separately, and then the strong acid is added. After adding the strong acid, the reaction is maintained at a predetermined temperature.

工程(A)における反応温度は特に制限されないが、低温すぎると反応が遅く製造に長時間を要するようになり、高温すぎると4,5−ジシアノイミダゾールなどの副生成物が増加し、純度が低下傾向になる。したがって、反応温度は、通常、室温(20℃前後)から溶媒還流温度までの温度、好ましくは30〜50℃である。また、反応時間は1時間以内であることが好ましい。反応時間が長くなりすぎると副生成物が増加し、純度が低下傾向になる。 工程(A)で得られた、式(II)で表される化合物が含まれる反応液は、そのまま工程(B)に供することができる。   The reaction temperature in step (A) is not particularly limited, but if the temperature is too low, the reaction is slow and requires a long time for production. If the temperature is too high, byproducts such as 4,5-dicyanoimidazole increase and the purity decreases. Become a trend. Therefore, the reaction temperature is usually from room temperature (around 20 ° C.) to the solvent reflux temperature, preferably 30 to 50 ° C. The reaction time is preferably within 1 hour. If the reaction time is too long, by-products increase and the purity tends to decrease. The reaction liquid containing the compound represented by the formula (II) obtained in the step (A) can be directly used for the step (B).

工程(B)では、式(II)で表される化合物と、式(III)で表される化合物とを、反応させて、式(IV)で表される化合物及び/又はその塩を得る。工程(B)は工程(A)と同様に非プロトン性有機溶媒の存在下で行うことが好ましい。
NH23 (III)
式(III)中、R3は、水素原子、置換基を有してもよいアルキル基、または置換基を有してもよいアリール基である。R3における、置換基を有してもよいアルキル基、または置換基を有してもよいアリール基の具体例としては、上記R1で例示したものと同様のものが挙げられる。
In step (B), a compound represented by formula (II) and a compound represented by formula (III) are reacted to obtain a compound represented by formula (IV) and / or a salt thereof. The step (B) is preferably performed in the presence of an aprotic organic solvent as in the step (A).
NH 2 R 3 (III)
In Formula (III), R 3 is a hydrogen atom, an alkyl group that may have a substituent, or an aryl group that may have a substituent. Specific examples of the alkyl group which may have a substituent or the aryl group which may have a substituent in R 3 include the same as those exemplified for R 1 above.

工程(B)は、式(II)で表される化合物の非プロトン性有機溶媒溶液もしくは懸濁液と、式(III)で表される化合物の水溶液とを混合して、次いで所定の温度に維持して、行うことが好ましい。
式(II)で表される化合物の非プロトン性有機溶媒溶液もしくは懸濁液として工程(A)で得られた反応液をそのまま使用することによってワンポット合成をすることができる。
In the step (B), an aprotic organic solvent solution or suspension of the compound represented by the formula (II) is mixed with an aqueous solution of the compound represented by the formula (III), and then the mixture is brought to a predetermined temperature. It is preferable to carry out while maintaining.
One-pot synthesis can be carried out by using the reaction solution obtained in step (A) as it is as an aprotic organic solvent solution or suspension of the compound represented by formula (II).

式(III)で表される化合物の水溶液は、式(II)で表される化合物に対して、式(III)で表される化合物が、好ましく1〜10当量、より好ましくは3〜6当量になるように添加する。
式(III)で表される化合物の具体例としては、アンモニア;メチルアミン、エチルアミンなどのアミン類;メタノールアミン、エタノールアミン、プロパノールアミン、イソプロパノールアミンなどのアルカノールアミン等が挙げられる。
In the aqueous solution of the compound represented by the formula (III), the compound represented by the formula (III) is preferably 1 to 10 equivalents, more preferably 3 to 6 equivalents with respect to the compound represented by the formula (II). Add to be.
Specific examples of the compound represented by the formula (III) include ammonia; amines such as methylamine and ethylamine; alkanolamines such as methanolamine, ethanolamine, propanolamine and isopropanolamine.

