JP2008264662A - Method and apparatus for treating exhaust gas - Google Patents

Method and apparatus for treating exhaust gas Download PDF

Info

Publication number
JP2008264662A
JP2008264662A JP2007110212A JP2007110212A JP2008264662A JP 2008264662 A JP2008264662 A JP 2008264662A JP 2007110212 A JP2007110212 A JP 2007110212A JP 2007110212 A JP2007110212 A JP 2007110212A JP 2008264662 A JP2008264662 A JP 2008264662A
Authority
JP
Japan
Prior art keywords
exhaust gas
path
dust collecting
collecting means
gas treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007110212A
Other languages
Japanese (ja)
Other versions
JP4965323B2 (en
Inventor
Masaharu Ogami
雅晴 大上
Ryoji Samejima
良二 鮫島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP2007110212A priority Critical patent/JP4965323B2/en
Publication of JP2008264662A publication Critical patent/JP2008264662A/en
Application granted granted Critical
Publication of JP4965323B2 publication Critical patent/JP4965323B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treating Waste Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for treating an exhaust gas which can reduce attachment of a chemical agent to the inside of a crusher or a fan by introducing the gas after collecting dust with a dust collecting means to a fluidizing-type crushing means so as to be circulated and by crushing the chemical agent by the fluidizing-type crushing means. <P>SOLUTION: In the method for treating the exhaust gas, a sodium-based chemical agent is used as the chemical agent to introduce the gas after collecting dust with a filtering-type dust collector 4 to the fluidizing-type crushing means 15 so as to be circulated, so that the chemical agent is crushed by the fluidizing-type crushing means 15 to introduce the crushed chemical agent to the upstream side of the dust collector 4. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は排ガス処理方法と排ガス処理装置に関し、詳しくは、ゴミ焼却時などに発生する排ガス中の酸性ガス成分の無害化処理を乾式で行う排ガス処理方法と排ガス処理装置に関する。   The present invention relates to an exhaust gas treatment method and an exhaust gas treatment device, and more particularly, to an exhaust gas treatment method and an exhaust gas treatment device that perform a detoxification treatment of an acidic gas component in exhaust gas generated during incineration of garbage in a dry manner.

ゴミ焼却処理施設などにおいて設けられている排ガス処理設備は、焼却によって生じる排ガスに、HCl,SOxなどの酸性ガスからなる有害成分が含まれているため、これらを除去してから大気に放出するようにしている。   Exhaust gas treatment facilities provided at garbage incineration facilities, etc. contain harmful components consisting of acidic gases such as HCl and SOx in the exhaust gas generated by incineration, so that these are removed and released to the atmosphere. I have to.

このような排ガス処理設備として、例えば、乾式法として、焼却炉から排出された排ガスが減温塔あるいは節炭器に導入され、バグフィルタ等からなる集塵機にダクトを経由して供給され、その途中で単体あるいは2種類以上の混合物からなる薬剤が吹き込まれて、酸性ガス成分を中和・除去すると共に、飛灰などが取り除かれて清浄化され、誘引通風機によって煙突から大気に放出される。   As such an exhaust gas treatment facility, for example, as a dry method, exhaust gas discharged from an incinerator is introduced into a temperature-decreasing tower or a economizer, and supplied to a dust collector consisting of a bag filter or the like via a duct. Then, a chemical agent composed of a single substance or a mixture of two or more kinds is blown to neutralize and remove the acid gas component, and fly ash is removed and cleaned, and the air is released from the chimney to the atmosphere by an induction fan.

この排ガス処理設備として、上記薬剤を集塵機の上流側に投入するように以下の構成を採用している。図5に示す第1の構成としては、薬剤を貯留するための薬剤貯留槽51と、この薬剤貯留槽51から一定量の薬剤を供給するための定量供給装置52と、この定量供給装置52によって供給された薬剤を所定の粒度範囲に粉砕するための粉砕機53と、粉砕機53で所定粒度範囲に粉砕された薬剤を排ガス経路内の集塵機の上流側に搬送するための誘引送風機54とを有している。   As this exhaust gas treatment facility, the following configuration is adopted so that the above-mentioned chemical is introduced to the upstream side of the dust collector. As a first configuration shown in FIG. 5, a medicine storage tank 51 for storing medicine, a quantitative supply device 52 for supplying a fixed amount of medicine from the medicine storage tank 51, and this quantitative supply device 52 A pulverizer 53 for pulverizing the supplied medicine into a predetermined particle size range, and an induction blower 54 for conveying the medicine pulverized in the predetermined particle size range by the pulverizer 53 to the upstream side of the dust collector in the exhaust gas path. Have.

また、第2の構成としては、排ガス中の酸性ガス成分を中和処理するための薬剤を排ガス中に導入し、集塵機により排ガス中の飛灰および/または反応生成物を処理する方法であって、集塵機の上流側または下流側のいずれか一方又は双方に設けられた迂回路に薬剤の導入を行うと共に、この導入の直前に、薬剤を粉砕するものである(特許文献1)。この粉砕機として、粉砕ロータの羽根で薬剤を粉砕し、分級ロータで所定粒径より大きい粒子を遠心分離により分級し、分級された粗い粒子は、再度粉砕にかけられ、所定の粒径以下の粒子のみが粉砕機から空気流にのってでてくるように構成された分散型粉砕機が例示されている。また、粉砕機としては、機械式の高速回転型ピンミル、ハンマー式粉砕機がある。   The second configuration is a method of introducing a chemical for neutralizing an acidic gas component in exhaust gas into the exhaust gas and treating fly ash and / or reaction products in the exhaust gas with a dust collector. In addition, the drug is introduced into a bypass route provided on either or both of the upstream side and the downstream side of the dust collector, and the drug is pulverized immediately before the introduction (Patent Document 1). As this pulverizer, the chemicals are pulverized by blades of a pulverization rotor, particles having a predetermined particle size are classified by centrifugation with a classification rotor, and the classified coarse particles are subjected to pulverization again to particles having a predetermined particle size or less. Only a dispersive pulverizer is illustrated which is configured such that only the air flows from the pulverizer. Examples of the pulverizer include a mechanical high-speed rotary pin mill and a hammer-type pulverizer.

特開2002−136840号公報(請求項1、段落番号0030)JP 2002-136840 A (Claim 1, paragraph number 0030)

しかしながら、上記構成1および2の場合、粉砕機として、分散型粉砕機、機械式の高速回転型ピンミル、ハンマー式粉砕機を用いた場合に、回転体(粉砕ロータや分級ロータ等)、ピンディスク、粉砕ハンマーへ、薬剤が付着して、機械としてのバランスが崩れることにより振動が発生し、内部部品の損傷、過負荷の発生、粉砕効率の低下が著しいものであった。このような場合、定期的に付着した薬剤を除去するために清掃を行なうことが必要であるが、定期清掃が頻繁であればその作業負担が大きく、装置の稼動効率も悪くなるため、強く改善が望まれていた。   However, in the case of the above configurations 1 and 2, when a dispersive pulverizer, a mechanical high-speed rotary pin mill, or a hammer-type pulverizer is used as a pulverizer, a rotating body (such as a pulverization rotor or a classification rotor), a pin disk The chemicals adhered to the pulverizing hammer and the balance as a machine was lost, causing vibrations, resulting in significant damage to internal parts, occurrence of overload, and a decrease in pulverization efficiency. In such a case, it is necessary to perform cleaning in order to remove regularly adhered chemicals. However, if periodic cleaning is frequent, the work burden is large and the operating efficiency of the device is deteriorated. Was desired.

また、上記構成1の場合、薬剤搬送のための誘引送風機54を設けていることで、粉砕機内部を負圧状態にして、粉砕機の軸受け部に粉体(微粉砕された薬剤)が侵入するのを防止できるようになっている。しかしその反面、誘引送風機54内部を粉体が通過するために、誘引送風機54の内部の回転体に粉砕物たる粉体が付着する。この粉体の付着によって、誘引送風機54のバランスが崩れ振動が発生し、過負荷の発生に繋がる。このような場合においても、定期的に付着した薬剤を除去するために清掃を行なうことが必要であるが、定期清掃が頻繁であればその作業負担が大きく、装置の稼動効率も悪くなるため、強く改善が望まれていた。   Further, in the case of the above-described configuration 1, by providing the induction blower 54 for transporting the medicine, the inside of the grinder is brought into a negative pressure state, and the powder (finely ground medicine) enters the bearing portion of the grinder. Can be prevented. However, since the powder passes through the inside of the induction fan 54, the powder as a pulverized product adheres to the rotating body inside the induction fan 54. Due to the adhesion of the powder, the balance of the induced blower 54 is lost and vibration is generated, leading to the occurrence of overload. Even in such a case, it is necessary to perform cleaning in order to remove the regularly attached medicine, but if the periodic cleaning is frequent, the work burden is large, and the operation efficiency of the device is also deteriorated. There was a strong need for improvement.

一方、構成2のように、粉砕手段の上流側に送風手段を設けている場合には、上記のような送風機の問題は生じないが、粉砕機の軸受け部に粉体が侵入する問題が生じる。   On the other hand, when the blowing means is provided on the upstream side of the pulverizing means as in the configuration 2, the above-described problem of the blower does not occur, but the problem that the powder enters the bearing portion of the pulverizer occurs. .

また、ナトリウム系薬剤を用いる場合に、十分な多孔質化を行わせて活性の高い薬剤を生成する必要がある。そのため、排ガス経路の粉体吹き込み口から集塵機入り口までの経路において、140℃以上のガス雰囲気下で、排ガス成分(酸性ガス等)を吸着する程度の細孔(数十nm程度)を生成するために、排ガス経路内において粉体吹き込み口から集塵機入り口まで十分な経路長を確保する必要がある。   In addition, when using a sodium-based drug, it is necessary to generate a highly active drug by making it sufficiently porous. Therefore, in order to generate pores (about several tens of nanometers) enough to adsorb exhaust gas components (acid gas, etc.) in a gas atmosphere at 140 ° C. or higher in the path from the powder blowing port of the exhaust gas path to the dust collector entrance. In addition, it is necessary to ensure a sufficient path length from the powder blowing port to the dust collector entrance in the exhaust gas path.

しかし、上記構成1においては、この経路長を確保することで、装置全体が大型してしまい設置面積の点で好ましくないものであった。また、排ガス経路に導入する前に、薬剤を140℃以上のガス雰囲気にするために、粉砕機出口から排ガス経路の粉体吹き込み口までに十分な経路長を確保すると共に、140℃以上の熱風を生成する手段を別途設けることも考えられるが、設備コストの観点から好ましい方法とはいえない。   However, in the above-described configuration 1, by securing this path length, the entire apparatus becomes large, which is not preferable in terms of installation area. In addition, in order to make the chemical gas atmosphere at 140 ° C. or higher before being introduced into the exhaust gas path, a sufficient path length is secured from the pulverizer outlet to the powder blowing port of the exhaust gas path, and hot air at 140 ° C. or higher. Although it is conceivable to separately provide a means for generating, it is not a preferable method from the viewpoint of equipment cost.

また、構成2のように、循環ガスを用いる場合において、循環ガスが温風であるため、粉砕機出口から排ガス経路の粉体吹き込み口までの経路長を確保すればよいが、この経路長が長いとその経路長の確保分だけ、装置の設置面積の観点からは好ましくない。   Further, when the circulating gas is used as in Configuration 2, since the circulating gas is warm air, it is only necessary to secure a path length from the pulverizer outlet to the powder blowing port of the exhaust gas path. If it is long, it is not preferable from the viewpoint of the installation area of the apparatus by the amount of securing the path length.

また、上記構成1の場合、外部から大気を吸引して薬剤輸送用の空気としていたため、排ガス経路中に薬剤輸送用の空気が送風されるために煙突からの排ガスの排出量が増加してしまうという問題がある。   In the case of the above configuration 1, since the atmosphere is sucked from the outside and used as drug transport air, the drug transport air is blown into the exhaust gas path, so the amount of exhaust gas discharged from the chimney increases. There is a problem of end.

そこで、本発明は、上記従来技術の有する問題点に鑑みてなされたものであって、その目的は、集塵手段による集塵後のガスを循環させるように流動式粉砕手段に導入し、この流動式粉砕手段を用いて薬剤を粉砕することで、粉砕機や送風機内部への薬剤付着を軽減できる排ガス処理方法及び排ガス処理装置の提供にある。   Therefore, the present invention has been made in view of the above-described problems of the prior art, and its purpose is to introduce the gas after dust collection by the dust collection means into the fluidized grinding means, An object of the present invention is to provide an exhaust gas treatment method and an exhaust gas treatment device that can reduce the adhesion of chemicals to the inside of a pulverizer or a blower by pulverizing the chemical using a fluid pulverization means.

上記課題は、各請求項記載の発明により達成される。すなわち、排ガス処理方法は、排ガス中の酸性ガス成分を中和処理するための薬剤を排ガス中に導入し、集塵手段により前記排ガス中の飛灰および/または反応生成物を処理する排ガス処理方法であって、
前記薬剤としてナトリウム系薬剤を用い、
前記集塵手段による集塵後のガスを循環させる経路を設け、
前記経路内で前記ガスを流動式粉砕手段に導入し、
前記流動式粉砕手段を用いて前記薬剤を粉砕し、
当該粉砕した薬剤を前記経路を介して前記集塵手段の上流側に導入することを特徴とする。
The above-mentioned subject is achieved by the invention described in each claim. That is, in the exhaust gas treatment method, an agent for neutralizing the acidic gas component in the exhaust gas is introduced into the exhaust gas, and the exhaust ash and / or reaction product in the exhaust gas is treated by dust collecting means. Because
Using a sodium-based drug as the drug,
Providing a path for circulating the gas after dust collection by the dust collecting means;
Introducing the gas into the fluidized grinding means in the path,
Crushing the drug using the fluidized crushing means,
The pulverized medicine is introduced to the upstream side of the dust collecting means through the route.

この構成の作用効果は以下のとおりである。すなわち、排ガス処理方法は、排ガス中の酸性ガス成分を中和処理するための薬剤を排ガス中に導入し、集塵手段により前記排ガス中の飛灰および/または反応生成物を処理することができる。集塵手段による集塵後の後段側から、集塵手段の上流側にガスを循環させる循環経路(フィードバック)を設け、この経路内に薬剤を粉砕する流動式粉砕手段を設けて、薬剤を粉砕し、粉砕した薬剤を集塵手段の上流側に送風する。循環ガスの送風手段としての押し込み送風機は、流動式粉砕機の上流側に設けられる。   The effects of this configuration are as follows. That is, in the exhaust gas treatment method, a chemical for neutralizing the acidic gas component in the exhaust gas is introduced into the exhaust gas, and the fly ash and / or reaction product in the exhaust gas can be treated by the dust collecting means. . A circulation path (feedback) that circulates gas from the downstream side after dust collection by the dust collection means to the upstream side of the dust collection means is provided. Then, the pulverized medicine is blown to the upstream side of the dust collecting means. A push-in blower as a circulating gas blowing means is provided on the upstream side of the fluid pulverizer.

このように構成された排ガス処理方法によれば、以下の従来技術に比較して格別の効果が奏される。すなわち、粉砕手段として流動式粉砕手段を用いているために、粉砕手段内部に粉体(薬剤)の付着による問題が生じない。送風手段を粉砕手段の上流側に設けることによって、送風手段内部に粉体が通過しないため、送風手段内部に粉体が付着することによる問題が生じない。また、流動式粉砕手段に導入されるガスとして、温風(140℃以上)である循環ガスを用いることで、粉体吹き込み口から集塵手段入口までの経路長を短くでき、さらに、流動式粉砕手段の流動層(空塔空間)体積が大きく設定されていることで、流動式粉砕手段出口から粉体吹き込み口までの経路長も短くできる。つまり、ナトリウム系薬剤を用いる場合、流動式粉砕手段で粉砕されると共に、当該流動層内部で略全量が多孔質化される。また、循環ガスを用いることで、外気を用いた方法に比較して煙突から排出される排ガスの排出量を低減できる。   According to the exhaust gas treatment method configured as described above, a special effect is achieved as compared with the following conventional technology. That is, since the fluidized pulverizing means is used as the pulverizing means, there is no problem due to the adhesion of the powder (medicine) inside the pulverizing means. By providing the air blowing means on the upstream side of the pulverizing means, the powder does not pass inside the air blowing means, so that there is no problem due to the powder adhering inside the air blowing means. Further, by using a circulating gas that is warm air (140 ° C. or higher) as the gas introduced into the fluidized pulverizing means, the path length from the powder blowing inlet to the dust collecting means inlet can be shortened. Since the volume of the fluidized bed (empty space) of the pulverizing means is set large, the path length from the outlet of the fluidized pulverizing means to the powder blowing inlet can be shortened. That is, when using a sodium-type chemical | medical agent, while being grind | pulverized by a fluid-type grinding | pulverization means, substantially the whole quantity is made porous inside the said fluidized bed. In addition, by using the circulating gas, it is possible to reduce the amount of exhaust gas discharged from the chimney compared to a method using outside air.

また、上記の排ガス処理方法において、前記排ガスが生成されていない場合に、前記集塵手段の機能低下を防止するように、前記循環経路内に温風を生成することを特徴とする。   Further, in the above exhaust gas treatment method, when the exhaust gas is not generated, hot air is generated in the circulation path so as to prevent deterioration of the function of the dust collecting means.

この構成によれば、集塵手段の機能低下(例えば、排ガス処理休止中における薬剤のバグフィルタへの結着による機能低下等)を防止するために、集塵手段に温風を導入するように構成される。温風導入のための経路は、排ガス経路からの循環経路やバグフィルタ温風循環ラインが適用できる。バグフィルタ温風循環ラインに、流動式粉砕手段を設置することで、バグフィルタ温風循環ラインの送風機を利用できるため、送風機を別途設置する必要がないので好ましい。   According to this configuration, the hot air is introduced into the dust collecting means in order to prevent the function of the dust collecting means from deteriorating (for example, the function deteriorating due to the binding of the drug to the bag filter while the exhaust gas treatment is suspended). Composed. As a route for introducing the hot air, a circulation route from the exhaust gas route or a bag filter hot air circulation line can be applied. It is preferable to install the fluidized crushing means in the bag filter hot air circulation line because the fan of the bag filter hot air circulation line can be used, so that it is not necessary to separately install the fan.

また、上記の本発明の好適な実施形態の一例として、流動式粉砕手段による薬剤粉砕の場合に、流動媒体として、硅砂および/または酸化アルミニウムを用いることを特徴とする。   In addition, as an example of a preferred embodiment of the present invention described above, in the case of drug pulverization by fluid pulverization means, cinnabar sand and / or aluminum oxide is used as a fluid medium.

この構成によれば、流動式粉砕手段による薬剤粉砕の場合に、流動媒体として、硅砂および/または酸化アルミニウムを用いることができる。流動媒体は、流動式粉砕手段により徐々に粉砕されて、ナトリウム系薬剤とともにキャリーオーバーすることになるが、反応助剤と同様の作用を示し、反応性の向上や払い落とし性の向上に役立つ。ナトリウム系薬剤は、特別な反応助剤なしでも反応効率が高く払い落とし性も良いが、反応助剤があったほうが付着ダスト層の圧力損失を抑えられかつ払い落とし性も向上するものであり、この反応助剤の代わりに流動媒体が利用できるため、反応助剤をさらに用いることがなく経済的、設備的に優れる。硅砂(珪砂ともいう)は、二酸化ケイ素(SiO2)成分の多い石英砂である。硅砂の粒径範囲としては、例えば0.5mm〜3mmの範囲が好ましく、特に、粉砕に際し投入されるものとしては略1mmの硅砂が好ましい。 According to this configuration, in the case of chemical pulverization by the fluid pulverization means, cinnabar sand and / or aluminum oxide can be used as the fluid medium. The fluid medium is gradually pulverized by the fluid pulverization means and carries over with the sodium-based chemical agent, but exhibits the same action as the reaction aid, and is useful for improving the reactivity and improving the scraping property. Sodium-based chemicals have high reaction efficiency without any special reaction aids and good removal properties, but the presence of reaction aids suppresses the pressure loss of the adhering dust layer and improves the removal properties. Since a fluid medium can be used in place of this reaction aid, it is excellent in terms of economy and equipment without further use of a reaction aid. Mineral sand (also referred to as silica sand) is quartz sand that is rich in silicon dioxide (SiO 2 ) components. As the particle size range of the cinnabar, for example, a range of 0.5 mm to 3 mm is preferable.

また、本発明の他の好適な実施形態の一例として、流動式粉砕手段による薬剤粉砕の場合に、当該流動式粉砕手段の空塔速度が0.15〜0.2m/sの範囲の値であることを特徴とする。   As another example of the preferred embodiment of the present invention, in the case of chemical pulverization by fluid pulverization means, the superficial velocity of the fluid pulverization means is a value in the range of 0.15 to 0.2 m / s. It is characterized by being.

この構成によれば、流動式粉砕手段の空塔速度が0.15〜0.2m/sの範囲となるように制御することで薬剤を粉砕粒径略20μmに粉砕でき、上昇流動ガスとともに流動式粉砕手段内部から経路に搬送され、そのまま排ガス経路の集塵手段の上流側直前に搬送することができる。ナトリウム系薬剤を略20μmの粒径にすることで、反応性が向上し、さらに、流動層内部で十分に多孔質化がなされる。   According to this configuration, the chemical can be pulverized to a pulverized particle size of approximately 20 μm by controlling the superficial velocity of the fluidized pulverizing means to be in the range of 0.15 to 0.2 m / s, and flows along with the rising fluid gas. It can be transported to the path from the inside of the pulverizing means, and can be transported as it is just before the upstream side of the dust collecting means in the exhaust gas path. By setting the sodium-based drug to a particle size of about 20 μm, the reactivity is improved, and the porous layer is sufficiently made porous.

また、本発明の排ガス処理方法の一実施形態として、排ガス中の酸性ガス成分を中和処理するための薬剤を排ガス中に導入し、集塵手段により前記排ガス中の飛灰および/または反応生成物を処理する排ガス処理装置であって、
前記集塵手段による集塵後のガスを循環させて、当該集塵手段の上流側に導入する経路と、前記経路内に、循環ガスを導くための押し込み式送風機と、前記経路内であって前記押し込み式送風機の後段側に、前記薬剤を粉砕する流動式粉砕手段と、を有すること特徴とする。
Further, as one embodiment of the exhaust gas treatment method of the present invention, a chemical for neutralizing acidic gas components in the exhaust gas is introduced into the exhaust gas, and fly ash and / or reaction production in the exhaust gas is collected by dust collecting means. An exhaust gas treatment apparatus for treating an object,
A path for circulating the gas after dust collection by the dust collecting means and introducing it to the upstream side of the dust collecting means, a push-in type blower for guiding the circulating gas into the path, and the path Fluid-type pulverizing means for pulverizing the medicine is provided on the rear side of the push-in type blower.

この構成によれば、排ガス処理装置は、集塵手段による集塵後のガスを循環させて、当該集塵手段の上流側に導入する経路と、前記経路内に、循環ガスを導くための押し込み式送風機と、前記経路内であって前記押し込み式送風機の後段側に、前記薬剤を粉砕する流動式粉砕手段とを有している。この作用効果は上記に記載したとおりである。   According to this configuration, the exhaust gas treatment apparatus circulates the gas after dust collection by the dust collecting means and introduces it to the upstream side of the dust collecting means, and a push for guiding the circulating gas into the path. And a fluidized pulverizing means for pulverizing the medicine on the downstream side of the push-in type fan in the path. This effect is as described above.

また、この排ガス処理装置の好適な一実施形態として、排ガスが生成されていない場合に、前記集塵手段の機能低下を防止するように、前記循環経路内に温風を生成する温風生成手段をさらに有することを特徴とする。   Further, as a preferred embodiment of the exhaust gas treatment apparatus, when the exhaust gas is not generated, the hot air generating means for generating hot air in the circulation path so as to prevent the function of the dust collecting means from being deteriorated. It further has these.

この構成によれば、排ガスが生成されていない場合に、集塵手段の機能低下を防止するように、温風を生成して、集塵手段に送風することができるように構成される。   According to this structure, when exhaust gas is not produced | generated, it is comprised so that a warm air can be produced | generated and it can ventilate to a dust collection means so that the function fall of a dust collection means may be prevented.

本発明に係る実施形態を、図面を参照して詳細に説明する。図1、2は、それぞれ実施形態1、2に係る排ガス処理装置の一例について説明するための図である。   Embodiments according to the present invention will be described in detail with reference to the drawings. 1 and 2 are diagrams for explaining an example of an exhaust gas treatment apparatus according to Embodiments 1 and 2, respectively.

(実施形態1)
実施形態1の排ガス処理方法は、薬剤としてナトリウム系薬剤を用い、集塵手段による集塵後のガスを循環させるように流動式粉砕手段に導入し、流動式粉砕手段を用いて薬剤を粉砕し、当該粉砕した薬剤を集塵手段の上流側に導入する。そして、この方法を実現するための排ガス処理装置は、集塵手段による集塵後のガスを循環させて、当該集塵手段の上流側に導入する経路と、経路内に、循環ガスを導くための押し込み式送風機と、経路内であって押し込み式送風機の後段側に、薬剤を粉砕する流動式粉砕手段とを有して構成されている。
(Embodiment 1)
The exhaust gas treatment method of Embodiment 1 uses a sodium-based chemical as a chemical, introduces the gas after dust collection by the dust collecting means into the fluidized grinding means, and pulverizes the chemical using the fluidized grinding means. The pulverized medicine is introduced upstream of the dust collecting means. And the exhaust gas treatment apparatus for realizing this method circulates the gas after dust collection by the dust collecting means and introduces the circulating gas into the path to be introduced upstream of the dust collecting means. And a fluid-type pulverizing means for pulverizing the drug on the downstream side of the push-type fan in the path.

(薬剤)
薬剤としては、ナトリウム系薬剤であって、例えば、炭酸水素ナトリウム(重曹)、炭酸ナトリウムが例示され、特に炭酸水素ナトリウムが好ましい。粉砕後の薬剤(炭酸水素ナトリウム)の平均粒径は、10μm〜50μmの範囲が好ましく、15μm〜30μmの範囲がより好ましく、18μm〜22μmの範囲が特に好ましい。
(Drug)
Examples of the drug include sodium-based drugs such as sodium hydrogen carbonate (sodium bicarbonate) and sodium carbonate, and sodium hydrogen carbonate is particularly preferable. The average particle size of the pulverized drug (sodium bicarbonate) is preferably in the range of 10 μm to 50 μm, more preferably in the range of 15 μm to 30 μm, and particularly preferably in the range of 18 μm to 22 μm.

薬剤の粒径は、例えば、LDV(レーザードップラー流速計)で測定できる。   The particle size of the drug can be measured by, for example, LDV (laser Doppler velocimeter).

(排ガス処理装置)
排ガス処理装置は、排ガス中の酸性ガス成分を中和処理するための薬剤を排ガス中に導入し、集塵手段により前記排ガス中の飛灰および/または反応生成物を処理する排ガス処理装置である。以下では公知の構成については簡単に説明し、本発明に特有の構成を詳細に説明する。また、薬剤に炭酸水素ナトリウムを用いるものとして説明する。
(Exhaust gas treatment equipment)
The exhaust gas treatment apparatus is an exhaust gas treatment apparatus that introduces a chemical for neutralizing an acidic gas component in exhaust gas into the exhaust gas, and processes fly ash and / or reaction products in the exhaust gas by dust collection means. . In the following, known configurations will be briefly described, and configurations specific to the present invention will be described in detail. Moreover, it demonstrates as what uses sodium hydrogencarbonate for a chemical | medical agent.

排ガス処理装置は、図1に示すように、減温塔3(あるいは節炭器)、ろ過式集塵機4(集塵手段に相当する)、誘引通風機5、排ガス経路(配管)、循環ガス経路11、循環ガス経路にガスを吸引し、下流側の流動式粉砕機15にガスを導入するための送風機12(押し込み式送風機に相当する)、薬剤を貯留するための薬剤貯留槽13(薬剤貯槽手段に相当する)、薬剤貯留槽13から薬剤を定量供給するための定量供給機14、定量供給機14から定量供給された薬剤を所定の粒径範囲になるように粉砕するための流動式粉砕機15(流動式粉砕手段に相当する)等を主に備えている。   As shown in FIG. 1, the exhaust gas treatment apparatus includes a temperature reducing tower 3 (or a economizer), a filtration dust collector 4 (corresponding to dust collecting means), an induction fan 5, an exhaust gas path (pipe), and a circulating gas path. 11. A blower 12 (corresponding to a push-type blower) for sucking gas into a circulation gas path and introducing the gas into the downstream fluid pulverizer 15; a medicine storage tank 13 (medicine storage tank) for storing medicine Equivalent to the means), a fixed amount supply device 14 for supplying a fixed amount of drug from the drug storage tank 13, and a fluid type pulverization for pulverizing the drug supplied from the fixed amount supply device 14 in a predetermined particle size range. Machine 15 (corresponding to a fluid pulverizing means) and the like are mainly provided.

図1に示すように、焼却炉1から排出された排ガスが、廃熱ボイラ2を介し減温塔3に導入される。次いで、排ガスが、ろ過式集塵機4にダクト(不図示)を経由して供給されるようになっている。そして、その途中で、流動式粉砕機15によって粉砕された炭酸水素ナトリウムが排ガス経路(配管)の投入口を通して吹き込まれ、排ガス中の酸性ガス成分を中和処理すると共に、飛灰などを取り除き、誘引通風機5によって清浄になった排ガスが煙突6から大気に放出される。   As shown in FIG. 1, the exhaust gas discharged from the incinerator 1 is introduced into the temperature reducing tower 3 through the waste heat boiler 2. Next, the exhaust gas is supplied to the filtration dust collector 4 via a duct (not shown). And in the middle, sodium hydrogen carbonate pulverized by the fluidized pulverizer 15 is blown through the inlet of the exhaust gas passage (pipe), neutralizes the acidic gas component in the exhaust gas, and removes fly ash, The exhaust gas cleaned by the induction fan 5 is released from the chimney 6 to the atmosphere.

流動式粉砕機15に導入されるガスは、ろ過式集塵機4の下流側の排ガス経路から一部分岐された排ガスが用いられる。分岐方法は、公知の方法で実現可能であり、例えば、コック、バンパー等の分岐弁、ダンパ、或いはオリフィス等で分岐経路を構成できる。   As the gas introduced into the fluid pulverizer 15, exhaust gas partially branched from the exhaust gas path on the downstream side of the filtration dust collector 4 is used. The branching method can be realized by a known method. For example, the branching path can be configured by a branching valve such as a cock or a bumper, a damper, or an orifice.

排ガス経路から分岐された排ガスは、送風機12によって、循環ガス経路11に吸引され、所定範囲の風速で、流動式粉砕機15に導入される。循環ガス経路11に吸引され、かつ流動式粉砕機15に導入される排ガスは、140℃以上の温風である。これによって、炭酸水素ナトリウムが流動式粉砕機15内部で粉砕され、効率良く多孔質化される。   The exhaust gas branched from the exhaust gas path is sucked into the circulation gas path 11 by the blower 12 and introduced into the fluidized crusher 15 at a wind speed in a predetermined range. The exhaust gas sucked into the circulation gas path 11 and introduced into the fluidized pulverizer 15 is hot air of 140 ° C. or higher. As a result, sodium hydrogen carbonate is pulverized inside the fluidized pulverizer 15 and efficiently made porous.

薬剤貯留槽13には、ハンドリング性の良い平均粒径150μm程度の炭酸水素ナトリウムを貯留しておく。定量供給機14による、定量供給量は、通常、ろ過式集塵機4出口の酸性ガス濃度に依存して適宜設定される。   The medicine storage tank 13 stores sodium hydrogen carbonate having an average particle size of about 150 μm with good handling properties. The fixed amount supplied by the fixed amount feeder 14 is normally set as appropriate depending on the acid gas concentration at the outlet of the filtration dust collector 4.

図3に流動式粉砕機15の一例を示す。流動式粉砕機15の下部の流動用熱風ダクト151から温風が供給される。流動式粉砕機15の空塔の底部に、複数の孔部が形成された分散板152が設けられ、その上に流動媒体153が配置される。温風が供給された状態では、温風によって流動媒体153が空塔内部上方に吹き上げられる。そして、この状態で、定量供給機14から炭酸水素ナトリウムが供給された場合、炭酸水素ナトリウム同士あるいは流動媒体153と互いに衝突することで炭酸水素ナトリウムが粉砕されていく。この場合の空塔内部の流速が0.15〜0.2m/sの範囲に制御されるようにして、炭酸水素ナトリウムの粉砕後の平均粒径を略20μmになるようにし、また、空塔内部(流動層内部)で粉砕後の炭酸ナトリウムが略多孔質化するように構成する。そして、粉砕された炭酸水素ナトリウムは、流動気流に乗って塔内を上昇し、外部の循環ガス経路11に搬送される。そして、循環ガス経路11から排ガス経路に戻り、排ガス中の酸性ガス成分を中和処理し、ろ過式集塵機4に搬送される。なお、衝突後、上昇気流と共に上昇しきれない大きな粗粒は再び落下し、上記の工程を繰り返しながら、所定の粒子径に粉砕される。   FIG. 3 shows an example of the fluid pulverizer 15. Hot air is supplied from a hot air duct 151 for flow at the bottom of the fluid pulverizer 15. A dispersion plate 152 having a plurality of holes is provided at the bottom of the empty tower of the fluid pulverizer 15, and the fluid medium 153 is disposed thereon. In the state where the warm air is supplied, the fluid medium 153 is blown up inside the empty tower by the warm air. In this state, when sodium hydrogen carbonate is supplied from the metering feeder 14, the sodium hydrogen carbonate is pulverized by colliding with sodium hydrogen carbonate or the fluid medium 153. In this case, the flow rate inside the empty tower is controlled to be in the range of 0.15 to 0.2 m / s so that the average particle size after the pulverization of sodium hydrogen carbonate is about 20 μm. The pulverized sodium carbonate is made substantially porous inside (inside the fluidized bed). Then, the pulverized sodium hydrogen carbonate rides on the flowing air stream and rises in the tower and is conveyed to the external circulation gas path 11. And it returns to the exhaust gas path from the circulation gas path | route 11, neutralizes the acidic gas component in exhaust gas, and is conveyed to the filtration dust collector 4. FIG. After the collision, the large coarse particles that cannot rise with the rising air flow fall again and are pulverized to a predetermined particle diameter while repeating the above steps.

また、図4に、他の流動式粉砕機の一例を示す。この構成の流動式粉砕機は、空塔部に外部循環経路を設け、この外部循環経路中にサイクロンを設置する構成である。このサイクロンによって、粒径が20μmを超える流動媒体及び粉砕不十分な薬剤を捕集し、空塔に帰還させることができ、粒径が20μm以下の薬剤および流動媒体を循環ガス経路11に搬送することができる。   FIG. 4 shows an example of another fluid pulverizer. The fluid pulverizer having this configuration has a configuration in which an external circulation path is provided in the empty tower and a cyclone is installed in the external circulation path. By this cyclone, the fluid medium having a particle size exceeding 20 μm and the insufficiently pulverized drug can be collected and returned to the empty tower, and the drug and fluid medium having a particle diameter of 20 μm or less are conveyed to the circulation gas path 11. be able to.

また、流動式粉砕機15による粉砕の際に流動媒体を用いることができる。流動媒体としては、硅砂または酸化アルミニウム、それらの混合物を用いることができる。特に、1mm程度の粒径の硅砂が好ましい。流動媒体は、運転前に初期投入しておき、休炉時に、キャリーオーバーした分を補充するように構成される。   In addition, a fluid medium can be used during pulverization by the fluid pulverizer 15. As the fluid medium, cinnabar sand, aluminum oxide, or a mixture thereof can be used. In particular, cinnabar having a particle diameter of about 1 mm is preferable. The fluid medium is initially charged before operation, and is configured to replenish the carry-over amount when the furnace is shut down.

この流動式粉砕機15によって、薬剤、例えば、炭酸水素ナトリウムの粒度を平均粒径10μm〜50μmの範囲に適宜設定できる。   The fluid pulverizer 15 can appropriately set the particle size of the drug, for example, sodium hydrogen carbonate, in the range of an average particle size of 10 μm to 50 μm.

また、排ガス処理装置の送風機12、定量供給機14、流動式粉砕機15、分岐手段等は、それぞれ個別の制御手段で制御でき、一連の連動した制御手段で制御することもできる。この場合の制御手段として、送風機12、定量供給機14、流動式粉砕機15、分岐手段(分岐弁等)を制御するソフトウエアプログラムとそのソフトウエアプログラムを格納するROM、CPU、メモリ等のハードウエア資源との協働作用構成、専用回路の構成、又はファームウエアの構成が例示できる。   In addition, the blower 12, the quantitative feeder 14, the fluid pulverizer 15 and the branching means of the exhaust gas treatment apparatus can be controlled by individual control means, respectively, or can be controlled by a series of interlocked control means. As control means in this case, a software program for controlling the blower 12, the constant supply machine 14, the fluidized crusher 15, a branching means (branch valve, etc.), and a hardware such as a ROM, CPU, and memory for storing the software program For example, a cooperative operation configuration with a hardware resource, a configuration of a dedicated circuit, or a configuration of firmware can be exemplified.

(実施形態2)
実施形態2の排ガス処理方法は、温風循環ラインに流動式粉砕機15を設置した構成で実現される。図2に示す温風循環ラインは、ろ過式集塵機4の下流側の排ガス経路から分岐し、ろ過式集塵機4の上流側に帰還する循環ガス経路11を備え、この循環ガス経路11には、その上流側から温風生成手段21、送風機12、流動式粉砕機15の順番で設置されている。排ガス生成時には、温風生成手段21を稼動せず(排ガス自体が高温であるため)、実施形態1のように動作する。一方、排ガスが生成されていない場合、ろ過式集塵機4の機能低下を防止するために、温風生成手段21を稼動して温風を生成するように構成されている。
(Embodiment 2)
The exhaust gas treatment method of the second embodiment is realized by a configuration in which the fluid pulverizer 15 is installed in the hot air circulation line. The hot air circulation line shown in FIG. 2 includes a circulation gas path 11 that branches off from the exhaust gas path on the downstream side of the filtration dust collector 4 and returns to the upstream side of the filtration dust collector 4. The warm air generating means 21, the blower 12, and the fluidized pulverizer 15 are installed in this order from the upstream side. At the time of exhaust gas generation, the hot air generation means 21 is not operated (because the exhaust gas itself is at a high temperature), and operates as in the first embodiment. On the other hand, when exhaust gas is not produced | generated, in order to prevent the function fall of the filtration dust collector 4, the warm air production | generation means 21 is operated and it is comprised so that a warm air may be produced | generated.

図2に示す温風生成手段21は、例えば、各種ヒータ等が例示できる。図2によれば、温風生成手段21は、送風機12の上流側に設けられているが、その下流側に設けることもできる。   The warm air generating means 21 shown in FIG. 2 can be exemplified by various heaters, for example. According to FIG. 2, the hot air generating means 21 is provided on the upstream side of the blower 12, but can also be provided on the downstream side thereof.

焼却炉1が稼動していない場合、排ガスが生成されていない状態になる。このような場合には、ろ過式集塵機4に温風の排ガスが導入されないこととなり、フィルタ表面に堆積している物質が結着してしまい、払い落としが困難になる。これを防ぐために、バグフィルタ内のガスを循環させるように、送風機12と温風生成手段21を稼動して、温風を生成し、ろ過式集塵機4に導入するように構成する。定量供給機14と流動式粉砕機15は稼動しておらず、流動式粉砕機15を経路の一部としてもよく、流動式粉砕機15を経由しないバイパス路を設けてもよい。   When the incinerator 1 is not operating, the exhaust gas is not generated. In such a case, the exhaust gas of hot air is not introduced into the filtration type dust collector 4 and the substances accumulated on the filter surface are bound, making it difficult to remove. In order to prevent this, the blower 12 and the hot air generating means 21 are operated so as to circulate the gas in the bag filter, so that the hot air is generated and introduced into the filtering dust collector 4. The fixed amount feeder 14 and the fluid pulverizer 15 are not in operation, the fluid pulverizer 15 may be a part of the path, and a bypass path that does not pass through the fluid pulverizer 15 may be provided.

そして、実施形態2の制御手段は、排ガスを生成していない場合に、送風機12と温風生成手段21を稼動して、温風を生成し、ろ過式集塵機4に導入するように制御するように構成される。   And when the exhaust gas is not produced | generated, the control means of Embodiment 2 operates the air blower 12 and the warm air production | generation means 21, produces | generates a warm air, and controls it to introduce into the filtration type dust collector 4. Configured.

以上によれば、排ガスの生成時には、実施形態1のように動作し、排ガスを生成していない場合に、本実施形態2のように動作するように構成することで、ろ過式集塵機4の機能低下を未然に防ぐことができる。   According to the above, when the exhaust gas is generated, it operates as in the first embodiment, and when it does not generate the exhaust gas, it is configured to operate as in the second embodiment. Decline can be prevented in advance.

(別実施形態)
本発明において、流動式粉砕手段の後段にサイクロンを設置し、粒度範囲を規制することも可能である。
(Another embodiment)
In the present invention, it is also possible to restrict the particle size range by installing a cyclone downstream of the fluidized pulverizing means.

また、集塵手段としては、パルスジェット式、逆洗式などのバグフィルタ装置、電気集塵機などを用いることができる。   Further, as the dust collecting means, a pulse filter type or a backwash type bag filter device, an electric dust collector or the like can be used.

薬剤として、炭酸水素ナトリウムを単独で用いる構成を説明したが、本発明は、炭酸水素ナトリウムを主成分として他の薬剤(消石灰、炭酸ナトリウム、天然ソーダ、セスキ炭酸ナトリウム等)を適宜添加する構成も採用できる。例えば、炭酸水素ナトリウムを主成分とするBICAR(商品名)が例示される。   Although the structure which uses sodium hydrogencarbonate alone as a chemical | medical agent was demonstrated, this invention also has the structure which adds another chemical | medical agent (slaked lime, sodium carbonate, natural soda, sodium sesquicarbonate, etc.) suitably based on sodium hydrogencarbonate. Can be adopted. For example, BICAR (trade name) mainly composed of sodium bicarbonate is exemplified.

排ガス処理装置の一例について説明する図The figure explaining an example of an exhaust gas treatment apparatus 排ガス処理装置の一例について説明する図The figure explaining an example of an exhaust gas treatment apparatus 流動式粉砕機の一例を説明するための図A diagram for explaining an example of a fluid mill 流動式粉砕機の一例を説明するための図A diagram for explaining an example of a fluid mill 従来の排ガス処理装置の例を説明するための図The figure for demonstrating the example of the conventional waste gas processing apparatus

符号の説明Explanation of symbols

1 焼却炉
2 廃熱ボイラ
3 減温塔
4 ろ過式集塵機
5 誘引通風機
6 煙突
11 循環ガス経路
12 送風機
13 薬剤貯槽
14 定量供給機
15 流動式粉砕機
21 温風生成手段
DESCRIPTION OF SYMBOLS 1 Incinerator 2 Waste heat boiler 3 Temperature reduction tower 4 Filtration type dust collector 5 Induction fan 6 Chimney 11 Circulating gas path 12 Blower 13 Chemical storage tank 14 Fixed supply machine 15 Fluid crusher 21 Hot air production | generation means

Claims (6)

排ガス中の酸性ガス成分を中和処理するための薬剤を排ガス中に導入し、集塵手段により前記排ガス中の飛灰および/または反応生成物を処理する排ガス処理方法であって、
前記薬剤としてナトリウム系薬剤を用い、
前記集塵手段による集塵後のガスを循環させる経路を設け、
前記経路内で前記ガスを流動式粉砕手段に導入し、
前記流動式粉砕手段を用いて前記薬剤を粉砕し、
当該粉砕した薬剤を前記経路を介して前記集塵手段の上流側に導入することを特徴とする排ガス処理方法。
An exhaust gas treatment method for introducing a chemical for neutralizing an acid gas component in exhaust gas into the exhaust gas, and treating fly ash and / or reaction products in the exhaust gas with a dust collecting means,
Using a sodium-based drug as the drug,
Providing a path for circulating the gas after dust collection by the dust collecting means;
Introducing the gas into the fluidized grinding means in the path,
Crushing the drug using the fluidized crushing means,
An exhaust gas treatment method, wherein the pulverized chemical is introduced to the upstream side of the dust collecting means through the path.
前記排ガスが生成されていない場合に、前記集塵手段の機能低下を防止するように、前記循環経路内に温風を生成することを特徴とする請求項1に記載の排ガス処理方法。   2. The exhaust gas treatment method according to claim 1, wherein when the exhaust gas is not generated, warm air is generated in the circulation path so as to prevent a decrease in function of the dust collecting means. 前記流動式粉砕手段による薬剤粉砕の場合に、流動媒体として、硅砂および/または酸化アルミニウムを用いることを特徴とする請求項1または2に記載の排ガス処理方法。   3. The exhaust gas treatment method according to claim 1, wherein in the case of chemical pulverization by the fluid pulverization means, cinnabar sand and / or aluminum oxide is used as a fluid medium. 前記流動式粉砕手段による薬剤粉砕の場合に、当該流動式粉砕手段の空塔速度が0.15〜0.2m/sの範囲の値であることを特徴とする請求項1から3のいずれか1項に記載の排ガス処理方法。   4. In the case of chemical pulverization by the fluid pulverizing means, the superficial velocity of the fluid pulverizing means is a value in the range of 0.15 to 0.2 m / s. The exhaust gas treatment method according to item 1. 排ガス中の酸性ガス成分を中和処理するための薬剤を排ガス中に導入し、集塵手段により前記排ガス中の飛灰および/または反応生成物を処理する排ガス処理装置であって、
前記集塵手段による集塵後のガスを循環させて、当該集塵手段の上流側に導入する経路と、
前記経路内に、循環ガスを導くための押し込み式送風機と、
前記経路内であって前記押し込み式送風機の後段側に、前記薬剤を粉砕する流動式粉砕手段と、
を有することを特徴とする排ガス処理装置。
An exhaust gas treatment apparatus for introducing a chemical for neutralizing an acidic gas component in exhaust gas into the exhaust gas and treating fly ash and / or reaction products in the exhaust gas with a dust collecting means,
A path for circulating the gas collected by the dust collecting means and introducing it to the upstream side of the dust collecting means;
A push-type blower for guiding the circulating gas into the path;
Fluidized crushing means for crushing the medicine on the downstream side of the push-in type blower in the path,
An exhaust gas treatment apparatus comprising:
前記排ガスが生成されていない場合に、前記集塵手段の機能低下を防止するように、前記循環経路内に温風を生成するための温風生成手段をさらに有することを特徴とする請求項5に記載の排ガス処理装置。

6. The apparatus according to claim 5, further comprising hot air generating means for generating hot air in the circulation path so as to prevent a decrease in function of the dust collecting means when the exhaust gas is not generated. The exhaust gas treatment apparatus described in 1.

JP2007110212A 2007-04-19 2007-04-19 Exhaust gas treatment method and exhaust gas treatment apparatus Active JP4965323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007110212A JP4965323B2 (en) 2007-04-19 2007-04-19 Exhaust gas treatment method and exhaust gas treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007110212A JP4965323B2 (en) 2007-04-19 2007-04-19 Exhaust gas treatment method and exhaust gas treatment apparatus

Publications (2)

Publication Number Publication Date
JP2008264662A true JP2008264662A (en) 2008-11-06
JP4965323B2 JP4965323B2 (en) 2012-07-04

Family

ID=40044929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007110212A Active JP4965323B2 (en) 2007-04-19 2007-04-19 Exhaust gas treatment method and exhaust gas treatment apparatus

Country Status (1)

Country Link
JP (1) JP4965323B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016028809A (en) * 2014-07-23 2016-03-03 旭硝子株式会社 Detoxifying method for gas containing acidic component
JP2018040499A (en) * 2016-09-05 2018-03-15 株式会社Ihi環境エンジニアリング Exhaust gas treatment equipment

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5687420A (en) * 1979-12-18 1981-07-16 Mitsubishi Heavy Ind Ltd Method and apparatus for carrying out dry treatment of waste gas
JPH10277425A (en) * 1997-04-01 1998-10-20 Hitachi Plant Eng & Constr Co Ltd Electric dust collector and controlling method thereof
JP2001025637A (en) * 1999-07-14 2001-01-30 Kurita Water Ind Ltd Exhaust gas cleaning method
JP2001054718A (en) * 1999-08-19 2001-02-27 Takuma Co Ltd Bag filter heating method and device therefor
JP2001254915A (en) * 2000-03-09 2001-09-21 Ebara Corp Method for disposing chlorine-containing waste by combustion
JP2002136840A (en) * 2000-11-06 2002-05-14 Takuma Co Ltd Method and equipment for treating exhaust
JP2002361040A (en) * 2001-06-12 2002-12-17 Takuma Co Ltd Control method of waste gas treatment and its control mechanism
JP2004081990A (en) * 2002-08-27 2004-03-18 Ebara Corp Agent and equipment for removing toxic substance in combustion exhaust gas
JP2007021442A (en) * 2005-07-20 2007-02-01 Mitsubishi Heavy Ind Ltd Method and facilities for treating exhaust gas

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5687420A (en) * 1979-12-18 1981-07-16 Mitsubishi Heavy Ind Ltd Method and apparatus for carrying out dry treatment of waste gas
JPH10277425A (en) * 1997-04-01 1998-10-20 Hitachi Plant Eng & Constr Co Ltd Electric dust collector and controlling method thereof
JP2001025637A (en) * 1999-07-14 2001-01-30 Kurita Water Ind Ltd Exhaust gas cleaning method
JP2001054718A (en) * 1999-08-19 2001-02-27 Takuma Co Ltd Bag filter heating method and device therefor
JP2001254915A (en) * 2000-03-09 2001-09-21 Ebara Corp Method for disposing chlorine-containing waste by combustion
JP2002136840A (en) * 2000-11-06 2002-05-14 Takuma Co Ltd Method and equipment for treating exhaust
JP2002361040A (en) * 2001-06-12 2002-12-17 Takuma Co Ltd Control method of waste gas treatment and its control mechanism
JP2004081990A (en) * 2002-08-27 2004-03-18 Ebara Corp Agent and equipment for removing toxic substance in combustion exhaust gas
JP2007021442A (en) * 2005-07-20 2007-02-01 Mitsubishi Heavy Ind Ltd Method and facilities for treating exhaust gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016028809A (en) * 2014-07-23 2016-03-03 旭硝子株式会社 Detoxifying method for gas containing acidic component
JP2018040499A (en) * 2016-09-05 2018-03-15 株式会社Ihi環境エンジニアリング Exhaust gas treatment equipment

Also Published As

Publication number Publication date
JP4965323B2 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
CN105478002B (en) Dust separator usable with dry scrubber system
CN106424111A (en) Soil restoration device and method
JP4965323B2 (en) Exhaust gas treatment method and exhaust gas treatment apparatus
JP6978345B2 (en) Denitration catalyst polishing device and denitration catalyst polishing method
JP5627441B2 (en) Biomass / coal co-firing system
CN101870901A (en) Emission control method of superfine particulate matter of coal
JP5279991B2 (en) Exhaust gas treatment method and exhaust gas treatment apparatus
JP2008073682A (en) Treatment system and treatment method for asbestos-based waste
JP3807717B2 (en) Exhaust gas treatment method
JP6586032B2 (en) Exhaust gas treatment method and apparatus
JP7543137B2 (en) Denitrification catalyst polishing equipment
CN210251828U (en) Energy-saving biomass boiler flue gas purification system
JP4658440B2 (en) Exhaust gas treatment method and exhaust gas treatment equipment
JP2003200020A (en) Exhaust gas treatment method and exhaust gas treatment facility
JP2016028809A (en) Detoxifying method for gas containing acidic component
WO2021245841A1 (en) Denitration catalyst abrasion device
JPH06170157A (en) Treatment of exhaust gas
JP4174936B2 (en) Solid oil separation method for heavy oil fired boiler exhaust gas
JP5063761B2 (en) Thermal power generation system
JP7535454B2 (en) Denitrification catalyst polishing equipment
JP2016123940A (en) Exhaust gas treatment method and system for the same
JP2000117054A (en) Removing method of dioxins in waste gas
JP7543138B2 (en) Denitrification catalyst polishing equipment
JP7228968B2 (en) Exhaust gas treatment method and its system
JP5279865B2 (en) Classification processing system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110622

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120329

R150 Certificate of patent or registration of utility model

Ref document number: 4965323

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250