JP2008266152A - Nanosize tubular self-organized body comprised of hexaperihexabenzocoronene (hbc) derivative substituted with fluorine-containing group oriented in plane direction, and method for producing the same - Google Patents

Nanosize tubular self-organized body comprised of hexaperihexabenzocoronene (hbc) derivative substituted with fluorine-containing group oriented in plane direction, and method for producing the same Download PDF

Info

Publication number
JP2008266152A
JP2008266152A JP2007108165A JP2007108165A JP2008266152A JP 2008266152 A JP2008266152 A JP 2008266152A JP 2007108165 A JP2007108165 A JP 2007108165A JP 2007108165 A JP2007108165 A JP 2007108165A JP 2008266152 A JP2008266152 A JP 2008266152A
Authority
JP
Japan
Prior art keywords
group
hbc
solvent
fluorine
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007108165A
Other languages
Japanese (ja)
Other versions
JP4884284B2 (en
Inventor
Takematsu Kin
武松 金
Takanori Fukushima
孝典 福島
Takuzo Aida
卓三 相田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2007108165A priority Critical patent/JP4884284B2/en
Publication of JP2008266152A publication Critical patent/JP2008266152A/en
Application granted granted Critical
Publication of JP4884284B2 publication Critical patent/JP4884284B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nanosize tubular self-organized body obtained by self-association of a hexaperihexabenzocoronene (HBC) derivative oriented on the surface of a solution in the plane direction having a high aspect ratio and unique properties derived from a fluorine atom of its perfluoro group such as physiological activity and water/oil repellency, and a method for producing the same. <P>SOLUTION: The method for producing a nanosize tubular self-organized body oriented in the plane direction comprises causing a solution comprising at least one species of hexaperihexabenzocoronene (HBC) derivative substituted with a fluorine-containing group having a specific structure such as 2,5-bis[4'-(perfluorohexe-1-nyloxy)phenyl]-11,14-didodecyl-hexa-peri-hexabenzocoronene to contact with vapor of a solvent other than the solvent constituting the above solution. A self-organized body produced by the above method is disclosed. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、本発明の一般式(I)で表されるフッ素含有基で置換されたヘキサペリヘキサベンゾコロネン(HBC)誘導体が面方向に配向したチューブ状のナノサイズの自己集積体、及びその製造方法に関する。   The present invention relates to a tubular nano-sized self-assembled body in which hexaperihexabenzocoronene (HBC) derivatives substituted with a fluorine-containing group represented by the general formula (I) of the present invention are oriented in the plane direction, and It relates to a manufacturing method.

ナノスケールの分子集合体は、基礎科学ばかりでなく、分子デバイスなどへの応用的側面からも非常に注目されている。これらの分子集合体は、構成分子の特性や構造を反映したユニークな機能を発現することが期待されている。超分子化学はこれらのナノスケール構造体へのアプローチとして有力な手法であり、高度な高次構造を持つ分子集合体を構築する試みが盛んになされている。
一方、これらのナノスケールの構造体のうち、チューブ状物質に対する関心は、カーボンナノチューブの発見以来益々高まっている。例えば、カーボンナノチューブを用いた導電性偏光フィルム(特許文献1参照)、電極間の接続用の電子デバイス(特許文献2参照)、分散膜として発光体として用いるもの(特許文献3参照)などの電子デバイスとしてだけでなく、水素の貯蔵に使用するもの(特許文献4参照)のように吸着材料としての利用や、ピストンやコンロッドの材料として使用するもの(特許文献5及び6参照)などのように機械部品の材料として利用するなど広い分野での応用が期待されている。カーボンナノチューブは炭素原子で構成されるグラフェンシート構造が筒状に閉じたものであり、グラファイト材料をレーザー蒸発法やアーク放電法等により蒸発させ、金属触媒の存在下に凝縮させ製造されるが、触媒残査やアモルファスカーボンを含有するなどの不純物の存在や、バンドルの形成や密な絡み合いにより個々のチューブを取り出すことが困難であるなど、加工成形性に関して問題が多い。また、無機材料から構成されるナノスケールのチューブ状物質も多数知られているが、合成が容易で形状や機能を自由に設計でき、かつ加工性に富んだ、有機分子に基づく機能性ナノチューブの開発が待たれていた。
実際、低分子化合物の自己集積によるチューブ状の超分子集積体の形成は既に知られており、例えば、ある種の両親媒性物質(脂質、オリゴペプチド、ポリマー等)を用いることにより、繊維状またはその他の形状の集積体が生成することが報告されている。
Nanoscale molecular assemblies are attracting a great deal of attention not only from basic science, but also from the application aspect of molecular devices. These molecular assemblies are expected to exhibit unique functions that reflect the characteristics and structure of the constituent molecules. Supramolecular chemistry is a promising approach to these nanoscale structures, and many attempts have been made to construct molecular assemblies with highly advanced structures.
On the other hand, among these nanoscale structures, interest in tubular materials has been increasing since the discovery of carbon nanotubes. For example, electrons such as a conductive polarizing film using carbon nanotubes (see Patent Document 1), an electronic device for connection between electrodes (see Patent Document 2), and a dispersion film used as a light emitter (see Patent Document 3) Not only as a device, but also used as an adsorbing material such as one used for hydrogen storage (see Patent Document 4) or used as a material for pistons or connecting rods (see Patent Documents 5 and 6) It is expected to be used in a wide range of fields, such as being used as a material for machine parts. The carbon nanotube is a graphene sheet structure composed of carbon atoms closed in a cylindrical shape, and is produced by evaporating the graphite material by a laser evaporation method or an arc discharge method and condensing it in the presence of a metal catalyst. There are many problems regarding processability, such as the presence of impurities such as catalyst residues and amorphous carbon, and difficulty in taking out individual tubes due to bundle formation and close entanglement. Many nanoscale tubular materials composed of inorganic materials are also known, but functional nanotubes based on organic molecules that are easy to synthesize, can be freely designed in shape and function, and are rich in processability. Development was awaited.
In fact, the formation of tubular supramolecular assemblies by self-assembly of low-molecular compounds is already known. For example, by using certain amphiphiles (lipids, oligopeptides, polymers, etc.) Or it has been reported that aggregates of other shapes are produced.

一方、フッ素化されたカーボンナノチューブは水素吸蔵能の高さから燃料電池用の水素吸蔵体として、また、潤滑性が良好なことから摺動材の原料として、あるいはリチウム一次電池の正極材に用いて優れた性質を発揮することが期待されることから、高い関心を集めている。フッ素化されたカーボンナノチューブの製造法としては、グラファイト材料をレーザー蒸発法やアーク放電法等により蒸発させ、金属触媒の存在下に凝縮させ製造された、上記のカーボンナノチューブをF、ClF、BrF、IF、HF、XeF、XeF、XeF等の雰囲気中で100℃〜600℃の高温で処理する方法が知られている(特許文献7〜12参照)が、高温で有毒ガスを取り扱う必要があり、装置も複雑で特殊なものとなり実用的ではない。また、特許文献13には、フッ素のガス圧を0.5〜1atmに調整することにより室温〜250℃の温度でカーボンナノチューブのフッ素化を行う方法が開示されているが、この方法で製造したフッ素化カーボンナノチューブは600℃に加熱すると取り込まれたフッ素をガスとして放出してしまうため、機能材料としては適さない。特許文献14には、ペルフルオロアゾアルカンのペルフオロアルカン溶液を用いてカーボンナノチューブを200nm以下の波長を有する紫外光照射下でフッ素化する方法が提案されているが、不安定な原料や特殊な溶媒を使う必要があり、さらに、低圧水銀灯、高圧水銀灯、ArFまたはXeClエキシマレーザー、またはエキシマランプ等の特殊な光源を使用するため経済的ではない。
以上のように、従来のカーボンナノチューブをフッ素化する技術はカーボンナノチューブを直接フッ素化するものであり、本発明のようにフッ素を含有する化合物の自己集積化によりフッ素化されたナノチューブを得る方法は知られていない。
On the other hand, fluorinated carbon nanotubes are used as hydrogen storage materials for fuel cells due to their high hydrogen storage capacity, and as a raw material for sliding materials because of their good lubricity, or as cathode materials for lithium primary batteries. It is attracting a great deal of interest because it is expected to exhibit excellent properties. As a method for producing a fluorinated carbon nanotube, the above-mentioned carbon nanotube produced by evaporating a graphite material by a laser evaporation method, an arc discharge method, or the like and condensing it in the presence of a metal catalyst is used as F 2 , ClF 3 , A method of treating at a high temperature of 100 ° C. to 600 ° C. in an atmosphere of BrF 3 , IF 5 , HF, XeF 2 , XeF 4 , XeF 6 or the like is known (see Patent Documents 7 to 12). It is necessary to handle poisonous gas, and the equipment is complicated and special, which is not practical. Patent Document 13 discloses a method of fluorinating carbon nanotubes at a temperature of room temperature to 250 ° C. by adjusting the fluorine gas pressure to 0.5 to 1 atm. Fluorinated carbon nanotubes are not suitable as functional materials because they are released as gas when heated to 600 ° C. Patent Document 14 proposes a method of fluorinating carbon nanotubes under irradiation with ultraviolet light having a wavelength of 200 nm or less using a perfluoroalkane solution of perfluoroazoalkane. However, unstable materials and special solvents are proposed. Further, it is not economical because a special light source such as a low pressure mercury lamp, a high pressure mercury lamp, an ArF or XeCl excimer laser, or an excimer lamp is used.
As described above, the conventional technology for fluorinating carbon nanotubes is to directly fluorinate carbon nanotubes, and the method for obtaining fluorinated nanotubes by self-assembly of fluorine-containing compounds as in the present invention is as follows. unknown.

また、従来のカーボンナノチューブについては、その配向制御方法に関する検討が数多く行われており、例えば、カーボンナノチューブを基板上に設けたグルーブに並べる方法(特許文献15及び16参照)、カーボンナノチューブをゼラチン等の透明バインダーに分散させた後、基板上でワイヤーバー方式の塗布作業を行い整列させる方法(特許文献3参照)、基板上でカーボンナノチューブを基板に平行に配列させて製造する方法(特許文献17、及び非特許文献1参照)、Si面を主表面としたSiC基板にステップバンチングよりなる面内に延びるエッジを形成した後、真空下で主表面を熱処理して、この面に沿う方向に配向するカーボンナノチューブを形成する方法(特許文献18参照)、プラズマCVD法等を用いて基板に垂直方向に成長させたカーボンナノチューブを一方向から機械的応力を加えて傾倒させる方法(特許文献2及び特許文献19参照)、カーボンナノチューブを高分子中に分散して延伸、電場、磁場等の配向手段を用いる方法(特許文献1、及び特許文献20〜25参照)などが挙げられる。しかしながらこれらの方法は、いずれも高度な基板の加工技術を必要としたり、複雑な工程を必要としたりする上、配向したカーボンナノチューブの単独膜を得ようとすると、更に複雑な操作が要求されるかまたは樹脂等との複合材の製造方法であり、その用途が限られてしまうといった問題があった。フッ素化されたナノチューブの配向方法または配向したフッ素化ナノチューブの製造方法は知られていない。   In addition, as for conventional carbon nanotubes, many studies on the orientation control method have been conducted. For example, a method of arranging carbon nanotubes in a groove provided on a substrate (see Patent Documents 15 and 16), carbon nanotubes as gelatin, etc. After dispersion in a transparent binder, a method of aligning by performing a wire bar coating operation on the substrate (see Patent Document 3), and a method of manufacturing carbon nanotubes arranged in parallel to the substrate on the substrate (Patent Document 17) In addition, after forming an edge extending in a plane made of step bunching on a SiC substrate having a Si surface as a main surface, the main surface is heat-treated under vacuum and oriented in a direction along this surface. A method of forming carbon nanotubes (see Patent Document 18), a plasma CVD method, etc., perpendicular to the substrate A method of inclining carbon nanotubes grown in one direction by applying mechanical stress from one direction (see Patent Document 2 and Patent Document 19), orientation means such as stretching, electric field, and magnetic field by dispersing carbon nanotubes in a polymer (Refer to Patent Document 1 and Patent Documents 20 to 25). However, these methods all require advanced substrate processing techniques and complicated processes, and more complicated operations are required to obtain a single film of oriented carbon nanotubes. Or a method for producing a composite material with a resin or the like, and there has been a problem that its use is limited. There is no known method for orienting fluorinated nanotubes or producing fluorinated nanotubes.