工程(B)における反応温度は特に制限されないが、低温すぎると反応が遅く製造に長時間を要するようになり、高温すぎると副生成物が増加し、純度が低下傾向になる。したがって、反応温度は、通常、0〜50℃、好ましくは10〜30℃である。また、反応時間は1時間以内であることが好ましい。反応時間が長くなりすぎると副生成物が増加し、純度が低下傾向になる。 工程(B)で得られた、式(IV)で表される化合物及び/又はその塩が含まれる反応液は、そのまま工程(C)に供することができる。   The reaction temperature in the step (B) is not particularly limited, but if the temperature is too low, the reaction is slow and requires a long time for production. If the temperature is too high, by-products increase and the purity tends to decrease. Therefore, reaction temperature is 0-50 degreeC normally, Preferably it is 10-30 degreeC. The reaction time is preferably within 1 hour. If the reaction time is too long, by-products increase and the purity tends to decrease. The reaction liquid containing the compound represented by the formula (IV) and / or a salt thereof obtained in the step (B) can be directly used for the step (C).

工程(C)では、式(IV)で表される化合物及び/又はその塩を塩基性水溶液の存在下に環化させる。工程(C)は非プロトン性有機溶媒の存在下で行う。この環化反応によって式(V)で表される化合物が得られる。
塩基性水溶液は塩基性化合物を水に溶解させたものである。塩基性化合物としては、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物;アンモニア、アミンなどが挙げられる。これらのうちアルカリ金属水酸化物が好ましい。
In step (C), the compound represented by formula (IV) and / or a salt thereof is cyclized in the presence of a basic aqueous solution. Step (C) is performed in the presence of an aprotic organic solvent. By this cyclization reaction, a compound represented by the formula (V) is obtained.
A basic aqueous solution is obtained by dissolving a basic compound in water. Examples of the basic compound include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; ammonia and amines. Of these, alkali metal hydroxides are preferred.

塩基性水溶液を、式(IV)で表される化合物及び/又はその塩に対して、塩基性化合物が、好ましくは1〜3当量、より好ましくは1.5〜2.5当量になるように添加し、工程(C)における反応温度を、好ましくは0〜50℃、より好ましくは0〜30℃にすると環化反応が進み、R4が−CNの誘導体(AICN)が得られる。
塩基性水溶液を、式(IV)で表される化合物及び/又はその塩に対して、塩基性化合物が、好ましくは3〜5当量になるように添加し、工程(C)における反応温度を溶媒還流温度にすると環化加水分解反応が進み、R4が−CONH2の誘導体(AICA)が得られる。
The basic aqueous solution is preferably 1 to 3 equivalents, more preferably 1.5 to 2.5 equivalents, relative to the compound represented by formula (IV) and / or a salt thereof. When the reaction temperature in step (C) is preferably 0 to 50 ° C., more preferably 0 to 30 ° C., the cyclization reaction proceeds and a derivative (AICN) in which R 4 is —CN is obtained.
The basic aqueous solution is added so that the basic compound is preferably 3 to 5 equivalents with respect to the compound represented by the formula (IV) and / or a salt thereof, and the reaction temperature in the step (C) is set as the solvent. When the reflux temperature is reached, a cyclization hydrolysis reaction proceeds, and a derivative (AICA) in which R 4 is —CONH 2 is obtained.

工程(C)完了後、式(V)で表される化合物を精製することができる。精製方法としては、例えば、工程(C)で得られた反応液に塩酸などの酸を添加し、塩酸塩等にして抽出または濃縮する方法が挙げられる。また、特開2004−75610号公報に記載されるように、上記抽出液に活性炭などの脱色剤を添加して脱色処理する方法が挙げられる。   After completion of step (C), the compound represented by formula (V) can be purified. Examples of the purification method include a method in which an acid such as hydrochloric acid is added to the reaction solution obtained in the step (C) to extract or concentrate to a hydrochloride or the like. Further, as described in JP-A No. 2004-75610, there is a method of adding a decoloring agent such as activated carbon to the extract and performing a decoloring treatment.

