JP2008263708A - Hydrogen-cooled generator system - Google Patents

Hydrogen-cooled generator system Download PDF

Info

Publication number
JP2008263708A
JP2008263708A JP2007104101A JP2007104101A JP2008263708A JP 2008263708 A JP2008263708 A JP 2008263708A JP 2007104101 A JP2007104101 A JP 2007104101A JP 2007104101 A JP2007104101 A JP 2007104101A JP 2008263708 A JP2008263708 A JP 2008263708A
Authority
JP
Japan
Prior art keywords
hydrogen
power factor
cooled
generator
cooled generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007104101A
Other languages
Japanese (ja)
Inventor
Yasuhiro Murakami
康浩 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2007104101A priority Critical patent/JP2008263708A/en
Publication of JP2008263708A publication Critical patent/JP2008263708A/en
Pending legal-status Critical Current

Links

Landscapes

  • Motor Or Generator Cooling System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen-cooled generator system achieving efficient operation by adjusting hydrogen gas pressure for cooling, in accordance with the fluctuation of the operation power factor of a generator, thereby reducing windage loss. <P>SOLUTION: This hydrogen-cooled generator system, which has a hydrogen-cooled generator 1, a hydrogen gas cylinder 2 that supplies hydrogen gas for cooling, and a conduit 3 connecting the hydrogen bomb 2 with the inside of the hydrogen-cooled generator 1, has a pressure regulating valve 4 which regulates the pressure of hydrogen gas to be supplied into the hydrogen-cooled generator 1, being arranged in the middle of the conduit 3, a power factor detector 5 which detects the power factor, based on the output of the hydrogen-cooled generator 1, and a controller 6 which controls the pressure regulating valve 4 so that the pressure of hydrogen gas may be a predetermined pressure, based on the power factor detected by the power factor detector 5. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は水素冷却発電機システムに関し、特に当該システムにおける水素冷却発電機の出力の力率に対応させて冷却用水素ガスの圧力を調整する場合に適用して有用なものである。   The present invention relates to a hydrogen-cooled generator system, and is particularly useful when applied to the case where the pressure of the cooling hydrogen gas is adjusted in accordance with the power factor of the output of the hydrogen-cooled generator in the system.

界磁や固定子に大きな電流が流れるタービン発電機において機器の冷却は重要である。特に、事業用火力乃至原子力発電プラントで用いられる大容量のタービン発電機においては冷却効果を高めるため、通常機器内に水素を封入して冷媒としている。かかる水素冷却方式は、熱伝導に優れており冷却効果が高い、密度が小さいため風損が小さい、絶縁力が高い、発電機の構成材料を酸化・劣化させない等の種々の特長を有している。   Equipment cooling is important in a turbine generator in which a large current flows through the field and the stator. In particular, in a large-capacity turbine generator used in commercial thermal power generation or nuclear power plants, in order to enhance the cooling effect, hydrogen is usually enclosed in equipment and used as a refrigerant. Such a hydrogen cooling system has various features such as excellent heat conduction, high cooling effect, low density, low windage loss, high insulation, and no oxidation / degradation of the constituent materials of the generator. Yes.

水素冷却方式を採用する水素冷却発電機システムを含むタービン発電機の運転においては、皮相電力(VA)で決まる固定子電流を機器所定の制限値以内に収める必要がある。しかし、負荷の力率が低い場合、下記の要因によっても制約を受ける。
1) 遅れ力率(誘導負荷)では、力率が低下するにしたがって同じ出力でも界磁電流を強める必要があるため、界磁巻線の電流制限により出力は制限を受ける。
2) 進み力率(容量性負荷)では、同じ出力でも界磁電流を弱めることとなるが、固定子端部への磁束集中による過熱や同期化力の減少による乱調や脱調(同期はずれ)を防止するため、出力は制限を受ける。
In the operation of a turbine generator including a hydrogen cooling generator system that employs a hydrogen cooling system, it is necessary to keep the stator current determined by the apparent power (VA) within a predetermined limit value of the device. However, when the power factor of the load is low, there are restrictions due to the following factors.
1) With a delayed power factor (inductive load), it is necessary to increase the field current even with the same output as the power factor decreases. Therefore, the output is limited by the current limitation of the field winding.
2) With the advance power factor (capacitive load), the field current is weakened even with the same output, but overheating due to magnetic flux concentration at the stator end and out-of-synchronization or out-of-synchronization (out of synchronization) In order to prevent this, the output is limited.

そこで、実際のタービン発電機では上記を考慮したものが容量特性曲線として定められており、運転において必ず考慮すべき重要な事項である。   Therefore, in an actual turbine generator, what takes the above into consideration is defined as a capacity characteristic curve, which is an important matter that must be taken into consideration during operation.

ここで、タービン発電機として水素冷却発電機を用いた従来技術に係る水素冷却発電機システムにおいては、冷却用の水素ガスの圧力は、発電機定格運転力率0.9pfに基づき決定されており、常時0.41MPaの封入圧力で運転されている。   Here, in the conventional hydrogen-cooled generator system using a hydrogen-cooled generator as a turbine generator, the pressure of the cooling hydrogen gas is determined based on a generator rated operating power factor of 0.9 pf. It is always operated at a sealing pressure of 0.41 MPa.

このように、水素冷却発電機の定格運転力率は0.9pfであるが、実際の運転力率は系統の状況により時時刻刻変動しており、ほとんど0.9pf以上で運転されている。   As described above, the rated operating power factor of the hydrogen-cooled generator is 0.9 pf, but the actual operating power factor fluctuates from time to time depending on the state of the system, and is almost operated at 0.9 pf or more.

そこで、発電機運転力率の低い夏場を除く時期については水素ガスの供給系統の圧力調整弁を手動で調整して0.38MPaで運転している。   Therefore, during the time except for summer when the generator operating power factor is low, the pressure adjustment valve of the hydrogen gas supply system is manually adjusted to operate at 0.38 MPa.

なお、水素冷却を行う発電機を開示する公知文献として特許文献1がある。   Note that there is Patent Document 1 as a publicly known document disclosing a generator that performs hydrogen cooling.

特表2000−503199号公報Special Table 2000-503199

上述の従来技術においては夏場とそれ以外との2期に単純に分けて水素ガスの圧力を調整している。したがって、発電機の運転力率に合致した合理的な水素ガス圧での運転とはなっていなかった。   In the above-described conventional technology, the pressure of hydrogen gas is simply adjusted in two periods, summer and other periods. Therefore, it was not operated at a reasonable hydrogen gas pressure that matched the operating power factor of the generator.

本発明は、上記従来技術に鑑み、発電機運転力率の変動に追従させて冷却用の水素ガス圧力を調整することにより風損を低減して効率的な運転を実現することができる水素冷却発電機システムを提供することを目的とする。   In view of the above-described prior art, the present invention is a hydrogen cooling system capable of reducing windage loss and realizing efficient operation by adjusting the hydrogen gas pressure for cooling by following the fluctuation of the generator operating power factor. The purpose is to provide a generator system.

上記目的を達成するための本発明の第1の態様は、
水素冷却発電機と、この水素冷却発電機に冷却用の水素ガスを供給する水素ガスボンベと、前記水素冷却発電機の内部にその界磁乃至固定子を冷却するための水素ガスを供給するよう前記水素ボンベと前記水素冷却発電機の内部との間を連通する管路とを有する水素冷却発電機システムにおいて、
前記管路の途中に配設されて前記水素冷却発電機内部に供給する水素ガスの圧力を調整する圧力調整弁と、
前記水素冷却発電機の出力に基づきその力率を検出する力率検出手段と、
前記水素ガスの圧力が、前記力率検出手段が検出する力率に基づいて予め定めておいた圧力になるように前記圧力調整弁を制御する制御手段とを有することを特徴とする水素冷却発電機システムにある。
In order to achieve the above object, the first aspect of the present invention provides:
A hydrogen-cooled power generator, a hydrogen gas cylinder that supplies hydrogen gas for cooling to the hydrogen-cooled power generator, and a hydrogen gas for cooling the field or stator to the interior of the hydrogen-cooled power generator. In a hydrogen-cooled generator system having a hydrogen cylinder and a pipe line communicating between the interior of the hydrogen-cooled generator,
A pressure regulating valve that is arranged in the middle of the pipeline and that regulates the pressure of the hydrogen gas supplied into the hydrogen-cooled generator;
Power factor detecting means for detecting the power factor based on the output of the hydrogen cooled generator;
Control means for controlling the pressure regulating valve so that the pressure of the hydrogen gas becomes a pressure determined in advance based on the power factor detected by the power factor detection means. In the machine system.

本発明の第2の態様は、
上記第1の態様に記載する水素冷却発電機システムにおいて、
さらに前記水素冷却発電機の出力を検出する出力検出手段を有する一方、前記制御手段は、前記力率と前記出力とに基づいて予め定めておいた圧力になるように前記圧力調整弁を制御するように構成したものであることを特徴とする水素冷却発電機システムにある。
The second aspect of the present invention is:
In the hydrogen-cooled generator system described in the first aspect,
Furthermore, while having an output detection means for detecting the output of the hydrogen-cooled generator, the control means controls the pressure regulating valve so as to have a predetermined pressure based on the power factor and the output. The hydrogen-cooled generator system is configured as described above.

本発明の第3の態様は、
上記第1又は第2の態様に記載する水素冷却発電機システムにおいて、
前記力率検出手段は、前記水素冷却発電機の出力を取り出す母線の有効電力を検出する有効電力計及び無効電力を検出する無効電力計の検出結果を利用して所定の力率を演算するものであることを特徴とする水素冷却発電機システムにある。
The third aspect of the present invention is:
In the hydrogen-cooled generator system described in the first or second aspect,
The power factor detection means calculates a predetermined power factor by using a detection result of an active power meter that detects an active power of a bus for extracting an output of the hydrogen-cooled generator and a reactive power meter that detects a reactive power. In the hydrogen-cooled generator system, which is characterized by

本発明によれば、発電機運転力率に基づき圧力調整弁を自動調整して冷却用水素のガス圧を適切に保持することができる。この結果、風損を可及的に低減した合理的な発電運転を行うことができるとともに、必要とされる水素ガス圧力を維持すれば良いので、水素ガスの無駄な消費も抑えることができる。   According to the present invention, the gas pressure of the cooling hydrogen can be appropriately maintained by automatically adjusting the pressure regulating valve based on the generator operating power factor. As a result, it is possible to perform a rational power generation operation in which windage loss is reduced as much as possible, and to maintain the required hydrogen gas pressure, so that wasteful consumption of hydrogen gas can be suppressed.

以下本発明の実施の形態を図面に基づき詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明の実施の形態に係る水素冷却発電機システムを示すブロック構成図である。同図に示すように、本形態に係る水素冷却発電機システムは、水素冷却発電機1と、この水素冷却発電機1に冷却用の水素ガスを供給する水素ガスボンベ2と、水素冷却発電機1の内部にその界磁乃至固定子を冷却するための水素ガスを供給するよう水素冷却発電機1の内部と水素ガスボンベ2の間を連通する管路3とを有する。管路3の途中には、水素冷却発電機1の内部に供給する水素ガスの圧力を自動調整するための圧力調整弁4が配設されている。   FIG. 1 is a block diagram showing a hydrogen-cooled generator system according to an embodiment of the present invention. As shown in the figure, a hydrogen-cooled generator system according to this embodiment includes a hydrogen-cooled generator 1, a hydrogen gas cylinder 2 that supplies hydrogen gas for cooling to the hydrogen-cooled generator 1, and a hydrogen-cooled generator 1 And a pipe line 3 communicating between the inside of the hydrogen cooling generator 1 and the hydrogen gas cylinder 2 so as to supply hydrogen gas for cooling the field or stator. A pressure adjusting valve 4 for automatically adjusting the pressure of the hydrogen gas supplied to the inside of the hydrogen cooled generator 1 is disposed in the middle of the pipe line 3.

力率検出器5は、水素冷却発電機1の出力に基づきその力率を検出するものである。具体的には、例えば水素冷却発電機1の出力を取り出す母線の有効電力を検出する有効電力計及び無効電力を検出する無効電力計の検出結果を利用して所定の力率を演算するものとして好適に構成し得る。ただ、これに限らず発電所構内の有効電圧及び無効電圧であれば、所定の精度の測定値が得られるので、これらのデータを有効に利用して演算することができる。   The power factor detector 5 detects the power factor based on the output of the hydrogen cooled generator 1. Specifically, for example, a predetermined power factor is calculated using detection results of an active wattmeter that detects the active power of the bus for extracting the output of the hydrogen-cooled generator 1 and a reactive wattmeter that detects reactive power. It can be suitably configured. However, the present invention is not limited to this, and if it is an effective voltage and an ineffective voltage in the power plant premises, a measured value with a predetermined accuracy can be obtained, so that these data can be used effectively for calculation.

制御装置6は、前記水素ガスの圧力が、力率検出器5が検出する力率及び出力計7が検出する水素冷却発電機1の出力電力に基づいて予め定めておいた最適な圧力になるように圧力調整弁4の開度を自動的に調整する。ここで、出力計7が検出する出力電力とは、皮相電力(VA)に力率(pf)を乗じて得る有効電力(W)である。ここで、かかる出力電圧は必ずしも制御パラメータとする必要はない。単に力率(pf)に基づく水素ガスのガス圧調整でも所定の効果は得られる。ただ、出力電圧も加味した場合のほうが高精度の最適制御をなし得る点については論を俟たない。   In the control device 6, the pressure of the hydrogen gas becomes an optimum pressure determined in advance based on the power factor detected by the power factor detector 5 and the output power of the hydrogen cooling generator 1 detected by the output meter 7. Thus, the opening degree of the pressure regulating valve 4 is automatically adjusted. Here, the output power detected by the output meter 7 is active power (W) obtained by multiplying the apparent power (VA) by the power factor (pf). Here, the output voltage is not necessarily a control parameter. A predetermined effect can also be obtained by simply adjusting the gas pressure of hydrogen gas based on the power factor (pf). However, there is no doubt that high-precision optimal control can be achieved with the output voltage taken into account.

図2は本形態における水素冷却発電機の出力、無効電力及び力率に対する水素ガス圧力の関係を示す特性図である。かかる特性図中、横軸が出力電力(MW)、縦軸が無効電力(MVAR)、太線が水素ガスの圧力(kg/cm)、細線が力率(pf)をそれぞれ示している。 FIG. 2 is a characteristic diagram showing the relationship of the hydrogen gas pressure with respect to the output, reactive power, and power factor of the hydrogen-cooled generator in this embodiment. In such a characteristic diagram, the horizontal axis represents output power (MW), the vertical axis represents reactive power (MVAR), the thick line represents hydrogen gas pressure (kg / cm 2 ), and the thin line represents power factor (pf).

かかる特性図で表わされる各データが制御装置6にマップデータとして記憶してあり、制御装置6は力率検出器5及び出力計7の実測データに基づき水素ガス圧を決定するとともに、このガス圧になるように圧力調整弁4の開度を調整する。   Each data represented in the characteristic diagram is stored in the control device 6 as map data. The control device 6 determines the hydrogen gas pressure based on the measured data of the power factor detector 5 and the output meter 7, and the gas pressure The opening of the pressure regulating valve 4 is adjusted so that

かかる本形態においては、圧力調整弁4の開度が水素冷却発電機1の発電機力率及び出力に基づき最適な水素ガス圧力となるように調整される。したがって、水素冷却発電機1の内部には、その出力及び力率に応じた最適圧力の水素ガスが供給される。すなわち、無段階の連続調整により水素ガス圧が自動的に調整される。   In this embodiment, the opening degree of the pressure regulating valve 4 is adjusted so as to be an optimum hydrogen gas pressure based on the generator power factor and the output of the hydrogen cooled generator 1. Accordingly, hydrogen gas having an optimum pressure corresponding to the output and power factor is supplied into the hydrogen-cooled generator 1. That is, the hydrogen gas pressure is automatically adjusted by continuous adjustment without steps.

この結果、風損を可及的に低減した合理的な発電運転を行うことができる。同時に、必要とされる水素ガス圧力を維持すれば良いので、水素ガスの無駄な消費も抑えることができる。   As a result, it is possible to perform a rational power generation operation with the windage loss reduced as much as possible. At the same time, it is sufficient to maintain the required hydrogen gas pressure, so that wasteful consumption of hydrogen gas can be suppressed.

本発明は発電設備を用いて電力を供給する産業分野乃至その設備を製造・販売する産業分野で利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used in an industrial field where electric power is supplied using a power generation facility or an industrial field where the facility is manufactured and sold.

本発明の実施の形態に係る水素冷却発電機システムを示すブロック構成図である。It is a block block diagram which shows the hydrogen cooling generator system which concerns on embodiment of this invention. 図1に示す実施の形態における水素冷却発電機の出力、無効電力及び力率に対する水素ガス圧力の関係を示す特性図である。It is a characteristic view which shows the relationship of the hydrogen gas pressure with respect to the output of the hydrogen cooling generator in embodiment shown in FIG. 1, reactive power, and a power factor.

符号の説明Explanation of symbols

1 水素冷却発電機
2 水素ガスボンベ
3 管路
4 圧力調整弁
5 力率検出器
6 制御装置
7 出力計
DESCRIPTION OF SYMBOLS 1 Hydrogen cooling generator 2 Hydrogen gas cylinder 3 Pipe line 4 Pressure regulating valve 5 Power factor detector 6 Control apparatus 7 Output meter

Claims (3)

水素冷却発電機と、この水素冷却発電機に冷却用の水素ガスを供給する水素ガスボンベと、前記水素冷却発電機の内部にその界磁乃至固定子を冷却するための水素ガスを供給するよう前記水素ボンベと前記水素冷却発電機の内部との間を連通する管路とを有する水素冷却発電機システムにおいて、
前記管路の途中に配設されて前記水素冷却発電機内部に供給する水素ガスの圧力を調整する圧力調整弁と、
前記水素冷却発電機の出力に基づきその力率を検出する力率検出手段と、
前記水素ガスの圧力が、前記力率検出手段が検出する力率に基づいて予め定めておいた圧力になるように前記圧力調整弁を制御する制御手段とを有することを特徴とする水素冷却発電機システム。
A hydrogen-cooled power generator, a hydrogen gas cylinder that supplies hydrogen gas for cooling to the hydrogen-cooled power generator, and a hydrogen gas for cooling the field or stator to the interior of the hydrogen-cooled power generator. In a hydrogen-cooled generator system having a hydrogen cylinder and a pipe line communicating between the interior of the hydrogen-cooled generator,
A pressure regulating valve that is arranged in the middle of the pipeline and that regulates the pressure of the hydrogen gas supplied into the hydrogen-cooled generator;
Power factor detecting means for detecting the power factor based on the output of the hydrogen cooled generator;
Control means for controlling the pressure regulating valve so that the pressure of the hydrogen gas becomes a pressure determined in advance based on the power factor detected by the power factor detection means. Machine system.
請求項1に記載する水素冷却発電機システムにおいて、
さらに前記水素冷却発電機の出力を検出する出力検出手段を有する一方、前記制御手段は、前記力率と前記出力とに基づいて予め定めておいた圧力になるように前記圧力調整弁を制御するように構成したものであることを特徴とする水素冷却発電機システム。
In the hydrogen cooled generator system according to claim 1,
Furthermore, while having an output detection means for detecting the output of the hydrogen-cooled generator, the control means controls the pressure regulating valve so as to have a predetermined pressure based on the power factor and the output. A hydrogen-cooled generator system characterized by being configured as described above.
請求項1又は請求項2に記載する水素冷却発電機システムにおいて、
前記力率検出手段は、前記水素冷却発電機の出力を取り出す母線の有効電力を検出する有効電力計及び無効電力を検出する無効電力計の検出結果を利用して所定の力率を演算するものであることを特徴とする水素冷却発電機システム。
In the hydrogen-cooled generator system according to claim 1 or 2,
The power factor detection means calculates a predetermined power factor by using a detection result of an active power meter that detects an active power of a bus for extracting an output of the hydrogen-cooled generator and a reactive power meter that detects a reactive power. A hydrogen-cooled generator system characterized by
JP2007104101A 2007-04-11 2007-04-11 Hydrogen-cooled generator system Pending JP2008263708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007104101A JP2008263708A (en) 2007-04-11 2007-04-11 Hydrogen-cooled generator system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007104101A JP2008263708A (en) 2007-04-11 2007-04-11 Hydrogen-cooled generator system

Publications (1)

Publication Number Publication Date
JP2008263708A true JP2008263708A (en) 2008-10-30

Family

ID=39985791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007104101A Pending JP2008263708A (en) 2007-04-11 2007-04-11 Hydrogen-cooled generator system

Country Status (1)

Country Link
JP (1) JP2008263708A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012022421A1 (en) * 2012-11-16 2014-05-22 Rwe Generation Se Method for cooling e.g. two-pole turbogenerator, with closed cooling gas circuit, involves controlling gas pressure within cooling gas circuit in dependence of actual operating point of direct current generator-electrical machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012022421A1 (en) * 2012-11-16 2014-05-22 Rwe Generation Se Method for cooling e.g. two-pole turbogenerator, with closed cooling gas circuit, involves controlling gas pressure within cooling gas circuit in dependence of actual operating point of direct current generator-electrical machine

Similar Documents

Publication Publication Date Title
JP5108031B2 (en) Magnetic flux control system for active voltage regulation
US20100071889A1 (en) Closed loop control of hydrogen cooling of an electric power generator
RU2323512C2 (en) Electrical machine
US9567974B2 (en) Control device for hydraulic turbines
US9641113B2 (en) System and method for controlling a power generation system based on PLL errors
JP5589141B2 (en) Operation control device for photovoltaic power generation system
JP2010007665A (en) Method for primary control of combined gas and steam turbine arrangement
CN102611379A (en) Method and system for operating an electromechanical generator
US20130014518A1 (en) Refrigeration Method and Apparatus with a Pulsating Load
KR20200044921A (en) Method for controlling a multi-phase synchronous generator of a wind power plant
JP5506642B2 (en) Inverter
JP2012175753A (en) Reactive power compensation device
JP2008263708A (en) Hydrogen-cooled generator system
US20150054279A1 (en) System for a hydraulically powered electric generator
JP4603992B2 (en) Power consumption control device
JP5942490B2 (en) Automatic power factor control device and automatic power factor control method
JP2014152650A (en) Dry vacuum pump device
JP2011167014A (en) Device for control of converter
KR20110024148A (en) Doubly-fed synchronous generator
JP2005184902A (en) Motor driving device
KR20160080719A (en) Apparatus for controlling power configured to be connected to power system operating temporarily and method for controlling power
KR102568488B1 (en) Method and server for maintaining power quality of distribution system through renewable energy system
KR101412693B1 (en) System for supercritical Brayton cycle with two reverse rotor generator
JP2008301552A (en) Power generator controller
JP2013223261A (en) Motor cooling device