JP2008264761A - New alloy nano colloidal particle and chemical reaction using the same - Google Patents

New alloy nano colloidal particle and chemical reaction using the same Download PDF

Info

Publication number
JP2008264761A
JP2008264761A JP2007218508A JP2007218508A JP2008264761A JP 2008264761 A JP2008264761 A JP 2008264761A JP 2007218508 A JP2007218508 A JP 2007218508A JP 2007218508 A JP2007218508 A JP 2007218508A JP 2008264761 A JP2008264761 A JP 2008264761A
Authority
JP
Japan
Prior art keywords
nanocolloid
particles
pdzn
alloy
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007218508A
Other languages
Japanese (ja)
Inventor
Soichiro Saida
壮一郎 齋田
Emi Miura
恵美 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2007218508A priority Critical patent/JP2008264761A/en
Publication of JP2008264761A publication Critical patent/JP2008264761A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Furan Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for synthesizing PdZn alloy nano colloidal particles and utilizing them as a dehydrogenation catalyst of an alcohol compound or the like. <P>SOLUTION: A compound containing Pd in molecular structure, a compound containing Zn in molecular structure, a reducing agent, a coordinate organic molecule and a solvent are mixed to an uniform mixture. Heating the mixture starts reduction reaction to produce alloy PdZn particles and immediately after that, particle surfaces are covered with the coordinate organic molecules. By this method, the nano colloidal particle having uniform alloy PdZn inside the particle can be synthesized. Moreover such an alloy nano colloidal particle can be utilized as a catalyst for dehydrogenation reaction of the alcohol compound. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は新規な合金ナノコロイド粒子及びそれを用いる触媒反応に関するものである。より具体的には、PdZn合金ナノコロイド粒子及びそれを用いる脱水素化反応または水添反応に用いる触媒に関するものである。 The present invention relates to a novel alloy nanocolloid particle and a catalytic reaction using the same. More specifically, the present invention relates to a PdZn alloy nanocolloid particle and a catalyst used in a dehydrogenation reaction or hydrogenation reaction using the same.

平均粒径が1〜50nm程度の合金ナノコロイド粒子(以下、「ナノコロイド粒子」と呼ぶ)はその比表面積の大きさから様々な分野での応用が期待されている。特に触媒反応に用いる触媒は貴金属を用いる事が多く、比表面積の大きなナノコロイド粒子はコストパフォーマンスに優れ好まれて用いられている。   Alloy nanocolloid particles having an average particle diameter of about 1 to 50 nm (hereinafter referred to as “nanocolloid particles”) are expected to be applied in various fields because of their specific surface area. In particular, the catalyst used for the catalytic reaction is often a noble metal, and nanocolloid particles having a large specific surface area are preferred because of their excellent cost performance.

Bronstein等はポリスチレン−ビニルピリジンのジブロック型高分子を用いて亜鉛化パラジウム(以下PdZnと略記する)ナノコロイド粒子の合成を試みている(J.Catal.,196,302(2000))。この文献では、組成がPd76Zn24で、平均粒径が1.5〜2nmのナノ粒子を得ているが、疎水水性溶媒のトルエン中で高分子中の親水部であるビニルピリジンがミセルを形成することを利用してナノ粒子を合成しているため、ミセルの中は固体状態に近く、合成されたナノ粒子は原子レベルで均一ではなく、パラジウム粒子の中に微細な亜鉛クラスターが分離して点在するクラスターインクラスター型の粒子であった。 Bronstein et al. Have attempted to synthesize palladium-zinc (hereinafter abbreviated as PdZn) nanocolloidal particles using a polystyrene-vinylpyridine diblock polymer (J. Catal., 196, 302 (2000)). In this document, nanoparticles with a composition of Pd 76 Zn 24 and an average particle size of 1.5 to 2 nm are obtained, but vinylpyridine, which is a hydrophilic part in a polymer in a hydrophobic aqueous solvent, is a micelle. Since the nanoparticles are synthesized using the formation, the micelles are close to a solid state, the synthesized nanoparticles are not uniform at the atomic level, and fine zinc clusters are separated in the palladium particles. Cluster-in-cluster type particles.

また同文献には、得られたナノコロイド粒子を水素添加触媒として利用できることが開示されており、具体的には3,7−ジメチルオクタエン−6−オール−3(DiHL)の炭素−炭素不飽和結合を水素添加した例が報告されている。   The same document discloses that the obtained nanocolloid particles can be used as a hydrogenation catalyst. Specifically, the carbon-carbon defect of 3,7-dimethyloctaen-6-ol-3 (DiHL) is disclosed. An example in which a saturated bond is hydrogenated has been reported.

ところで、元素周期表第10族から選択される元素、特にパラジウム(以下Pdと略記する)は常圧程度の低圧下においてはアルコールを脱水素してカルボニル化する触媒活性を有することは、当業者には周知である。最近、パラジウムの代わりにPdZnを用いるとPdの場合より高活性になることが報告された(Applied Catalysys
A:General Vol.267,9−16(2004))。この理由としてPdとZnが合金を形成することが挙げられている。しかしながら、これらナノ粒子の平均粒径およびその粒径分布は、活性炭担持品で3.24nm(平均粒径に対する粒径の標準偏差は32%)、酸化亜鉛担持品で8.86nm(同52%)と算出され、粒径分布が広いことがわかっている。
Journal of Catalysis,196,302−314(2000) Applied Catalysys A:General Vol.267,9−16(2004)
By the way, an element selected from Group 10 of the Periodic Table of Elements, particularly palladium (hereinafter abbreviated as Pd), has a catalytic activity to dehydrogenate and carbonylate alcohol under a low pressure of ordinary pressure. Is well known. Recently, it has been reported that the use of PdZn instead of palladium results in higher activity than that of Pd (Applied Catalysis).
A: General Vol. 267, 9-16 (2004)). The reason is that Pd and Zn form an alloy. However, the average particle size and the particle size distribution of these nanoparticles are 3.24 nm for the activated carbon-supported product (standard deviation of particle size is 32% with respect to the average particle size) and 8.86 nm (52% for the zinc oxide-supported product). ) And the particle size distribution is known to be wide.
Journal of Catalysis, 196, 302-314 (2000) Applied Catalysis A: General Vol. 267, 9-16 (2004)

上記のPdZnはPdやZnの金属塩を活性炭のような担体に含浸させた後、還元雰囲気下で焼成して作製されており、得られる粒子の粒径分布は広く、2nmより小さい粒子も多数存在する。このような微細な粒子は熱力学的に不安定で融点がバルクよりも低く、200℃を超えるような高温下では融解したり、液相反応においては溶解してしまう。そのため、触媒反応に使用する場合、耐久性に欠ける問題があった。また、50nm以上の大粒径になると粒子の体積に対する比表面積が大きくなり、触媒の重量あたりの活性が低下する。   The above PdZn is produced by impregnating a support such as activated carbon with a metal salt of Pd or Zn and then firing in a reducing atmosphere. The resulting particles have a wide particle size distribution and many particles smaller than 2 nm. Exists. Such fine particles are thermodynamically unstable and have a melting point lower than that of the bulk, and melt at a high temperature exceeding 200 ° C. or dissolve in a liquid phase reaction. For this reason, there is a problem of lack of durability when used in a catalytic reaction. On the other hand, when the particle diameter is 50 nm or more, the specific surface area with respect to the volume of the particles increases, and the activity per weight of the catalyst decreases.

さらに、通常、この手法で合金を形成すると個々の粒子の組成にばらつきを生じ、それが原因となって複数の結晶構造をとり、触媒反応に効果的な結晶構造の割合が減少してしまう問題があった。そこでBronstein等の方法でPdZnナノコロイド粒子を合成したとしても得られる粒子は合金ではなく、純粋なPdとしての性質、即ち水素化能は示しても合金PdZnとしての性質、即ち脱水素能を示すことは期待できない。   In addition, when an alloy is formed by this method, the composition of individual particles usually varies, which causes multiple crystal structures and reduces the proportion of crystal structures effective for catalytic reactions. was there. Therefore, even if PdZn nanocolloid particles are synthesized by the method of Bronstein etc., the particles obtained are not alloys, but show the properties as pure Pd, that is, the hydrogenation ability, but show the properties as the alloy PdZn, ie, the dehydrogenation ability I can't expect that.

本発明は上記現状を改善するために検討された結果なされたものであり、より高性能な合金ナノ粒子を提供し、アルコール化合物等の脱水素触媒として利用する方法を提供する事を課題とする。   The present invention has been made as a result of investigations for improving the above-mentioned present situation, and it is an object of the present invention to provide a higher performance alloy nanoparticle and to provide a method of using it as a dehydrogenation catalyst for alcohol compounds and the like. .

本発明の発明者らは上記課題を解決するべく鋭意検討した結果、Pdを分子構造内に含む化合物、Znを分子構造内に含む化合物、還元剤、配位性有機分子及び溶媒を混合して均一にし、加熱することにより還元反応を開始して合金PdZnの微粒子を生成させ、その直後に配位性有機分子で粒子表面を覆う方法で粒子内部が均一な合金PdZnであるナノコロイド粒子が合成できる事を見出した。そして、このような合金のナノ粒子がアルコール化合物の脱水素反応のための触媒として利用できることを見出し、本発明を完成させた。   As a result of intensive studies to solve the above problems, the inventors of the present invention mixed a compound containing Pd in the molecular structure, a compound containing Zn in the molecular structure, a reducing agent, a coordinating organic molecule, and a solvent. The nanoparticle colloidal particles, which are uniform in the interior of the alloy PdZn, are synthesized by a method in which a reduction reaction is initiated by uniformizing and heating to generate fine particles of the alloy PdZn, and immediately after that, the particle surface is covered with coordinating organic molecules. I found what I could do. And it discovered that the nanoparticle of such an alloy could be utilized as a catalyst for dehydrogenation reaction of an alcohol compound, and completed this invention.

すなわち本発明の第一の要旨は、元素周期表の第10族から選択される元素(以下「A」という。)と、元素周期表の第12族から選択される元素(以下「B」という。)からなる合金であって、平均粒径が1nm以上50nm以下であることを特徴とするナノコロイド粒子に存する(請求項1)。このとき、粒径の標準偏差が平均粒径に対して30%以下であることが好ましい(請求項2)。
またこのとき、Aがパラジウムであり、Bが亜鉛であることが好ましい(請求項3)。またこのとき、下記一般式で表される組成であることが好ましい(請求項4)。
That is, the first gist of the present invention is an element selected from group 10 of the periodic table (hereinafter referred to as “A”) and an element selected from group 12 of the periodic table (hereinafter referred to as “B”). )) And has an average particle size of 1 nm to 50 nm. (Claim 1) At this time, it is preferable that the standard deviation of the particle size is 30% or less with respect to the average particle size.
At this time, it is preferable that A is palladium and B is zinc. Moreover, it is preferable that it is a composition represented by the following general formula at this time.

(100−X)
(X=30〜80の数字を表す)
A (100-X) B X
(X represents a number of 30 to 80)

さらに前記粒子の表面に、分子量15000以下の配位性有機分子が結合していることが好ましい(請求項5)。   Furthermore, it is preferable that a coordinating organic molecule having a molecular weight of 15000 or less is bonded to the surface of the particle.

本発明の第二の要旨は、上記ナノコロイド粒子を担体に担持させたナノコロイド担持体に存する(請求項6)。   The second gist of the present invention resides in a nanocolloid carrier in which the nanocolloid particles are supported on a carrier (claim 6).

また、本発明の第三の要旨は、上記ナノコロイド粒子またはナノ粒子コロイド担持体からなるアルコール化合物の脱水素反応用触媒に存する(請求項7)。   The third gist of the present invention resides in a catalyst for dehydrogenation reaction of an alcohol compound comprising the nano colloid particles or the nano particle colloid carrier (claim 7).

また、本発明の第四の要旨は、Aを分子構造内に含む化合物、Bを分子構造内に含む化合物、還元剤、配位性有機分子及び溶媒を混合して、均一溶液を生成し、次いで、この均一溶液を加熱することにより、合金ABの微粒子を生成させ、次いで、この微粒子表面を配位性有機分子で覆うことを特徴とする、上記ナノコロイド粒子の製造方法に存する(請求項8)。   The fourth gist of the present invention is to produce a homogeneous solution by mixing a compound containing A in the molecular structure, a compound containing B in the molecular structure, a reducing agent, a coordinating organic molecule and a solvent, Subsequently, the homogeneous solution is heated to produce fine particles of the alloy AB, and then the surface of the fine particles is covered with a coordinating organic molecule. 8).

本発明の第五の要旨は上記ナノコロイド粒子またはナノコロイド担持体を用いて、アルコール化合物を脱水素することを特徴とする、カルボニル化合物の製造方法に存する。   A fifth aspect of the present invention resides in a method for producing a carbonyl compound, characterized in that the alcohol compound is dehydrogenated using the nanocolloid particles or nanocolloid support.

本発明によれば、アルコールの脱水素化反応が可能な触媒として利用できるナノ粒子提供する事ができ、その粒子を用いてカルボニル化合物の製造法を提供する事ができる。   ADVANTAGE OF THE INVENTION According to this invention, the nanoparticle which can be utilized as a catalyst which can dehydrogenate reaction of alcohol can be provided, and the manufacturing method of a carbonyl compound can be provided using the particle | grain.

以下、本発明について実施の形態を示して説明する。ただし、本発明は以下の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において任意に変更して実施する事ができる。   The present invention will be described below with reference to embodiments. However, the present invention is not limited to the following embodiments, and can be arbitrarily modified and implemented without departing from the gist of the present invention.

[ナノコロイド粒子]
本発明のナノコロイド粒子は、2種以上の金属元素を含む合金からなり、通常、その表面に保護層を形成している。
[Nano colloidal particles]
The nanocolloid particles of the present invention are made of an alloy containing two or more metal elements, and usually a protective layer is formed on the surface thereof.

[ナノコロイド粒子の組成]
本発明の本発明のナノコロイド粒子は、2種類の金属元素を含む合金からなるものである。2種類の金属元素のうち1種類は、元素周期表の第10族から選択される元素(以下「A」という。)から選ばれ、もう1種類は元素周期表の第12族から選択される元素(以下「B」という。)から選ばれる。第10族の元素の中ではパラジウム(Pd)、第12族の元素の中では亜鉛(Zn)が良好に用いられる。
[Composition of nano colloidal particles]
The nanocolloid particles of the present invention are composed of an alloy containing two kinds of metal elements. One of the two types of metal elements is selected from elements selected from group 10 of the periodic table (hereinafter referred to as “A”), and the other is selected from group 12 of the periodic table. It is selected from elements (hereinafter referred to as “B”). Among the Group 10 elements, palladium (Pd) is preferably used, and among the Group 12 elements, zinc (Zn) is preferably used.

合金は20℃程度の室温下、その組成により安定な結晶相が異なり、複数の結晶構造を有する。ここで、合金という言葉が意味するものは同一粒子の中でAとBが個別に存在するクラスターインクラスター構造やコアシェル構造とは異なり、原子レベルで混合されているものである。原子レベルで混合されていれば結晶構造内の単位格子は純粋な金属同士の混合物の場合と異なるのでX線回折などの分析手法で結晶構造を知ることができる。   The alloy has a plurality of crystal structures with different stable crystal phases depending on the composition at room temperature of about 20 ° C. Here, what is meant by the word “alloy” is different from a cluster-in-cluster structure or a core-shell structure in which A and B are individually present in the same particle, and is mixed at an atomic level. If they are mixed at the atomic level, the unit cell in the crystal structure is different from that in the case of a mixture of pure metals, so that the crystal structure can be known by an analysis technique such as X-ray diffraction.

安定な結晶構造は、組成や温度に応じて複数種類存在する。これらの結晶構造は合金の相図から知る事ができる。合金を触媒として用いる際、活性の高い結晶構造がどの構造であるかの確認は通常困難であるので、組成で規定するのが好ましい。   There are multiple types of stable crystal structures depending on the composition and temperature. These crystal structures can be known from the phase diagram of the alloy. When an alloy is used as a catalyst, it is usually difficult to confirm which crystal structure has a high activity.

合金ABは第10族と第12族の合金であり、類似の物性を保有すると考えられるので組成の好ましい範囲をPdZnを例にとって規定する事ができる。
具体的には、Pd(100−X)Znと表した場合、触媒として好ましいXの範囲は30以上80以下、より好ましくは40以上70以下、最も好ましくは45以上60以下である。
Alloy AB is an alloy of Group 10 and Group 12, and is considered to have similar physical properties, so that a preferable range of composition can be defined by taking PdZn as an example.
Specifically, when expressed as Pd (100-X) Zn X , the range of preferred X as catalysts 30 or 80 or less, more preferably 40 or more 70 or less, and most preferably 45 or more and 60 or less.

また、前記2種類の合金以外の材料を添加材として含んでいても良い。例えば第13〜16族の元素、中でも炭素(C)や酸素(O)等が挙げられる。これらの添加材の割合は合金の原子数に対して10%以下、好ましくは5%以下である。   Moreover, materials other than the two types of alloys may be included as an additive. For example, elements of Groups 13 to 16, such as carbon (C) and oxygen (O) are mentioned. The ratio of these additives is 10% or less, preferably 5% or less, relative to the number of atoms in the alloy.

[ナノコロイド粒子の平均粒径と粒径分布]
本発明のナノコロイド粒子の平均粒径は1nm以上50nm以下である。ここで平均粒径と表記しているものは、透過型電子顕微鏡で観察して300個の粒子の大きさを個別に測ったその平均値のことを意味する。
具体的には次のようにして算出する。すなわち、
ナノコロイド粒子をヘキサンに0.01wt%の濃度に分散させ、透過型電子顕微鏡(TEM)観察用のカーボングリッドに一滴落とし、空気中で乾燥させてからTEMの試料台にセットする。観察時の電子線の印加電圧200kVにて60万倍に拡大して3視野撮像する。写った粒子の中から無作為に300個を選び写真の水平方向の長さを計測する。それらの値を平均して平均粒径とする。また、測った値の標準偏差を平均粒径で除した値に100を乗じた値を、粒径分布を表す指標として使用する。
[Average particle size and particle size distribution of nano colloidal particles]
The average particle size of the nanocolloid particles of the present invention is 1 nm or more and 50 nm or less. Here, what is described as an average particle diameter means an average value obtained by observing with a transmission electron microscope and measuring the size of 300 particles individually.
Specifically, the calculation is performed as follows. That is,
Nano colloidal particles are dispersed in hexane at a concentration of 0.01 wt%, dropped onto a carbon grid for transmission electron microscope (TEM) observation, dried in air, and then set on a TEM sample stage. Three-field imaging is performed at a magnification of 600,000 times at an applied voltage of 200 kV of an electron beam during observation. Randomly select 300 particles from the captured particles and measure the horizontal length of the photo. These values are averaged to obtain an average particle size. Further, a value obtained by dividing the standard deviation of the measured value by the average particle size and multiplying by 100 is used as an index representing the particle size distribution.

触媒としての利用を考えた場合、比表面積を大きくするために平均粒径は小さい方が好ましいが、あまりに小さいとナノコロイド粒子の結晶格子が不安定になり高温での反応の際には融解して消失してしまう。また、平均粒径が大きくなると比表面積が小さくなり、合金の重量当たりの触媒活性が低下してしまう。これらの理由からさらに好ましい平均粒径の範囲は2nm以上25nm以下、最も好ましいのは2.5nm以上15nm以下である。   When considering use as a catalyst, it is preferable that the average particle size is small in order to increase the specific surface area. However, if it is too small, the crystal lattice of the nanocolloid particles becomes unstable and melts during the reaction at high temperature. Disappears. Further, when the average particle size is increased, the specific surface area is decreased, and the catalytic activity per weight of the alloy is decreased. For these reasons, the range of the average particle size is more preferably 2 nm or more and 25 nm or less, and most preferably 2.5 nm or more and 15 nm or less.

粒径分布が広いと2nm以下の小さな粒子や50nm以上の大きな粒子を含むので、上記と同様の理由から触媒としての耐久性に欠けたり、低活性になってしまう。それ故標準偏差が平均粒径に対して30%以下であることが好ましく、25%以下であることがより好ましく、最も好ましいのは20%以下の場合である。   When the particle size distribution is wide, small particles of 2 nm or less and large particles of 50 nm or more are included, so that the durability as a catalyst is lacking or the activity becomes low for the same reason as described above. Therefore, the standard deviation is preferably 30% or less with respect to the average particle diameter, more preferably 25% or less, and most preferably 20% or less.

[ナノコロイド粒子の保護層]
保護層は、ナノコロイド粒子の媒体(後述する)に対する分散性を高めるために設けられるものである。保護層を形成する有機化合物は金属に対する配位能力を有する部分を分子構造内に保持しており、その部分で合金ナノ粒子の表面に結合している。このような有機化合物を配位性有機化合物と呼ぶ。
[Protective layer of nano colloidal particles]
A protective layer is provided in order to improve the dispersibility with respect to the medium (after-mentioned) of a nano colloid particle. The organic compound forming the protective layer holds a portion having a coordination ability to the metal in the molecular structure, and is bonded to the surface of the alloy nanoparticle at the portion. Such an organic compound is called a coordinating organic compound.

配位性有機化合物の具体的な種類は触媒反応に用いる際、ナノコロイド粒子表面に反応基質が接触できれば特に制限は無く、媒体に応じて適切なものを選択すればよい。   A specific type of the coordinating organic compound is not particularly limited as long as the reaction substrate can be brought into contact with the surface of the nanocolloid particles when used for the catalytic reaction, and an appropriate one may be selected according to the medium.

そのような配位性有機化合物の例を挙げれば、カルボン酸化合物、アミン化合物、ホスフィン化合物、ホスフィンオキシド化合物等である。なお、配位性有機化合物は、1種を単独で用いても良く、2種以上を任意の組み合わせ及び比率で併用しても良い。   Examples of such coordinating organic compounds include carboxylic acid compounds, amine compounds, phosphine compounds, phosphine oxide compounds, and the like. In addition, a coordination organic compound may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.

配位性有機化合物の分子量が小さすぎると保護層が薄くなり粒子同士が凝集し比表面積が小さくなるという不都合が生じる。逆に、分子量が大きくなり過ぎると保護層が厚くなり担体に担持されない問題や反応基質が粒子表面に到達できず活性が高くならない等の問題が生じてくる。これらの理由から、好ましい分子量は50以上15000以下、さらに好ましくは100以上5000以下、最も好ましくは200以上500以下である。   If the molecular weight of the coordinating organic compound is too small, the protective layer becomes thin, particles are aggregated, and the specific surface area is reduced. On the other hand, if the molecular weight becomes too large, the protective layer becomes too thick to be supported on the carrier, and the reaction substrate cannot reach the particle surface and the activity is not increased. For these reasons, the preferred molecular weight is 50 or more and 15000 or less, more preferably 100 or more and 5000 or less, and most preferably 200 or more and 500 or less.

[ナノコロイド粒子の製造方法]
本発明におけるナノコロイド粒子の製造法は、例えば公知の品溶媒析出法、熱分解法、逆ミセル法、ポリオール法などを使用して製造する事ができる。
[Production method of nano colloidal particles]
The production method of the nano colloidal particles in the present invention can be produced using, for example, a known product solvent precipitation method, thermal decomposition method, reverse micelle method, polyol method and the like.

以下、PdZnナノコロイド粒子の製造法の一例を説明する。
PdZnナノコロイド粒子を製造する場合、金属原料と粒子保護層を形成させるための配位性有機化合物、還元剤、溶媒を反応器中に仕込み、不活性雰囲気下で加熱して粒子を合成する。金属原料のうち、第10族元素の原料としては例えばパラジウムアセチルアセトネイト、テトラキス(トリフェニルホスフィン)パラジウム、トリス(ジベンジリデンアセトン)ジパラジウム等の金属錯体、塩化パラジウム、酢酸パラジウム、等の金属塩、第12族元素の原料としては例えば亜鉛アセチルアセトネイト、亜鉛フタロシアニン等の金属錯体、塩化亜鉛、酢酸亜鉛、等の金属塩、ジメチル亜鉛、ジエチル亜鉛、等の有機金属を用いる事ができる。
Hereinafter, an example of a method for producing PdZn nanocolloid particles will be described.
When producing PdZn nanocolloid particles, a coordinating organic compound, a reducing agent, and a solvent for forming a metal raw material and a particle protective layer are charged into a reactor and heated under an inert atmosphere to synthesize the particles. Among the metal raw materials, examples of the Group 10 element raw materials include metal complexes such as palladium acetylacetonate, tetrakis (triphenylphosphine) palladium, tris (dibenzylideneacetone) dipalladium, and metal salts such as palladium chloride and palladium acetate. As the Group 12 element raw material, for example, metal complexes such as zinc acetylacetonate and zinc phthalocyanine, metal salts such as zinc chloride and zinc acetate, and organic metals such as dimethylzinc and diethylzinc can be used.

配位性有機化合物としては高温での反応にも適用できるように高沸点のものである事が好ましいが、前述のように分子量の制限もある。使用する第10族元素のモル数の第12族元素のモル数に対する比は、目的とする合金の組成により可変であるが通常1/10〜10、好ましくは1/5〜5、更に好ましくは1/2〜2である。金属原料の濃度が低すぎると結晶としての析出がなく粒子が形成されない。また濃度が高すぎると過飽和度が大き過ぎ、微細な粒子になってしまったり、粒子同士の2次凝集が進み単独粒子として回収できなかったりする。   The coordinating organic compound preferably has a high boiling point so that it can be applied to a reaction at a high temperature, but has a molecular weight limitation as described above. The ratio of the number of moles of the group 10 element used to the number of moles of the group 12 element is variable depending on the composition of the target alloy, but is usually 1/10 to 10, preferably 1/5 to 5, more preferably. 1/2 to 2. If the concentration of the metal raw material is too low, there is no precipitation as crystals and no particles are formed. On the other hand, if the concentration is too high, the degree of supersaturation is too large, resulting in fine particles, or secondary agglomeration of particles proceeds and cannot be recovered as single particles.

よって通常、金属原料の総和の反応液中の濃度は0.0005〜5mmol/mL、好ましくは0.005〜0.5mmol/mL、より好ましくは0.01〜0.1mmol/mLである。   Therefore, the concentration of the sum total of the metal raw materials in the reaction solution is usually 0.0005 to 5 mmol / mL, preferably 0.005 to 0.5 mmol / mL, and more preferably 0.01 to 0.1 mmol / mL.

配位性有機物としては通常、オレイン酸、ステアリン酸、パルミチン酸、アダマンタンカルボン酸のようなカルボン酸化合物、オレイルアミン、オクタデシルアミン、ヘキサデシルアミンのようなアルキルアミン化合物、トリオクチルホスフィン、トリフェニルホスフィン等のホスフィン化合物、トリオクチルホスフィンオキシド、トリブチルホスフィンオキシド等のホスフィンオキシド化合物、ドデカンチオール、ヘキサデカンチオール、オクタデカンチオール等のチオール化合物、等が用いられる。またこれらの配位性有機物は複数種類を混合して用いてもよい。   Coordinating organic substances are usually carboxylic acid compounds such as oleic acid, stearic acid, palmitic acid, adamantane carboxylic acid, alkylamine compounds such as oleylamine, octadecylamine, hexadecylamine, trioctylphosphine, triphenylphosphine, etc. Phosphine compounds, phosphine oxide compounds such as trioctyl phosphine oxide and tributyl phosphine oxide, and thiol compounds such as dodecane thiol, hexadecane thiol and octadecane thiol. Moreover, you may use these coordination organic substance in mixture of multiple types.

配位性有機化合物の金属原料に対する使用量は通常、0.01〜200倍モル量、好ましくは0.1〜20倍モル量、最も好ましくは0.5〜5倍量である。還元剤は高温の反応に用いられるように高沸点のものが好ましい。ヘキサンジオール、ヘキサデカンジオール、トリエチレングリコール、テトラエチレングリコール等のジオール類、ポリエチレングリコール等のポリオール類、等が挙げられる。原料の種類によっては還元剤の使用が無くとも還元反応が進行する場合がある。   The amount of the coordinating organic compound used relative to the metal raw material is usually 0.01 to 200 times the molar amount, preferably 0.1 to 20 times the molar amount, and most preferably 0.5 to 5 times the amount. The reducing agent preferably has a high boiling point so as to be used for a high temperature reaction. Examples include diols such as hexanediol, hexadecanediol, triethylene glycol, and tetraethylene glycol, polyols such as polyethylene glycol, and the like. Depending on the type of raw material, the reduction reaction may proceed even without the use of a reducing agent.

還元剤の金属原料に対する使用量は通常、0〜100倍モル量、好ましくは0.1〜10倍モル量、さらに好ましくは0.5〜5倍量である。溶媒としては高温の反応に用いられるように高沸点のものが好ましく、ジオクチルエーテル、ジフェニルエーテル、等のエーテル類等が挙げられる。配位性有機化合物の種類や量によっては溶媒の使用が無くとも還元反応が進行する場合がある。   The amount of the reducing agent to be used with respect to the metal raw material is usually 0 to 100 times mol, preferably 0.1 to 10 times mol, and more preferably 0.5 to 5 times mol. As the solvent, those having a high boiling point are preferable so as to be used in a high-temperature reaction, and examples thereof include ethers such as dioctyl ether and diphenyl ether. Depending on the type and amount of the coordinating organic compound, the reduction reaction may proceed even without the use of a solvent.

好ましい溶媒の使用量は、金属原料のモル数に対して0〜2000mL/mmol、より好ましくは2〜200mL/mmol、最も好ましくは5〜50mL/mmolである。   The amount of the solvent used is preferably 0 to 2000 mL / mmol, more preferably 2 to 200 mL / mmol, and most preferably 5 to 50 mL / mmol with respect to the number of moles of the metal raw material.

上記の原料は反応器中で混合されて使用されるが混合の順序に特に制限はなく、最初から全てを仕込んでもよいし、加熱開始後に原料の中のある種類のものを添加しても良い。   The above raw materials are used after being mixed in the reactor, but there is no particular limitation on the order of mixing, and everything may be charged from the beginning, or a certain kind of raw material may be added after the start of heating. .

反応は不活性雰囲気下で行うが、不活性雰囲気とは通常、窒素、またはアルゴン雰囲気下で行うことをいう。反応温度は原料や還元剤の種類によって可変であるが、通常、80〜500℃、好ましくは150〜450℃、より好ましくは250〜400℃で行う。反応時間は反応温度に達してからの時間のことを指し、通常0〜120分、好ましくは1〜60分、更に好ましくは5〜30分である。   The reaction is carried out under an inert atmosphere, and the inert atmosphere is usually carried out under a nitrogen or argon atmosphere. The reaction temperature is variable depending on the type of raw material and reducing agent, but is usually 80 to 500 ° C, preferably 150 to 450 ° C, more preferably 250 to 400 ° C. The reaction time refers to the time after the reaction temperature is reached, and is usually 0 to 120 minutes, preferably 1 to 60 minutes, and more preferably 5 to 30 minutes.

また反応温度まで到達するまでの昇温速度によって粒径や粒径分布が変化する。好ましい昇温速度は2〜5000℃/分、好ましくは5〜1000℃/分、さらに好ましくは10〜100℃/分である。   In addition, the particle size and particle size distribution change depending on the rate of temperature rise until reaching the reaction temperature. A preferable temperature increase rate is 2 to 5000 ° C./min, preferably 5 to 1000 ° C./min, and more preferably 10 to 100 ° C./min.

反応後は不活性雰囲気のまま70℃程度まで冷却し、エタノールなどの貧溶媒を添加してナノ粒子コロイド粒子を析出させ、遠心分離等で精製して回収する。   After the reaction, the reaction mixture is cooled to about 70 ° C. in an inert atmosphere, and a poor solvent such as ethanol is added to precipitate the nanoparticle colloidal particles, which are purified and collected by centrifugation or the like.

[ナノコロイド粒子の粒径、粒径分布及び組成の制御方法]
ナノコロイド粒子の平均粒径を制御するためには、例えば金属原料の濃度を変えればよい。即ち、金属原料の濃度は0.0005〜5mmol/mLの中から選ぶことができるが、この中でも5mmol/mLに近い高濃度側にすると反応中、過飽和の程度が大きくなり微細な核が多数生じるため小さい粒径となる。逆に0.0005mmol/mLに近い低濃度側にすると大きい径となる。
[Method of controlling particle size, particle size distribution and composition of nano colloidal particles]
In order to control the average particle size of the nanocolloid particles, for example, the concentration of the metal raw material may be changed. That is, the concentration of the metal raw material can be selected from 0.0005 to 5 mmol / mL, but among these, when the concentration is close to 5 mmol / mL, the degree of supersaturation increases during the reaction and many fine nuclei are generated. Therefore, the particle size becomes small. On the other hand, when the concentration is lower than 0.0005 mmol / mL, the diameter becomes larger.

ナノコロイド粒子の粒径分布を制御するためには、例えば反応時の昇温速度を変えればよい。即ち、昇温速度は2〜5000℃/分から選ぶ事ができるがこの中でも2℃/分に近いゆっくりした速度で昇温すると核発生が継続して起こり、粒径分布が広くなる。逆に5000℃/分に近い速い速度で昇温すると核発生は短時間で終了するため粒径分布は狭くなる傾向がある。   In order to control the particle size distribution of the nanocolloid particles, for example, the temperature increase rate during the reaction may be changed. That is, the rate of temperature rise can be selected from 2 to 5000 ° C./min. Among them, when the temperature is raised at a slow rate close to 2 ° C./min, nucleation continues and the particle size distribution becomes wider. Conversely, when the temperature is raised at a fast rate close to 5000 ° C./min, the nucleation is completed in a short time, so the particle size distribution tends to be narrow.

ナノコロイド粒子の組成を制御するには、例えばカルボン酸化合物とアルキルアミン化合物の混合割合を変えることも有効である。例えば、PdZn合金ナノ粒子の製造を例にとると、カルボン酸を多く使用すればPdが過剰になり、逆にアルキルアミンを多く使用すればZnが過剰になる。   In order to control the composition of the nanocolloid particles, for example, it is also effective to change the mixing ratio of the carboxylic acid compound and the alkylamine compound. For example, taking the production of PdZn alloy nanoparticles as an example, if a large amount of carboxylic acid is used, Pd will be excessive, and conversely if a large amount of alkylamine is used, Zn will be excessive.

この理由は、例えばカルボン酸とZnの親和性が高くカルボン酸が多い場合は粒子に取り込まれるZnの量が減り結果としてPd過剰になり、逆にアルキルアミンはPdと親和性が高くアルキルアミンが多い場合は粒子に取り込まれるPdの量が減り結果としてZn過剰になることが原因の一つとして考案されている。   This is because, for example, when the affinity between carboxylic acid and Zn is high and there is a large amount of carboxylic acid, the amount of Zn taken into the particles decreases, resulting in an excess of Pd. Conversely, alkylamine has a high affinity with Pd and alkylamine In many cases, it is devised as one of the causes that the amount of Pd taken into the particles is reduced and Zn is excessive as a result.

[ナノコロイド粒子の担体への担持方法]
本研究で合成したナノコロイド粒子は液中に分散した状態で触媒として使用できるが、担体に担持させて使用することができる。担体に担持させて担持触媒として使用すれば流通装置で触媒反応を行う事が可能となり生産性が向上するので好ましい。
[Supporting method of nano colloidal particles on a carrier]
The nanocolloid particles synthesized in this study can be used as a catalyst in a state dispersed in a liquid, but can be used by being supported on a carrier. It is preferable to use it as a supported catalyst by supporting it on a carrier because a catalytic reaction can be carried out with a flow device and productivity is improved.

担体として使用できるのは比表面積が大きなシリカゲルや活性炭、アルミナ、ゼオライト等の多孔質物質、カーボンブラック等の微粉炭素等である。不純物が含まれているとその不純物が副反応を引き起こす要因となる場合があるのでなるべく純粋な材料が好ましい。好んで用いられるのはシリカゲルである。   Examples of usable carriers include silica gel, activated carbon, alumina, zeolite and other porous materials having a large specific surface area, fine carbon such as carbon black, and the like. If impurities are contained, the impurities may cause a side reaction, so that a pure material is preferable. Silica gel is preferably used.

シリカゲルの形状に限定は無いが、反応器が閉塞しないためにも均一な球状のもので大きさが2〜10mm程度のものがよい。担持触媒を作製する場合はナノコロイド粒子をヘキサン等の疎水性溶媒に分散させ、その液とシリカゲルのビーズを接触させる。その後ろ過によりナノコロイド粒子を表面に担持した担持触媒を得ることが出来る。担持触媒中のナノコロイド粒子の濃度は担体に対して0.1〜90wt%、好ましくは0.5〜50wt%、さらに好ましくは1〜10wt%である。   There is no limitation on the shape of the silica gel, but a uniform spherical shape with a size of about 2 to 10 mm is preferable in order not to block the reactor. When preparing a supported catalyst, nano colloidal particles are dispersed in a hydrophobic solvent such as hexane, and the liquid is brought into contact with beads of silica gel. Thereafter, a supported catalyst having nano colloidal particles supported on the surface can be obtained by filtration. The concentration of the nanocolloid particles in the supported catalyst is 0.1 to 90 wt%, preferably 0.5 to 50 wt%, more preferably 1 to 10 wt% with respect to the support.

[ナノコロイド粒子の使用方法]
本研究で合成したナノコロイド粒子は触媒として使用することができる。合成後、遠心分離で単離されたナノコロイド粒子を反応原料に分散させ、常圧下で過熱することで脱水素触媒として使用することができる。この際、ナノコロイド粒子は反応原料ではない溶媒に分散させた状態で使用してもよく、反応液中のナノコロイド粒子の濃度は0.5〜5000mg/mL、好ましくは5〜500mg/mL、更に好ましくは10〜250mg/mLである。
[How to use nano colloidal particles]
Nano colloidal particles synthesized in this study can be used as catalysts. After synthesis, the nanocolloid particles isolated by centrifugation are dispersed in the reaction raw material and heated at normal pressure to be used as a dehydrogenation catalyst. At this time, the nanocolloid particles may be used in a state of being dispersed in a solvent that is not a reaction raw material, and the concentration of the nanocolloid particles in the reaction solution is 0.5 to 5000 mg / mL, preferably 5 to 500 mg / mL, More preferably, it is 10-250 mg / mL.

触媒として使用する場合の反応原料はアルコール化合物がよく用いられる。例えば、メタノール、エタノール、プロパノール、ブタノール等の1価のアルコール化合物、エチレングリコール、プロパンジオール、ブタンジオール等の2価のアルコール化合物、ポリエチレングリコール等の多価アルコール化合物等が挙げられ、好ましくは2価のアルコール、多価アルコールであり、最も好ましくは2価のアルコールである。   Alcohol compounds are often used as reaction raw materials when used as a catalyst. Examples thereof include monovalent alcohol compounds such as methanol, ethanol, propanol and butanol, divalent alcohol compounds such as ethylene glycol, propanediol and butanediol, and polyhydric alcohol compounds such as polyethylene glycol, preferably divalent. Alcohols and polyhydric alcohols, most preferably divalent alcohols.

反応温度は常圧において1,4−ブタンジオールの脱水素反応を行う場合は80〜230℃、好ましくは100〜220℃、最も好ましくは150〜215℃である。また、合成したナノコロイド粒子を前述の担体に担持させて使用してもよい。この場合、流通装置を用いた反応も可能になるので生産性が向上する。流通反応を行う場合、ナノコロイド担持触媒に対する原料液の流速は0.01〜200mL/g・Hr、好ましくは0.02〜100mL/g・Hr、より好ましくは0.05〜50mL/g・Hrである。   The reaction temperature is 80 to 230 ° C., preferably 100 to 220 ° C., and most preferably 150 to 215 ° C. when dehydrogenating 1,4-butanediol at normal pressure. Further, the synthesized nanocolloid particles may be used by being supported on the above-mentioned carrier. In this case, a reaction using a distribution device is also possible, so that productivity is improved. When carrying out the flow reaction, the flow rate of the raw material liquid with respect to the nanocolloid supported catalyst is 0.01 to 200 mL / g · Hr, preferably 0.02 to 100 mL / g · Hr, more preferably 0.05 to 50 mL / g · Hr. It is.

以下,実施例を示して本発明について具体的に説明するが、本発明は以下の実施例に限定されるものではなく、本発明の要旨を逸脱しない限り、任意に変更して実施することができる。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the following examples, and may be arbitrarily modified and implemented without departing from the gist of the present invention. it can.

[分析法]
平均粒径の求め方は次の通りである。ナノコロイド粒子をヘキサンに0.01wt%の濃度に分散させ、透過型電子顕微鏡(TEM)観察用のカーボングリッドに一滴落とし、空気中で乾燥させてからTEMの試料台にセットした。TEMの型式は日立製透過型電子顕微鏡H−9000UHRであった。観察時の電子線の印加電圧200kVにて60万倍に拡大して3視野撮像した。写った粒子の中から無作為に300個を選び写真の水平方向の長さを計測した。それらの値を平均して平均粒径とした。粒径分布の求め方は次の通りである。測った粒径の値の標準偏差を平均粒径で除し、その値に100を乗じた値を粒径分布を表す指標として使用する。
[Analysis method]
The method for obtaining the average particle size is as follows. Nanocolloid particles were dispersed in hexane at a concentration of 0.01 wt%, dropped on a carbon grid for transmission electron microscope (TEM) observation, dried in air, and then set on a TEM sample stage. The TEM model was a Hitachi transmission electron microscope H-9000UHR. Three-field imaging was performed at a magnification of 600,000 times at an applied voltage of 200 kV of an electron beam during observation. Randomly 300 particles were selected from the captured particles and the horizontal length of the photo was measured. These values were averaged to obtain an average particle size. The method for obtaining the particle size distribution is as follows. The standard deviation of the measured particle size value is divided by the average particle size, and a value obtained by multiplying the value by 100 is used as an index representing the particle size distribution.

またTEMを用いて元素分析を行う際はTEMに付随しているFEI Tecnai G2 F20microscopeを用いて測定した。その際、百個程度の粒子を含む広い視野全体の組成分析を行う場合と、1個の粒子に焦点を絞り組成分析を行う場合があった。   When elemental analysis was performed using TEM, measurement was performed using FEI Tecnai G2 F20 microscope attached to TEM. At that time, there were a case where composition analysis was performed for the entire wide field of view including about a hundred particles and a case where composition analysis was performed by focusing on one particle.

もっと多くの粒子全体の平均組成を分析する場合は原子吸光分析装置であるJobin
Yvon製ICP−AES JY38Sを用いて求めた。
When analyzing the average composition of more particles as a whole, the atomic absorption spectrometer Jobin
It calculated | required using ICP-AES JY38S made from Yvon.

X線回折計は理学製RINT200PCを用いた。X線の光源としてはCuKα線(波長1.542オングストローム)を使用した。サンプルは例えばヘキサン中10mg/mLの濃度に分散させてから一滴を大きさ15mm四方の石英基板に落とし、乾いては落とす操作を繰り返しナノコロイド粒子の積層膜を作製後、測定に使用した。   RINT200PC made by Rigaku was used as the X-ray diffractometer. CuKα rays (wavelength 1.542 angstroms) were used as the X-ray light source. For example, the sample was dispersed in hexane at a concentration of 10 mg / mL, dropped on a quartz substrate having a size of 15 mm square, dried and dropped repeatedly to prepare a laminated film of nanocolloid particles and used for measurement.

1,4−ブタンジオールの脱水素反応成績を評価するために島津製ガスクロマトグラフィーGC−14Aを使用した。カラムにはAgilent Technologies製DB−WAXを使用した。反応液をフラスコから1mL抜き出してろ過し、そのうち0.1gをジオキサン10mLで希釈して分析した。   In order to evaluate the dehydrogenation reaction performance of 1,4-butanediol, Shimadzu Gas Chromatography GC-14A was used. DB-WAX manufactured by Agilent Technologies was used for the column. 1 mL of the reaction solution was extracted from the flask and filtered, and 0.1 g of the reaction solution was diluted with 10 mL of dioxane and analyzed.

<実施例1>
[PdZnナノコロイド粒子の合成1]
50mL4つ口丸底フラスコにパラジウムの原料としてAldrich社製パラジウム アセチルアセトネイト152mg(0.5mmol)、亜鉛の原料としてStrem社製亜鉛アセチルアセトネイト1水和物132mg(0.5mmol)、還元剤としてAldrich社製1,2−ヘキサンジオール260mg(1.0mmol)、配位性有機化合物としてAldrich社製オレイン酸0.64mL(分子量282.46、2.0mmol)、もうひとつの配位性有機化合物としてAldrich社製オレイルアミン2.72mL(分子量267.49、8.0mmol)、溶媒としてオクチルエーテル17mL(56.6mmol)、およびマグネチックスターラーバーを投入し、アルゴンガスを流通させる事ができる還流管付きの反応装置にセットした。
<Example 1>
[Synthesis 1 of PdZn nano colloidal particles]
In a 50 mL four-neck round bottom flask, 152 mg (0.5 mmol) of palladium acetylacetonate manufactured by Aldrich as a raw material of palladium, 132 mg (0.5 mmol) of zinc acetylacetonate monohydrate manufactured by Strem as a raw material of zinc, as a reducing agent Aldrich 1,2-hexanediol 260 mg (1.0 mmol), Aldrich oleic acid 0.64 mL (molecular weight 282.46, 2.0 mmol) as a coordinating organic compound, another coordinating organic compound Aldrich oleylamine (2.72 mL, molecular weight 267.49, 8.0 mmol), octyl ether 17 mL (56.6 mmol) as a solvent, and magnetic stirrer bar are charged, and a reflux tube is provided to allow argon gas to flow. It was set in the reactor.

余ったフラスコの口には天然ゴム製のセプタで蓋をして、そのうちの一つに熱電対を差込みフラスコの内温が測定できるようにした。マグネチックスターラーで毎分800回の回転速度で回転させながら真空引きし、アルゴンガスを導入して腹圧する操作を3回繰り返して系内をアルゴン雰囲気に保った。フラスコ内容物は濁った茶褐色を呈していた。マントルヒーターを用いて昇温速度毎分10℃で295℃まで昇温すると反応液は黒色になっており、還元反応が進行したことを示した。295℃で30分保った後、マントルヒーターを外し、70℃まで冷却した。セプタから窒素バブリングしたエタノールを40mLフラスコ内に添加すると液色が黒濁色に変化してナノコロイド粒子が沈殿した。   The remaining flask mouth was covered with a natural rubber septa, and a thermocouple was inserted into one of them so that the internal temperature of the flask could be measured. While rotating with a magnetic stirrer at a rotation speed of 800 times per minute, vacuuming was performed, and the operation of introducing argon gas and abdominal pressure was repeated three times to keep the system in an argon atmosphere. The flask contents were turbid brown. When the temperature was raised to 295 ° C. at a heating rate of 10 ° C./min using a mantle heater, the reaction solution turned black, indicating that the reduction reaction proceeded. After maintaining at 295 ° C. for 30 minutes, the mantle heater was removed and the mixture was cooled to 70 ° C. When ethanol bubbled with nitrogen from the septa was added to the 40 mL flask, the liquid color changed to black turbidity and nanocolloid particles were precipitated.

この液を毎分4000回転の速度で1分間遠心分離すると上澄みは茶褐色透明になり、デカンテーションにより遠沈管の底部の黒色の固形物を回収した。次に窒素バブリングしたヘキサン40mLにオレイン酸100μL、オレイルアミン100μL加えた無色透明液を全量黒色沈殿物に添加し超音波洗浄槽1分間超音波処理して、均一な黒色液を得た。この液を再び毎分4000回転の速度で1分間遠心分離して上澄みは黒色のPdZnナノコロイド粒子分散液を得た。液中の金属濃度をICP元素分析法で測定するとPdが0.187wt%、Znが0.085wt%であり、合金の組成はPd57Zn43であった。 When this liquid was centrifuged at a speed of 4000 revolutions per minute for 1 minute, the supernatant became clear and brown, and the black solid at the bottom of the centrifuge tube was recovered by decantation. Next, a colorless and transparent liquid obtained by adding 100 μL of oleic acid and 100 μL of oleylamine to 40 mL of hexane bubbled with nitrogen was added to the black precipitate in total and subjected to ultrasonic treatment for 1 minute in an ultrasonic cleaning bath to obtain a uniform black liquid. This liquid was centrifuged again at a speed of 4000 rpm for 1 minute to obtain a black PdZn nanocolloid particle dispersion with a supernatant. When the metal concentration in the liquid was measured by ICP elemental analysis, Pd was 0.187 wt%, Zn was 0.085 wt%, and the composition of the alloy was Pd 57 Zn 43 .

PdZnナノコロイド粒子分散液の0.5mLを一滴ずつガラス基板の上に垂らしては乾燥させる操作を繰り返し、PdZnナノ粒子の積層膜を作製した。この膜を粉末X線回折測定装置(CuKα線)で分析すると40.9°に主ピークを示した。主ピークの他にも43.9°にピークがあり、主ピークの右側の肩となって存在することが確認された。これらのピーク位置は合金のPdZnのピーク位置と一致した。   The operation of dipping 0.5 mL of the PdZn nanocolloid particle dispersion liquid drop by drop on the glass substrate and drying was repeated to produce a PdZn nanoparticle laminated film. When this film was analyzed by a powder X-ray diffractometer (CuKα ray), it showed a main peak at 40.9 °. In addition to the main peak, there was a peak at 43.9 °, and it was confirmed to exist as a shoulder on the right side of the main peak. These peak positions coincided with the peak positions of PdZn in the alloy.

PdZnナノコロイド粒子分散液を1滴カーボングリッドに落として乾燥させ透過型電子顕微鏡で観察すると、大きさ5〜10nmの粒子が多数存在した。個々の粒子は独立していたことから、粒子の表面には配位性有機化合物が存在し保護層を形成している事が判った。平均粒径は8.5nmであった。また、平均粒径に対する粒径の標準偏差は19.3%であった。   When one drop of the PdZn nanocolloid particle dispersion was dropped on a carbon grid, dried, and observed with a transmission electron microscope, many particles having a size of 5 to 10 nm were present. Since each particle was independent, it was found that a coordinating organic compound was present on the surface of the particle to form a protective layer. The average particle size was 8.5 nm. Moreover, the standard deviation of the particle diameter with respect to the average particle diameter was 19.3%.

個々の粒子の組成をTEM−EDXで組成分析すると分析した全ての粒子はPdとZnを含有していた。これらの事実からコアシェル構造やクラスターインクラスターではない均一なPdZn合金ナノコロイド粒子が合成できた事が明らかとなった。   When the composition of each particle was analyzed by TEM-EDX, all the analyzed particles contained Pd and Zn. From these facts, it became clear that uniform PdZn alloy nanocolloid particles that are not core-shell structures or cluster-in-cluster could be synthesized.

<実施例2>
[PdZnナノコロイド粒子のシリカゲル担体への担持]
30mLバイヤル瓶に富士シリシア化学株式会社製のシリカゲル担体CARiACT Q−15(平均孔径:15nm) 10〜20メッシュ(粒径:780〜1,700μm)の白色シリカゲル粒子を0.4g入れ、実施例1のPdZnナノコロイド粒子分散液10.8mLを上から注いだ。蓋をしてそのまま室温で3日間静置した。メンブランフィルターでろ過をしてシリカゲル粒子を回収すると黒色に変わっており、ナノコロイド担持体を得た。ろ液は均一透明な薄い黒色を呈していた。ICP元素分析でナノコロイド担持体を分析したところ、Pd1.35wt%、Zn0.74wt%を含んでいた。
<Example 2>
[Supporting PdZn Nanocolloidal Particles on Silica Gel Support]
Example 1 A white silica gel particle of 10 to 20 mesh (particle size: 780 to 1,700 μm) of silica gel carrier CARiACT Q-15 (average pore size: 15 nm) manufactured by Fuji Silysia Chemical Co., Ltd. was placed in a 30 mL vial. 10.8 mL of PdZn nanocolloid particle dispersion was poured from above. Covered and left to stand at room temperature for 3 days. When the silica gel particles were collected by filtration through a membrane filter, the color changed to black, and a nanocolloid support was obtained. The filtrate had a uniform transparent light black color. When the nanocolloid carrier was analyzed by ICP elemental analysis, it contained 1.35 wt% Pd and 0.74 wt% Zn.

<実施例3>
[PdZnナノコロイド粒子の活性炭担体への担持]
30mLバイヤル瓶にNorit社製の活性炭Sorbonorit 2X(平均孔径
:920nm)の黒色ペレット(長径6mm、短径2mm)を5g入れ、実施例1のP
dZnナノコロイド粒子分散液20mLを上から注いだ。蓋をしてそのまま室温で3日間静置した。メンブランフィルターでろ過をして活性炭ペレットを回収し、ナノコロイド担持体を得た。ろ液は無色均一透明であった。ICP元素分析でナノコロイド担持体を分析したところ、Pd1.1wt%、Zn0.5wt%を含んでいた。
<Example 3>
[Supporting PdZn nanocolloid particles on activated carbon support]
5 g of black pellets (major axis 6 mm, minor axis 2 mm) of activated carbon Sorbororit 2X (average pore size: 920 nm) manufactured by Norit were placed in a 30 mL vial.
20 mL of dZn nanocolloid particle dispersion was poured from above. Covered and left to stand at room temperature for 3 days. The activated carbon pellets were collected by filtration through a membrane filter to obtain a nanocolloid carrier. The filtrate was colorless and uniform and transparent. When the nanocolloid carrier was analyzed by ICP elemental analysis, it contained Pd 1.1 wt% and Zn 0.5 wt%.

<実施例4>
[ナノコロイド粒子分散系でのアルコールの脱水素反応]
実施例1のPdZnナノ粒子分散液120mLを25mL丸底フラスコに入れ、窒素ガスを当てながらPdZnナノ粒子分散液中のヘキサンを留去すると1061mgの粘調な黒色液になった。Aldrich社製の1,4−ブタンジオール5mL(56.6mmol)を加え200℃まで昇温し5時間保った。反応液をガラス製の注射器で一部抜き出し、アセトンで希釈してガスクロマトグラフィーで分析すると、γ―ブチロラクトンのピークが確認できた。生成量は4.1mmolであった。このことからPdZnナノコロイド粒子を触媒とした、1,4−ブタンジオールの環化脱水素反応が起こったことが判った。続いて反応温度を215℃に上げて3時間保った。反応液を一部抜き出し、アセトンで希釈してガスクロマトグラフィーで分析すると、γ―ブチロラクトンのピークは大きくなった。一方、1,4−ブタンジオールのピークは消失し反応が100%進行したことが判った。
<Example 4>
[Dehydrogenation of alcohol in nano colloidal particle dispersion]
When 120 mL of the PdZn nanoparticle dispersion liquid of Example 1 was placed in a 25 mL round bottom flask and hexane in the PdZn nanoparticle dispersion liquid was distilled off while applying nitrogen gas, 1061 mg of a viscous black liquid was obtained. 1,4-Butanediol 5 mL (56.6 mmol) manufactured by Aldrich was added and the temperature was raised to 200 ° C. and kept for 5 hours. A part of the reaction solution was extracted with a glass syringe, diluted with acetone and analyzed by gas chromatography, and a peak of γ-butyrolactone was confirmed. The amount produced was 4.1 mmol. From this, it was found that cyclization dehydrogenation of 1,4-butanediol occurred using PdZn nanocolloid particles as a catalyst. Subsequently, the reaction temperature was raised to 215 ° C. and maintained for 3 hours. When a part of the reaction solution was extracted, diluted with acetone and analyzed by gas chromatography, the peak of γ-butyrolactone became large. On the other hand, it was found that the peak of 1,4-butanediol disappeared and the reaction proceeded 100%.

上記の反応液に窒素バブリングしたエタノールを40mL添加し、遠心分離で精製して黒色の固形物を得た。この固形物を25mL丸底フラスコに移し1,4−ブタンジオール5mL(56.6mmol)を添加して215℃まで昇温して3時間保った。反応液を一部抜き出してガスクロマトグラフィーで分析すると、γ−ブチロラクトン25mmolが生成していた。このことから、PdZnナノコロイド粒子の触媒としてのリサイクル利用が可能であることが判った。   40 mL of ethanol bubbled with nitrogen was added to the reaction solution, and purified by centrifugation to obtain a black solid. This solid was transferred to a 25 mL round bottom flask, 5 mL (56.6 mmol) of 1,4-butanediol was added, the temperature was raised to 215 ° C. and kept for 3 hours. When a part of the reaction solution was extracted and analyzed by gas chromatography, 25 mmol of γ-butyrolactone was produced. From this, it was found that the PdZn nanocolloid particles can be recycled as a catalyst.

また、リサイクル反応液から回収した黒色固形物の結晶構造を粉末X線回折測定装置(CuKα線)で分析すると40.9°に主ピークを示し、反応前のPdZnナノコロイド粒子の回折パターンとほぼ一致した。215℃の高温下で1,4−ブタンジオールの脱水素反応を行った後も結晶構造に変化がないことを示した。これらの結果から、本発明のナノコロイド粒子は耐久性に優れていることが判った。   Further, when the crystal structure of the black solid recovered from the recycled reaction solution was analyzed with a powder X-ray diffractometer (CuKα ray), it showed a main peak at 40.9 °, almost the same as the diffraction pattern of the PdZn nanocolloid particles before the reaction. Matched. It was shown that there was no change in the crystal structure even after dehydrogenation of 1,4-butanediol at a high temperature of 215 ° C. From these results, it was found that the nanocolloid particles of the present invention are excellent in durability.

<実施例5>
[ナノコロイド粒子担持系でのアルコールの脱水素反応]
液体クロマトグラフィー用のプランジャーポンプからの流路を下部に装着したガラス製の流通反応器(長さ180mm、直径16mm、下部にガラスフィルターを保有)に実施例3のシリカゲルを用いたナノコロイド粒子担持体3.1gを入れた。その上にガラスウールで栓をしてオイルバスに浸した。続いて流通反応器上部から出てくる液を回収するためのバイヤル瓶をセットした。プランジャーポンプから1,4−ブタンジオールを流して流通反応器を満たし、流速を毎分0.1mLにしてからオイルバスを215℃まで昇温した。昇温途中に薄く黒く濁った反応液が流出したが215℃に到達した以降は薄黄色に着色した透明液が流出した。また、反応器内部から泡の発生が見られた。
<Example 5>
[Dehydrogenation of alcohol on nano colloidal particle support system]
Nano colloidal particles using the silica gel of Example 3 in a glass flow reactor (length 180 mm, diameter 16 mm, holding a glass filter at the bottom) equipped with a flow path from a plunger pump for liquid chromatography at the bottom 3.1 g of support was placed. It was then plugged with glass wool and immersed in an oil bath. Subsequently, a vial bottle for collecting the liquid coming out from the upper part of the flow reactor was set. 1,4-butanediol was allowed to flow from the plunger pump to fill the flow reactor, the flow rate was set to 0.1 mL / min, and the oil bath was heated to 215 ° C. A thin, black and turbid reaction liquid flowed out during the temperature rise, but after reaching 215 ° C., a transparent liquid colored pale yellow flowed out. Moreover, generation | occurrence | production of the bubble was seen from the inside of a reactor.

215℃に到達してから1時間後、1mL分取した反応液をガスクロマトグラフィーで分析すると7.2wt%のγ−ブチロラクトンを含んでいた。このことからPdZnナノコロイド粒子担持体を触媒とした、1,4−ブタンジオールの環化脱水素反応が起こったことが判った。   One hour after reaching 215 ° C., 1 mL fraction of the reaction solution was analyzed by gas chromatography and found to contain 7.2 wt% γ-butyrolactone. From this, it was found that the cyclization dehydrogenation reaction of 1,4-butanediol occurred using the PdZn nanocolloid particle carrier as a catalyst.

同様に4時間後は9.7wt%のγ−ブチロラクトンを含んでおり、PdZnナノ粒子はシリカゲルから脱着せずに触媒として機能したことが判った。オイルバスを冷やして反応を停止した後プランジャーポンプを停止して流通反応器からナノコロイド粒子担持体を回収した。ICP元素分析でナノコロイド粒子担持体を分析するとPd1.27wt%、Zn0.58wt%を含んでおり、流通反応に使用する前の値と殆ど変化していない事が判明し、長時間の流通反応に使用できることが判った。   Similarly, after 4 hours, it contained 9.7 wt% of γ-butyrolactone, and it was found that the PdZn nanoparticles functioned as a catalyst without desorption from the silica gel. After the reaction was stopped by cooling the oil bath, the plunger pump was stopped and the nanocolloid particle carrier was recovered from the flow reactor. Analysis of the nano colloidal particle carrier by ICP elemental analysis revealed that it contained Pd 1.27 wt% and Zn 0.58 wt%, which was almost the same as the value before use in the flow reaction. It was found that can be used.

<実施例6>
[PdZnナノコロイド粒子の合成2]
パラジウム アセチルアセトネイトを138mg(0.455mmol)、亜鉛アセチ
ルアセトネイト1水和物を144mg(0.545mmol)用いる事以外は実施例1と同様の手法で合成し、PdZnナノコロイド粒子分散液を得た。液中の金属濃度をICP元素分析法で測定するとPdが0.175wt%、Znが0.102wt%であり、合金の組成はPd51Zn49であった。
<Example 6>
[Synthesis 2 of PdZn nano colloidal particles]
A PdZn nanocolloid particle dispersion was obtained by synthesizing in the same manner as in Example 1 except that 138 mg (0.455 mmol) of palladium acetylacetonate and 144 mg (0.545 mmol) of zinc acetylacetonate monohydrate were used. It was. When the metal concentration in the liquid was measured by ICP elemental analysis, Pd was 0.175 wt%, Zn was 0.102 wt%, and the composition of the alloy was Pd 51 Zn 49 .

<実施例7>
[PdZnナノコロイド粒子の合成3]
パラジウム アセチルアセトネイトを122mg(0.4mmol)、亜鉛アセチルア
セトネイト1水和物を158mg(0.6mmol)用いる事以外は実施例1と同様の手法で合成し、PdZnナノコロイド粒子分散液を得た。液中の金属濃度をICP元素分析法で測定するとPdが0.162wt%、Znが0.139wt%であり、合金の組成はPd42Zn57であった。
<Example 7>
[Synthesis 3 of PdZn nano colloidal particles]
A PdZn nanocolloid particle dispersion was obtained by synthesizing in the same manner as in Example 1 except that 122 mg (0.4 mmol) of palladium acetylacetonate and 158 mg (0.6 mmol) of zinc acetylacetonate monohydrate were used. It was. When the metal concentration in the liquid was measured by ICP elemental analysis, Pd was 0.162 wt%, Zn was 0.139 wt%, and the composition of the alloy was Pd 42 Zn 57 .

<実施例8>
[PdZnナノコロイド粒子の合成4]
パラジウム アセチルアセトネイトを76mg(0.25mmol)、亜鉛アセチルア
セトネイト1水和物を198mg(0.75mmol)用いる事以外は実施例1と同様の手法で合成し、PdZnナノコロイド粒子分散液を得た。液中の金属濃度をICP元素分析法で測定するとPdが0.079wt%、Znが0.097wt%であり、合金の組成はPd33Zn67であった。
<Example 8>
[Synthesis 4 of PdZn nano colloidal particles]
A PdZn nanocolloid particle dispersion was obtained by synthesizing in the same manner as in Example 1 except that 76 mg (0.25 mmol) of palladium acetylacetonate and 198 mg (0.75 mmol) of zinc acetylacetonate monohydrate were used. It was. When the metal concentration in the liquid was measured by ICP elemental analysis, Pd was 0.079 wt%, Zn was 0.097 wt%, and the composition of the alloy was Pd 33 Zn 67 .

<実施例9>
[PdZnナノコロイド粒子の合成5]
パラジウムアセチルアセトネイト152mg(0.5mmol)、亜鉛アセチルアセトネイト1水和物132mg(0.5mmol)、オレイン酸0.064mL(0.2mmol)、窒素ガスを流通させて合成する事以外は実施例1と同様の手法で合成し、PdZnナノコロイド粒子分散液を得た。液中の金属濃度をICP元素分析法で測定すると合金の組成は Pd52Zn48であった。透過型電子顕微鏡で観察すると、PdZnナノコ
ロイド粒子の平均粒子サイズは7.8nm、標準偏差は20%であった。
<Example 9>
[Synthesis 5 of PdZn nanocolloidal particles]
Example except that 152 mg (0.5 mmol) of palladium acetylacetonate, 132 mg (0.5 mmol) of zinc acetylacetonate monohydrate, 0.064 mL (0.2 mmol) of oleic acid, and nitrogen gas were circulated. 1 to obtain a PdZn nanocolloid particle dispersion. When the metal concentration in the liquid was measured by ICP elemental analysis, the composition of the alloy was Pd 52 Zn 48 . When observed with a transmission electron microscope, the average particle size of the PdZn nanocolloid particles was 7.8 nm, and the standard deviation was 20%.

<比較例1>
Bronstein等と同様の手法でPdZnコロイドナノ粒子を合成した[J.Catal.,196,302(2000)]。使用したポリスチレン−ビニルピリジンのジブロック型高分子はフラスコ内でミセルを形成したため均一にはならなかった。生成物の結晶構造を粉末X線回折測定装置(CuKα線)で分析すると40.1°に主ピークを示した。また、46.6°に別のピークが存在し、主ピークの右側に肩となって現れた。これらのピーク位置は金属Pdのピーク位置と一致しており、PdZnの合金のピーク位置とは異なった。
<Comparative Example 1>
PdZn colloidal nanoparticles were synthesized by the same method as Bronstein et al. [J. Catal. 196, 302 (2000)]. The polystyrene-vinylpyridine diblock polymer used did not become uniform because micelles were formed in the flask. When the crystal structure of the product was analyzed with a powder X-ray diffractometer (CuKα ray), it showed a main peak at 40.1 °. Moreover, another peak existed at 46.6 ° and appeared as a shoulder on the right side of the main peak. These peak positions coincided with the peak positions of the metal Pd and were different from the peak positions of the PdZn alloy.

合成した粒子を114.6mg、1,4−ブタンジオール5mL(56.6mmol)を25mL丸底フラスコに入れ、215℃まで昇温し1時間保った。反応液をガラス製の注射器で一部抜き出し、アセトンで希釈してガスクロマトグラフィーで分析すると、γ―ブチロラクトンのピークは現れなかった。このことからBronstein等の手法で合成したナノコロイド粒子は、1,4−ブタンジオールの環化脱水素能を保有しないことが判った。   114.6 mg of the synthesized particles and 5 mL (56.6 mmol) of 1,4-butanediol were placed in a 25 mL round bottom flask, heated to 215 ° C. and maintained for 1 hour. When the reaction solution was partially extracted with a glass syringe, diluted with acetone and analyzed by gas chromatography, no peak of γ-butyrolactone appeared. From this, it was found that the nanocolloid particles synthesized by the technique of Bronstein etc. do not possess the cyclization dehydrogenation ability of 1,4-butanediol.

実施例1で得られたPdZnナノコロイド粒子の粉末X線回折パターンである。2 is a powder X-ray diffraction pattern of PdZn nanocolloid particles obtained in Example 1. FIG. 比較例1で得られたPdZnナノコロイド粒子の粉末X線回折パターンである。2 is a powder X-ray diffraction pattern of PdZn nanocolloid particles obtained in Comparative Example 1. FIG.

Claims (9)

元素周期表の第10族から選択される元素(以下「A」という。)と、元素周期表の第12族から選択される元素(以下「B」という。)からなる合金であって、平均粒径が1nm以上50nm以下であることを特徴とするナノコロイド粒子。   An alloy comprising an element selected from Group 10 of the periodic table (hereinafter referred to as “A”) and an element selected from Group 12 of the periodic table (hereinafter referred to as “B”), Nanocolloid particles having a particle size of 1 nm to 50 nm. 粒径の標準偏差が平均粒径に対して30%以下である粒径分布をもつことを特徴とする、請求項1のナノコロイド粒子。   Nanocolloid particles according to claim 1, characterized in that the particle size distribution has a standard deviation of the particle size of 30% or less with respect to the average particle size. Aがパラジウムであり、Bが亜鉛であることを特徴とする、請求項1または2に記載のナノコロイド粒子。   The nanocolloid particles according to claim 1 or 2, wherein A is palladium and B is zinc. 下記一般式で表される組成であることを特徴とする請求項1〜3のいずれか1項に記載のナノコロイド粒子。
(100−X)
(X=30〜80の数字を表す)
The nanocolloid particle according to any one of claims 1 to 3, which has a composition represented by the following general formula.
A (100-X) B X
(X represents a number of 30 to 80)
前記粒子の表面に、分子量15000以下の配位性有機分子が結合していることを特徴とする、請求項1〜4のいずれか1項に記載のナノコロイド粒子。   The nanocolloid particles according to any one of claims 1 to 4, wherein a coordinating organic molecule having a molecular weight of 15000 or less is bonded to the surface of the particles. 請求項1〜5のいずれか1項に記載したナノコロイド粒子を、担体に担持させたナノコロイド担持体。   A nanocolloid carrier in which the nanocolloid particles according to any one of claims 1 to 5 are supported on a carrier. 請求項1〜5のナノコロイド粒子または請求項6のナノコロイド担持体からなる、アルコール化合物の脱水素化反応用触媒。   A catalyst for a dehydrogenation reaction of an alcohol compound, comprising the nanocolloid particles according to claim 1 or the nanocolloid carrier according to claim 6. Aを分子構造内に含む化合物、Bを分子構造内に含む化合物、還元剤、配位性有機分子及び溶媒を混合して、均一溶液を生成し、次いで、この均一溶液を加熱することにより、合金ABの微粒子を生成させ、次いで、この微粒子表面を配位性有機分子で覆うことを特徴とする、請求項1〜5のいずれか1項に記載のナノコロイド粒子の製造方法。   A compound containing A in the molecular structure, a compound containing B in the molecular structure, a reducing agent, a coordinating organic molecule and a solvent are mixed to form a homogeneous solution, and then the homogeneous solution is heated, The method for producing nanocolloid particles according to any one of claims 1 to 5, wherein fine particles of alloy AB are produced, and then the surface of the fine particles is covered with a coordinating organic molecule. 請求項1〜5のいずれか1項に記載のナノコロイド粒子または請求項6のナノコロイド担持体を用いて、アルコール化合物を脱水素することを特徴とする、カルボニル化合物の製造方法。   A method for producing a carbonyl compound, wherein the alcohol compound is dehydrogenated using the nanocolloid particles according to any one of claims 1 to 5 or the nanocolloid carrier according to claim 6.
JP2007218508A 2007-03-26 2007-08-24 New alloy nano colloidal particle and chemical reaction using the same Pending JP2008264761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007218508A JP2008264761A (en) 2007-03-26 2007-08-24 New alloy nano colloidal particle and chemical reaction using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007079410 2007-03-26
JP2007218508A JP2008264761A (en) 2007-03-26 2007-08-24 New alloy nano colloidal particle and chemical reaction using the same

Publications (1)

Publication Number Publication Date
JP2008264761A true JP2008264761A (en) 2008-11-06

Family

ID=40045017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007218508A Pending JP2008264761A (en) 2007-03-26 2007-08-24 New alloy nano colloidal particle and chemical reaction using the same

Country Status (1)

Country Link
JP (1) JP2008264761A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012232288A (en) * 2011-04-27 2012-11-29 King Abdulaziz City For Science & Technology (Kacst) Composite catalyst, process for producing the same, and method for using the same
CN104437484A (en) * 2014-12-01 2015-03-25 嘉兴学院 Method for synthesizing metal/metallic oxide loaded type nano-catalyst
CN111659404A (en) * 2020-06-30 2020-09-15 天津大学 Supported core-shell structure ZnO catalyst and preparation method and application thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012232288A (en) * 2011-04-27 2012-11-29 King Abdulaziz City For Science & Technology (Kacst) Composite catalyst, process for producing the same, and method for using the same
CN104437484A (en) * 2014-12-01 2015-03-25 嘉兴学院 Method for synthesizing metal/metallic oxide loaded type nano-catalyst
CN111659404A (en) * 2020-06-30 2020-09-15 天津大学 Supported core-shell structure ZnO catalyst and preparation method and application thereof
WO2022000923A1 (en) * 2020-06-30 2022-01-06 天津大学 Supported core-shell structure zno catalyst, preparation method therefor and application thereof
GB2605010A (en) * 2020-06-30 2022-09-21 Univ Tianjin Supported core-shell structure ZnO catalyst, preparation method therefor and application thereof
GB2605010B (en) * 2020-06-30 2024-05-15 Univ Tianjin Supported core-shell structure ZnO catalyst, preparation method and use thereof

Similar Documents

Publication Publication Date Title
Losch et al. Colloidal nanocrystals for heterogeneous catalysis
Zhan et al. Synthesis and functionalization of oriented metal–organic‐framework nanosheets: toward a series of 2D catalysts
WO2021020377A1 (en) Alloy nanoparticles, aggregate of alloy nanoparticles, catalyst, and method for producing alloy nanoparticles
JP5165204B2 (en) Method for producing palladium fine particles
US7381682B1 (en) Method for producing heterogeneous catalysts containing metal nanoparticles
US7713911B2 (en) Catalyst powder, exhaust gas purifying catalyst, and method of producing the catalyst powder
JP5894233B2 (en) Supported catalysts with controlled metal cluster size
Deori et al. (100) surface-exposed CeO 2 nanocubes as an efficient heterogeneous catalyst in the tandem oxidation of benzyl alcohol, para-chlorobenzyl alcohol and toluene to the corresponding aldehydes selectively
Slostowski et al. CeO2 nanocrystals from supercritical alcohols: new opportunities for versatile functionalizations?
CN105214683A (en) The manufacture method of carboxylate catalyst for producing, its manufacture method and carboxylate
JP4701409B2 (en) Core-shell cerium oxide polymer hybrid nanoparticles and method for producing dispersion thereof
WO2008044857A1 (en) Organic-inorganic hybrid structures having nanoparticles adhering thereon and method for preparing the same
JP2011089143A (en) Method for producing mono-component system and bi-component system cubic type metal nanoparticle
Imura et al. Surface clean gold nanoflower obtained by complete removal of capping agents: an active catalyst for alcohol oxidation
CN102309950A (en) Preparation has the nanostructured porous hollow ball of adjustable structure
WO2013038674A1 (en) Ruthenium microparticles having essentially face-centered cubic structure and method for producing same
Chaudret et al. Organometallic nanoparticles of metals or metal oxides
JP5660006B2 (en) Method for producing Co3O4 / CeO2 composite catalyst for exhaust gas purification and catalyst obtained thereby
JP2008264761A (en) New alloy nano colloidal particle and chemical reaction using the same
JP6304043B2 (en) Selective hydrogenation catalyst, method for producing selective hydrogenation catalyst, and selective hydrogenation method
WO2020196400A1 (en) Zirconia microparticulate material, catalyst for gas treatment use, and method for producing same
JP2016056431A (en) Method for producing palladium alloy nanoparticle
WO2022009870A1 (en) Alloy, aggregate of alloy nanoparticles, and catalyst
JP6531327B2 (en) Silver-cerium oxide composite catalyst supported on alkaline carrier and method for producing the same
JPS6193833A (en) Production of double colloid catalyst composition

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090713