本発明の製造方法で得られた式(V)で表される化合物、特に1H−4(5)−アミノイミダゾール−5(4)−カルボキサミドや、4(5)−アミノ−1H−イミダゾール−5(4)−カルボニトリルは、抗がん剤ダカルバジン(dacarbazine)及びテモゾロミド(temozoromide)、肝臓保護薬ウラザミド(urazamide)を製造するための有用な中間原料として利用できる。   The compound represented by the formula (V) obtained by the production method of the present invention, particularly 1H-4 (5) -aminoimidazole-5 (4) -carboxamide and 4 (5) -amino-1H-imidazole-5 (4) -Carbonitrile can be used as a useful intermediate material for producing the anticancer agents dacarbazine and temozoromide, and the hepatoprotectant urazamide.

次に、本発明を、実施例および比較例を示して、より詳細に説明する。なお、本発明はこれら実施例に限定されるものではない。
実施例1(DAMN −> MMD −> AMD −> AICN)
容量3Lの四つ口フラスコにテトラヒドロフラン(THF) 400mLを仕込み、DAMN 219.1g(純度98.7%、2.00mol)、およびオルトギ酸トリメチル 254.7g(2.40mol)を加えた。この混合物にメタンスルホン酸 480mgを加え、40℃に維持して1時間攪拌し、MMDのスラリーを得た。
該MMDスラリーにTHF 200mLを加え、25%アンモニア水 545.0g(8.0mol)を加えて、30℃に維持して1時間攪拌した。
次に、25%水酸化ナトリウム水溶液 640.0g(4.0mol)を加え、30〜40℃の温度に維持して1時間攪拌して、AICNの反応液を得た。
得られた反応液からアンモニア分を減圧留去し、35%塩酸560g(5.4mol)を加えてpHを6に調整した。析出した黒色不溶物を濾過で取り除いた。
次いで、THF 1.2Lを加えてAICNの抽出操作を3回繰り返した。THF抽出液中のAICNを定量分析したところ、AICN含有量は169g(1.56mol)であった。
このTHF抽出液を濃縮し、次いで水を加えてTHFを留去し、AICN水溶液を得た。この水溶液に活性炭40gを加えて、50℃で30分間攪拌した。活性炭を濾別し、得られた濾液の重量が1000gになるように水を添加した。該液を徐々に冷却して、0〜5℃の温度を維持して30分間攪拌して結晶を析出させ、該結晶を濾過した。結晶を冷水300mLで洗浄し、40〜50℃で減圧乾燥し、AICNの結晶を146.2g(純度98.1%、収率66.4%)得た。
Next, the present invention will be described in more detail with reference to examples and comparative examples. The present invention is not limited to these examples.
Example 1 (DAMN->MMD->AMD-> AICN)
Tetrahydrofuran (THF) (400 mL) was charged into a 3 L capacity four-necked flask, and 219.1 g of DAMN (purity 98.7%, 2.00 mol) and 254.7 g (2.40 mol) of trimethyl orthoformate were added. To this mixture, 480 mg of methanesulfonic acid was added, and the mixture was stirred at 1 hour while maintaining at 40 ° C. to obtain a slurry of MMD.
To the MMD slurry, 200 mL of THF was added, 545.0 g (8.0 mol) of 25% aqueous ammonia was added, and the mixture was maintained at 30 ° C. and stirred for 1 hour.
Next, 640.0 g (4.0 mol) of a 25% aqueous sodium hydroxide solution was added, and the mixture was stirred for 1 hour while maintaining the temperature at 30 to 40 ° C. to obtain an AICN reaction solution.
The ammonia content was distilled off under reduced pressure from the resulting reaction solution, and 560 g (5.4 mol) of 35% hydrochloric acid was added to adjust the pH to 6. The precipitated black insoluble material was removed by filtration.
Subsequently, the extraction operation of AICN was repeated 3 times by adding 1.2 L of THF. When AICN in the THF extract was quantitatively analyzed, the AICN content was 169 g (1.56 mol).
The THF extract was concentrated, then water was added and the THF was distilled off to obtain an AICN aqueous solution. Activated carbon 40g was added to this aqueous solution, and it stirred at 50 degreeC for 30 minutes. Activated carbon was separated by filtration, and water was added so that the weight of the obtained filtrate became 1000 g. The liquid was gradually cooled, maintained at a temperature of 0 to 5 ° C. and stirred for 30 minutes to precipitate crystals, and the crystals were filtered. The crystals were washed with 300 mL of cold water and dried under reduced pressure at 40 to 50 ° C. to obtain 146.2 g of AICN crystals (purity 98.1%, yield 66.4%).

Figure 2008266202
Figure 2008266202

実施例2
容量200mLの四つ口フラスコにTHF 20mLを仕込み、DAMN 10.95g(純度98.7%、0.100mol)、およびオルトギ酸トリメチル 12.73g(0.120mol)を加えた。この混合物にメタンスルホン酸 27mgを加え、40℃に維持して1時間攪拌し、MMDスラリーを得た。
該MMDスラリーにTHF 15mLを加え、25%アンモニア水 27.25g(0.400mol)を加え、30℃に維持して1時間攪拌した。
次に、25%水酸化ナトリウム水溶液 32.00g(0.200mol)を加え、30〜40℃の温度で1時間攪拌してAICNの反応液を得た。
得られた反応液に35%塩酸 20.8g(0.20mol)を加えた。溶液中のAICNを定量分析したところ、AICNは9.43g(0.0872mol)含まれていた。
Example 2
20 mL of THF was charged into a 200 mL four-necked flask, and 10.95 g of DAMN (purity 98.7%, 0.100 mol) and 12.73 g (0.120 mol) of trimethyl orthoformate were added. 27 mg of methanesulfonic acid was added to this mixture, and the mixture was stirred for 1 hour while maintaining at 40 ° C. to obtain an MMD slurry.
15 mL of THF was added to the MMD slurry, 27.25 g (0.400 mol) of 25% aqueous ammonia was added, and the mixture was maintained at 30 ° C. and stirred for 1 hour.
Next, 32.00 g (0.200 mol) of 25% aqueous sodium hydroxide solution was added and stirred at a temperature of 30 to 40 ° C. for 1 hour to obtain an AICN reaction solution.
To the obtained reaction solution, 20.8 g (0.20 mol) of 35% hydrochloric acid was added. As a result of quantitative analysis of AICN in the solution, 9.43 g (0.0872 mol) of AICN was contained.

比較例
容量100mLの四つ口フラスコにMMD3.00g(20mmol)およびメタノール10mLを加え、MMDスラリーを得た。
該MMDスラリーにアンモニア1.77g(100mmol)のメタノール溶液10mLを加え、室温で3時間攪拌してAMDのスラリーを得た。
次に、25%水酸化ナトリウム水溶液 3.20g(20mmol)を加え、室温で20時間攪拌した。反応液をHPLCで分析したところ、面積比でAICN46%、DCI4%、式(VI)で表されるAIC−イミデート35%であった。
Comparative Example MMD 3.00 g (20 mmol) and methanol 10 mL were added to a four-necked flask with a capacity of 100 mL to obtain an MMD slurry.
To the MMD slurry, 10 mL of a methanol solution of 1.77 g (100 mmol) of ammonia was added and stirred at room temperature for 3 hours to obtain an AMD slurry.
Next, 3.20 g (20 mmol) of 25% aqueous sodium hydroxide solution was added, and the mixture was stirred at room temperature for 20 hours. When the reaction solution was analyzed by HPLC, the area ratio was 46% AICN, 4% DCI, and 35% AIC-imidate represented by the formula (VI).

Figure 2008266202
Figure 2008266202

実施例3
実施例1と同様にしてMMDスラリーを得た。該MMDスラリー(MMD9.0g(0.06mol)、THF60mL)にイソプロパノールアミン(R)4.89g(0.066mol)を5℃で加え、5〜10℃で4時間攪拌して式(IVa)で表される化合物の液を得た。
次に、25%水酸化ナトリウム水溶液 14.4g(90mmol)を10℃で10分間掛けて滴下し、滴下完了後、10℃で18時間攪拌した。得られた反応液に35%塩酸 11.8g(0.11mol)を加え、30分間攪拌した。反応液をHPLCで分析したところ、面積比で式(Va)で表されるAICN−(R)HPが82.0%含まれていた。
Example 3
An MMD slurry was obtained in the same manner as in Example 1. To the MMD slurry (MMD 9.0 g (0.06 mol), THF 60 mL), isopropanolamine (R) 4.89 g (0.066 mol) was added at 5 ° C., and the mixture was stirred at 5 to 10 ° C. for 4 hours. A liquid of the compound represented was obtained.
Next, 14.4 g (90 mmol) of 25% aqueous sodium hydroxide solution was added dropwise at 10 ° C. over 10 minutes. After completion of the addition, the mixture was stirred at 10 ° C. for 18 hours. To the obtained reaction solution, 11.8 g (0.11 mol) of 35% hydrochloric acid was added and stirred for 30 minutes. When the reaction solution was analyzed by HPLC, 82.0% of AICN- (R) HP represented by the formula (Va) in terms of area ratio was contained.

Figure 2008266202
Figure 2008266202

Figure 2008266202
実施例4
イソプロパノールアミン(R)をイソプロパノールアミン(S)に替えた他は実施例3と同様にして、式(IVb)で表される化合物および式(Vb)で表されるAICN−(S)HPを得た。HPLCで分析したところ、面積比で式(Vb)で表されるAICN−(S)HPが90.2%含まれていた。
Figure 2008266202
Example 4
A compound represented by the formula (IVb) and an AICN- (S) HP represented by the formula (Vb) were obtained in the same manner as in Example 3 except that the isopropanolamine (R) was replaced with the isopropanolamine (S). It was. When analyzed by HPLC, 90.2% of AICN- (S) HP represented by the formula (Vb) in terms of area ratio was contained.

Figure 2008266202
Figure 2008266202

Figure 2008266202
Figure 2008266202

以上の結果から、メタノールなどのプロトン性有機溶媒を用いた場合には、副反応が多く起きてアミノイミダゾール誘導体の収率が高くならない。一方、本発明に従って、テトラヒドロフランなどの非プロトン性溶媒を用いると、ジアミノマレオニトリルから式(V)で表されるアミノイミダゾール誘導体が高収率で得られることがわかる。   From the above results, when a protic organic solvent such as methanol is used, many side reactions occur and the yield of the aminoimidazole derivative does not increase. On the other hand, when an aprotic solvent such as tetrahydrofuran is used according to the present invention, it can be seen that the aminoimidazole derivative represented by the formula (V) can be obtained in high yield from diaminomaleonitrile.

Claims (5)

式(IV)で表される化合物及び/又はその塩を塩基性水溶液の存在下に環化させる工程(C)を、非プロトン性有機溶媒の存在下で行うことを含む、 式(V)で表されるアミノイミダゾール誘導体の製造方法。
Figure 2008266202
(式(IV)中、R1およびR3は、それぞれ独立に、水素原子、置換基を有してもよいアルキル基、または置換基を有してもよいアリール基である。)
Figure 2008266202
(式(V)中、R1およびR3は、式(IV)中のものと同じものを表す。R4は、−CN、または−CONH2である。)
The step (C) of cyclizing the compound represented by formula (IV) and / or a salt thereof in the presence of a basic aqueous solution, in the presence of an aprotic organic solvent; The manufacturing method of the aminoimidazole derivative represented.
Figure 2008266202
(In Formula (IV), R 1 and R 3 are each independently a hydrogen atom, an alkyl group that may have a substituent, or an aryl group that may have a substituent.)
Figure 2008266202
(In formula (V), R 1 and R 3 represent the same as those in formula (IV). R 4 is —CN or —CONH 2. )
ジアミノマレオニトリルと、式(I)で表される化合物とを、強酸の存在下で反応させて、式(II)で表される化合物を得る工程(A)、
CR1(OR23 (I)
(式(I)中、R1は、水素原子であり、R2は、それぞれ独立に、置換基を有してもよいアルキル基、または置換基を有してもよいアリール基である。)
Figure 2008266202
(式(II)中、R1およびR2は、式(I)中のものと同じものを表す。)

式(II)で表される化合物と、式(III)で表される化合物とを、反応させて、式(IV)で表される化合物及び/又はその塩を得る工程(B)、
NH23 (III)
(式(III)中、R3は、水素原子、置換基を有してもよいアルキル基、または置換基を有してもよいアリール基である。)
Figure 2008266202
(式(IV)中、R1は、式(I)中のものと同じものを表す。R3は式(III)中のものと同じものを表す。)
および
式(IV)で表される化合物及び/又はその塩を塩基性水溶液の存在下に環化させる工程(C)を、いずれも
非プロトン性有機溶媒の存在下で行うことを含む、式(V)で表されるアミノイミダゾール誘導体の製造方法。
Figure 2008266202
(式(V)中、R1は式(I)中のものと同じものを表す。R3は式(III)中のものと同じものを表す。R4は、−CN、または−CONH2である。)
A step of reacting diaminomaleonitrile with a compound represented by the formula (I) in the presence of a strong acid to obtain a compound represented by the formula (II), (A),
CR 1 (OR 2 ) 3 (I)
(In Formula (I), R 1 is a hydrogen atom, and each R 2 is independently an alkyl group that may have a substituent, or an aryl group that may have a substituent.)
Figure 2008266202
(In formula (II), R 1 and R 2 represent the same as those in formula (I).)

A step (B) of obtaining a compound represented by formula (IV) and / or a salt thereof by reacting a compound represented by formula (II) with a compound represented by formula (III);
NH 2 R 3 (III)
(In Formula (III), R 3 is a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent.)
Figure 2008266202
(In formula (IV), R 1 represents the same as in formula (I). R 3 represents the same as in formula (III).)
And the step (C) of cyclizing the compound represented by formula (IV) and / or a salt thereof in the presence of a basic aqueous solution, each in the presence of an aprotic organic solvent, A process for producing an aminoimidazole derivative represented by V).
Figure 2008266202
(In formula (V), R 1 represents the same as in formula (I). R 3 represents the same as in formula (III). R 4 represents —CN or —CONH 2. .)
強酸がトリフルオロ酢酸、メタンスルホン酸、p−トルエンスルホン酸または濃硫酸である請求項2に記載のアミノイミダゾール誘導体の製造方法。   The method for producing an aminoimidazole derivative according to claim 2, wherein the strong acid is trifluoroacetic acid, methanesulfonic acid, p-toluenesulfonic acid or concentrated sulfuric acid. 工程(B)を、式(II)で表される化合物の非プロトン性有機溶媒溶液もしくは懸濁液と、式(III)で表される化合物の水溶液とを混合することによって、行う、請求項2または3に記載のアミノイミダゾール誘導体の製造方法。   The step (B) is performed by mixing an aprotic organic solvent solution or suspension of the compound represented by the formula (II) with an aqueous solution of the compound represented by the formula (III). A process for producing the aminoimidazole derivative according to 2 or 3. 非プロトン性有機溶媒がテトラヒドロフランである、請求項1〜4のいずれかに記載のアミノイミダゾール誘導体の製造方法。   The manufacturing method of the aminoimidazole derivative in any one of Claims 1-4 whose aprotic organic solvent is tetrahydrofuran.
JP2007111041A 2007-04-19 2007-04-19 Method for producing aminoimidazole derivative Expired - Fee Related JP5112737B2 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP2007111041A JP5112737B2 (en) 2007-04-19 2007-04-19 Method for producing aminoimidazole derivative
US12/450,730 US8273899B2 (en) 2007-04-19 2008-04-17 Method for production of N-(2-amino-1,2-dicyanovinyl)imidates, method for production of N-(2-amino-1,2-dicyanovinyl)formamidine, and method for production of aminoimidazole derivatives
CN2012102958548A CN102850277A (en) 2007-04-19 2008-04-17 Method for production of aminoimidazole derivatives
CN2008800120665A CN101663266B (en) 2007-04-19 2008-04-17 Method for production of N-(2-amino-1,2-dicyanovinyl)imidate, method for production of N-(2-amino-1,2-dicyanovinyl)formamidine, and method for production of aminoimidazole derivative
CN201210295851.4A CN102850238B (en) 2007-04-19 2008-04-17 The manufacture method of N-(amino-1, the 2-dicyanoethenyl of 2-) carbonamidine
PCT/JP2008/057490 WO2008133169A1 (en) 2007-04-19 2008-04-17 Method for production of n-(2-amino-1,2-dicyanovinyl)imidate, method for production of n-(2-amino-1,2-dicyanovinyl)formamidine, and method for production of aminoimidazole derivative
KR1020117015447A KR101161602B1 (en) 2007-04-19 2008-04-17 Method for production of n-(2-amino-1,2-dicyanovinyl)formamidine
AT08740560T ATE528283T1 (en) 2007-04-19 2008-04-17 METHOD FOR PRODUCING N-(2-AMINO-1,2-DICYANOVINYL)IMIDATES AND METHOD FOR PRODUCING AMINOIMIDAZOLE DERIVATIVES
KR1020117015448A KR101156497B1 (en) 2007-04-19 2008-04-17 Method for production of aminoimidazole derivative
EP08740560A EP2138480B1 (en) 2007-04-19 2008-04-17 Method for production of n-(2-amino-1,2-dicyanovinyl)imidates and method for production of aminoimidazole derivatives
KR1020097021314A KR101132590B1 (en) 2007-04-19 2008-04-17 Method for production of n-2-amino-1,2-dicyanovinylimidate
US13/363,091 US8785654B2 (en) 2007-04-19 2012-01-31 Method for production of N-(2-amino-1,2-dicyanovinyl)imidates, method for production of N-(2-amino-1,2-dicyanovinyl)formamidine, and method for production of aminoimidazole derivatives
US13/363,062 US8258333B2 (en) 2007-04-19 2012-01-31 Method for production of N-(2-amino-1,2-dicyanovinyl)imidates, method for production of N-(2-amino-1,2-dicyanovinyl)formamidine, and method for production of aminoimidazole derivatives

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007111041A JP5112737B2 (en) 2007-04-19 2007-04-19 Method for producing aminoimidazole derivative

Publications (2)

Publication Number Publication Date
JP2008266202A true JP2008266202A (en) 2008-11-06
JP5112737B2 JP5112737B2 (en) 2013-01-09

Family

ID=40046211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007111041A Expired - Fee Related JP5112737B2 (en) 2007-04-19 2007-04-19 Method for producing aminoimidazole derivative

Country Status (1)

Country Link
JP (1) JP5112737B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001151760A (en) * 1999-11-19 2001-06-05 Nippon Soda Co Ltd Method for producing 1h-4(5)-aminoimidazole-5(4)- carboxamide
JP2001158776A (en) * 1999-09-20 2001-06-12 Nippon Soda Co Ltd Method for producing 1h-2-substituted-4(5)-amino-5(4)- carboxamide-imidazole
JP2001302609A (en) * 2000-04-18 2001-10-31 Nippon Soda Co Ltd Method for producing n-(2-amino-1,2-dicyanovinyl)formic acid derivative
JP2002155059A (en) * 2000-11-17 2002-05-28 Nippon Soda Co Ltd Method for producing 4-amino-5-cyanoimidazole derivative and intermediate thereof
WO2004035529A1 (en) * 2002-10-16 2004-04-29 Nippon Soda Co.,Ltd. Process for producing n-(2-amino-1,2-dicyanovinyl)formamidine
JP2008266200A (en) * 2007-04-19 2008-11-06 Nippon Soda Co Ltd Method for producing n-(2-amino-1,2-dicyanovinyl)imidates
JP2008266199A (en) * 2007-04-19 2008-11-06 Nippon Soda Co Ltd Method for producing n-(2-amino-1,2-dicyanovinyl)formamidine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001158776A (en) * 1999-09-20 2001-06-12 Nippon Soda Co Ltd Method for producing 1h-2-substituted-4(5)-amino-5(4)- carboxamide-imidazole
JP2001151760A (en) * 1999-11-19 2001-06-05 Nippon Soda Co Ltd Method for producing 1h-4(5)-aminoimidazole-5(4)- carboxamide
JP2001302609A (en) * 2000-04-18 2001-10-31 Nippon Soda Co Ltd Method for producing n-(2-amino-1,2-dicyanovinyl)formic acid derivative
JP2002155059A (en) * 2000-11-17 2002-05-28 Nippon Soda Co Ltd Method for producing 4-amino-5-cyanoimidazole derivative and intermediate thereof
WO2004035529A1 (en) * 2002-10-16 2004-04-29 Nippon Soda Co.,Ltd. Process for producing n-(2-amino-1,2-dicyanovinyl)formamidine
JP2008266200A (en) * 2007-04-19 2008-11-06 Nippon Soda Co Ltd Method for producing n-(2-amino-1,2-dicyanovinyl)imidates
JP2008266199A (en) * 2007-04-19 2008-11-06 Nippon Soda Co Ltd Method for producing n-(2-amino-1,2-dicyanovinyl)formamidine

Also Published As

Publication number Publication date
JP5112737B2 (en) 2013-01-09

Similar Documents

Publication Publication Date Title
JP5899092B2 (en) Method for producing hydantoin derivatives
JP4268871B2 (en) Method for producing pyrimidinone compounds and pharmaceutically acceptable salts thereof
KR20060052532A (en) Hydroxynaphthoic acid hydrazide compound and method for preparing the same
JP2016539168A (en) trans-8-chloro-5-methyl-1- [4- (pyridin-2-yloxy) -cyclohexyl] -5,6-dihydro-4H-2,3,5,10b-tetraaza-benzo [e] azulene and Synthesis of its crystalline form
JP5112737B2 (en) Method for producing aminoimidazole derivative
CN1238338C (en) Process for the preparation of 4(5)-amino-5(4)carboxamidoimidoimidazoles and intermediates thereof
US20030153728A1 (en) Modified safe and efficient process for the environmentally friendly synthesis of lmidoesters
WO2011001976A1 (en) Method for producing threo-3-(3,4-dihydroxyphenyl)-l-serine
EP2138480B1 (en) Method for production of n-(2-amino-1,2-dicyanovinyl)imidates and method for production of aminoimidazole derivatives
JP5004643B2 (en) Process for producing N- (2-amino-1,2-dicyanovinyl) formamidine
JP4790901B2 (en) Process for producing 4-amino-5-cyanoimidazole derivative and its intermediate
JP5064872B2 (en) Process for producing N- (2-amino-1,2-dicyanovinyl) imidates
JP4768109B2 (en) Process for producing 1H-2-substituted-4 (5) -amino-5 (4) -carboxamide-imidazole
RU2319694C1 (en) Method for preparing derivatives of 3-hydroxypyridine
JP2001151760A (en) Method for producing 1h-4(5)-aminoimidazole-5(4)- carboxamide
WO2014168211A1 (en) Method for producing 2-(4-tetrahydropyranyl)imidazole and/or acid salt thereof
JPS63165354A (en) Production of asymmetric cyanhydrin
JP2003231670A (en) Method for producing amino acid amide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5112737

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees