JP2008266116A - Crystal growing device, crucible member of the same, and heat insulating cover member of the same - Google Patents

Crystal growing device, crucible member of the same, and heat insulating cover member of the same Download PDF

Info

Publication number
JP2008266116A
JP2008266116A JP2007223823A JP2007223823A JP2008266116A JP 2008266116 A JP2008266116 A JP 2008266116A JP 2007223823 A JP2007223823 A JP 2007223823A JP 2007223823 A JP2007223823 A JP 2007223823A JP 2008266116 A JP2008266116 A JP 2008266116A
Authority
JP
Japan
Prior art keywords
crystal
crucible
growth apparatus
crucible member
top plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007223823A
Other languages
Japanese (ja)
Inventor
Hiroshige Tezuka
宏茂 手塚
Hotan Ryu
宝丹 劉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Co Ltd
Original Assignee
Furukawa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Co Ltd filed Critical Furukawa Co Ltd
Priority to JP2007223823A priority Critical patent/JP2008266116A/en
Publication of JP2008266116A publication Critical patent/JP2008266116A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a crystal growing device having a structure capable of efficiently growing a high-quality single crystal block. <P>SOLUTION: In the crystal growing device, a heat radiation recess 232 is formed on a crystal support part 231 and a through hole 243 is formed in a heat insulating cover member 240, and therefore the crystal support part 231 radiates heat to efficiently grow a single crystal block CL. A cylindrical induction member 232 connected to the heat radiation recess 232 of the crucible member 220 is formed from the upper face of the crucible to above via the through hole 243 of the heat insulating cover member 240. Even when a leaking sublimated gas moves through a gap between the crucible member 220 and the heat insulating cover member 240 and is cooled to deposit at the position where the gas leaks to the outside, the deposited material does not clog the heat radiation recess 232. Therefore, the crystal support part 231 can be stably kept at a low temperature and the single crystal block CL can be stably and efficiently grown. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、昇華再結晶法により単結晶塊を成長させる結晶成長装置に関し、特に、カーボン製のルツボ部材の内部で炭化珪素の単結晶塊を成長させる結晶成長装置、そのルツボ部材、その断熱カバー部材、に関する。   The present invention relates to a crystal growth apparatus for growing a single crystal lump by a sublimation recrystallization method, and more particularly to a crystal growth apparatus for growing a silicon carbide single crystal lump inside a carbon crucible member, its crucible member, and its heat insulating cover Member.

現在、炭化珪素の単結晶塊の製造方法として昇華再結晶法が利用されている。図4に示すように、この昇華再結晶法を実施する結晶成長装置100は、例えば、円筒状のルツボ部材110を有する。   Currently, a sublimation recrystallization method is used as a method for producing a single crystal lump of silicon carbide. As shown in FIG. 4, the crystal growth apparatus 100 that performs this sublimation recrystallization method includes, for example, a cylindrical crucible member 110.

なお、通常は、固体が直接に気体に変化することと、気体が直接に固体に変化することの、両方が昇華と呼称されている。しかし、本明細書では上記の変化を区別して記載するため、固体が直接に気体に変化することを昇華、気体が直接に固体に変化することを析出、と便宜的に呼称することとする。   In general, both the change of a solid directly into a gas and the change of a gas directly into a solid are called sublimation. However, in this specification, in order to distinguish and describe the above changes, for convenience, the change of a solid directly to a gas is called sublimation, and the change of a gas directly to a solid is called precipitation.

このルツボ部材110は、円盤状の底板部分111と円筒状の側部112からなる本体部分113と、この本体部分113に着脱自在な円盤状の天板部分116と、からなる。この天板部分116の下面中央には、小径の円柱状の結晶支持部115が形成されている。   The crucible member 110 includes a main body portion 113 composed of a disc-shaped bottom plate portion 111 and a cylindrical side portion 112, and a disc-shaped top plate portion 116 detachably attached to the main body portion 113. A small-diameter columnar crystal support portion 115 is formed at the center of the lower surface of the top plate portion 116.

ルツボ部材110は、本体部分113の内部に炭化珪素の原料粉末MPを収容する。結晶支持部115は、小径の円盤状の炭化珪素の種単結晶SCを下面で支持する。ルツボ部材110は、所定の高周波の電磁波を吸収して発熱するカーボンで形成されている。   Crucible member 110 contains silicon carbide raw material powder MP inside main body portion 113. Crystal support portion 115 supports a small-diameter disk-shaped silicon carbide seed single crystal SC on the lower surface. The crucible member 110 is made of carbon that absorbs predetermined high-frequency electromagnetic waves and generates heat.

ルツボ部材110は、外面の略全域が断熱カバー部材120で囲繞されている。この断熱カバー部材120も、ルツボ部材110と同様に、例えば、着脱自在な本体部分121と天板部分122からなる。   The crucible member 110 is surrounded by a heat insulating cover member 120 over substantially the entire outer surface. Similar to the crucible member 110, the heat insulating cover member 120 also includes, for example, a detachable main body portion 121 and a top plate portion 122.

さらに、上述のように断熱カバー部材120で囲繞されたルツボ部材110の外周面に外側から対向する位置に、高周波加熱部130が配置されている。この高周波加熱部130は、円筒状のコイルからなり、所定の高周波の電磁波を発生する。   Further, the high-frequency heating unit 130 is disposed at a position facing the outer peripheral surface of the crucible member 110 surrounded by the heat insulating cover member 120 as described above from the outside. The high-frequency heating unit 130 is formed of a cylindrical coil and generates a predetermined high-frequency electromagnetic wave.

なお、ここで例示する結晶成長装置100は、ルツボ部材110の原料粉末MPの大径の収容空間RSから、小径の結晶支持部115まで連続する円錐状のガイド部117が、ルツボ部材110の内周面に一体に形成されている。   In the crystal growth apparatus 100 exemplified here, a conical guide portion 117 that continues from the large-diameter receiving space RS of the raw material powder MP of the crucible member 110 to the small-diameter crystal support portion 115 includes the crucible member 110. It is integrally formed on the peripheral surface.

上述の結晶成長装置100により単結晶塊CLを製造するときは、例えば、ルツボ部材110の本体部分113から天板部分116が分離され、本体部分113に炭化珪素の原料粉末MPが収容されるとともに、天板部分116の結晶支持部115に炭化珪素の種単結晶SCが装着される。   When the single crystal mass CL is manufactured by the crystal growth apparatus 100 described above, for example, the top plate portion 116 is separated from the main body portion 113 of the crucible member 110, and the silicon carbide raw material powder MP is accommodated in the main body portion 113. The seed single crystal SC of silicon carbide is mounted on the crystal support portion 115 of the top plate portion 116.

つぎに、この天板部分116が本体部分113に装着され、そのルツボ部材110の外面全域が断熱カバー部材120で囲繞される。このような状態で、高周波加熱部130が高周波の電磁波を発生すると、この電磁波の吸収によりルツボ部材110が発熱する。   Next, the top plate portion 116 is attached to the main body portion 113, and the entire outer surface of the crucible member 110 is surrounded by the heat insulating cover member 120. In this state, when the high-frequency heating unit 130 generates high-frequency electromagnetic waves, the crucible member 110 generates heat due to absorption of the electromagnetic waves.

すると、このルツボ部材110に収容されている原料粉末MPが加熱されて昇華する。そこで、この炭化珪素の昇華ガスが種単結晶SCの表面に析出することで、単結晶塊CLが成長する。   Then, the raw material powder MP accommodated in the crucible member 110 is heated and sublimated. Thus, the silicon carbide sublimation gas is deposited on the surface of the seed single crystal SC, so that the single crystal mass CL grows.

なお、この析出は炭化珪素の高温の昇華ガスが冷却されることで発生する。このように冷却により析出する炭化珪素は、種単結晶SCなどの単結晶の表面には単結晶として成長するが、例えば、天板部分116の下面などには多結晶塊DLとして成長する。   This precipitation occurs when the high-temperature sublimation gas of silicon carbide is cooled. The silicon carbide thus precipitated by cooling grows as a single crystal on the surface of a single crystal such as the seed single crystal SC, but grows as a polycrystalline lump DL on the lower surface of the top plate portion 116, for example.

ここで例示する結晶成長装置100は、ルツボ部材110の大径の原料粉末MPの収容空間RSから小径の結晶支持部115まで、円錐状のガイド部117が形成されている。このため、ルツボ部材110の大径の収容空間RSで発生した炭化珪素の昇華ガスが、小径の種単結晶SCの表面に良好に誘導される。   In the crystal growth apparatus 100 exemplified here, a conical guide portion 117 is formed from the accommodating space RS of the large-diameter raw material powder MP of the crucible member 110 to the small-diameter crystal support portion 115. For this reason, the sublimation gas of silicon carbide generated in the large-diameter housing space RS of the crucible member 110 is favorably guided to the surface of the small-diameter seed single crystal SC.

従って、単結晶塊CLを、下方ほど大径な形状に良好な効率で成長させることができる。現在、上述のようにルツボ部材110の内部にガイド部117を一体に形成した結晶成長装置100として各種の提案がある(例えば、特許文献1,2参照)。
特開2002−60297号公報 特開2005−53739号公報
Therefore, the single crystal mass CL can be grown in a shape with a larger diameter toward the lower side with good efficiency. Currently, there are various proposals for the crystal growth apparatus 100 in which the guide portion 117 is integrally formed inside the crucible member 110 as described above (see, for example, Patent Documents 1 and 2).
JP 2002-60297 A JP 2005-53739 A

上述した結晶成長装置100は、結晶支持部115がルツボ部材110の天板部分116と一体に形成されているが、ルツボ部材110は高周波の電磁波を吸収して発熱するので結晶支持部115も高温となる。   In the crystal growth apparatus 100 described above, the crystal support portion 115 is formed integrally with the top plate portion 116 of the crucible member 110. However, since the crucible member 110 absorbs high-frequency electromagnetic waves and generates heat, the crystal support portion 115 also has a high temperature. It becomes.

しかし、前述のように昇華ガスは冷却されることで析出するため、上述のように結晶支持部115が高温であると、これに支持されている単結晶塊CLの成長が阻害されることになる。   However, since the sublimation gas is precipitated by being cooled as described above, if the crystal support portion 115 is at a high temperature as described above, the growth of the single crystal mass CL supported by the crystal support portion 115 is inhibited. Become.

このような課題を解決するため、ルツボ部材の天板部分の上面から結晶支持部の内部まで放熱凹部を形成した結晶成長装置もある(図示せず)。このような結晶成長装置では、天板部分の上面の放熱凹部を解放するため、これに連通する貫通孔が断熱カバー部材にも形成されている。   In order to solve such a problem, there is a crystal growth apparatus (not shown) in which a heat radiation recess is formed from the upper surface of the top plate portion of the crucible member to the inside of the crystal support portion. In such a crystal growth apparatus, in order to release the heat radiating recess on the upper surface of the top plate portion, a through hole communicating therewith is also formed in the heat insulating cover member.

なお、結晶成長装置は、前述のように原料粉末MPを投入する必要があるため、ルツボ部材を完全な密閉構造に形成することはできず、本体部分と天板部分とが着脱自在に形成されている。   In addition, since the crystal growth apparatus needs to input the raw material powder MP as described above, the crucible member cannot be formed in a completely sealed structure, and the main body portion and the top plate portion are formed detachably. ing.

このため、微量ながらも本体部分と天板部分との隙間から昇華ガスが漏出する。このように漏出した昇華ガスは、例えば、ルツボ部材の外面と断熱カバー部材の内面との隙間を移動する。   For this reason, the sublimation gas leaks from the gap between the main body portion and the top plate portion even though the amount is small. The sublimation gas leaked in this way moves, for example, through a gap between the outer surface of the crucible member and the inner surface of the heat insulating cover member.

そして、この昇華ガスは断熱カバー部材から外部に漏出すると、輻射による放熱により冷却され、多結晶塊DLとして析出する。つまり、ルツボ部材が断熱カバー部材から外部に露出している位置に多結晶塊DLが析出する。   And if this sublimation gas leaks outside from a heat insulation cover member, it will be cooled by the radiation by radiation and will precipitate as polycrystalline lump DL. That is, the polycrystalline lump DL is deposited at a position where the crucible member is exposed to the outside from the heat insulating cover member.

一方、前述のようにルツボ部材の上面に放熱凹部が形成されているとともに断熱カバー部材に貫通孔が形成されている結晶成長装置では、上述のようにルツボ部材と断熱カバー部材との境界から漏出した昇華ガスが、放熱凹部の上端外周に多結晶塊DLとして析出することになる。   On the other hand, in the crystal growth apparatus in which the heat radiation recess is formed on the upper surface of the crucible member and the through hole is formed in the heat insulating cover member as described above, leakage occurs from the boundary between the crucible member and the heat insulating cover member as described above. The sublimated gas thus deposited is deposited as a polycrystalline lump DL on the outer periphery of the upper end of the heat radiating recess.

この場合、多結晶塊DLにより放熱凹部が閉塞されるため、結晶支持部の放熱機能が阻害されることになる。従って、結晶支持部の温度が上昇し、単結晶塊CLの成長が阻害されることになる。   In this case, since the heat radiation concave portion is closed by the polycrystalline lump DL, the heat radiation function of the crystal support portion is hindered. Therefore, the temperature of the crystal support part rises and the growth of the single crystal mass CL is inhibited.

本発明は上述のような課題に鑑みてなされたものであり、良質な単結晶塊を良好な効率で成長させることができる構造の結晶成長装置を提供するものである。   The present invention has been made in view of the above problems, and provides a crystal growth apparatus having a structure capable of growing a high-quality single crystal lump with good efficiency.

本発明の結晶成長装置は、昇華再結晶法により原料粉末を加熱して種単結晶の表面に単結晶塊を成長させる結晶成長装置であって、所定の高周波の電磁波を発生する高周波加熱部と、原料粉末の収容空間が内部下方に形成されているとともに種単結晶を支持する結晶支持部が内部上方に形成されていて電磁波の吸収により発熱する円筒状のルツボ部材と、ルツボ部材の外面の略全域を囲繞する断熱カバー部材と、を有し、ルツボ部材は、少なくとも天板部分が着脱自在に形成されており、天板部分の下面に円柱状の結晶支持部が一体に形成されており、天板部分の上面から結晶支持部の内部まで放熱凹部が形成されており、断熱カバー部材は、放熱凹部に連通する貫通孔が形成されており、ルツボ部材は、天板部分の上面から貫通孔を経由して断熱カバー部材の上面より上方まで連続する円筒状に形成されていて内周面が放熱凹部に連通する誘導部材を、さらに有する。   The crystal growth apparatus of the present invention is a crystal growth apparatus for heating a raw material powder by a sublimation recrystallization method to grow a single crystal lump on the surface of a seed single crystal, a high frequency heating unit for generating a predetermined high frequency electromagnetic wave, And a cylindrical crucible member in which the raw material powder storage space is formed in the lower part of the interior and the crystal support part for supporting the seed single crystal is formed in the upper part of the interior and generates heat by absorbing electromagnetic waves, and the outer surface of the crucible member The crucible member is formed so that at least the top plate portion is detachable, and the columnar crystal support portion is integrally formed on the lower surface of the top plate portion. The heat radiation recess is formed from the top surface of the top plate portion to the inside of the crystal support portion, the heat insulating cover member has a through hole communicating with the heat radiation recess portion, and the crucible member penetrates from the top surface of the top plate portion. Through the hole The guide member inner peripheral surface is formed in a cylindrical shape continuous from the upper surface of the insulating cover member to the upper communicates with the heat dissipation recesses further includes.

本発明の結晶成長装置では、ルツボ部材の収容空間で発生した昇華ガスが、結晶支持部で支持されている種単結晶の表面に単結晶塊として析出する。結晶支持部の内部に放熱凹部が形成されており、この放熱凹部に連通する貫通孔が断熱カバー部材に形成されている。このため、結晶支持部が低温に維持されて単結晶塊が良好な効率で成長する。ルツボ部材は少なくとも天板部分が着脱自在に形成されているので、原料粉末を容易に投入することができる。そのルツボ部材の隙間から漏出した昇華ガスは、例えば、ルツボ部材の外面と断熱カバー部材の内面との隙間を移動し、断熱カバー部材から外部に漏出すると、輻射による放熱により冷却されて析出する。しかし、ルツボ部材の放熱凹部に連通した円筒状の誘導部材が、断熱カバー部材の貫通孔を経由して上面より上方まで形成されている。このため、上述のように漏出した昇華ガスから析出する多結晶塊が放熱凹部を閉塞することがない。   In the crystal growth apparatus of the present invention, the sublimation gas generated in the crucible member accommodating space is deposited as a single crystal lump on the surface of the seed single crystal supported by the crystal support portion. A heat radiation recess is formed inside the crystal support, and a through hole communicating with the heat radiation recess is formed in the heat insulating cover member. For this reason, a crystal support part is maintained at low temperature, and a single crystal lump grows with good efficiency. Since at least the top plate portion of the crucible member is detachable, the raw material powder can be easily charged. The sublimation gas leaked from the gap between the crucible members moves, for example, through the gap between the outer surface of the crucible member and the inner surface of the heat insulating cover member. However, the cylindrical guide member communicated with the heat radiation recess of the crucible member is formed from the upper surface to the upper side through the through hole of the heat insulating cover member. For this reason, the polycrystal lump which precipitates from the sublimation gas leaked out as mentioned above does not obstruct | occlude a thermal radiation recessed part.

本発明のルツボ部材は、昇華再結晶法により原料粉末を加熱して種単結晶の表面に単結晶塊を成長させる結晶成長装置のルツボ部材であって、所定の高周波の電磁波を吸収して発熱する材料により少なくとも天板部分が着脱自在な円筒状に形成されており、原料粉末の収容空間が内部下方に形成されており、種単結晶を支持する結晶支持部が天板部分の下面に円柱状に一体に形成されており、天板部分の上面から結晶支持部の内部まで放熱凹部が形成されており、放熱凹部に内周面が連通する円筒状の誘導部材が天板部分の上面に形成されている。   The crucible member of the present invention is a crucible member of a crystal growth apparatus that heats raw material powder by a sublimation recrystallization method to grow a single crystal lump on the surface of a seed single crystal, and generates heat by absorbing electromagnetic waves of a predetermined high frequency. At least the top plate part is formed in a detachable cylindrical shape by the material to be formed, the raw material powder storage space is formed in the lower part inside, and the crystal support part for supporting the seed single crystal is circled on the lower surface of the top plate part It is integrally formed in a columnar shape, a heat radiation recess is formed from the top surface of the top plate portion to the inside of the crystal support portion, and a cylindrical guide member whose inner peripheral surface communicates with the heat radiation recess is on the top surface of the top plate portion Is formed.

本発明の断熱カバー部材は、結晶成長装置のルツボ部材の外面の略全域を囲繞する断熱カバー部材であって、ルツボ部材の上面に形成されている放熱凹部に連通する貫通孔が上部に形成されており、ルツボ部材の下面に連通する開口孔が下部に形成されている。   The heat insulating cover member of the present invention is a heat insulating cover member that surrounds substantially the entire outer surface of the crucible member of the crystal growth apparatus, and has a through hole formed in the upper portion that communicates with a heat radiating recess formed on the upper surface of the crucible member. An opening hole communicating with the lower surface of the crucible member is formed in the lower part.

なお、本発明の各種の構成要素は、必ずしも個々に独立した存在である必要はなく、複数の構成要素が一個の部材として形成されていること、一つの構成要素が複数の部材で形成されていること、ある構成要素が他の構成要素の一部であること、ある構成要素の一部と他の構成要素の一部とが重複していること、等でもよい。   The various components of the present invention do not necessarily have to be independent of each other. A plurality of components are formed as a single member, and a single component is formed of a plurality of members. It may be that a certain component is a part of another component, a part of a certain component overlaps with a part of another component, or the like.

本発明の結晶成長装置では、結晶支持部の内部に放熱凹部が形成されており、この放熱凹部に連通する貫通孔が断熱カバー部材に形成されている。このため、結晶支持部を放熱して単結晶塊を良好な効率で成長させることができる。また、ルツボ部材は少なくとも天板部分が着脱自在に形成されているので、原料粉末を容易に投入することができる。そのルツボ部材の隙間から漏出した昇華ガスは、例えば、ルツボ部材の外面と断熱カバー部材の内面との隙間を移動し、断熱カバー部材から外部に漏出すると、輻射による放熱により冷却されて析出する。しかし、ルツボ部材の放熱凹部に連通した円筒状の誘導部材が、断熱カバー部材の貫通孔を経由して上面より上方まで形成されている。このため、上述のように漏出した昇華ガスから析出する多結晶塊が放熱凹部を閉塞することがない。従って、結晶支持部を安定に低温に維持することができ、単結晶塊を良好な効率で安定に成長させることができる。   In the crystal growth apparatus of the present invention, a heat radiation recess is formed inside the crystal support portion, and a through hole communicating with the heat radiation recess is formed in the heat insulating cover member. For this reason, a single crystal lump can be grown with good efficiency by dissipating the crystal support. Moreover, since at least the top plate portion of the crucible member is detachable, the raw material powder can be easily charged. The sublimation gas leaked from the gap between the crucible members moves, for example, through the gap between the outer surface of the crucible member and the inner surface of the heat insulating cover member. However, the cylindrical guide member communicated with the heat radiation recess of the crucible member is formed from the upper surface to the upper side through the through hole of the heat insulating cover member. For this reason, the polycrystal lump which precipitates from the sublimation gas leaked out as mentioned above does not obstruct | occlude a thermal radiation recessed part. Therefore, the crystal support portion can be stably maintained at a low temperature, and the single crystal lump can be stably grown with good efficiency.

本発明の実施の一形態を図1を参照して以下に説明する。本実施の形態の結晶成長装置200は、昇華再結晶法により原料粉末MPを加熱して種単結晶SCの表面に単結晶塊CLを成長させる。   An embodiment of the present invention will be described below with reference to FIG. Crystal growth apparatus 200 of the present embodiment heats raw material powder MP by a sublimation recrystallization method to grow single crystal mass CL on the surface of seed single crystal SC.

このため、本実施の形態の結晶成長装置200は、所定の高周波の電磁波を発生する高周波加熱部210と、原料粉末MPの収容空間RSが内部下方に大径に形成されているとともに種単結晶SCを支持する結晶支持部231が内部上方に小径に形成されていて電磁波の吸収により発熱する円筒状のルツボ部材220と、を有する。   For this reason, the crystal growth apparatus 200 according to the present embodiment has a high-frequency heating unit 210 that generates a predetermined high-frequency electromagnetic wave and a containing space RS for the raw material powder MP having a large diameter in the lower part of the inside and a seed single crystal. A crystal support portion 231 that supports the SC has a cylindrical crucible member 220 that has a small diameter in the upper part of the inside and generates heat by absorbing electromagnetic waves.

ただし、そのルツボ部材220の側部222の少なくとも一部が、大径の収容空間RSから小径の結晶支持部231まで連続する、円錐状のガイド部223として形成されている。さらに、このガイド部223の上面と結晶支持部231の下面とは、略同一面上に位置している。   However, at least a part of the side portion 222 of the crucible member 220 is formed as a conical guide portion 223 that continues from the large-diameter receiving space RS to the small-diameter crystal support portion 231. Further, the upper surface of the guide portion 223 and the lower surface of the crystal support portion 231 are located on substantially the same plane.

より詳細には、ルツボ部材220は、底板部分224と側部222からなる本体部分221と、この本体部分221に着脱自在な天板部分230と、からなる。この天板部分230の下面中央に、小径の円柱状の結晶支持部231が一体に形成されている。   More specifically, the crucible member 220 includes a main body portion 221 including a bottom plate portion 224 and side portions 222, and a top plate portion 230 detachably attached to the main body portion 221. A small-diameter columnar crystal support portion 231 is integrally formed at the center of the lower surface of the top plate portion 230.

ルツボ部材220は、本体部分221の内部に炭化珪素の原料粉末MPを収容する。結晶支持部231は、小径の円盤状の炭化珪素の種単結晶SCを下面で支持する。   Crucible member 220 contains silicon carbide raw material powder MP inside body portion 221. The crystal support portion 231 supports a small-diameter disk-shaped silicon carbide seed single crystal SC on the lower surface.

ルツボ部材220は、所定の高周波の電磁波を吸収して発熱するカーボンで形成されている。ルツボ部材220は、外面の略全域が断熱カバー部材240で囲繞されている。この断熱カバー部材240は、例えば、着脱自在な本体部分241と底板部分242からなる。   The crucible member 220 is made of carbon that generates heat by absorbing electromagnetic waves of a predetermined high frequency. The crucible member 220 is surrounded by a heat insulating cover member 240 over substantially the entire outer surface. The heat insulating cover member 240 includes, for example, a detachable main body portion 241 and a bottom plate portion 242.

天板部分230は、上面から結晶支持部231の内部まで放熱凹部232が形成されている。そこで、断熱カバー部材240は、天板部分230の放熱凹部232に連通する貫通孔243が形成されている。   The top plate portion 230 has a heat radiation recess 232 formed from the upper surface to the inside of the crystal support portion 231. Therefore, the heat insulating cover member 240 is formed with a through hole 243 that communicates with the heat radiating recess 232 of the top plate portion 230.

さらに、天板部分230は上面に誘導部材233が一体に形成されている。この誘導部材233は、断熱カバー部材240の貫通孔243を経由して上面より上方まで連続する円筒状に形成されており、その内周面は放熱凹部232に連通している。   Further, the top plate portion 230 is integrally formed with a guide member 233 on the upper surface. The guide member 233 is formed in a cylindrical shape that continues from the upper surface to the upper side through the through hole 243 of the heat insulating cover member 240, and the inner peripheral surface thereof communicates with the heat radiating recess 232.

また、断熱カバー部材240は、下部にも開口孔244が形成されている。そして、断熱カバー部材240の開口孔244には、ルツボ部材220の下面の温度を計測する下部測温部251が配置されている。   The heat insulating cover member 240 also has an opening hole 244 formed in the lower part. And the lower temperature measuring part 251 which measures the temperature of the lower surface of the crucible member 220 is arrange | positioned at the opening hole 244 of the heat insulation cover member 240. FIG.

また、放熱凹部232には、その底面の温度を計測する上部測温部252が配置されている。そして、本実施の形態の結晶成長装置200は、下部測温部251の計測結果と上部測温部252の計測結果とを比較する温度比較部(図示せず)を有する。   In addition, an upper temperature measuring unit 252 that measures the temperature of the bottom surface of the heat radiating recess 232 is disposed. And the crystal growth apparatus 200 of this Embodiment has a temperature comparison part (not shown) which compares the measurement result of the lower temperature measurement part 251 with the measurement result of the upper temperature measurement part 252.

上述のような構成において、本実施の形態の結晶成長装置200により単結晶塊CLを製造するときは、例えば、ルツボ部材220の本体部分221から天板部分230が分離され、本体部分221に炭化珪素の原料粉末MPが収容されるとともに、天板部分230の結晶支持部231に炭化珪素の種単結晶SCが装着される。   In the configuration as described above, when the single crystal lump CL is manufactured by the crystal growth apparatus 200 of the present embodiment, for example, the top plate portion 230 is separated from the main body portion 221 of the crucible member 220 and the main body portion 221 is carbonized. The silicon raw material powder MP is accommodated, and the silicon carbide seed single crystal SC is mounted on the crystal support portion 231 of the top plate portion 230.

つぎに、この天板部分230が本体部分221に装着され、そのルツボ部材220の外面全域が断熱カバー部材240で囲繞される。このような状態で、高周波加熱部210が高周波の電磁波を発生すると、この電磁波の吸収によりルツボ部材220が発熱する。   Next, the top plate portion 230 is attached to the main body portion 221, and the entire outer surface of the crucible member 220 is surrounded by the heat insulating cover member 240. In this state, when the high-frequency heating unit 210 generates high-frequency electromagnetic waves, the crucible member 220 generates heat due to absorption of the electromagnetic waves.

すると、このルツボ部材220に収容されている原料粉末MPが加熱されて昇華する。そこで、この炭化珪素の昇華ガスが種単結晶SCの表面に析出することで、単結晶塊CLが成長する。   Then, the raw material powder MP accommodated in the crucible member 220 is heated and sublimated. Thus, the silicon carbide sublimation gas is deposited on the surface of the seed single crystal SC, so that the single crystal mass CL grows.

このとき、本実施の形態の結晶成長装置200では、ルツボ部材220の大径の収容空間RSで発生した昇華ガスを、小径の種単結晶SCの表面まで、円錐状のガイド部223により良好に誘導することができる。   At this time, in the crystal growth apparatus 200 according to the present embodiment, the sublimation gas generated in the large-diameter accommodation space RS of the crucible member 220 is improved by the conical guide portion 223 to the surface of the small-diameter seed single crystal SC. Can be guided.

ただし、そのガイド部223がルツボ部材220の側部222により形成されている。このため、高周波加熱部210が発生する高周波の電磁波は、ルツボ部材220のガイド部223に直接に吸収される。   However, the guide portion 223 is formed by the side portion 222 of the crucible member 220. For this reason, high frequency electromagnetic waves generated by the high frequency heating unit 210 are directly absorbed by the guide portion 223 of the crucible member 220.

従って、このガイド部223は高温に発熱するので、その表面に多結晶塊DLが成長することがない。このため、種単結晶SCの表面に良質な単結晶塊CLを良好な効率で成長させることができる。   Therefore, since this guide part 223 generates heat at a high temperature, the polycrystalline lump DL does not grow on the surface thereof. For this reason, a high-quality single crystal mass CL can be grown on the surface of the seed single crystal SC with good efficiency.

さらに、本実施の形態の結晶成長装置200では、結晶支持部231の下面とガイド部223の上面とが略同一面上に位置している。従って、結晶支持部231の下面がガイド部223の上面より上方に位置している場合より(図示せず)、結晶支持部231とガイド部223との隙間が削減されている。   Furthermore, in the crystal growth apparatus 200 of the present embodiment, the lower surface of the crystal support portion 231 and the upper surface of the guide portion 223 are located on substantially the same plane. Therefore, the gap between the crystal support portion 231 and the guide portion 223 is reduced as compared with the case where the lower surface of the crystal support portion 231 is positioned above the upper surface of the guide portion 223 (not shown).

このため、昇華ガスが結晶支持部231とガイド部223との隙間を通過し、天板部分230の下面に多結晶塊DLとして析出することを、最小限に抑制することができる。従って、単結晶塊CLの結晶化率を向上させることができる。   For this reason, it is possible to minimize the sublimation gas from passing through the gap between the crystal support portion 231 and the guide portion 223 and being deposited as the polycrystalline lump DL on the lower surface of the top plate portion 230. Therefore, the crystallization rate of the single crystal mass CL can be improved.

それでいて、結晶支持部231の下面がガイド部223の上面より下方に位置している場合のように(図示せず)、結晶支持部231の周囲に昇華したガスが滞留することもない。   Nevertheless, the sublimated gas does not stay around the crystal support portion 231 as in the case where the lower surface of the crystal support portion 231 is positioned below the upper surface of the guide portion 223 (not shown).

このため、結晶支持部231の下端外周やガイド部223の上端などに多結晶塊DLが析出することを抑制できる。従って、良質な単結晶塊CLを良好に成長させることができる。   For this reason, it can suppress that the polycrystal lump DL precipitates on the lower end outer periphery of the crystal support part 231, the upper end of the guide part 223, or the like. Therefore, a good quality single crystal mass CL can be grown well.

しかも、天板部分230の上面から結晶支持部231の内部まで放熱凹部232が形成されている。このため、結晶支持部231は充分に低温に放熱される。従って、結晶支持部231で支持されている種単結晶SCの表面に単結晶塊CLを良好に成長させることができる。   Moreover, a heat radiation recess 232 is formed from the top surface of the top plate portion 230 to the inside of the crystal support portion 231. For this reason, the crystal support part 231 is radiated to a sufficiently low temperature. Therefore, the single crystal mass CL can be favorably grown on the surface of the seed single crystal SC supported by the crystal support portion 231.

なお、結晶成長装置200は、上述のように原料粉末MPを投入する必要があるため、ルツボ部材220を完全な密閉構造に形成することはできず、本体部分221と天板部分230とが着脱自在に形成されている。   Since the crystal growth apparatus 200 needs to input the raw material powder MP as described above, the crucible member 220 cannot be formed in a completely sealed structure, and the main body portion 221 and the top plate portion 230 are attached and detached. It is formed freely.

このため、微量ながらも本体部分221と天板部分230との隙間から昇華ガスが漏出することがある。本実施の形態の結晶成長装置200は、前述のように放熱凹部232により結晶支持部231を放熱することで単結晶塊CLの結晶化率が高いので、上述のような昇華ガスの漏出は抑制されるが、それでも漏出が発生することはある。   For this reason, the sublimation gas may leak from the gap between the main body portion 221 and the top plate portion 230 even though the amount is small. The crystal growth apparatus 200 according to the present embodiment suppresses leakage of sublimation gas as described above because the crystallization rate of the single crystal mass CL is high by dissipating the crystal support portion 231 by the heat dissipation recess 232 as described above. However, leaks can still occur.

このような場合、漏出した昇華ガスは、例えば、ルツボ部材220の外面と断熱カバー部材240の内面との隙間を移動する。そして、この昇華ガスは断熱カバー部材240から外部に漏出すると、輻射による放熱により冷却され、多結晶塊DLとして析出する。すると、ルツボ部材220が断熱カバー部材240から外部に露出している位置に最小限ながらも多結晶塊DLが析出する。   In such a case, the leaked sublimation gas moves, for example, through a gap between the outer surface of the crucible member 220 and the inner surface of the heat insulating cover member 240. And if this sublimation gas leaks outside from the heat insulation cover member 240, it will be cooled by the radiation by radiation and will precipitate as the polycrystalline lump DL. Then, the polycrystalline lump DL precipitates at a position where the crucible member 220 is exposed from the heat insulating cover member 240 to the outside.

ただし、本実施の形態の結晶成長装置200では、天板部分230の上面に形成されていて放熱凹部232に連通している誘導部材233が、断熱カバー部材240の貫通孔243を経由して上面より上方まで連続している。   However, in the crystal growth apparatus 200 of the present embodiment, the guide member 233 that is formed on the top surface of the top plate portion 230 and communicates with the heat radiating recess 232 passes through the through hole 243 of the heat insulating cover member 240. It continues to the upper part.

このため、図1に示すように、上述のように昇華ガスが漏出して多結晶塊DLが析出したとしても、その多結晶塊DLは誘導部材233の上端の外周面などに形成される。従って、このように析出する多結晶塊DLにより放熱凹部232が閉塞されて放熱機能が低下することがない。このため、結晶支持部231を安定に低温に維持して単結晶塊CLを良好に成長させることができる。   For this reason, as shown in FIG. 1, even if the sublimation gas leaks and the polycrystalline lump DL is deposited as described above, the polycrystalline lump DL is formed on the outer peripheral surface of the upper end of the guide member 233. Therefore, the heat radiation function is not deteriorated by closing the heat radiation recess 232 by the polycrystalline mass DL thus precipitated. For this reason, the crystal support part 231 can be stably maintained at a low temperature, and the single crystal lump CL can be grown well.

さらに、本実施の形態の結晶成長装置200では、断熱カバー部材240の下部にも開口孔244が形成されており、この開口孔244からルツボ部材220の下面の温度が下部測温部251により計測される。このため、ルツボ部材220による原料粉末MPの加熱状態をモニタすることができる。   Furthermore, in the crystal growth apparatus 200 of the present embodiment, an opening hole 244 is also formed in the lower part of the heat insulating cover member 240, and the temperature of the lower surface of the crucible member 220 is measured by the lower temperature measuring unit 251 from this opening hole 244. Is done. For this reason, the heating state of the raw material powder MP by the crucible member 220 can be monitored.

同時に、放熱凹部232の底面の温度が上部測温部252により計測される。このため、結晶支持部231による単結晶塊CLの冷却状態も、同時にモニタすることができる。   At the same time, the temperature of the bottom surface of the heat radiating recess 232 is measured by the upper temperature measuring unit 252. For this reason, the cooling state of the single crystal mass CL by the crystal support part 231 can also be monitored simultaneously.

しかも、下部測温部251の計測結果と上部測温部252の計測結果とが温度比較部により比較される。このため、上述の原料粉末MPの加熱状態と単結晶塊CLの冷却状態とを比較することができるので、例えば、この比較結果に基づいて高周波加熱部210の動作をフィードバック制御するようなことができる。   Moreover, the temperature comparison unit compares the measurement result of the lower temperature measurement unit 251 and the measurement result of the upper temperature measurement unit 252. For this reason, since the heating state of the above-mentioned raw material powder MP and the cooling state of the single crystal block CL can be compared, for example, feedback control of the operation of the high-frequency heating unit 210 may be performed based on the comparison result. it can.

なお、本出願人は実際に上述のような結晶成長装置200を試作して炭化珪素の単結晶塊CLを成長させる実験を実行した。その結晶成長装置200では、ガイド部223の角度を鉛直から30度、種単結晶SCの直径をφ50mm、放熱凹部232の底面の温度を2270度、ルツボ部材220の下面の温度を2145度、とし、アルゴンガス雰囲気、成長圧力665Pa(5Torr)の条件下で、70時間成長を行った。   In addition, the present applicant actually conducted an experiment for growing the crystal growth apparatus 200 as described above to grow a single crystal mass CL of silicon carbide. In the crystal growth apparatus 200, the angle of the guide portion 223 is 30 degrees from the vertical, the diameter of the seed single crystal SC is 50 mm, the temperature of the bottom surface of the heat radiation recess 232 is 2270 degrees, and the temperature of the lower surface of the crucible member 220 is 2145 degrees. The growth was performed for 70 hours under the conditions of an argon gas atmosphere and a growth pressure of 665 Pa (5 Torr).

その結果、最大口径φ85mm、成長量40mmの単結晶塊CLが得られた。このとき、ガイド部223の内面に多結晶塊DLは析出せず、長尺化・口径拡大が阻害されずに大型で高品質な単結晶塊CLが得られた。   As a result, a single crystal lump CL having a maximum diameter of 85 mm and a growth amount of 40 mm was obtained. At this time, the polycrystalline lump DL did not precipitate on the inner surface of the guide portion 223, and a large and high-quality single crystal lump CL was obtained without obstructing the lengthening and diameter expansion.

成長した単結晶塊CLと天板部分230の下面に付着した多結晶塊DLとの重量比は3.08:1.00であり、非常に効率よく単結晶塊CLが成長することを確認できた。   The weight ratio of the grown single crystal mass CL to the polycrystalline mass DL attached to the lower surface of the top plate portion 230 is 3.08: 1.00, and it can be confirmed that the single crystal mass CL grows very efficiently. It was.

さらに、上述と同様の条件で、成長時間を80時間にして単結晶塊CLの成長も行った。その結果、最大口径φ93mm、成長量53mmの単結晶塊CLが得られた。このとき、ガイド部223の内面に多結晶塊DLは析出せず、長尺化・口径拡大が阻害されずに大型で高品質の単結晶塊CLが得られた。成長した単結晶塊CLと天板部分230の下面に付着した多結晶塊DLとの重量比は2.78:1.00であり、非常に効率よく単結晶塊CLが成長することを確認できた。   Furthermore, the single crystal mass CL was also grown under the same conditions as described above with a growth time of 80 hours. As a result, a single crystal block CL having a maximum diameter of 93 mm and a growth amount of 53 mm was obtained. At this time, the polycrystalline lump DL did not precipitate on the inner surface of the guide part 223, and a large and high-quality single crystal lump CL was obtained without obstructing the lengthening and diameter expansion. The weight ratio of the grown single crystal mass CL to the polycrystalline mass DL attached to the lower surface of the top plate portion 230 is 2.78: 1.00, and it can be confirmed that the single crystal mass CL grows very efficiently. It was.

なお、本発明者はルツボ部材220の材質を検証する実験も実行した。その結晶成長装置200では、ガイド部223の角度が鉛直から30度のルツボ部材220を黒鉛で形成し、その内面にパイロリティックカーボン(熱分解炭素)をコーティングした。   In addition, this inventor also performed the experiment which verifies the material of the crucible member 220. FIG. In the crystal growth apparatus 200, the crucible member 220 whose guide portion 223 has an angle of 30 degrees from the vertical is formed of graphite, and the inner surface thereof is coated with pyrolytic carbon (pyrolytic carbon).

つぎに、そのルツボ部材220の内部に、種単結晶SCとの距離が10mmになるようにAlNの原料粉末MPを収容した。種単結晶SCとしては、直径φ25mmのSiC単結晶を使用した。   Next, the raw material powder MP of AlN was accommodated in the crucible member 220 so that the distance from the seed single crystal SC was 10 mm. As the seed single crystal SC, a SiC single crystal having a diameter of 25 mm was used.

そして、AlNの単結晶塊CLを成長させる実験を実行した。まず、放熱凹部232の底面の温度を1850度、底板部分224の下面の温度を1950度とし、アルゴンガス雰囲気、成長圧力1000hPa(750Torr)の条件下で20時間成長を行った。すると、その結果成長量100μmの単結晶塊CLが得られた。   And the experiment which grows the single crystal lump CL of AlN was performed. First, the temperature of the bottom surface of the heat radiation recess 232 was set to 1850 degrees, the temperature of the bottom surface of the bottom plate portion 224 was set to 1950 degrees, and growth was performed for 20 hours under the conditions of an argon gas atmosphere and a growth pressure of 1000 hPa (750 Torr). As a result, a single crystal mass CL having a growth amount of 100 μm was obtained.

また、放熱凹部232の底面の温度を1980度、底板部分224の下面の温度を2050度とし、アルゴンガス雰囲気、成長圧力67hPa(50Torr)の条件下で10時間成長を行った。すると、その結果成長量500μmの単結晶塊CLが得られた。   The temperature of the bottom surface of the heat radiation recess 232 was 1980 degrees, the temperature of the bottom surface of the bottom plate portion 224 was 2050 degrees, and growth was performed for 10 hours under the conditions of an argon gas atmosphere and a growth pressure of 67 hPa (50 Torr). As a result, a single crystal mass CL having a growth amount of 500 μm was obtained.

さらに、従来例に相当する比較実験として、ルツボ部材220を黒鉛で形成し、その内部をパイロリティックカーボン(熱分解炭素)でコーティングしないままとした。そして、放熱凹部232の底面の温度を1950度、底板部分224の下面の温度を2000度とし、アルゴンガス雰囲気、成長圧力133hPa(100Torr)の条件下で10時間成長を行った。   Further, as a comparative experiment corresponding to the conventional example, the crucible member 220 was made of graphite, and the inside thereof was left uncoated with pyrolytic carbon (pyrolytic carbon). The temperature of the bottom surface of the heat radiating recess 232 was 1950 degrees, the temperature of the bottom surface of the bottom plate portion 224 was 2000 degrees, and growth was performed for 10 hours under the conditions of an argon gas atmosphere and a growth pressure of 133 hPa (100 Torr).

すると、その結果、原料粉末MPのAlNとルツボ部材220の黒鉛とが反応し、単結晶塊CLは得られなかった。つまり、ルツボ部材220の内面をパイロリティックカーボン(熱分解炭素)で形成することにより、AlNなどの原料粉末MPとルツボ部材220とが反応することを防止し、良質な単結晶塊CLを成長させられることを確認できた。   As a result, the AlN of the raw material powder MP and the graphite of the crucible member 220 reacted, and the single crystal lump CL was not obtained. That is, by forming the inner surface of the crucible member 220 with pyrolytic carbon (pyrolytic carbon), the raw material powder MP such as AlN and the crucible member 220 are prevented from reacting, and a high-quality single crystal lump CL is grown. I was able to confirm that

なお、本発明は本実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で各種の変形を許容する。例えば、上記形態では誘導部材233が天板部分230と一体に形成されていることを例示した。   The present invention is not limited to the present embodiment, and various modifications are allowed without departing from the scope of the present invention. For example, in the above embodiment, the guide member 233 is illustrated as being integrally formed with the top plate portion 230.

しかし、図2に例示する結晶成長装置300のように、誘導部材301が天板部分302と別体に形成されていてもよい。このような結晶成長装置300では、誘導部材301の形成が容易となる。   However, the guide member 301 may be formed separately from the top plate portion 302 as in the crystal growth apparatus 300 illustrated in FIG. In such a crystal growth apparatus 300, the induction member 301 can be easily formed.

なお、このような構造では、誘導部材301が天板部分302との隙間に昇華ガスが侵入して放熱凹部232に多結晶塊DLが析出することが懸念される。そこで、これが問題となる場合には、例えば、誘導部材301を天板部分302に接着して隙間を密閉することがよい。   In such a structure, there is a concern that the sublimation gas enters the gap between the guide member 301 and the top plate portion 302 and the polycrystalline lump DL is deposited in the heat radiation recess 232. Therefore, when this becomes a problem, for example, the guide member 301 may be bonded to the top plate portion 302 to seal the gap.

また、図3に例示する結晶成長装置310のように、天板部分311とは別体の誘導部材312の上端が外側に拡開されていてもよい。この場合、誘導部材312が断熱カバー部材240から外部に露出する位置が、さらに放熱凹部232から離間する。このため、析出する多結晶塊DLにより放熱凹部232が閉塞されることを、より有効に防止することができる。   Moreover, like the crystal growth apparatus 310 illustrated in FIG. 3, the upper end of the guide member 312 that is separate from the top plate portion 311 may be expanded outward. In this case, the position where the guide member 312 is exposed to the outside from the heat insulating cover member 240 is further away from the heat radiation recess 232. For this reason, it can prevent more effectively that the thermal radiation recessed part 232 is obstruct | occluded by the polycrystalline lump DL to precipitate.

なお、当然ながら、上述した実施の形態および複数の変形例は、その内容が相反しない範囲で組み合わせることができる。また、上述した実施の形態および変形例では、各部の構造などを具体的に説明したが、その構造などは本願発明を満足する範囲で各種に変更することができる。   Needless to say, the above-described embodiment and a plurality of modifications can be combined within a range in which the contents do not conflict with each other. Further, in the above-described embodiments and modifications, the structure of each part has been specifically described, but the structure and the like can be changed in various ways within a range that satisfies the present invention.

本発明の実施の形態の結晶成長装置の内部構造を示す模式的な縦断正面図である。It is a typical longitudinal section front view showing the internal structure of the crystal growth device of an embodiment of the invention. 一の変形例の結晶成長装置の内部構造を示す模式的な縦断正面図である。It is a typical longitudinal section front view showing the internal structure of the crystal growth device of one modification. 他の変形例の結晶成長装置の内部構造を示す模式的な縦断正面図である。It is a typical vertical front view which shows the internal structure of the crystal growth apparatus of another modification. 一従来例の結晶成長装置の内部構造を示す模式的な縦断正面図である。It is a typical vertical front view which shows the internal structure of the crystal growth apparatus of one prior art example.

符号の説明Explanation of symbols

100 結晶成長装置
110 ルツボ部材
111 底板部分
112 側部
113 本体部分
116 天板部分
115 結晶支持部
117 ガイド部
120 断熱カバー部材
121 本体部分
122 天板部分
130 高周波加熱部
200 結晶成長装置
210 高周波加熱部
220 ルツボ部材
221 本体部分
222 側部
223 ガイド部
224 底板部分
230 天板部分
231 結晶支持部
232 放熱凹部
233 誘導部材
240 断熱カバー部材
241 本体部分
242 底板部分
243 貫通孔
244 開口孔
251 下部測温部
252 上部測温部
300 結晶成長装置
301 誘導部材
302 天板部分
310 結晶成長装置
311 天板部分
312 誘導部材
CL 単結晶塊
DL 多結晶塊
MP 原料粉末
RS 収容空間
SC 種単結晶
DESCRIPTION OF SYMBOLS 100 Crystal growth apparatus 110 Crucible member 111 Bottom plate part 112 Side part 113 Main body part 116 Top plate part 115 Crystal support part 117 Guide part 120 Thermal insulation cover member 121 Main body part 122 Top plate part 130 High frequency heating part 200 Crystal growth apparatus 210 High frequency heating part 220 crucible member 221 main body portion 222 side portion 223 guide portion 224 bottom plate portion 230 top plate portion 231 crystal support portion 232 heat sink recess 233 guide member 240 heat insulating cover member 241 main body portion 242 bottom plate portion 243 through hole 244 opening hole 251 lower temperature measuring portion 252 Upper temperature measuring unit 300 Crystal growth device 301 Guide member 302 Top plate portion 310 Crystal growth device 311 Top plate portion 312 Guide member CL Single crystal lump DL Polycrystalline lump MP Raw material powder RS Housing space SC Seed single crystal

Claims (15)

昇華再結晶法により原料粉末を加熱して種単結晶の表面に単結晶塊を成長させる結晶成長装置であって、
所定の高周波の電磁波を発生する高周波加熱部と、
前記原料粉末の収容空間が内部下方に形成されているとともに前記種単結晶を支持する結晶支持部が内部上方に形成されていて前記電磁波の吸収により発熱する円筒状のルツボ部材と、
前記ルツボ部材の外面の略全域を囲繞する断熱カバー部材と、を有し、
前記ルツボ部材は、少なくとも天板部分が着脱自在に形成されており、
前記天板部分の下面に円柱状の前記結晶支持部が一体に形成されており、
前記天板部分の上面から前記結晶支持部の内部まで放熱凹部が形成されており、
前記断熱カバー部材は、前記放熱凹部に連通する貫通孔が形成されており、
前記ルツボ部材は、前記天板部分の上面から前記貫通孔を経由して前記断熱カバー部材の上面より上方まで連続する円筒状に形成されていて内周面が前記放熱凹部に連通する誘導部材を、さらに有する結晶成長装置。
A crystal growth apparatus for heating a raw material powder by a sublimation recrystallization method to grow a single crystal mass on the surface of a seed single crystal,
A high-frequency heating unit that generates electromagnetic waves of a predetermined high frequency;
A cylindrical crucible member in which a housing space for the raw material powder is formed in the lower part of the interior and a crystal support part for supporting the seed single crystal is formed in the upper part of the interior and generates heat by absorbing the electromagnetic wave,
A heat insulating cover member that surrounds substantially the entire outer surface of the crucible member,
The crucible member is formed such that at least the top plate portion is detachable,
The columnar crystal support part is integrally formed on the lower surface of the top plate part,
A heat radiation recess is formed from the upper surface of the top plate portion to the inside of the crystal support portion,
The heat insulating cover member has a through hole communicating with the heat radiating recess,
The crucible member is formed in a cylindrical shape that continues from the upper surface of the top plate portion through the through hole to above the upper surface of the heat insulating cover member, and an inner circumferential surface communicates with the heat radiating recess. And a crystal growth apparatus.
前記誘導部材と前記天板部分とが別体に形成されている請求項1に記載の結晶成長装置。   The crystal growth apparatus according to claim 1, wherein the guide member and the top plate portion are formed separately. 前記断熱カバー部材は、下部に開口孔が形成されており、
前記断熱カバー部材の前記開口孔から前記ルツボ部材の下面の温度を計測する下部測温部を、さらに有する請求項1または2に記載の結晶成長装置。
The heat insulating cover member is formed with an opening hole in the lower part,
The crystal growth apparatus according to claim 1, further comprising a lower temperature measuring unit that measures the temperature of the lower surface of the crucible member from the opening hole of the heat insulating cover member.
前記放熱凹部の底面の温度を計測する上部測温部を、さらに有する請求項1ないし3の何れか一項に記載の結晶成長装置。   The crystal growth apparatus as described in any one of Claim 1 thru | or 3 which further has an upper temperature-measurement part which measures the temperature of the bottom face of the said thermal radiation recessed part. 前記断熱カバー部材は、下部に開口孔が形成されており、
前記断熱カバー部材の前記開口孔から前記ルツボ部材の下面の温度を計測する下部測温部と、
前記放熱凹部の底面の温度を計測する上部測温部と、
前記下部測温部の計測結果と前記上部測温部の計測結果とを比較する温度比較部とを、
さらに有する請求項1または2に記載の結晶成長装置。
The heat insulating cover member is formed with an opening hole in the lower part,
A lower temperature measuring unit that measures the temperature of the lower surface of the crucible member from the opening hole of the heat insulating cover member;
An upper temperature measuring unit for measuring the temperature of the bottom surface of the heat radiation recess;
A temperature comparison unit that compares the measurement result of the lower temperature measurement unit and the measurement result of the upper temperature measurement unit;
Furthermore, the crystal growth apparatus of Claim 1 or 2 which has.
前記ルツボ部材は、前記収容空間が大径に形成されているとともに前記結晶支持部が小径に形成されており、側部の少なくとも一部が大径の前記収容空間から小径の前記結晶支持部まで連続する円錐状のガイド部として形成されている請求項1ないし5の何れか一項に記載の結晶成長装置。   The crucible member has the accommodating space formed in a large diameter and the crystal support portion formed in a small diameter, and at least a part of a side portion from the large-diameter accommodating space to the small diameter crystal support portion. 6. The crystal growth apparatus according to claim 1, wherein the crystal growth apparatus is formed as a continuous conical guide portion. 前記結晶支持部の下面と前記ガイド部の上面とが略同一面上に位置している請求項6に記載の結晶成長装置。   The crystal growth apparatus according to claim 6, wherein a lower surface of the crystal support portion and an upper surface of the guide portion are located on substantially the same plane. 前記ルツボ部材の少なくとも内面が熱分解炭素で形成されている請求項1ないし7の何れか一項に記載の結晶成長装置。   The crystal growth apparatus according to any one of claims 1 to 7, wherein at least an inner surface of the crucible member is formed of pyrolytic carbon. 前記ルツボ部材は、内面が前記熱分解炭素でコーティングされている請求項8に記載の結晶成長装置。   The crystal growth apparatus according to claim 8, wherein an inner surface of the crucible member is coated with the pyrolytic carbon. 前記ルツボ部材は、黒鉛で形成されていて内面が前記熱分解炭素でコーティングされている請求項8に記載の結晶成長装置。   The crystal growth apparatus according to claim 8, wherein the crucible member is made of graphite and an inner surface is coated with the pyrolytic carbon. 昇華再結晶法により原料粉末を加熱して種単結晶の表面に単結晶塊を成長させる結晶成長装置のルツボ部材であって、
所定の高周波の電磁波を吸収して発熱する材料により少なくとも天板部分が着脱自在な円筒状に形成されており、
前記原料粉末の収容空間が内部下方に形成されており、
前記種単結晶を支持する結晶支持部が前記天板部分の下面に円柱状に一体に形成されており、
前記天板部分の上面から前記結晶支持部の内部まで放熱凹部が形成されており、
前記放熱凹部に内周面が連通する円筒状の誘導部材が前記天板部分の上面に形成されているルツボ部材。
A crucible member of a crystal growth apparatus for growing a single crystal mass on a surface of a seed single crystal by heating raw material powder by a sublimation recrystallization method,
At least the top plate part is formed in a detachable cylindrical shape by a material that generates heat by absorbing electromagnetic waves of a predetermined high frequency,
An accommodation space for the raw material powder is formed in the lower part inside,
A crystal support portion for supporting the seed single crystal is integrally formed in a cylindrical shape on the lower surface of the top plate portion,
A heat radiation recess is formed from the upper surface of the top plate portion to the inside of the crystal support portion,
A crucible member in which a cylindrical guide member having an inner peripheral surface communicating with the heat radiating recess is formed on an upper surface of the top plate portion.
少なくとも内面が熱分解炭素で形成されている請求項11に記載のルツボ部材。   The crucible member according to claim 11, wherein at least an inner surface is formed of pyrolytic carbon. 内面が前記熱分解炭素でコーティングされている請求項12に記載のルツボ部材。   The crucible member according to claim 12, wherein an inner surface is coated with the pyrolytic carbon. 黒鉛で形成されていて内面が前記熱分解炭素でコーティングされている請求項12に記載のルツボ部材。   The crucible member according to claim 12, wherein the crucible member is made of graphite and has an inner surface coated with the pyrolytic carbon. 結晶成長装置のルツボ部材の外面の略全域を囲繞する断熱カバー部材であって、
前記ルツボ部材の上面に形成されている放熱凹部に連通する貫通孔が上部に形成されており、
前記ルツボ部材の下面に連通する開口孔が下部に形成されている断熱カバー部材。
A heat insulating cover member that surrounds substantially the entire outer surface of the crucible member of the crystal growth apparatus,
A through hole communicating with the heat radiating recess formed in the upper surface of the crucible member is formed in the upper part,
The heat insulation cover member by which the opening hole connected to the lower surface of the said crucible member is formed in the lower part.
JP2007223823A 2007-03-23 2007-08-30 Crystal growing device, crucible member of the same, and heat insulating cover member of the same Withdrawn JP2008266116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007223823A JP2008266116A (en) 2007-03-23 2007-08-30 Crystal growing device, crucible member of the same, and heat insulating cover member of the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007076812 2007-03-23
JP2007223823A JP2008266116A (en) 2007-03-23 2007-08-30 Crystal growing device, crucible member of the same, and heat insulating cover member of the same

Publications (1)

Publication Number Publication Date
JP2008266116A true JP2008266116A (en) 2008-11-06

Family

ID=40046139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007223823A Withdrawn JP2008266116A (en) 2007-03-23 2007-08-30 Crystal growing device, crucible member of the same, and heat insulating cover member of the same

Country Status (1)

Country Link
JP (1) JP2008266116A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103374749A (en) * 2012-04-28 2013-10-30 上海硅酸盐研究所中试基地 Temperature measurement structure suitable for growing SiC crystal system by PVT (physical vapor transportation) method
CN108103576A (en) * 2017-12-27 2018-06-01 中国科学院上海硅酸盐研究所 The method and its heat-preserving equipment of a kind of temperature during real-time monitored regulation and control growing silicon carbice crystals
CN110050091A (en) * 2016-12-26 2019-07-23 昭和电工株式会社 The manufacturing method of single-crystal silicon carbide
CN112813499A (en) * 2020-12-31 2021-05-18 山东天岳先进科技股份有限公司 Preparation method and growth device of N-type silicon carbide crystal

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103374749A (en) * 2012-04-28 2013-10-30 上海硅酸盐研究所中试基地 Temperature measurement structure suitable for growing SiC crystal system by PVT (physical vapor transportation) method
CN110050091A (en) * 2016-12-26 2019-07-23 昭和电工株式会社 The manufacturing method of single-crystal silicon carbide
CN110050091B (en) * 2016-12-26 2021-03-05 昭和电工株式会社 Method for producing silicon carbide single crystal
US11078598B2 (en) 2016-12-26 2021-08-03 Showa Denko K.K. Method for producing silicon carbide single crystal
CN108103576A (en) * 2017-12-27 2018-06-01 中国科学院上海硅酸盐研究所 The method and its heat-preserving equipment of a kind of temperature during real-time monitored regulation and control growing silicon carbice crystals
CN112813499A (en) * 2020-12-31 2021-05-18 山东天岳先进科技股份有限公司 Preparation method and growth device of N-type silicon carbide crystal

Similar Documents

Publication Publication Date Title
RU2669599C2 (en) Controlling temperature of crucible inside furnace
TWI671443B (en) Apparatus for producing bulk silicon carbide
US11427927B2 (en) SiC single crystal manufacturing apparatus and structure having container and filler for manufacturing SiC single crystal
WO2011087074A1 (en) Apparatus for producing silicon carbide single crystal
JP2008266115A (en) Crystal growing device and crucible member
JP5240100B2 (en) Silicon carbide single crystal manufacturing equipment
KR20120067944A (en) Apparatus for manufacturing silicon carbide single crystal
JP4924290B2 (en) Silicon carbide single crystal manufacturing apparatus and manufacturing method thereof
JP2008266116A (en) Crystal growing device, crucible member of the same, and heat insulating cover member of the same
TW201920784A (en) Method for producing bulk silicon carbide
JP5317117B2 (en) Nitride single crystal manufacturing equipment
JPH11268990A (en) Production of single crystal and production device
JP5143139B2 (en) Single crystal growth equipment
US11453957B2 (en) Crystal growing apparatus and crucible having a main body portion and a first portion having a radiation rate different from that of the main body portion
JP2015040146A (en) Single crystal production device and single crystal production method using the same
JP2001226197A (en) Method and device for producing silicon carbide single crystal
KR101747686B1 (en) Crucible for growing a single crystal and method for attaching a seed crystal for growing a single crystal using the crucible
JP5516167B2 (en) Silicon carbide single crystal manufacturing equipment
KR20130083653A (en) Growing apparatus for single crystal
TWI794853B (en) Crystal growth apparatus including growth crucible and method of using growth crucible
KR102228137B1 (en) Vessel for growing a single crystal and growing method of single crystal using the vessel
JP5831339B2 (en) Method for producing silicon carbide single crystal
JP5263145B2 (en) Silicon carbide single crystal manufacturing apparatus and silicon carbide single crystal manufacturing method using the same
JP2010189271A (en) Apparatus for producing silicon carbide single crystal
JP7306217B2 (en) Crucible and SiC single crystal growth apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20101102