しかしながらこれらの自己集積体は、疎水性効果や分子内または分子間の水素結合等を介して構築されたものであり、本発明のようにπ−πスタッキングによる分子間相互作用を利用したものは本発明者らが先に提案したもの以外知られていない。(特許文献26及び27、並びに非特許文献2及び3参照)。
ヘキサペリヘキサベンゾコロネン(HBC)分子は、グラファイトの部分構造であり、長鎖アルキル基などを導入することにより安定なディスコティック液晶相を形成する。しかしながら、HBCに関連する研究は、単独の分子又は液晶状態に関するものに限られていた。例えば、ヘキサベンゾコロネン誘導体に関するものとしては、ヘキサベンゾコロネンを有機半導体として用いるもの(特許文献28〜30参照)、コロネンやベンゾコロネンなどの液晶性化合物にパーフルオロカーボン基を導入して分子配向性を制御する方法(特許文献31参照)などが報告されている。しかしながら、HBC誘導体をモチーフとしたナノ構造体の例は殆どない。
However, these self-assembled bodies are constructed through hydrophobic effects, intramolecular or intermolecular hydrogen bonds, etc., and those utilizing intermolecular interactions by π-π stacking as in the present invention Nothing other than what was previously proposed by the present inventors is known. (See Patent Documents 26 and 27 and Non-Patent Documents 2 and 3).
The hexaperihexabenzocoronene (HBC) molecule is a graphite partial structure, and forms a stable discotic liquid crystal phase by introducing a long-chain alkyl group or the like. However, studies related to HBC have been limited to single molecules or liquid crystal states. For example, as for hexabenzocoronene derivatives, those using hexabenzocoronene as an organic semiconductor (see Patent Documents 28 to 30), and controlling the molecular orientation by introducing perfluorocarbon groups into liquid crystalline compounds such as coronene and benzocoronene. And the like (see Patent Document 31) have been reported. However, there are almost no examples of nanostructures using HBC derivatives as motifs.

特開2006−285068号公報JP 2006-285068 A 特開2006−228818号公報JP 2006-228818 A 特開2006−27961号公報JP 2006-27961 A 特開2005−137970号公報JP 2005-137970 A 特開2006−250280号公報JP 2006-250280 A 特開2006−266448号公報JP 2006-266448 A 特開2003−238133号公報JP 2003-238133 A 特開2004−284852号公報JP 2004-284852 A 特開2004−313906号公報JP 2004-313906 A 特開2005−189322号公報JP 2005-189322 A 特開2005−219950号公報JP 2005-219950 A 特開2006−240938号公報JP 2006-240938 A 特開2005−273070号公報JP 2005-273070 A 特開2005−200272号公報Japanese Patent Laid-Open No. 2005-200272 特開2005−75711号公報JP-A-2005-75711 特開2005−169614号公報JP 2005-169614 A 特開2006−026533号公報JP 2006-026533 A 特開2004−231464号公報JP 2004-231464 A 特開2006−11296号公報JP 2006-11296 A 特開2002−362457号公報JP 2002-362457 A 特開2003−3194号公報JP 2003-3194 A 特開2004−016858号公報JP 2004-016858 A 特開2004−087714号公報JP 2004-087714 A 特開2005−154950号公報JP 2005-154950 A 特開2005−161599号公報JP 2005-161599 A 特開2005−220046号公報Japanese Patent Laid-Open No. 2005-220046 特開2005−220047号公報JP-A-2005-220047 特開2004−158709号公報JP 2004-158709 A 特開2005−79163号公報JP 2005-79163 A 特開2006−41495号公報JP 2006-41495 A 特開2004−35617号公報JP 2004-35617 A Y. Huang et al., Science 291, 630. (2001)Y. Huang et al., Science 291, 630. (2001) Science, 304, 1481-1483 (2004),Science, 304, 1481-1483 (2004), Proc. Natl. Acad. Sci. USA, 102, 10801-10806 (2005)Proc. Natl. Acad. Sci. USA, 102, 10801-10806 (2005)

本発明は、大きなアスペクト比を有し、ベルフルオル基のフッ素原子に由来するユニークな性質、例えば、生理活性や撥水/撥油性を有するチューブ状のナノサイズの自己集積体が、溶液の表面に自己会合して面方向に配向したナノチューブ状集積体、及びその製造方法を提供する。   The present invention provides a tube-shaped nano-sized self-assembled body having a large aspect ratio and a unique property derived from a fluorine atom of a bellfluor group, such as physiological activity and water / oil repellency, on the surface of a solution. Provided are a nanotube-like aggregate self-assembled and oriented in a plane direction, and a method for producing the same.

これまで報告されているナノ構造体の殆どは、脂質のような両親媒性化合物により構成されているため、構造体が得られても特筆すべき性質を示さない。これに対して本発明者等は、ナノ構造体構築の基本要素として、グラファイトの部分構造であるヘキサペリヘキサベンゾコロネン(HBC)に着目し、HBC誘導体をモチーフとしたナノ構造体の開発を検討してきた。本発明者等は、HBC骨格に導入する親水性置換基と疎水性置換基のバランスを精密に設計し、新規な両親媒性HBC誘導体を合成し、その会合挙動を検討した結果、当該誘導体が特定の溶媒中で自己会合してゲルを形成すること、および、当該ゲル中、太さが極めて均一なアスペクト比の高いナノチューブ状集積体やリボン状ナノ構造体を形成することを、既に見出している(特許文献26及び27、並びに非特許文献2及び3参照)。本発明者らは、このようにして得られるナノ構造体の特性を更に改善するために検討してきた。一方、ベルフルオル基を含有する有機化合物はフッ素原子に由来するユニークな性質の発現が期待されることから、関心を集めており、とりわけ、生理活性と撥水/撥油性が注目されている。ナノ構造体にフッ素原子を導入することができればナノ構造体表面の潤滑性、平滑性および安定性等の大きな改善が期待できることから、本発明者らは上記の研究をさらに進めた結果、HBCの骨格置換基としてベルフルオル基を導入した誘導体を合成することに成功し、該誘導体が特定の条件下で自己会合して面方向に配向したナノチューブ状集積体を形成することを見いだし、本発明に到達した。   Since most of the nanostructures reported so far are composed of amphiphilic compounds such as lipids, even if the structures are obtained, they do not exhibit any remarkable properties. In contrast, the present inventors have focused on hexaperihexabenzocoronene (HBC), which is a partial structure of graphite, as a basic element for the construction of nanostructures, and examined the development of nanostructures using HBC derivatives as motifs. I have done it. The present inventors precisely designed the balance between the hydrophilic substituent and the hydrophobic substituent to be introduced into the HBC skeleton, synthesized a novel amphiphilic HBC derivative, and investigated its association behavior. Already found to form a gel by self-association in a specific solvent, and to form a nanotube-like aggregate or ribbon-like nanostructure with a high uniform aspect ratio in the gel. (See Patent Documents 26 and 27 and Non-Patent Documents 2 and 3). The present inventors have studied to further improve the properties of the nanostructure obtained in this way. On the other hand, organic compounds containing a bellfluor group are attracting attention because they are expected to exhibit unique properties derived from fluorine atoms. In particular, bioactivity and water / oil repellency are attracting attention. If fluorine atoms can be introduced into the nanostructure, it can be expected to greatly improve the lubricity, smoothness, stability, etc. of the nanostructure surface. Succeeded in synthesizing a derivative in which a bellfluor group was introduced as a skeletal substituent, and found that the derivative self-assembled under a specific condition to form a nanotube-like aggregate oriented in the plane direction. did.

即ち、本発明は、次の一般式(I)   That is, the present invention provides the following general formula (I)

(式中、Rはそれぞれ独立して、炭素数4〜20の直鎖状又は分岐状のアルキル基を示し、Rはそれぞれ独立して次の一般式(II)
−C−O−R (II)
(式中、Rは炭素数4〜30のパーフルオロアルケニル基を示し、−C−で示されるベンゼン環上の置換位置はオルト位、メタ位、又はパラ位のいずれかであることを示す。)
で表される基を示し、Xはそれぞれ独立して水素原子、ハロゲン原子、シアノ基、置換基を有していてもよい炭素数2〜4のアルキニル基、置換基を有していてもよいピリジル基、置換基を有していてもよいターピリジル基、又は置換基を有していてもよいポルフィリニル基を示し、アルキニル基、ピリジル基、ターピリジル基、及びポルフィリニル基の置換基は、ハロゲン原子、炭素数1〜10のアルキル基、及び炭素数6〜20のアリール基からなる群から選ばれる置換基を示す。)
で表されるフッ素含有基で置換されたヘキサペリヘキサベンゾコロネン(HBC)誘導体の少なくとも1種を含有してなる溶液に、当該溶液の溶媒とは異なる他の溶媒の蒸気を接触させることにより、当該溶液の表面に前記した一般式(I)で表される化合物が面方向に配向したチューブ状のナノサイズの自己集積体を形成させる方法に関する。
また、本発明は、前記した本発明の方法で製造し得る一般式(I)で表されるフッ素含有基で置換されたヘキサペリヘキサベンゾコロネン(HBC)誘導体が面方向に配向したチューブ状のナノサイズの自己集積体に関する。より詳細には、本発明は、前記した一般式(I)で表されるフッ素含有基で置換されたヘキサペリヘキサベンゾコロネン(HBC)誘導体の少なくとも1種を含有してなる溶液中に、当該溶液の溶媒とは異なる他の溶媒の蒸気と接触させることにより、当該溶液の表面に前記した一般式(I)で表される化合物が面方向に配向したチューブ状のナノサイズの自己集積体に関する。
(In the formula, each R 1 independently represents a linear or branched alkyl group having 4 to 20 carbon atoms, and each R 2 independently represents the following general formula (II):
—C 6 H 4 —O—R 3 (II)
(In the formula, R 3 represents a perfluoroalkenyl group having 4 to 30 carbon atoms, and the substitution position on the benzene ring represented by —C 6 H 4 — is either the ortho position, the meta position, or the para position. Indicates that.)
And each X independently represents a hydrogen atom, a halogen atom, a cyano group, an optionally substituted alkynyl group having 2 to 4 carbon atoms, or a substituent. A pyridyl group, a terpyridyl group which may have a substituent, or a porphyrinyl group which may have a substituent, wherein the alkynyl group, the pyridyl group, the terpyridyl group, and the porphyrinyl group have a halogen atom, The substituent selected from the group which consists of a C1-C10 alkyl group and a C6-C20 aryl group is shown. )
By bringing a vapor of another solvent different from the solvent of the solution into contact with a solution containing at least one hexaperihexabenzocoronene (HBC) derivative substituted with a fluorine-containing group represented by: The present invention relates to a method for forming a tubular nano-sized self-assembled body in which the compound represented by the general formula (I) is oriented in the plane direction on the surface of the solution.
Further, the present invention is a tube-like structure in which a hexaperihexabenzocoronene (HBC) derivative substituted with a fluorine-containing group represented by the general formula (I) that can be produced by the above-described method of the present invention is oriented in the plane direction. It relates to nano-sized self-assembly. More specifically, the present invention relates to a solution containing at least one hexaperihexabenzocoronene (HBC) derivative substituted with a fluorine-containing group represented by the general formula (I). A tube-shaped nano-sized self-assembled body in which the compound represented by the general formula (I) is oriented in the plane direction on the surface of the solution by contacting with the vapor of another solvent different from the solvent of the solution .

本発明の態様をより詳細に説明すれば、次のとおりとなる。
(1)前記した一般式(I)で表されるフッ素含有基で置換されたヘキサペリヘキサベンゾコロネン(HBC)誘導体の少なくとも1種を含有してなる溶液に、当該溶液の溶媒とは異なる他の溶媒の蒸気を接触させることにより、当該溶液の表面に前記した一般式(I)で表される化合物が面方向に配向したチューブ状のナノサイズの自己集積体を形成させる方法。
(2)一般式(I)で表されるフッ素含有基で置換されたヘキサペリヘキサベンゾコロネン(HBC)誘導体を溶解する溶媒が、ジクロロメタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、シクロヘキサン、及びメチルシクロヘキサンからなる群から選ばれる1種又は2種以上である前記(1)に記載の方法。
(3)溶媒が、テトラヒドロフランである前記(1)又は(2)に記載の方法。
(4)当該溶液の溶媒とは異なる他の溶媒が、一般式(I)で表されるフッ素含有基で置換されたヘキサペリヘキサベンゾコロネン(HBC)誘導体の貧溶媒である前記(1)〜(3)のいずれかに記載の方法。
(5)貧溶媒が、炭素数5〜12の炭化水素系溶媒である前記(4)に記載の方法。
(6)前記した一般式(I)におけるRの炭素数4〜20の直鎖状又は分岐状のアルキル基が、tert−ブチル基である前記(1)〜(5)に記載の方法。
(7)前記した一般式(I)におけるRの炭素数4〜20の直鎖状又は分岐状のアルキル基が、炭素数10〜20の直鎖状又は分岐状のアルキル基である前記(1)〜(6)に記載の方法。
(8)前記した一般式(I)のRにおけるRが、炭素数4〜10の1−パーフルオロアルケニル基である前記(1)〜(7)に記載の方法。
(9)一般式(I)におけるXが、水素原子又はハロゲン原子である前記(1)〜(8)に記載の方法。
(10)前記(1)〜(9)のいずれかの方法により製造し得る、前記した一般式(I)で表されるフッ素含有基で置換されたヘキサペリヘキサベンゾコロネン(HBC)誘導体が面方向に配向したチューブ状のナノサイズの自己集積体。
(11)前記した一般式(I)で表されるフッ素含有基で置換されたヘキサペリヘキサベンゾコロネン(HBC)誘導体の少なくとも1種を含有してなる溶液中に、当該溶液の溶媒とは異なる他の溶媒の蒸気と接触させることにより、当該溶液の表面に前記した一般式(I)で表される化合物が面方向に配向したチューブ状のナノサイズの自己集積体。
The embodiment of the present invention will be described in detail as follows.
(1) A solution containing at least one hexaperihexabenzocoronene (HBC) derivative substituted with the fluorine-containing group represented by the general formula (I) is different from the solvent of the solution. A method of forming a tube-shaped nano-sized self-assembled body in which the compound represented by the general formula (I) is oriented in the plane direction on the surface of the solution by contacting with the vapor of the solvent.
(2) A solvent for dissolving a hexaperihexabenzocoronene (HBC) derivative substituted with a fluorine-containing group represented by the general formula (I) is composed of dichloromethane, tetrahydrofuran, 2-methyltetrahydrofuran, cyclohexane, and methylcyclohexane. The method according to (1) above, which is one or more selected from the group.
(3) The method according to (1) or (2) above, wherein the solvent is tetrahydrofuran.
(4) The other solvent different from the solvent of the solution is the poor solvent for the hexaperihexabenzocoronene (HBC) derivative substituted with the fluorine-containing group represented by the general formula (I). The method according to any one of (3).
(5) The method according to (4), wherein the poor solvent is a hydrocarbon solvent having 5 to 12 carbon atoms.
(6) The method according to (1) to (5) above, wherein the linear or branched alkyl group having 4 to 20 carbon atoms of R 1 in the general formula (I) is a tert-butyl group.
(7) In the above general formula (I), the linear or branched alkyl group having 4 to 20 carbon atoms of R 1 is a linear or branched alkyl group having 10 to 20 carbon atoms ( The method as described in 1)-(6).
(8) The method according to any one of (1) to (7), wherein R 3 in R 2 of the general formula (I) is a 1-perfluoroalkenyl group having 4 to 10 carbon atoms.
(9) The method as described in said (1)-(8) whose X in general formula (I) is a hydrogen atom or a halogen atom.
(10) A hexaperihexabenzocoronene (HBC) derivative substituted with a fluorine-containing group represented by the above general formula (I), which can be produced by any one of the methods (1) to (9), is a surface. Tube-shaped nano-sized self-assembled body oriented in the direction.
(11) The solution containing at least one hexaperihexabenzocoronene (HBC) derivative substituted with the fluorine-containing group represented by the general formula (I) is different from the solvent of the solution. A tube-shaped nano-sized self-assembly in which the compound represented by the general formula (I) is oriented in the plane direction on the surface of the solution by contacting with the vapor of another solvent.

本発明の一般式(I)で表されるフッ素含有基で置換されたヘキサペリヘキサベンゾコロネン(HBC)誘導体は、ヘキサペリヘキサベンゾコロネン(HBC)のπ電子によるπ−πスタッキング作用による分子間相互作用を利用した自己集積性の分子であり、分子中に嵩高いアルキル基や長鎖アルキル基のような疎水性の基を有し、かつ分子中にフッ素原子を多数有するパーフルオロアルケニルオキシ基を有することを特徴とするものである。このような分子デザインにより、疎水性を保ちながら、π−πスタッキング作用による自己集積性を有し、かつパーフルオル基によるフッ素化合物の特性を有する極めて特異的な性質を有するナノスケールの自己集積体を形成させることができる。
したがって、本発明のフッ素含有基で置換されたヘキサペリヘキサベンゾコロネン(HBC)誘導体は、前記した一般式(I)で表される化学構造式に限定されるものではなく、分子中にヘキサペリヘキサベンゾコロネン(HBC)骨格を有し、嵩高いアルキル基や長鎖アルキル基のような疎水性の基を有し、かつフッ素原子を多数有するパーフルオロ基を有しており、これによりπ−πスタッキング作用による自己集積性を有するものであることを特徴とするものであり、これらの特徴を備えているものは本発明のフッ素含有基で置換されたヘキサペリヘキサベンゾコロネン(HBC)誘導体に包含されることになる。
The hexaperihexabenzocoronene (HBC) derivative substituted with a fluorine-containing group represented by the general formula (I) of the present invention is intermolecular due to the π-π stacking action by π electrons of hexaperihexabenzocoronene (HBC). This is a self-assembling molecule that utilizes interactions, and has a hydrophobic group such as a bulky alkyl group or long-chain alkyl group in the molecule, and a perfluoroalkenyloxy group that has a large number of fluorine atoms in the molecule. It is characterized by having. By such molecular design, a nanoscale self-assembled body having a very specific property having a property of a fluorine compound by a perfluor group and having a self-assembling property by π-π stacking action while maintaining hydrophobicity. Can be formed.
Therefore, the hexaperihexabenzocoronene (HBC) derivative substituted with a fluorine-containing group of the present invention is not limited to the chemical structural formula represented by the general formula (I) described above, It has a hexabenzocoronene (HBC) skeleton, a hydrophobic group such as a bulky alkyl group or a long-chain alkyl group, and a perfluoro group having a large number of fluorine atoms. It is characterized in that it has a self-assembling property by π stacking action, and the one having these characteristics is a hexaperihexabenzocoronene (HBC) derivative substituted with a fluorine-containing group of the present invention. Will be included.

本発明の一般式(I)におけるRの炭素数4〜20の直鎖状又は分岐状のアルキル基としては、疎水性の大きな基が好ましく、特に炭素数の小さなアルキル基では分岐状の嵩高い基が好ましい。好ましいアルキル基としては、tert−ブチル基などの嵩高い基や、デシル基やドデシル基などの炭素数5〜20、好ましくは10〜20の直鎖状又は分岐状のアルキル基が挙げられる。また、一般式(I)における2個のR基は、同じであっても異なっていてもよいが、製造上の簡便さからは同じ基であるのが好ましい。
本発明の一般式(I)におけるRの一般式(II)で表される基としては、炭素数4〜30のパーフルオロアルケニル基を有するパーフルオロアルケニルオキシフェニル基が挙げられる。パーフルオロアルケニルオキシ基のフェニル基上の置換位置としては、オルト位、メタ位、又はパラ位のいずれであってもよいが、好ましい位置としてはパラ位が挙げられる。また、パーフルオロアルケニル基としては、炭素数4〜30、好ましくは4〜10の直鎖状又は分岐状の、好ましくは直鎖状のパーフルオロアルケニル基が挙げらる。これらのパーフルオロアルケニル基の炭素−炭素二重結合の数や位置も特に制限はないが、好ましくは1位に1個の炭素−炭素二重結合を有する1−パーフルオロアルケニル基が挙げられる。好ましいパーフルオロアルケニル基としては、次の一般式(III)、
−CF=CF−(CF−CF (III)
(式中、nは1〜22、好ましくは1〜10、より好ましくは1〜7の整数を示す。)
で表される1−パーフルオロアルケニル基が挙げられる。また、一般式(I)における2個のR基は、同じであっても異なっていてもよいが、製造上の簡便さからは同じ基であるのが好ましい。
As the linear or branched alkyl group having 4 to 20 carbon atoms of R 1 in the general formula (I) of the present invention, a group having a large hydrophobicity is preferable. Particularly, an alkyl group having a small carbon number has a branched bulk. High groups are preferred. Preferred alkyl groups include bulky groups such as a tert-butyl group and linear or branched alkyl groups having 5 to 20 carbon atoms, preferably 10 to 20 carbon atoms such as decyl and dodecyl groups. Further, the two R 1 groups in the general formula (I) may be the same or different, but are preferably the same group from the standpoint of production convenience.
Examples of the group represented by the general formula (II) of R 2 in the general formula (I) of the present invention include a perfluoroalkenyloxyphenyl group having a perfluoroalkenyl group having 4 to 30 carbon atoms. The substitution position on the phenyl group of the perfluoroalkenyloxy group may be any of the ortho position, the meta position, and the para position, but a preferred position includes the para position. Further, examples of the perfluoroalkenyl group include linear or branched, preferably linear perfluoroalkenyl groups having 4 to 30 carbon atoms, preferably 4 to 10 carbon atoms. The number and position of the carbon-carbon double bonds of these perfluoroalkenyl groups are not particularly limited, but a 1-perfluoroalkenyl group having one carbon-carbon double bond at the 1-position is preferable. Preferred perfluoroalkenyl groups include the following general formula (III):
-CF = CF- (CF 2) n -CF 3 (III)
(In the formula, n represents an integer of 1 to 22, preferably 1 to 10, more preferably 1 to 7.)
The 1-perfluoroalkenyl group represented by these is mentioned. Further, the two R 2 groups in the general formula (I) may be the same or different, but are preferably the same group from the standpoint of production convenience.

本発明の一般式(I)におけるXのハロゲン原子としては、塩素原子、臭素原子、又はヨウ素原子などのハロゲン原子が挙げられる。炭素数2〜4のアルキニル基としてはエチニル基などの炭素数2〜4の直鎖状又は分岐状のアルキニル基が挙げられる。ピリジル基としては、2−ピリジル基、3−ピリジル基、又は4−ピリジル基のいずれであってもよい。ターピリジル基としては、3個のピリジンが結合したターピリジンから誘導される1価の基であればよいが、好ましくは中央部のピリジル基からなるジピリジルピリジル基が好ましい。また、ポルフィリニル基としては、ポルフィリンから誘導される1価の基であればよいが、好ましくはポルフィリンのピロール環に結合する基が挙げられる。
これらのアルキニル基、ピリジル基、又はポルフィリニル基は、塩素原子、臭素原子、又はヨウ素原子などのハロゲン原子;メチル基、エチル基などの炭素数1〜10の直鎖状又は分岐状のアルキル基;及び、フェニル基、ナフチル基などの炭素数6〜20の単環式、多環式、又は縮合環式のアリール基からなる群から選ばれる1個以上の置換基で置換されていてもよい。
また、一般式(I)における2個のX基は、同じであっても異なっていてもよいが、製造上の簡便さからは同じ基であるのが好ましい。
Examples of the halogen atom of X in the general formula (I) of the present invention include halogen atoms such as a chlorine atom, a bromine atom, or an iodine atom. Examples of the alkynyl group having 2 to 4 carbon atoms include linear or branched alkynyl groups having 2 to 4 carbon atoms such as an ethynyl group. As a pyridyl group, any of 2-pyridyl group, 3-pyridyl group, or 4-pyridyl group may be sufficient. The terpyridyl group may be a monovalent group derived from terpyridine bonded with three pyridines, but is preferably a dipyridylpyridyl group consisting of a pyridyl group at the center. The porphyrinyl group may be a monovalent group derived from porphyrin, and preferably a group that binds to the pyrrole ring of porphyrin.
These alkynyl group, pyridyl group, or porphyrinyl group are a halogen atom such as a chlorine atom, a bromine atom, or an iodine atom; a linear or branched alkyl group having 1 to 10 carbon atoms such as a methyl group or an ethyl group; In addition, the aryl group may be substituted with one or more substituents selected from the group consisting of monocyclic, polycyclic, or condensed cyclic aryl groups having 6 to 20 carbon atoms such as a phenyl group and a naphthyl group.
Further, the two X groups in the general formula (I) may be the same or different, but are preferably the same group from the standpoint of production.

本発明のフッ素含有基で置換されたヘキサペリヘキサベンゾコロネン(HBC)誘導体は、特許文献26及び27に記載されている方法に準じて製造することができる。より具体的な本発明の化合物の製造方法を、一般式(I)におけるRがドデシル基(−C1225基)であって、Rが−4−C−O−CF=CF−C基であって、Xが水素原子である場合の化合物を例にして説明する。この製造例を次の化学反応式で示す。 The hexaperihexabenzocoronene (HBC) derivative substituted with the fluorine-containing group of the present invention can be produced according to the methods described in Patent Documents 26 and 27. In a more specific method for producing the compound of the present invention, R 1 in the general formula (I) is a dodecyl group (—C 12 H 25 group), and R 2 is -4-C 6 H 4 —O—CF. = CF-C 4 F 9 group, and the compound in which X is a hydrogen atom will be described as an example. This production example is shown by the following chemical reaction formula.

まず、化合物1を銅触媒の存在下でアセチレン誘導体と反応させてビフェニルアセチレン誘導体2を製造する。
4−ドデシルブロモベンゼン3をリチウム化した後、これを1,4−ジメチルピペラジン−2,3−ジオンと反応させてジケトン体4として、これをジベンシルケトンと反応させてテトラフェニルシクロペンタジエノン誘導体5を製造し、次いで、これを先に製造したビフェニルアセチレン誘導体2と反応させてヘキサフェニルベンゼン誘導体6とする。
次いで、ビフェニル基の末端のメトキシ保護基を加水分解して遊離の水酸基誘導体7とし、これに塩基の存在下にパーフルオロアルキレンと反応させてパーフルオロアルケニルオキシ誘導体8とし、これを鉄触媒の存在下に環化して目的の化合物9を製造することができる。
ここで説明した方法は例であり、本発明のフッ素含有基で置換されたヘキサペリヘキサベンゾコロネン(HBC)誘導体の製造方法はこの方法に限定されるものではなく、これに準じた各種の方法により製造することができる。
First, compound 1 is reacted with an acetylene derivative in the presence of a copper catalyst to produce biphenylacetylene derivative 2.
After lithiation of 4-dodecyl bromobenzene 3, this is reacted with 1,4-dimethylpiperazine-2,3-dione to form a diketone body 4, which is reacted with dibensyl ketone to give a tetraphenylcyclopentadienone derivative 5 Then, this is reacted with the biphenylacetylene derivative 2 produced previously to obtain a hexaphenylbenzene derivative 6.
Next, the terminal methoxy protecting group of the biphenyl group is hydrolyzed to give a free hydroxyl group derivative 7, which is reacted with perfluoroalkylene in the presence of a base to give a perfluoroalkenyloxy derivative 8, which is the presence of an iron catalyst. The target compound 9 can be prepared by cyclization below.
The method described here is an example, and the method for producing a hexaperihexabenzocoronene (HBC) derivative substituted with a fluorine-containing group of the present invention is not limited to this method, and various methods according to this method. Can be manufactured.

次に、このようにして製造された本発明のフッ素含有基で置換されたヘキサペリヘキサベンゾコロネン(HBC)誘導体(以下、単にHBC誘導体という。)は、本発明のHBC誘導体を溶媒中に入れ、これを加温して溶解させる。得られた溶液を超音波ミキサーで懸濁となるまで混合撹拌し、これを室温で熟成させることにより本発明の自己集積体を製造することができる。しかしながら、本発明のフッ素化されたナノチューブは大きなアスペクト比を有する特異的な構造であり、効果的にその特性を引き出すためには一方向に配向していることが好ましいが、混合撹拌による方法では一方向への配列させることは困難であった。これを一方向に配列させるために、本発明は、このような強制的な混合撹拌ではなく、2種以上の溶媒を使用して溶液の表面により面方向に整列した自己集積体を製造する方法を提供するものである。
本発明の自己集積体の製造方法は、まず、本発明のHBC誘導体を溶媒中に入れ、必要によりこれを加温して溶解させる。次いで、この溶液を静置させて、当該溶液の表面に、当該溶液の溶媒とは異なる他の溶媒の蒸気を接触させて、当該溶液の表面に本発明のHBC誘導体が面方向に配向したチューブ状のナノサイズの自己集積体を形成させることからなる。本発明の好ましい方法を例示すれば、本発明のHBC誘導体の溶液を室温まで冷却し、この溶液をガラス容器ごと、当該ガラス容器より大きい第二のガラス容器に蓋をせずに入れ、外側の第二のガラス容器に当該溶液の溶媒とは異なる他の溶媒、好ましくは貧溶媒を入れる。そして、外側の第二のガラス容器を密栓し、当該本発明のHBC誘導体の溶液に貧溶媒の蒸気を拡散させて接触させ、そのままの状態で一週間程度、室温で熟成させると、内側の液面に黄色透明なフィルムが生成する。この方法の概要を模式的にして図1に示す。まず、本発明のHBC誘導体の溶液の入った小さなガラス容器を大きなガラス容器に入れ、大きなガラス容器に本発明のHBC誘導体の貧溶媒を入れて、当該貧溶媒の蒸気を溶液の表面に接触させる。これにより溶液表面に自己集積体が整列して形成される。
Next, the hexaperihexabenzocoronene (HBC) derivative (hereinafter, simply referred to as HBC derivative) substituted with the fluorine-containing group of the present invention produced in this manner is prepared by placing the HBC derivative of the present invention in a solvent. This is heated to dissolve. The self-assembled body of the present invention can be produced by mixing and stirring the resulting solution with an ultrasonic mixer until it is suspended, and aging this at room temperature. However, the fluorinated nanotubes of the present invention have a specific structure with a large aspect ratio and are preferably oriented in one direction in order to effectively bring out their properties. It was difficult to arrange in one direction. In order to arrange this in one direction, the present invention is not a forced mixing and stirring, but a method of manufacturing a self-assembly that is aligned in the plane direction with the surface of the solution using two or more solvents. Is to provide.
In the method for producing a self-assembled body of the present invention, first, the HBC derivative of the present invention is placed in a solvent, and if necessary, this is heated and dissolved. Next, the solution is allowed to stand, and the surface of the solution is brought into contact with a vapor of another solvent different from the solvent of the solution, so that the HBC derivative of the present invention is oriented in the plane direction on the surface of the solution. Forming a nano-sized self-assembled body. To illustrate the preferred method of the present invention, the solution of the HBC derivative of the present invention is cooled to room temperature, and this solution is put together with the glass container into a second glass container larger than the glass container without a lid, Another solvent different from the solvent of the solution, preferably a poor solvent, is placed in the second glass container. Then, the outer second glass container is sealed, the poor solvent vapor is diffused and brought into contact with the HBC derivative solution of the present invention, and the inner solution is aged for about one week at room temperature. A yellow transparent film is formed on the surface. An outline of this method is schematically shown in FIG. First, a small glass container containing a solution of the HBC derivative of the present invention is placed in a large glass container, a poor solvent of the HBC derivative of the present invention is placed in a large glass container, and the vapor of the poor solvent is brought into contact with the surface of the solution. . As a result, self-assembled bodies are formed in alignment on the solution surface.

本発明のHBC誘導体を溶解させる溶液の溶媒としては、加温して本発明のHBC誘導体を溶解することができるものであればよく、好ましい溶媒としては、ジクロロメタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、シクロヘキサン、メチルシクロヘキサンなどが挙げられる。より好ましい溶媒としてはテトラヒドロフランが挙げられる。使用する溶媒の量としては、加温して溶解できる程度の量であって、室温においても自己集積体が形成されない程度であればよく、例えば、溶媒1mLに対して重量で本発明のHBC誘導体が、0.1〜5mg、好ましくは0.5〜5mg、0.5〜2mg程度が挙げられる。
加温する温度としては、溶解して透明な溶液となる温度であって、溶媒の沸点以下であればよい。好ましい温度としては、35〜80℃、40〜70℃程度が挙げられる。例えば、溶媒としてジクロロメタンやテトラヒドロフラン(THF)を使用した場合には、40℃〜66℃程度が好ましい。
当該溶液の溶媒とは異なる他の溶媒としては、本発明のHBC誘導体を充分に溶解することができない貧溶媒が好ましい。このような貧溶媒としては、例えば、n−ヘキサンなどの炭素数5〜12の炭化水素系溶媒、好ましくは炭素数5〜12、より好ましくは炭素数5〜8の脂肪族飽和炭化水素系の溶媒が挙げられる。
静置させておく温度(熟成温度)としては室温が好ましいが、これに限定されるものではなく、使用する溶媒の溶解度や蒸気圧に応じて冷却や加温してもよい。
静置させておく時間(熟成時間)としては、溶液の表面に十分な自己集積体が形成されるまでであり、特に制限はないが、通常は約1週間程度でフィルムが生成する。
The solvent for the solution for dissolving the HBC derivative of the present invention may be any solvent that can be heated to dissolve the HBC derivative of the present invention. Preferred solvents include dichloromethane, tetrahydrofuran, 2-methyltetrahydrofuran, cyclohexane. And methylcyclohexane. More preferred solvent is tetrahydrofuran. The amount of the solvent to be used is an amount that can be dissolved by heating, and can be such that no self-assembly is formed even at room temperature. For example, the HBC derivative of the present invention by weight with respect to 1 mL of the solvent. However, about 0.1 to 5 mg, preferably about 0.5 to 5 mg, and about 0.5 to 2 mg can be mentioned.
The temperature to be heated may be a temperature at which a transparent solution is obtained by dissolution, and may be equal to or lower than the boiling point of the solvent. As preferable temperature, 35-80 degreeC and about 40-70 degreeC are mentioned. For example, when dichloromethane or tetrahydrofuran (THF) is used as the solvent, the temperature is preferably about 40 ° C to 66 ° C.
As another solvent different from the solvent of the solution, a poor solvent that cannot sufficiently dissolve the HBC derivative of the present invention is preferable. As such a poor solvent, for example, a hydrocarbon solvent having 5 to 12 carbon atoms such as n-hexane, preferably an aliphatic saturated hydrocarbon having 5 to 12 carbon atoms, more preferably 5 to 8 carbon atoms. A solvent is mentioned.
Although the room temperature is preferable as the temperature to be allowed to stand (aging temperature), it is not limited to this, and cooling or heating may be performed according to the solubility and vapor pressure of the solvent used.
The time of standing (ripening time) is until a sufficient self-assembly is formed on the surface of the solution, and is not particularly limited, but usually a film is formed in about one week.

このようにして得られた本発明の自己集積体の電界放射型走査型電子顕微鏡(FE−SEM)写真を図2に図面に代わる写真として示す。図2の左側も右側も50000倍の写真でありバーは100nmを示す。また、透過型電子顕微鏡(TEM)写真を図3に図面に代わる写真として示す。図3の左側のバーは100nmを示し、右側のバーは50nmを示す。
これらの観察の結果、本発明の自己集積体は、アスペクト比が大きく線径分布の狭いナノサイズのチューブとして生成していたことがわかった。このチューブには、らせん構造の痕跡があり、湾曲しているものも観察されたが、やや剛直なチューブであって、この構造体が、π−π相互作用とアルキル基間の相互作用による二分子膜様の構造の形成、それが2次元的に広がり、溶液の表面により面方向に整列した自己集積体を形成し、更に、それがコイル状に密にパッキングしてチューブ構造を形成するといった、階層的な自己組織化により二層構造のチューブが作り出されており、パーフルオルアルキル鎖はチューブの内外層の表面に存在していることを示していた。これらの結果は赤外吸収スペクトルによっても示される。
A field emission scanning electron microscope (FE-SEM) photograph of the self-assembled body of the present invention thus obtained is shown in FIG. 2 as a photograph replacing the drawing. The left and right sides of FIG. 2 are 50,000 times photographs, and the bar indicates 100 nm. Further, a transmission electron microscope (TEM) photograph is shown in FIG. 3 as a photograph replacing the drawing. The left bar in FIG. 3 indicates 100 nm, and the right bar indicates 50 nm.
As a result of these observations, it was found that the self-assembled body of the present invention was produced as a nano-sized tube having a large aspect ratio and a narrow wire diameter distribution. Although this tube has traces of a helical structure and some are curved, it is a somewhat rigid tube, and this structure is a two-dimensional structure due to the interaction between the π-π interaction and the alkyl group. Formation of a molecular film-like structure, which forms a self-assembly that spreads two-dimensionally and is aligned in the plane direction by the surface of the solution, and further forms a tube structure by packing it closely in a coil shape Hierarchical self-organization has created a double-layered tube, indicating that perfluoroalkyl chains are present on the surface of the inner and outer layers of the tube. These results are also shown by the infrared absorption spectrum.

本発明の自己集積体はパーフルオルアルキル鎖を有するものであり、面方向に整列しているだけでなく、超撥水性を示す。
したがって、本発明の自己集積体は、π−πスタッキング作用と疎水性のアルキル基間の相互作用によるナノスケールの構造体であり、水素ガスの吸蔵剤や触媒担体などの吸着材料として適しているし、また、ナノ材料としてのセンサー、無機有機複合材料の鋳型、分子導線などナノデバイスへの応用、非線形光学材料、リチウム電池の電極、太陽電池材料、燃料電池用材料等への適用も可能であるばかりでなく、パーフルオロアルキル基が導入されていることから超撥水性を示し、フィルム状に成形することにより、屋根、アンテナ、ケーブル、鉄塔、土木機械用工具および冷凍用倉庫内棚等への異物の付着防止剤や着雪防止剤として、車輌用、船舶用、航空機用および建築用等の内外のウィンドウガラス、ミラーガラス、装飾用ガラス、各種建築材および建裝材等の撥水撥油防汚性膜として、さらにはプラスチックフィルム、プラスチック成形体、ガラス、セラミック、金属、紙、繊維などの表面処理剤、海洋生物付着防止剤などへの適用にも適した材料となる。
The self-assembly of the present invention has a perfluoroalkyl chain and is not only aligned in the plane direction but also exhibits super water repellency.
Therefore, the self-assembled body of the present invention is a nanoscale structure based on the interaction between the π-π stacking action and the hydrophobic alkyl group, and is suitable as an adsorbing material such as a hydrogen gas storage agent or a catalyst carrier. In addition, it can also be applied to nanodevices such as sensors, inorganic organic composite material templates, molecular wires, nonlinear optical materials, lithium battery electrodes, solar cell materials, fuel cell materials, etc. Not only that, but because of the introduction of perfluoroalkyl groups, it exhibits super water repellency and can be formed into a film shape to roofs, antennas, cables, steel towers, tools for civil engineering machinery, shelves in warehouses for freezing, etc. As an anti-adhesion agent and snow-prevention agent for automobiles, window glass, mirror glass, decorative glass for interior and exterior for vehicles, ships, aircraft, and buildings, etc. As a water and oil repellent and antifouling film for seed building materials and building materials, and further to surface treatment agents such as plastic films, plastic moldings, glass, ceramics, metals, paper, and fibers, and marine organism adhesion prevention agents. It is a material suitable for the application.

本発明の化合物の基本骨格であるHBCは、グラファイトの断片と見なされる本来極めて疎水的な分子であるが、ベルフルオル基を導入することにより、疎水効果と分子面の重なりによるπ−πスタッキングの共同効果を介して自己集積し、ナノスケールのチューブ状またはファイバー状の集積体を形成することができる。特に、このようにして形成されたナノチューブは、構造的にグラファイトから生成するナノチューブとの関連性からこれらから誘導されるナノチューブと同等な性質を有するだけでなく、HBC特有のπ電子の重なりを通じたスムーズなキャリアの移動など、従来の脂質等からのナノチューブには無い電子的特性が期待され、また、金属等の不純物を含まず、アスペクト比が大きく太さが均一であるなどの特徴を兼ね備えているほか、さらに本発明のHBC誘導体はフッ素原子に由来する生理活性や撥水撥油性を兼ね備えたものである。
また、本発明によれば、フッ素化されたナノチューブをフッ素ガス等の有害ガスを用いることなく、穏和な条件で容易に製造することができ、フッ素の含有量も自由に設計できる利点がある。また、製造されたフッ素化ナノチューブの懸濁液を所望の表面にキャストすることにより、超撥水表面を容易に製造することができる。
さらに、本発明の自己集積体は、面方向に一方向に配向しており、前記してきた自己集積体の有する特性をより効果的に引き出すことができる。
HBC, which is the basic skeleton of the compound of the present invention, is an extremely hydrophobic molecule that is regarded as a graphite fragment. However, by introducing a fluor group, the hydrophobic effect and the π-π stacking due to the overlap of the molecular planes are combined. Self-assembly through effects can form nanoscale tubular or fiber-like assemblies. In particular, the nanotubes formed in this way not only have the same properties as the nanotubes derived therefrom due to their structural relevance to the nanotubes generated from graphite, but also through the overlap of HBC-specific π electrons. Expected to have electronic properties that are not found in conventional nanotubes, such as smooth carrier movement, from lipids, etc., and also has features such as being free of impurities such as metals and having a large aspect ratio and uniform thickness. In addition, the HBC derivative of the present invention also has physiological activity derived from fluorine atoms and water / oil repellency.
Moreover, according to the present invention, there is an advantage that a fluorinated nanotube can be easily produced under mild conditions without using a harmful gas such as fluorine gas, and the fluorine content can be designed freely. Moreover, a super-water-repellent surface can be easily produced by casting the produced suspension of fluorinated nanotubes to a desired surface.
Furthermore, the self-assembled body of the present invention is oriented in one direction in the plane direction, and the characteristics of the self-assembled body described above can be extracted more effectively.

以下、実施例により本発明をより具体的に説明するが、本発明はこれら実施例により何ら限定されるものではない。
以下の実施例や比較例においては、特に断らない限り試薬および溶剤類は市販品をそのまま用いた。
H−NMR及び13C−NMRスペクトルは、JEOL NM-Excalibur500型を用い、重水素化された溶媒に残存する非重水素化溶媒を内部標準として、それぞれ500MHz及び125MHzで測定した。
赤外吸収スペクトルは紫外可視近赤外分光光度計JASCO-V570DSを用いて測定した。
質量分析はApplied Biosystems BioSpectrometry Workstation model Voyager-DE STR spectrometerを用い、dithranolをマトリックスとして測定した。
走査型電子顕微鏡写真は、JEOL JSM-6700F型FE-SEMを用い、5kVで撮影した。
透過型電子顕微鏡写真は、Philips model Tecnai F20 electron microscopeを用い120kVで撮影した。
EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited at all by these Examples.
In the following Examples and Comparative Examples, commercially available reagents and solvents were used as they were unless otherwise specified.
1 H-NMR and 13 C-NMR spectra were measured at 500 MHz and 125 MHz, respectively, using a JEOL NM-Excalibur500 model, with the non-deuterated solvent remaining in the deuterated solvent as an internal standard.
The infrared absorption spectrum was measured using a JASCO-V570DS ultraviolet visible near infrared spectrophotometer.
Mass spectrometry was performed using an Applied Biosystems BioSpectrometry Workstation model Voyager-DE STR spectrometer and dithranol as a matrix.
Scanning electron micrographs were taken at 5 kV using a JEOL JSM-6700F FE-SEM.
Transmission electron micrographs were taken at 120 kV using a Philips model Tecnai F20 electron microscope.

2,5−ビス[4’−(ペルフルオロヘキセ−1−ニロキシ)フェニル]−11,14−ジドデシル−ヘキサ−ペリ−ヘキサベンゾコロネン(9)(前記した一般式(I)におけるRがドデシル基(−C1225基)であって、Rが−4−C−O−CF=CF−C基であって、Xが水素原子である場合の化合物)の製造 2,5-bis [4 ′-(perfluorohex-1-yloxy) phenyl] -11,14-didodecyl-hexa-peri-hexabenzocoronene (9) (R 1 in the above general formula (I) is dodecyl Group (—C 12 H 25 group), wherein R 2 is a -4-C 6 H 4 —O—CF═CF—C 4 F 9 group and X is a hydrogen atom) Manufacturing

(1)1,2−ビス(4’−メトキシ−4−ビフェニリル)エチン(2)の製造
4−ブロモ−4−メトキシビフェニル(1)(2.7g, 10.12mmol)、1,8−ジアザビシクロ[5,4,0]−7−ウンデセン(DBU)(9.2g, 60.43mmol)、PdCl(PPh (425mg, 0.61mmol)、及びヨウ化第1銅(CuI)(191mg, 1.00mmol)をベンゼン(20 ml)に溶解し、トリメチルシリルアセチレン(0.71ml, 496mg, 5.05mmol)と水(70μl)を連続的に添加した。この混合溶液を60℃に加熱して24時間保ち、生成した沈殿物をろ過して分離し氷冷したジクロルメタンで洗浄した後、トルエンから再結晶して目的の1,2−ビス(4’−メトキシ−4−ビフェニリル)エチン(2)をうす茶色の結晶として得た。
収量 : 1.4g(3.51mmol)、収率:69%。
H−NMR (500MHz,THF−d) : δ
7.56 (t, J = 8.5 Hz, 8H), 7.50 (d, J = 8.5 Hz, 4H),
6.93 (d, J = 8.5 Hz, 4H), 3.76 (s, 6H).
MALDI−TOF−MS: C2822 として
計算値[M+H]: m/z = 390.47;
測定値 : 390.13.
(1) Preparation of 1,2-bis (4′-methoxy-4-biphenylyl) ethyne (2) 4-Bromo-4-methoxybiphenyl (1) (2.7 g, 10.12 mmol), 1,8-diazabicyclo [5 , 4,0] -7-undecene (DBU) (9.2 g, 60.43 mmol), PdCl 2 (PPh 3 ) 2 (425 mg, 0.61 mmol), and cuprous iodide (CuI) (191 mg, 1.00 mmol). Dissolved in benzene (20 ml), trimethylsilylacetylene (0.71 ml, 496 mg, 5.05 mmol) and water (70 μl) were added successively. This mixed solution was heated to 60 ° C. and kept for 24 hours. The formed precipitate was separated by filtration, washed with ice-cooled dichloromethane, and then recrystallized from toluene to obtain the desired 1,2-bis (4′- Methoxy-4-biphenylyl) ethyne (2) was obtained as light brown crystals.
Yield: 1.4 g (3.51 mmol), yield: 69%.
1 H-NMR (500 MHz, THF-d 8 ): δ
7.56 (t, J = 8.5 Hz, 8H), 7.50 (d, J = 8.5 Hz, 4H),
6.93 (d, J = 8.5 Hz, 4H), 3.76 (s, 6H).
MALDI-TOF-MS: As C 28 H 22 O 2
Calculated value [M + H] + : m / z = 390.47;
Measurement value: 390.13.

(2)3,4−ジ(4−ドデシルフェニル)−2,5−ジフェニルシクロペンタジエン−1−オン(5)の製造
1,2−ビス−(4−ドデシルフェニル)−1,2−ジケトン(4)は文献(S. Ito et al., Chem. Eur. J. 6, 4327 (2000)) に記載の方法により製造した。
1,2−ビス− (4−ドデシルフェニル) −1,2−ジケトン(4)(1.5g, 2.75mmol)とジベンジルケトン(0.58g, 2.76mmol)をジオキサンに溶解し、100℃に加熱して、テトラブチルアンモニウムヒドロキシド(1.0Mメタノール溶液)(1eq, 2.76ml)を一度に加え、更に15分間加熱した。反応混合物を水に注ぎジクロロメタンで抽出し、抽出液を蒸発乾固した後、シリカゲルカラムクロマトグラフィー[溶離液:ジクロロメタン/ヘキサン(濃度勾配10−50%ジクロロメタン)]により精製した。ジクロロメタン/ヘキサン(1:3)を溶離液として分取HPLCで更に精製し、蒸発乾固して溶媒を除き、2,5−ジフェニル−3,4−ビス(4−ドデシルフェニル)シクロペンタジエノン(5)を紫色の粉末として得た。
収量:0.88g、収率:44%。
H−NMR (500MHz, CDCl):δ
7.24(m), 6.96(d, J=7.94Hz, 4H), 6.80(d, J=7.94Hz, 4H),
2.55(t, J=7.63Hz, 4H), 1.56(br., 4H), 1.26(br., 36H),
0.88(t, J=6.71Hz, 6H)。
MALDI−TOF(dithranol) : m/z=720(M)。
(2) Production of 3,4-di (4-dodecylphenyl) -2,5-diphenylcyclopentadien-1-one (5) 1,2-bis- (4-dodecylphenyl) -1,2-diketone ( 4) was prepared by the method described in the literature (S. Ito et al., Chem. Eur. J. 6, 4327 (2000)).
1,2-bis- (4-dodecylphenyl) -1,2-diketone (4) (1.5 g, 2.75 mmol) and dibenzyl ketone (0.58 g, 2.76 mmol) are dissolved in dioxane and heated to 100 ° C. Tetrabutylammonium hydroxide (1.0 M in methanol) (1 eq, 2.76 ml) was added in one portion and heated for an additional 15 minutes. The reaction mixture was poured into water and extracted with dichloromethane. The extract was evaporated to dryness and purified by silica gel column chromatography [eluent: dichloromethane / hexane (concentration gradient: 10-50% dichloromethane)]. Further purification by preparative HPLC, eluting with dichloromethane / hexane (1: 3), evaporated to dryness to remove the solvent and 2,5-diphenyl-3,4-bis (4-dodecylphenyl) cyclopentadienone (5) was obtained as a purple powder.
Yield: 0.88 g, yield: 44%.
1 H-NMR (500 MHz, CDCl 3 ): δ
7.24 (m), 6.96 (d, J = 7.94Hz, 4H), 6.80 (d, J = 7.94Hz, 4H),
2.55 (t, J = 7.63Hz, 4H), 1.56 (br., 4H), 1.26 (br., 36H),
0.88 (t, J = 6.71Hz, 6H).
MALDI-TOF (dithranol): m / z = 720 (M + ).

(3)2,3−ビス(4’−メトキシ−4−ビフェニリル)−5,6−ジ(4−ドデシルフェニル)−1,4−ジフェニルベンゼン(6)の製造
前記した(2)で製造した3,4−ジ(4−ドデシルフェニル)−2,5−ジフェニルシクロペンタジエン−1−オン(5)(6.7 g, 9.22 mmol)と、前記した(1)で製造した1,2−ビス(4’−メトキシ−4−ビフェニリル)エチン(2)(3.6 g, 9.22 mmol)をシュレンク中でジフェニルエーテル(10 ml)に懸濁させ、24時間還流(〜300℃)させた後、室温まで冷却した。反応混合液にエタノール(300 ml)を加え、生成した茶色の沈殿物をろ過して分離し、シリカゲルカラムクロマトグラフィー(溶離液:酢酸エチル/ヘキサン(7/1))にかけて精製し、2,3−ビス(4’−メトキシ−4−ビフェニリル)−5,6−ジ(4−ドデシルフェニル)−1,4−ジフェニルベンゼン(6)を無色の固体として得た。
収量 : 8.0g(7.38mmol)、収率:80%。
H−NMR (500MHz,CDCl) : δ
7.34 (d, J = 8.5 Hz, 4H), 7.06 (d, J = 7.5 Hz, 4H), 6.89-6.80 (m, 18H),
6.68 (d, J = 8.0 Hz, 4H), 6.62 (d, J = 8.0 Hz, 4H), 3.77 (s, 6H),
2.33 (t, J = 7.5 Hz, 4H), 1.41-1.35 (m, 4H), 1.31-1.20 (m, 32H),
1.09 (br., 4H), 0.87 (t, J = 7.5 Hz, 6H).
13C−NMR (125MHz, CDCl): δ
158.69, 140.77, 140.59, 140.34, 139.68, 139.19, 137.82, 136.83, 133.31,
131.83, 131.46, 131.18, 127.60, 126.50, 126.48, 124.91, 124.59, 113.90,
55.34, 35.38, 32.01, 32.00, 31.23, 29.81, 29.76, 29.60, 29.46, 28.88,
22.79, 14.21.
MALDI−TOF−MS: C8090 としての
計算値 [M+H]: m/z = 1083.57;
測定値 : 1083.81.
(3) Production of 2,3-bis (4′-methoxy-4-biphenylyl) -5,6-di (4-dodecylphenyl) -1,4-diphenylbenzene (6) Manufactured in (2) described above 3,4-di (4-dodecylphenyl) -2,5-diphenylcyclopentadien-1-one (5) (6.7 g, 9.22 mmol) and 1,2-bis (4 prepared in (1) above '-Methoxy-4-biphenylyl) ethyne (2) (3.6 g, 9.22 mmol) was suspended in diphenyl ether (10 ml) in Schlenk, refluxed (˜300 ° C.) for 24 hours, and then cooled to room temperature. Ethanol (300 ml) was added to the reaction mixture, and the resulting brown precipitate was separated by filtration and purified by silica gel column chromatography (eluent: ethyl acetate / hexane (7/1)). -Bis (4'-methoxy-4-biphenylyl) -5,6-di (4-dodecylphenyl) -1,4-diphenylbenzene (6) was obtained as a colorless solid.
Yield: 8.0 g (7.38 mmol), yield: 80%.
1 H-NMR (500 MHz, CDCl 3 ): δ
7.34 (d, J = 8.5 Hz, 4H), 7.06 (d, J = 7.5 Hz, 4H), 6.89-6.80 (m, 18H),
6.68 (d, J = 8.0 Hz, 4H), 6.62 (d, J = 8.0 Hz, 4H), 3.77 (s, 6H),
2.33 (t, J = 7.5 Hz, 4H), 1.41-1.35 (m, 4H), 1.31-1.20 (m, 32H),
1.09 (br., 4H), 0.87 (t, J = 7.5 Hz, 6H).
13 C-NMR (125 MHz, CDCl 3 ): δ
158.69, 140.77, 140.59, 140.34, 139.68, 139.19, 137.82, 136.83, 133.31,
131.83, 131.46, 131.18, 127.60, 126.50, 126.48, 124.91, 124.59, 113.90,
55.34, 35.38, 32.01, 32.00, 31.23, 29.81, 29.76, 29.60, 29.46, 28.88,
22.79, 14.21.
MALDI-TOF-MS: as C 80 H 90 O 2
Calculated value [M + H] + : m / z = 1083.57;
Measurement value: 1083.81.

(4)2,3−ビス(4’−ヒドロキシ−4−ビフェニリル)−5,6−ジ(4−ドデシルフェニル)−1,4−ジフェニルベンゼン(7)の製造.
前記した(3で製造した2,3−ビス(4’−メトキシ−4−ビフェニリル)−5,6−ジ(4−ドデシルフェニル)−1,4−ジフェニルベンゼン(6)(8.0g, 7.38mmol)のジクロロメタン溶液に0℃で三臭化ホウ素(BBr) (2.6ml, 27.5mmol)を加え、0℃で45分間撹拌した後、室温で一夜、撹拌した。反応混合物を氷水/テトラヒドロフランの混合液(10/9)に注ぎ、ジクロロメタンで抽出した。抽出物をブラインで洗浄し、無水硫酸マグネシウムで乾燥した後、ロータリーエバポレータで蒸発乾涸した。残渣をシリカゲルカラムクロマトグラフィー(溶離液:酢酸エチル/ヘキサン(7/1))にかけて精製し、2,3−ビス(4’−ヒドロキシ−4−ビフェニリル)−5,6−ジ(4−ドデシルフェニル)−1,4−ジフェニルベンゼン(7)を無色の固体として得た。
収量 : 7.0g(6.63mmol)、収率:90%。
H−NMR (500MHz, CDCl): δ
7.28 (d, J = 8.5 Hz, 4H), 7.04 (d, J = 8.5 Hz, 4H), 6.89-6.79 (m, 14H),
6.75 (d, J = 8.5 Hz, 4H), 6.67 (d, J = 8.5 Hz, 4H),
6.61 (d, J = 8.0 Hz, 4H), 2.33 (t, J = 7.5Hz, 4H), 1.40-1.35 (m, 4H),
1.30-1.19 (m, 34H), 1.08 (br., 4H), 0.87 (t, J = 7.5 Hz, 6H).
13C−NMR(125MHz, CDCl): δ
154.58, 140.75, 140.60, 140.33, 139.64, 139.24, 139.20, 137.80, 136.77,
133.53, 131.82, 131.44, 131.16, 127.84, 126.49, 126.47, 124.91, 124.57,
115.30, 35.37, 32.00, 31.22, 29.80, 29.75, 29.59, 29.45, 28.87, 22.77,
14.20.
MALDI−TOF−MS: C908422としての
計算値 [M+H]: m/z = 1614.61;
測定値 : 1614.75.
(4) Production of 2,3-bis (4′-hydroxy-4-biphenylyl) -5,6-di (4-dodecylphenyl) -1,4-diphenylbenzene (7).
As described above (2,3-bis (4′-methoxy-4-biphenylyl) -5,6-di (4-dodecylphenyl) -1,4-diphenylbenzene (6) prepared in 3) (8.0 g, 7.38 mmol Boron tribromide (BBr 3 ) (2.6 ml, 27.5 mmol) was added to the dichloromethane solution at 0 ° C. and stirred for 45 minutes at 0 ° C. and then overnight at room temperature The reaction mixture was mixed with ice water / tetrahydrofuran. The extract was washed with brine, dried over anhydrous magnesium sulfate and evaporated to dryness on a rotary evaporator, and the residue was subjected to silica gel column chromatography (eluent: ethyl acetate / Hexane (7/1)) and purified by 2,3-bis (4′-hydroxy-4-biphenylyl) -5,6-di (4-dodecylphenyl) -1,4-diphenylben Down the (7) was obtained as a colorless solid.
Yield: 7.0 g (6.63 mmol), yield: 90%.
1 H-NMR (500 MHz, CDCl 3 ): δ
7.28 (d, J = 8.5 Hz, 4H), 7.04 (d, J = 8.5 Hz, 4H), 6.89-6.79 (m, 14H),
6.75 (d, J = 8.5 Hz, 4H), 6.67 (d, J = 8.5 Hz, 4H),
6.61 (d, J = 8.0 Hz, 4H), 2.33 (t, J = 7.5Hz, 4H), 1.40-1.35 (m, 4H),
1.30-1.19 (m, 34H), 1.08 (br., 4H), 0.87 (t, J = 7.5 Hz, 6H).
13 C-NMR (125 MHz, CDCl 3 ): δ
154.58, 140.75, 140.60, 140.33, 139.64, 139.24, 139.20, 137.80, 136.77,
133.53, 131.82, 131.44, 131.16, 127.84, 126.49, 126.47, 124.91, 124.57,
115.30, 35.37, 32.00, 31.22, 29.80, 29.75, 29.59, 29.45, 28.87, 22.77,
14.20.
MALDI-TOF-MS: as C 90 H 84 F 22 O 2
Calculated value [M + H] + : m / z = 1614.61;
Measurement: 1614.75.

(5) 2,3−ビス[4’−(ペルフルオロヘキセ−1−ニロキシ)−4−ビフェニリル]−5,6−ジ(4−ドデシルフェニル)−1,4−ジフェニルベンゼン(8)の製造.
前記(4)で製造した2,3−ビス(4’−ヒドロキシ−4−ビフェニリル)−5,6−ジ(4−ドデシルフェニル)−1,4−ジフェニルベンゼン(7)(200mg, 0.19mmol)と炭酸カリウム(200mg)の乾燥テトラヒドロフラン(5ml)溶液に、過剰のペルフルオル−1−ヘキセン(0.3ml)を注射器で連続的に加え、得られた懸濁液をアルゴン雰囲気下、室温で25時間撹拌した。反応混合物を蒸発乾涸し、残渣をジクロロメタン/水で抽出した。有機層を水およびブラインで洗浄し、無水硫酸マグネシウムで乾燥した後、ロータリーエバポレータで蒸発乾涸した。残渣をシリカゲルカラムクロマトグラフィー(溶離液:ジクロロメタン/ヘキサン(8/1))にかけて精製し、2,3−ビス[4’− (ペルフルオロヘキセ−1−ニロキシ)−4−ビフェニリル]−5,6−ジ(4−ドデシルフェニル)−1,4−ジフェニルベンゼン(8)を無色の固体として得た。
収量 : 180mg、収率:59%。
H−NMR (500MHz, CDCl) : δ
7.42-7.39 (m, 4H), 7.15-7.02 (m, 8H), 6.91-6.81 (m, 14H),
6.68-6.62 (m, 8H), 4.10-4.08 (m, 4H), 3.84-3.81 (m, 4H),
3.74-3.59(m, 14H), 3.53-3.51(m, 2H), 3.34 (s, 3H), 2.32 (t, J=7.5Hz, 4H),
1.40-1.34 (m, 4H), 1.29-1.19 (m, 32H), 1.07 (br, 4H),
0.86 (t, J = 7.0Hz, 6H).
MALDI−TOF−MS: C908422としての
計算値[M+H] : m/z = 1614.61;
測定値 : 1614.75.
(5) Production of 2,3-bis [4 ′-(perfluorohex-1-yloxy) -4-biphenylyl] -5,6-di (4-dodecylphenyl) -1,4-diphenylbenzene (8) .
2,3-bis (4′-hydroxy-4-biphenylyl) -5,6-di (4-dodecylphenyl) -1,4-diphenylbenzene (7) prepared in the above (4) (200 mg, 0.19 mmol) To a solution of potassium and potassium carbonate (200 mg) in dry tetrahydrofuran (5 ml), excess perfluoro-1-hexene (0.3 ml) was continuously added with a syringe, and the resulting suspension was stirred at room temperature for 25 hours under an argon atmosphere. did. The reaction mixture was evaporated to dryness and the residue was extracted with dichloromethane / water. The organic layer was washed with water and brine, dried over anhydrous magnesium sulfate, and evaporated to dryness on a rotary evaporator. The residue was purified by silica gel column chromatography (eluent: dichloromethane / hexane (8/1)), and 2,3-bis [4 ′-(perfluorohex-1-yloxy) -4-biphenylyl] -5,6 -Di (4-dodecylphenyl) -1,4-diphenylbenzene (8) was obtained as a colorless solid.
Yield: 180 mg, yield: 59%.
1 H-NMR (500 MHz, CDCl 3 ): δ
7.42-7.39 (m, 4H), 7.15-7.02 (m, 8H), 6.91-6.81 (m, 14H),
6.68-6.62 (m, 8H), 4.10-4.08 (m, 4H), 3.84-3.81 (m, 4H),
3.74-3.59 (m, 14H), 3.53-3.51 (m, 2H), 3.34 (s, 3H), 2.32 (t, J = 7.5Hz, 4H),
1.40-1.34 (m, 4H), 1.29-1.19 (m, 32H), 1.07 (br, 4H),
0.86 (t, J = 7.0Hz, 6H).
MALDI-TOF-MS: calculated for C 90 H 84 F 22 O 2 [M + H] +: m / z = 1614.61;
Measurement: 1614.75.

(6) 2,5−ビス[4’−(ペルフルオロヘキセ−1−ニロキシ)フェニル]−11,14−ジドデシル−ヘキサ−ペリ−ヘキサベンゾコロネン(9)の製造
前記(5)で製造した2,3−ビス[4’−(ペルフルオロヘキセ−1−ニロキシ)−4−ビフェニリル]−5,6−ジ(4−ドデシルフェニル)−1,4−ジフェニルベンゼン(8)(180mg, 0.11mmol)の乾燥ジクロロメタン(50ml)溶液に、塩化第二鉄(FeCl)(542mg, 3.34mmol)のニトロメタン(MeNO) (3.5ml)溶液をアルゴン雰囲気下でゆっくり加えた。撹拌しながら25℃で1時間反応させて、反応液を200mlのメタノールに注いだ。生成した沈殿をろ過して分離し、シリカゲルカラムクロマトグラフィー(溶離液:熱テトラヒドロフラン)にかけて、黄色の留分を捕集した。この留分を蒸発乾涸して得られた残渣をテトラヒドロフランから再結晶して、目的の2,5−ビス[4’− (ペルフルオロヘキセ−1−ニロキシ)フェニル]−11,14−ジドデシル−ヘキサ−ペリ−ヘキサベンゾコロネン(9)を黄色の結晶として得た。
収量 : 140mg、収率:78%。
H−NMR (500MHz,THF−d,55℃): δ
7.66-6.92(m, 22H), 2.65(br, 4H), 1.73(br, 4H), 1.47-1.09(m, 36H),
0.83(br, 6H).
MALDI−TOF−MS: C907222としての
計算値 [M+H] : m/z = 1602.52;
測定値 : 1602.64.
(6) Production of 2,5-bis [4 ′-(perfluorohex-1-yloxy) phenyl] -11,14-didodecyl-hexa-peri-hexabenzocoronene (9) 2 produced in (5) above , 3-bis [4 '-(perfluorohex-1-yloxy) -4-biphenylyl] -5,6-di (4-dodecylphenyl) -1,4-diphenylbenzene (8) (180 mg, 0.11 mmol) Solution of ferric chloride (FeCl 3 ) (542 mg, 3.34 mmol) in nitromethane (MeNO 2 ) (3.5 ml) was slowly added under an argon atmosphere. The mixture was reacted for 1 hour at 25 ° C. with stirring, and the reaction solution was poured into 200 ml of methanol. The produced precipitate was separated by filtration and subjected to silica gel column chromatography (eluent: hot tetrahydrofuran) to collect a yellow fraction. The residue obtained by evaporation to dryness of this fraction was recrystallized from tetrahydrofuran to obtain the desired 2,5-bis [4 ′-(perfluorohex-1-yloxy) phenyl] -11,14-didodecyl-hexa. -Peri-hexabenzocoronene (9) was obtained as yellow crystals.
Yield: 140 mg, yield: 78%.
1 H-NMR (500 MHz, THF-d 8 , 55 ° C.): δ
7.66-6.92 (m, 22H), 2.65 (br, 4H), 1.73 (br, 4H), 1.47-1.09 (m, 36H),
0.83 (br, 6H).
MALDI-TOF-MS: as C 90 H 72 F 22 O 2
Calculated value [M + H] + : m / z = 1602.52;
Measurement value: 1602.64.

HBC誘導体の自己集積方法(図1参照)
前記した実施例1で製造した2,5−ビス[4’−(ペルフルオロヘキセ−1−ニロキシ)フェニル]−11,14−ジドデシル−ヘキサ−ペリ−ヘキサベンゾコロネン(9)1mgをガラス容器中の1mLのテトラヒドロフランに投入し、40℃に加温して透明な溶液を得た。次いでこの溶液を該ガラス容器ごと、該ガラス容器より十分大きい第二のガラス容器に蓋をせずに入れ、外側の第二のガラス容器にn−ヘキサン2mlを入れた。外側の第二のガラス容器を密栓し、室温で一週間熟成させたところ、内側の液面に黄色のフィルムが生成していた。このフィルムをシリコン基板などに写し取った後、電界放射型走査型電子顕微鏡(FE−SEM)及び透過型電子顕微鏡(TEM)で観察したところ、アスペクト比が大きく線径分布の狭いナノサイズのチューブが膜面に平行に一方向に整列して生成していた。
図2にチューブのFE−SEM画像を、図3にチューブのTEM写真をそれぞれ示す。
Self-assembly method of HBC derivatives (see Fig. 1)
In a glass container, 1 mg of 2,5-bis [4 ′-(perfluorohex-1-yloxy) phenyl] -11,14-didodecyl-hexa-peri-hexabenzocoronene (9) prepared in Example 1 was placed. Was added to 1 mL of tetrahydrofuran and heated to 40 ° C. to obtain a transparent solution. Then, this solution was put together with the glass container into a second glass container sufficiently larger than the glass container without a lid, and 2 ml of n-hexane was added to the second glass container on the outside. When the outer second glass container was sealed and aged at room temperature for one week, a yellow film was formed on the inner liquid surface. After copying this film onto a silicon substrate or the like, it was observed with a field emission scanning electron microscope (FE-SEM) and a transmission electron microscope (TEM). As a result, a nano-sized tube with a large aspect ratio and a narrow wire diameter distribution was found. They were generated in one direction parallel to the film surface.
FIG. 2 shows an FE-SEM image of the tube, and FIG. 3 shows a TEM photograph of the tube.

本発明は自己組織化して一方向に整列したナノスケールの自己集積体を提供するものであり、本発明のナノスケールの自己集積体は、構造的にグラファイトから生成するナノチューブとの関連性からこれらから誘導されるナノチューブと同等な性質を有するだけでなく、HBC特有のπ電子の重なりを通じたスムーズなキャリアの移動など、従来の脂質等からのナノチューブには無い電子的特性が期待され、また、金属等の不純物を含まず、アスペクト比が大きく太さが均一であるなどの特徴を兼ね備えているほか、さらに本発明のHBC誘導体はフッ素原子に由来する生理活性や撥水撥油性を兼ね備えたものであり、撥水性を有するナノ材料として各種の吸着材料や電子デバイスに有用であるばかりでなく、超撥水性を有することから、異物の付着防止材料、雪や水の付着防止材料などとして各種の車輌用、船舶用、航空機用及び建築用材料等の表面処理材料としても有用であり、産業上の利用可能性を有している。   The present invention provides self-assembled and unidirectionally aligned nanoscale self-assemblies, and the nanoscale self-assemblies of the present invention are structurally related to nanotubes formed from graphite. In addition to having the same properties as nanotubes derived from HBC, electronic properties that are not found in conventional nanotubes from lipids, such as smooth carrier movement through the π-electron overlap peculiar to HBC, are expected, It does not contain impurities such as metals, has features such as a large aspect ratio and uniform thickness, and the HBC derivative of the present invention also has physiological activity derived from fluorine atoms and water and oil repellency. It is not only useful for various adsorbing materials and electronic devices as a nanomaterial having water repellency, but also because it has super water repellency. It is also useful as a surface treatment material for various vehicles, marine, aircraft, and building materials as an anti-adhesion material for snow, an adhesion prevention material for snow and water, and has industrial applicability. .

図1は、本発明の自己集積体の製造方法を模式的に示したものである。FIG. 1 schematically shows a method for producing a self-assembly according to the present invention. 図2は、実施例2で製造した本発明の自己集積体のFE−SEM画像を示した図面に代わる写真である。FIG. 2 is a photograph replacing a drawing showing an FE-SEM image of the self-assembled body of the present invention produced in Example 2. 図3は、実施例2で製造した本発明の自己集積体のTEM写真を示した図面に代わる写真である。FIG. 3 is a photograph replacing a drawing showing a TEM photograph of the self-assembled body of the present invention produced in Example 2.

Claims (6)

次の一般式(I)
(式中、Rはそれぞれ独立して、炭素数4〜20の直鎖状又は分岐状のアルキル基を示し、Rはそれぞれ独立して次の一般式(II)
−C−O−R (II)
(式中、Rは炭素数4〜30のパーフルオロアルケニル基を示し、−C−で示されるベンゼン環上の置換位置はオルト位、メタ位、又はパラ位のいずれかであることを示す。)
で表される基を示し、Xはそれぞれ独立して水素原子、ハロゲン原子、シアノ基、置換基を有していてもよい炭素数2〜4のアルキニル基、置換基を有していてもよいピリジル基、置換基を有していてもよいターピリジル基、又は置換基を有していてもよいポルフィリニル基を示し、アルキニル基、ピリジル基、ターピリジル基、及びポルフィリニル基の置換基は、ハロゲン原子、炭素数1〜10のアルキル基、及び炭素数6〜20のアリール基からなる群から選ばれる置換基を示す。)
で表されるフッ素含有基で置換されたヘキサペリヘキサベンゾコロネン(HBC)誘導体の少なくとも1種を含有してなる溶液に、当該溶液の溶媒とは異なる他の溶媒の蒸気を接触させることにより、当該溶液の表面に前記した一般式(I)で表される化合物が面方向に配向したチューブ状のナノサイズの自己集積体を形成させる方法。
The following general formula (I)
(In the formula, each R 1 independently represents a linear or branched alkyl group having 4 to 20 carbon atoms, and each R 2 independently represents the following general formula (II):
—C 6 H 4 —O—R 3 (II)
(In the formula, R 3 represents a perfluoroalkenyl group having 4 to 30 carbon atoms, and the substitution position on the benzene ring represented by —C 6 H 4 — is either the ortho position, the meta position, or the para position. Indicates that.)
And each X independently represents a hydrogen atom, a halogen atom, a cyano group, an optionally substituted alkynyl group having 2 to 4 carbon atoms, or a substituent. A pyridyl group, a terpyridyl group which may have a substituent, or a porphyrinyl group which may have a substituent, wherein the alkynyl group, the pyridyl group, the terpyridyl group, and the porphyrinyl group have a halogen atom, The substituent selected from the group which consists of a C1-C10 alkyl group and a C6-C20 aryl group is shown. )
By bringing a vapor of another solvent different from the solvent of the solution into contact with a solution containing at least one hexaperihexabenzocoronene (HBC) derivative substituted with a fluorine-containing group represented by: A method of forming a tubular nano-sized self-assembled body in which the compound represented by the general formula (I) is oriented in the plane direction on the surface of the solution.
一般式(I)で表されるフッ素含有基で置換されたヘキサペリヘキサベンゾコロネン(HBC)誘導体を溶解する溶媒が、ジクロロメタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、シクロヘキサン、及びメチルシクロヘキサンからなる群から選ばれる1種又は2種以上である請求項1に記載の方法。   The solvent for dissolving the hexaperihexabenzocoronene (HBC) derivative substituted with the fluorine-containing group represented by the general formula (I) is selected from the group consisting of dichloromethane, tetrahydrofuran, 2-methyltetrahydrofuran, cyclohexane, and methylcyclohexane The method of Claim 1 which is 1 type, or 2 or more types. 溶媒が、テトラヒドロフランである請求項1又は2に記載の方法。   The method according to claim 1 or 2, wherein the solvent is tetrahydrofuran. 当該溶液の溶媒とは異なる他の溶媒が、一般式(I)で表されるフッ素含有基で置換されたヘキサペリヘキサベンゾコロネン(HBC)誘導体の貧溶媒である請求項1〜3のいずれかに記載の方法。   The other solvent different from the solvent of the solution is a poor solvent for a hexaperihexabenzocoronene (HBC) derivative substituted with a fluorine-containing group represented by the general formula (I). The method described in 1. 貧溶媒が、炭素数5〜12の炭化水素系溶媒である請求項4に記載の方法。   The method according to claim 4, wherein the poor solvent is a hydrocarbon solvent having 5 to 12 carbon atoms. 請求項1〜5のいずれかの方法により製造し得る次の一般式(I)
(式中、Rはそれぞれ独立して、炭素数4〜20の直鎖状又は分岐状のアルキル基を示し、Rはそれぞれ独立して次の一般式(II)
−C−O−R (II)
(式中、Rは炭素数4〜30のパーフルオロアルケニル基を示し、−C−で示されるベンゼン環上の置換位置はオルト位、メタ位、又はパラ位のいずれかであることを示す。)
で表される基を示し、Xはそれぞれ独立して水素原子、ハロゲン原子、シアノ基、置換基を有していてもよい炭素数2〜4のアルキニル基、置換基を有していてもよいピリジル基、置換基を有していてもよいターピリジル基、又は置換基を有していてもよいポルフィリニル基を示し、アルキニル基、ピリジル基、ターピリジル基、及びポルフィリニル基の置換基は、ハロゲン原子、炭素数1〜10のアルキル基、及び炭素数6〜20のアリール基からなる群から選ばれる置換基を示す。)
で表されるフッ素含有基で置換されたヘキサペリヘキサベンゾコロネン(HBC)誘導体が面方向に配向したチューブ状のナノサイズの自己集積体。
The following general formula (I) which can be produced by the method according to claim 1.
(In the formula, each R 1 independently represents a linear or branched alkyl group having 4 to 20 carbon atoms, and each R 2 independently represents the following general formula (II):
—C 6 H 4 —O—R 3 (II)
(In the formula, R 3 represents a perfluoroalkenyl group having 4 to 30 carbon atoms, and the substitution position on the benzene ring represented by —C 6 H 4 — is either the ortho position, the meta position, or the para position. Indicates that.)
And each X independently represents a hydrogen atom, a halogen atom, a cyano group, an optionally substituted alkynyl group having 2 to 4 carbon atoms, or a substituent. A pyridyl group, a terpyridyl group which may have a substituent, or a porphyrinyl group which may have a substituent, wherein the alkynyl group, the pyridyl group, the terpyridyl group, and the porphyrinyl group have a halogen atom, The substituent selected from the group which consists of a C1-C10 alkyl group and a C6-C20 aryl group is shown. )
A tubular nano-sized self-assembled body in which hexaperihexabenzocoronene (HBC) derivatives substituted with a fluorine-containing group represented by the formula are oriented in the plane direction.
JP2007108165A 2007-04-17 2007-04-17 Tubular nano-sized self-assembled body in which hexaperihexabenzocoronene (HBC) derivatives substituted with fluorine-containing groups are oriented in the plane direction, and method for producing the same Expired - Fee Related JP4884284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007108165A JP4884284B2 (en) 2007-04-17 2007-04-17 Tubular nano-sized self-assembled body in which hexaperihexabenzocoronene (HBC) derivatives substituted with fluorine-containing groups are oriented in the plane direction, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007108165A JP4884284B2 (en) 2007-04-17 2007-04-17 Tubular nano-sized self-assembled body in which hexaperihexabenzocoronene (HBC) derivatives substituted with fluorine-containing groups are oriented in the plane direction, and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008266152A true JP2008266152A (en) 2008-11-06
JP4884284B2 JP4884284B2 (en) 2012-02-29

Family

ID=40046167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007108165A Expired - Fee Related JP4884284B2 (en) 2007-04-17 2007-04-17 Tubular nano-sized self-assembled body in which hexaperihexabenzocoronene (HBC) derivatives substituted with fluorine-containing groups are oriented in the plane direction, and method for producing the same

Country Status (1)

Country Link
JP (1) JP4884284B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008266153A (en) * 2007-04-17 2008-11-06 Japan Science & Technology Agency Polycyclic aromatic hydrocarbon substituted with fluorine, and nano-structure formed by self-organizing the same
JP2009151956A (en) * 2007-12-18 2009-07-09 Toyota Central R&D Labs Inc Lithium ion secondary battery
WO2013042706A1 (en) * 2011-09-20 2013-03-28 公立大学法人大阪市立大学 Organic molecule spin battery
KR20220014528A (en) * 2020-07-29 2022-02-07 울산과학기술원 Negative electrode active material using organic solid solution and manufacturing negative electrode for lithium or sodium secondary battery comprising the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005220046A (en) * 2004-02-04 2005-08-18 Japan Science & Technology Agency Amphipathic hexa-peri-hexabenzocoronene derivative
JP2007238544A (en) * 2006-03-10 2007-09-20 Japan Science & Technology Agency New hexabenzocoronene derivative and photoconductive nano-tube composed of the same
JP2008266153A (en) * 2007-04-17 2008-11-06 Japan Science & Technology Agency Polycyclic aromatic hydrocarbon substituted with fluorine, and nano-structure formed by self-organizing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005220046A (en) * 2004-02-04 2005-08-18 Japan Science & Technology Agency Amphipathic hexa-peri-hexabenzocoronene derivative
JP2007238544A (en) * 2006-03-10 2007-09-20 Japan Science & Technology Agency New hexabenzocoronene derivative and photoconductive nano-tube composed of the same
JP2008266153A (en) * 2007-04-17 2008-11-06 Japan Science & Technology Agency Polycyclic aromatic hydrocarbon substituted with fluorine, and nano-structure formed by self-organizing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008266153A (en) * 2007-04-17 2008-11-06 Japan Science & Technology Agency Polycyclic aromatic hydrocarbon substituted with fluorine, and nano-structure formed by self-organizing the same
JP2009151956A (en) * 2007-12-18 2009-07-09 Toyota Central R&D Labs Inc Lithium ion secondary battery
WO2013042706A1 (en) * 2011-09-20 2013-03-28 公立大学法人大阪市立大学 Organic molecule spin battery
KR20220014528A (en) * 2020-07-29 2022-02-07 울산과학기술원 Negative electrode active material using organic solid solution and manufacturing negative electrode for lithium or sodium secondary battery comprising the same
KR102425006B1 (en) 2020-07-29 2022-07-25 울산과학기술원 Negative electrode active material using organic solid solution and manufacturing negative electrode for lithium or sodium secondary battery comprising the same

Also Published As

Publication number Publication date
JP4884284B2 (en) 2012-02-29

Similar Documents

Publication Publication Date Title
WO2006070817A1 (en) ORGANOBORON π-ELECTRON-SYSTEM COMPOUNDS AND INTERMEDIATE THEREFOR
JP2017520618A (en) Ortho-terphenyl for the production of graphene nanoribbons
JP2016510295A (en) Edge halogenation of graphene materials
JP4884284B2 (en) Tubular nano-sized self-assembled body in which hexaperihexabenzocoronene (HBC) derivatives substituted with fluorine-containing groups are oriented in the plane direction, and method for producing the same
JP4884285B2 (en) Fluorine-substituted polycyclic aromatic hydrocarbons and nanostructures formed by their self-assembly
JP4005571B2 (en) Amphiphilic hexaperihexabenzocoronene derivatives
JP4099526B2 (en) Separation and purification of porphyrin dimer derivatives and carbon nanotubes using them
Bilbao et al. Anatomy of on-surface synthesized boroxine two-dimensional polymers
JP4752269B2 (en) Porphyrin compound and method for producing the same, organic semiconductor film, and semiconductor device
JP2010056492A (en) Bipolar field-effect transistor where carrier mobility is tuned up
JP5874744B2 (en) Fluorine-containing aromatic compound and method for producing the same
WO2013122174A1 (en) Fluorine-containing aromatic compound and production method thereof
CN114891188B (en) Conjugated organic metal polymer containing nitroxide free radical and ferrocene group, preparation method and application thereof, and composite thermoelectric film
CN109072066B (en) Light control material, light control film, and light control laminate
Boobalan et al. Luminescent one-dimensional nanostructures of perylene bisimides
JP4921400B2 (en) Supramolecular nanotubes with fullerenes on the inner and outer wall surfaces
Tanaka et al. Synthesis of highly transparent conductive films with strong absorption in near-infrared region based on tetrathiafulvalene-tethered pendant-type polymers
JP2014122189A (en) Fluorine-containing compound and method for producing the same
JP5009716B2 (en) Field-effect transistor using hexabenzocoronene nanotubes
Schüpbach et al. Grafting Organic n‐Semiconductors to Surfaces:(Perfluoro‐p‐terphenyl‐4‐yl) alkanethiols
Luo et al. Fabrication micro-tube of substituted Zn–phthalocyanine in large scale by simple solvent evaporation method and its surface photovoltaic properties
JP2011102271A (en) Modulation of photoconductivity by coaxial nanotube composed of hexabenzocoronene-diarylethene linked molecule
JP2011068635A (en) Composite comprising liquid porphyrin derivative and nanocarbon material, manufacturing method of the same, charge-transporting material and electronic article
JP2009206108A (en) Organic semiconductor material and organic thin-film device
JP2010235651A (en) Water-repellent supramolecular organization and method for manufacturing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111206

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees