JP2008263686A - Rotary electric machine - Google Patents

Rotary electric machine Download PDF

Info

Publication number
JP2008263686A
JP2008263686A JP2007103390A JP2007103390A JP2008263686A JP 2008263686 A JP2008263686 A JP 2008263686A JP 2007103390 A JP2007103390 A JP 2007103390A JP 2007103390 A JP2007103390 A JP 2007103390A JP 2008263686 A JP2008263686 A JP 2008263686A
Authority
JP
Japan
Prior art keywords
stator
poles
phase
magnetic pole
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007103390A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kanazawa
宏至 金澤
Takayuki Koyama
貴之 小山
Yuji Enomoto
裕治 榎本
Shoichi Kawamata
昭一 川又
Shoji Oiwa
昭二 大岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Resonac Corp
Nidec Advanced Motor Corp
Original Assignee
Nidec Servo Corp
Hitachi Powdered Metals Co Ltd
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Servo Corp, Hitachi Powdered Metals Co Ltd, Hitachi Industrial Equipment Systems Co Ltd filed Critical Nidec Servo Corp
Priority to JP2007103390A priority Critical patent/JP2008263686A/en
Publication of JP2008263686A publication Critical patent/JP2008263686A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a motor having high output density by selecting the relation between the total number of magnetic poles of a rotor of a rotary electric machine in which a stator magnetic pole is divided in a circumferential direction and the total number of magnetic poles of a stator thereof in order to solve the problem that a coupled core external circumferential portion of a stator magnetic pole causes magnetic interference in each of phases and a control constant of a controller to be driven is influenced by another phase, resulting in less controllability in a conventional technique. <P>SOLUTION: The rotary electric machine has a stator in which a three-phase stator magnetic pole and a stator winding are provided, the three-phase stator magnetic pole is disposed in a circumferential direction, the stator winding is wound around the stator magnetic pole composed of two columns centered at the circumferential direction for each phase, and the three-phase stator magnetic pole is magnetically divided. In this rotary electric machine, the number of stator magnetic poles is a multiple of 6. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は回転電機に関する。   The present invention relates to a rotating electrical machine.

従来の回転電機において周方向に各相の巻線が配置されたものとして、特表2005−532775号公報に記載のように固定子磁極にコイルを巻いたステータ構造が開示されている。更に、今までのモータではコアバック外周部分を周方向に鎖交する磁束が有ったため磁極を分割することが出来なかった。   As a conventional rotating electrical machine in which windings of respective phases are arranged in the circumferential direction, a stator structure in which a coil is wound around a stator magnetic pole as disclosed in JP-T-2005-532775 is disclosed. Further, in the conventional motor, the magnetic poles could not be divided because there was a magnetic flux interlinking the outer periphery of the core back in the circumferential direction.

特表2005−532775号公報JP 2005-532775 A

従来の技術においては、固定子磁極のコア外周部が連結されているために、各相での磁気的な干渉が発生し駆動するコントローラの制御定数が他の相の影響を受けるため制御性に欠ける課題がある。更に、周方向に固定子磁極を分割した回転電機の回転子の総極数と固定子磁極の総極数の関係を選択することで、出力密度の高いモータを提供することである。   In the conventional technology, since the core outer peripheral part of the stator magnetic pole is connected, magnetic interference occurs in each phase, and the control constant of the controller to be driven is influenced by other phases, so that the controllability is improved. There are missing issues. Furthermore, it is to provide a motor with high output density by selecting the relationship between the total number of rotor poles and the total number of stator magnetic poles of a rotating electrical machine in which stator magnetic poles are divided in the circumferential direction.

3相の固定子磁極と固定子巻き線とで構成され、周方向に3相の固定子磁極を配置し、各相とも周方向中心として固定子巻き線が2列で構成されている固定子磁極に巻き回され、かつ、前記3相の固定子磁極が磁気的に分割されている固定子とを有する回転電機であって、前記固定子磁極数は6の倍数で構成することである。   A stator comprising three-phase stator magnetic poles and stator windings, three-phase stator magnetic poles arranged in the circumferential direction, and each phase comprising two rows of stator windings as the center in the circumferential direction A rotating electric machine having a stator wound around magnetic poles and having the three-phase stator magnetic poles magnetically divided, wherein the number of stator magnetic poles is a multiple of six.

各相の磁気的な干渉を受けにくい構造でかつ、出力密度の高い回転電機を提供することである。   An object of the present invention is to provide a rotating electrical machine having a structure that hardly receives magnetic interference of each phase and a high output density.

本発明の実施例を図1〜図7により説明する。図1は本発明の一実施例であるステータ磁極を磁気的に3相独立に配置したもので、回転子磁極の永久磁石を2列で構成したものを示したものである。回転子の極数は24極である。まず、構成について説明する。回転子100は中心部分にシャフト1が配置され、シャフト1の外周部に回転子ヨーク2が配置されている。回転子ヨーク2の外周部に永久磁石3が配置されている。この永久磁石3は永久磁石3aと3bの2つのリング磁石で構成されている。この永久磁石3aと3bは図に示したように着磁磁極の位相が電気角で位相差を持って構成されている。本来モータとしてはケースやベアリング等の支持機構が必要であるが、この図では省略している。次に、固定子200について説明する。固定子磁極は3相の位相差を持つように3個の磁極が、回転子の永久磁石3の外周部に僅かな空隙を介して配置されている。3相の固定子磁極はU相磁極4U,V相磁極4V,W相磁極4Wで、前記回転子の永久磁石3にほぼ重なるように配置されている。各相磁極の中心部には固定子コイルが配置され、U相コイルは5U、V相コイルは5V、W相磁極は5Wで示している。更に各相コイルは固定子磁極の端部でU字状にコイルエンド部を構成し、コイルエンド部から引き出し線10U,10V(図示せず),10Wが外部の駆動回路(図示せず)に接続される。この様な固定子構成において、各固定子磁極は連結材(図示せず)により、電気角で120度の位相差を持って、ロータ外周部に配置されている。この連結材は各相の固定子磁極を機械的に固定できるものであればどのような構造であっても良く、好ましくは非磁性体の金属で構成されるのが望ましい。更に、連結された後、樹脂により円筒型にモールドしても良い。   An embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows one embodiment of the present invention in which stator magnetic poles are magnetically arranged in three phases independently, and the permanent magnets of rotor magnetic poles are configured in two rows. The rotor has 24 poles. First, the configuration will be described. In the rotor 100, the shaft 1 is disposed at the center, and the rotor yoke 2 is disposed on the outer periphery of the shaft 1. A permanent magnet 3 is disposed on the outer periphery of the rotor yoke 2. The permanent magnet 3 is composed of two ring magnets, permanent magnets 3a and 3b. As shown in the figure, the permanent magnets 3a and 3b are configured such that the phase of the magnetized magnetic pole has an electrical angle and a phase difference. Originally, a support mechanism such as a case and a bearing is necessary as a motor, but it is omitted in this figure. Next, the stator 200 will be described. Three magnetic poles are arranged on the outer peripheral portion of the permanent magnet 3 of the rotor via a slight gap so that the stator magnetic pole has a phase difference of three phases. The three-phase stator magnetic poles are a U-phase magnetic pole 4U, a V-phase magnetic pole 4V, and a W-phase magnetic pole 4W, and are arranged so as to substantially overlap the permanent magnet 3 of the rotor. A stator coil is arranged at the center of each phase magnetic pole, the U phase coil is indicated by 5 U, the V phase coil is indicated by 5 V, and the W phase magnetic pole is indicated by 5 W. Furthermore, each phase coil forms a coil end portion in a U shape at the end of the stator magnetic pole, and lead wires 10U, 10V (not shown) and 10W are connected to an external drive circuit (not shown) from the coil end portion. Connected. In such a stator configuration, each stator magnetic pole is arranged on the outer periphery of the rotor with a phase difference of 120 degrees in electrical angle by a connecting material (not shown). The connecting material may have any structure as long as it can mechanically fix the stator magnetic poles of each phase, and is preferably composed of a nonmagnetic metal. Further, after being connected, it may be molded into a cylindrical shape by resin.

図2を用いて図1で説明した固定子磁極4Uの詳細を説明する。他の相である4V及び4Wは同一構造であるため説明は省略する。先に説明したようにU相磁極4Uは、5つの部品から構成されている。固定子磁極4Uは、4Uaと4Ubの2列の磁極列からなっている。例えば、4Uaの磁極列は内周側に向かって配置される磁極歯4Ua1と外向きに向かって配置される4Ua2から構成され、その4Ua1と4Ua2の中心部にU相コイル5Uの片側のコイルが挟み込まれるように構成されている。更に、もう一列の磁極列
4Ubを構成する4Ub1と4Ub2の中心部にU相コイル5Uのもう一方のコイルが挟まれている。U相コイル5Uの口出し線10Uは、磁極に挟まれていないU型のコイルエンド部から取り出されている。
Details of the stator magnetic pole 4U described in FIG. 1 will be described with reference to FIG. Since the other phases, 4V and 4W, have the same structure, description thereof is omitted. As described above, the U-phase magnetic pole 4U is composed of five parts. The stator magnetic pole 4U is composed of two magnetic pole rows of 4Ua and 4Ub. For example, the 4Ua magnetic pole array is composed of magnetic pole teeth 4Ua1 arranged toward the inner peripheral side and 4Ua2 arranged outwardly. It is comprised so that it may be inserted | pinched. Furthermore, the other coil of the U-phase coil 5U is sandwiched between the central portions of 4Ub1 and 4Ub2 constituting another magnetic pole row 4Ub. The lead wire 10U of the U-phase coil 5U is taken out from a U-shaped coil end portion that is not sandwiched between magnetic poles.

図3(a)は、先に説明したU相磁極の4Ub列にU相コイル5Uが挟まれた構造を示したものである。紙面手前のコイル部分に、4Ua列の磁極が配置される。図3(b)はU相コイル5Uが巻装されるコイル中心部の磁極を示したものである。U相コイル5Uは図示した、外向き磁極歯4Ua2と4Ub2に直巻きするか、馬蹄形に成形したものを配置しても良い。また、4Ua2と4Ub2を一体的に作製することも可能である。   FIG. 3 (a) shows a structure in which a U-phase coil 5U is sandwiched between 4Ub rows of U-phase magnetic poles described above. The 4Ua row of magnetic poles are arranged in the coil portion in front of the page. FIG. 3B shows a magnetic pole at the center of the coil around which the U-phase coil 5U is wound. The U-phase coil 5U may be directly wound around the illustrated outward-facing magnetic pole teeth 4Ua2 and 4Ub2, or may be arranged in a horseshoe shape. It is also possible to manufacture 4Ua2 and 4Ub2 integrally.

図4はU相磁極4Uの完成図を示したものである。先に説明したように、2列で構成される磁極列の中心部にU相コイル5Uは配置されている。図からも分かるように磁極列
4Uaを構成する各磁極歯は同一形状で構成されている。また、もう一方の磁極列4Ubも同様にほぼ同じ形状のもので構成されている。
FIG. 4 shows a completed view of the U-phase magnetic pole 4U. As described above, the U-phase coil 5U is arranged at the center of the magnetic pole array composed of two rows. As can be seen from the figure, the magnetic pole teeth constituting the magnetic pole row 4Ua are formed in the same shape. Similarly, the other magnetic pole row 4Ub is formed of substantially the same shape.

図5(a)に先に説明したU相磁極4Uの外向き磁極歯4Ua2と4Ub2の先端部分と重なり合う磁極間部に切り欠き部7を設けた図を示したものである。切り欠き部7の形状は円形や長方形等の形状で構成され、磁極間部の幅W1に対して切り欠き部7の幅W2は狭く、好ましくは磁極歯の先端幅W3に等しい程度が良い。ここで、切り欠き部7を設ける理由としては爪先端部から磁極間部との距離が長くなるため、爪先端部からの漏れ磁束の低減の他、コイルインダクタンスの低減効果があるため、発電機の場合には発電電流の増加、モータの場合にはモータ電圧の低減が可能になる。図5(b)は同様の効果が期待できる他の実施例を示したものである。図5(b)は磁極間部にくり抜き部8を設けたものである。効果としては爪先端部からの漏れ磁束低減効果は期待できないが、コイルインダクタンスの低減及び、磁極間の内周側が繋がっているため機械的な強度は強くできる。更に、この2つを組み合わせて構成しても良い。これらの切り欠き部7やくり抜き部8の他の使用方法について説明する。先にも説明したように、3相磁極は磁気的に分離されているため径方向及び周方向に固定する必要がある。更に、3相回転電機として電気的な位相差を精度良く確保する必要もある。そこで、これらの切り欠き部7とくり抜き部8を位置決めに利用して固定することも出来る。くり抜き部8の大きさは先に述べた切り欠き部と同様にくりぬき部の幅をW4とすれば大きくても磁極幅間W1程度が好ましい。   FIG. 5 (a) shows a view in which a notch 7 is provided in the portion between the magnetic poles that overlaps the tip portions of the outward magnetic pole teeth 4Ua2 and 4Ub2 of the U-phase magnetic pole 4U described above. The shape of the notch 7 is a circle or a rectangle, and the width W2 of the notch 7 is narrower than the width W1 between the magnetic poles, and preferably equal to the tip width W3 of the magnetic pole teeth. Here, the reason why the notch portion 7 is provided is that the distance from the claw tip portion to the portion between the magnetic poles is increased, and therefore, in addition to the reduction of the leakage magnetic flux from the claw tip portion, there is an effect of reducing the coil inductance. In this case, the generated current can be increased, and in the case of a motor, the motor voltage can be reduced. FIG. 5B shows another embodiment in which the same effect can be expected. FIG. 5B is a view in which a hollow portion 8 is provided between the magnetic poles. Although the effect of reducing leakage magnetic flux from the claw tip cannot be expected as an effect, the mechanical strength can be increased because the coil inductance is reduced and the inner peripheral side between the magnetic poles is connected. Furthermore, you may comprise combining these two. Other methods of using these notches 7 and cutouts 8 will be described. As described above, since the three-phase magnetic poles are magnetically separated, it is necessary to fix them in the radial direction and the circumferential direction. Furthermore, it is necessary to ensure an electrical phase difference with high accuracy as a three-phase rotating electrical machine. Therefore, it is possible to fix the cutout portion 7 and the cutout portion 8 by using them for positioning. The size of the cut-out portion 8 is preferably about W1 between the magnetic pole widths even if it is large if the width of the cut-out portion is W4 as in the previously described notch portion.

今まで説明してきた各磁極は図2に示した磁極形状は、磁性粉末をプレス加工(圧縮成形)することで実現するようにしたものであるが、鉄板を曲げて作製することや磁性体の焼結材で作製することも可能である。更には、リング状に磁極歯を作製したものを、必要な個数でカットして組み合わせることで実現することも可能である。   The magnetic pole shape shown in FIG. 2 is realized by pressing magnetic powder (compression molding), but it can be made by bending an iron plate or using magnetic materials. It is also possible to produce with a sintered material. Furthermore, it is also possible to realize a structure in which magnetic pole teeth made in a ring shape are combined by cutting in a necessary number.

次に、本発明の周方向磁極配置モータの回転子極数と固定子磁極数の関係について説明する。上記説明では回転子が24極、固定子磁極は一相あたり6個で構成していた。一相磁極数を6個で構成すれば3相モータの場合トータルで18個の磁極で構成されることになる。本発明の磁石の極ピッチと固定子磁極の磁極歯ピッチはほぼ等しいため、回転子の極数が24極で固定子磁極数の総和が18の場合、(18/24=0.75) でロータの磁石に対して75%の磁束が利用できる組み合わせと考えることができる。固定子磁極を分割し、分割端面にコイルエンドを構成するためには、永久磁石の極数と3相固定子磁極の数を等しくすることは出来ず、必ず極数よりも固定子磁極数の総和は小さくする必要がある。また、あまり固定子磁極数を少なく構成すると、各相間の隙間が大きくなり磁石の磁束利用率が低下する。磁束利用率が低いと言うことはモータとして出力密度の低下と考えることができ、余り良いモータではないと言える。そこで、回転子の磁石極数と固定子の磁極総数の関係について60極までについて図6に纏めてみた。表の縦軸がロータの極数、横軸が固定子磁極の総数である。先にも述べたように極数Pと総磁極数Sの数が等しい場合は、固定子磁極が成り立たないためその組み合わせを選択することは出来ない。また、極数Pよりも総磁極数Sが大きい場合も成り立たず実現不可能な組み合わせとなる。また、極数Pに対して総磁極数Sが少ない場合も永久磁石の利用率が低下するため余り良くない。そこで、本発明ではこの総磁極数S/極数Pが0.67 (約2/3)程度を最低ラインとして考えた場合、幾つかの極数Pと総磁極数Sとの関係に良い組み合わせが有ることが分かった。まず極数Pに関しては、固定子磁極数の総数Sの最低は2個×3相=6個が最低限の組み合わせになることから極数は8極が最低の組み合わせになる。よって、本発明の構造は8極以上でなければ成り立たないことが分かる。   Next, the relationship between the number of rotor poles and the number of stator magnetic poles in the circumferential magnetic pole arrangement motor of the present invention will be described. In the above description, the rotor is composed of 24 poles and the stator magnetic poles are composed of 6 pieces per phase. If the number of one-phase magnetic poles is six, then in the case of a three-phase motor, the total number of magnetic poles is eighteen. Since the pole pitch of the magnet of the present invention and the pole tooth pitch of the stator magnetic pole are substantially equal, when the number of rotor poles is 24 and the total number of stator poles is 18, (18/24 = 0.75) It can be considered as a combination in which 75% of magnetic flux can be used for the rotor magnet. In order to divide the stator magnetic pole and configure the coil end on the divided end face, the number of permanent magnet poles and the number of three-phase stator magnetic poles cannot be made equal. The sum needs to be small. If the number of stator magnetic poles is too small, the gap between the phases becomes large and the magnetic flux utilization rate of the magnet decreases. The fact that the magnetic flux utilization rate is low can be considered as a reduction in output density as a motor, and it can be said that the motor is not a very good motor. Thus, the relationship between the number of magnet poles of the rotor and the total number of magnetic poles of the stator is summarized in FIG. The vertical axis of the table is the number of rotor poles, and the horizontal axis is the total number of stator magnetic poles. As described above, when the number of poles P is equal to the number of total magnetic poles S, the combination of magnetic poles cannot be selected because the stator magnetic poles are not established. Further, even when the total number of magnetic poles S is larger than the number of poles P, it is not possible to achieve a combination that cannot be realized. Further, when the total number of magnetic poles S is smaller than the number of poles P, the utilization rate of the permanent magnets is lowered, which is not so good. Therefore, in the present invention, when the total number of magnetic poles S / number of poles P is considered to be about 0.67 (about 2/3) as the lowest line, a combination that has a good relationship between the number of poles P and the total number of magnetic poles S. It turns out that there is. First, regarding the number of poles P, the minimum number of stator poles S is 2 x 3 phases = 6 is the minimum combination, so the number of poles is the minimum combination of 8 poles. Therefore, it can be seen that the structure of the present invention is not established unless it is 8 poles or more.

次に、固定子磁極の総数Sに関しては一相2個の磁極で3相であることから最低個数は6個となり次の組み合わせは、一相4個で3相となり12個となる。よって、固定子磁極数の総数は6の倍数でなければ成立しないことが分かる。この2つの条件と利用率を考慮した組み合わせは三角形で示した部分であり更に成り立つ組み合わせは網掛けした部分となる。すなわち、総磁極数Sに対して極数Pが−2の数値が最も磁束利用率が高くなり極数の増加と共に利用率も増加する。磁束利用率を0.67 以上という条件の場合極数Pの選択肢としては8,14,16,18・・・・・60極となる。更に、利用率が90%以上の組み合わせは図6の縦軸の極数の横に判定欄で◎の付いた組み合わせとなる。この◎の組み合わせを選択できれば、周方向に分割したことによる特性劣化を最小限にすることが出来る。表の中で◎の極数は、20,26,32,38,40,44,46,50,
52,56,58,60極となる。
Next, regarding the total number S of the stator magnetic poles, since the two magnetic poles are three phases and three phases, the minimum number is six. Therefore, it is understood that the total number of stator magnetic poles is not established unless it is a multiple of six. The combination in consideration of these two conditions and the utilization rate is a portion indicated by a triangle, and the combination that further holds is a shaded portion. In other words, the magnetic flux utilization rate is highest when the number of poles P is −2 with respect to the total number S of magnetic poles, and the utilization rate increases as the number of poles increases. When the magnetic flux utilization factor is 0.67 or more, the number of poles P is 8, 14, 16, 18,... 60 poles. Further, combinations having a utilization rate of 90% or more are combinations with 付 い in the determination column beside the number of poles on the vertical axis in FIG. If this combination of ◎ can be selected, characteristic deterioration due to division in the circumferential direction can be minimized. The number of poles in the table is 20, 26, 32, 38, 40, 44, 46, 50,
52, 56, 58, 60 poles.

以上の説明では、磁束利用率の最低ラインを0.67 に設定したが極間に配置する磁極センサの関係やそれぞれの磁極を接続する連結部材により磁束利用率が小さくなる場合も発生するが、その場合には使用する永久磁石の残留磁束密度を高く設定したり軸方向長さを伸ばすことで性能を維持できるため、磁束利用率が0.67 以下の場合でも本発明の構造は成り立つ。以上のように、回転子の総極数と固定子磁極総極数の関係をうまく選択することで、出力密度の高いモータを提供することが出来る。   In the above description, the minimum line of the magnetic flux utilization factor is set to 0.67, but the magnetic flux utilization factor may be reduced due to the relationship between the magnetic pole sensors arranged between the poles and the connecting members connecting the magnetic poles. In that case, since the performance can be maintained by setting the residual magnetic flux density of the permanent magnet used high or extending the axial length, the structure of the present invention can be realized even when the magnetic flux utilization rate is 0.67 or less. As described above, a motor having a high output density can be provided by properly selecting the relationship between the total number of rotor poles and the total number of stator magnetic poles.

なお、今までの実施例では、固定子磁極を2列配置したものであったが、1列で配置した図7のような回転電機の実施例の構造も考えられる。固定子コアは3相で3箇所に配置され、固定子コイルは磁極内を貫通した後、磁極歯の反対側である外径方向を周回するように構成されている。この様に固定子磁極を1列の構成とすることで、軸方向の厚みを低減できる効果が有る。また、固定子コイルの約半分が磁極から出ているために、この出ている部分に冷却風を当たることで冷却効率を高められる効果が有る。また、本実施例では3相の構造について述べたが、単相,2相,5相・・等であっても良い。また、本実施例は同様に磁性粉末を圧縮成形することで実現することができるが、鉄板を曲げて作製することや磁性体の焼結材で作製することも可能である。更には、リング状に固定子磁極を作製し、必要な個数でカットして組み合わせることで実現することも可能である。   In the embodiments so far, the stator magnetic poles are arranged in two rows, but the structure of the embodiment of the rotating electrical machine shown in FIG. 7 arranged in one row is also conceivable. The stator core is arranged at three locations in three phases, and the stator coil is configured to circulate in the outer diameter direction on the opposite side of the magnetic pole teeth after passing through the inside of the magnetic pole. In this way, by forming the stator magnetic poles in a single row, there is an effect that the axial thickness can be reduced. In addition, since about half of the stator coil protrudes from the magnetic pole, there is an effect that the cooling efficiency can be improved by applying cooling air to the protruding portion. In the present embodiment, a three-phase structure is described, but a single-phase, two-phase, five-phase, etc. may be used. In addition, the present embodiment can be similarly realized by compression molding of magnetic powder, but it can also be made by bending an iron plate or made of a sintered magnetic material. Furthermore, it is also possible to realize by forming the stator magnetic poles in a ring shape and cutting and combining them in the required number.

また、今までの全実施例では、内転型の回転電機について述べたが外転型の回転電機であってもよく、同様の効果を奏する。また、今までの全実施例の回転電機はクローポール型回転電機の一種である。   Further, in all of the embodiments so far, the inner rotating type rotating electric machine has been described, but an outer rotating type rotating electric machine may be used, and the same effect is obtained. The rotating electric machines of all the embodiments so far are a kind of claw pole type rotating electric machines.

また、本発明では回転子の永久磁石の極数と固定子磁極の極数の関係を示したが、車載用オルタネータで使われる回転子の爪磁極の極数と本発明の固定子の極数の関係も同様の関係であることはいうまでもない。   Further, in the present invention, the relationship between the number of poles of the permanent magnet of the rotor and the number of poles of the stator magnetic pole is shown. However, the number of poles of the claw magnetic pole of the rotor used in the in-vehicle alternator and the number of poles of the stator of the present invention. Needless to say, the relationship is similar.

本発明の第一実施例のモータ構造斜視図。The motor structure perspective view of the 1st example of the present invention. 本発明の固定子磁極を構成する部品を示した部品図。The component figure which showed the components which comprise the stator magnetic pole of this invention. 本発明の固定子磁極の分割図。The division figure of the stator magnetic pole of this invention. 本発明の固定子磁極一相分の斜視図。The perspective view for one phase of the stator magnetic pole of the present invention. 本発明の固定子磁極一相分の斜視図。The perspective view for one phase of the stator magnetic pole of the present invention. 本発明のモータ極数とステータ磁極数の関係表。The relationship table of the number of motor poles of this invention and the number of stator magnetic poles. 本発明の他の実施例の回転電機。The rotary electric machine of the other Example of this invention.

符号の説明Explanation of symbols

1 シャフト
2 回転子ヨーク
3 永久磁石
4 固定子磁極
5 コイル
6 磁極センサ
7 切り欠き部
8 くり抜き部
10 磁極端面
100 回転子
200 固定子
DESCRIPTION OF SYMBOLS 1 Shaft 2 Rotor yoke 3 Permanent magnet 4 Stator magnetic pole 5 Coil 6 Magnetic pole sensor 7 Notch part 8 Cut-out part 10 Magnetic pole end surface 100 Rotor 200 Stator

Claims (11)

永久磁石が外周面に複数構成される回転子と、
3相の固定子磁極と固定子巻き線とで構成され、
周方向に3相の固定子磁極を配置し、
各相とも周方向中心として固定子巻き線が2列で構成されている固定子磁極に巻き回され、
かつ、前記3相の固定子磁極が磁気的に分割されている固定子とを有する回転電機であって、
前記固定子磁極数は6の倍数で構成されることを特徴とする回転電機。
A rotor composed of a plurality of permanent magnets on the outer peripheral surface;
It consists of three-phase stator poles and stator windings,
Place three-phase stator poles in the circumferential direction,
Each phase is wound around a stator pole composed of two rows of stator windings as the center in the circumferential direction,
And a rotating electric machine having a stator in which the three-phase stator magnetic poles are magnetically divided,
The rotating electrical machine is characterized in that the number of stator magnetic poles is a multiple of six.
請求項1において、
前記回転子の極数は8極以上で構成されることを特徴とする回転電機。
In claim 1,
The rotating electric machine is characterized in that the rotor has eight or more poles.
請求項1において、
前記回転子の極数は14極以上で構成されることを特徴とする回転電機。
In claim 1,
The rotating electrical machine is characterized in that the rotor has 14 or more poles.
請求項1において、
前記回転子の極数は、20,26,32,38,40,44,46,50,52,56,58、又は、60極で構成されることを特徴とする回転電機。
In claim 1,
The number of poles of the rotor is 20, 26, 32, 38, 40, 44, 46, 50, 52, 56, 58, or 60 poles.
請求項1において
前記固定子磁極は磁性粉末により構成されていることを特徴とする回転電機。
The rotating electric machine according to claim 1, wherein the stator magnetic pole is made of magnetic powder.
請求項1において、
前記回転子の極数は固定子磁極数よりも2大きい数で構成されたことを特徴とする回転電機。
In claim 1,
The rotating electrical machine is characterized in that the number of poles of the rotor is two larger than the number of stator magnetic poles.
永久磁石が外周面に複数構成される回転子と、
固定子磁極と固定子巻き線とで構成され、
周方向に複数相の固定子磁極を配置し、
各相とも周方向中心として固定子巻き線が2列で構成されている固定子磁極に巻き回され、
かつ、前記複数相の固定子磁極が磁気的に分割されている固定子とを有する回転電機であって、
固定子磁極間に切り欠き部又はくり抜き部を有することを特徴とする回転電機。
A rotor composed of a plurality of permanent magnets on the outer peripheral surface;
It consists of a stator pole and a stator winding,
Place multiple-phase stator poles in the circumferential direction,
Each phase is wound around a stator pole composed of two rows of stator windings as the center in the circumferential direction,
And the rotating electric machine having a stator in which the stator poles of the plurality of phases are magnetically divided,
A rotating electrical machine having a notch portion or a cutout portion between stator magnetic poles.
請求項7において
前記固定子磁極は磁性粉末により構成されていることを特徴とする回転電機。
In Claim 7, The said stator magnetic pole is comprised with the magnetic powder, The rotary electric machine characterized by the above-mentioned.
永久磁石が外周面に複数構成される回転子と、
固定子磁極と固定子巻き線とで構成され、
周方向に複数相の固定子磁極を配置し、
各相とも周方向中心として固定子巻き線が1列で構成されている固定子磁極に巻き回され、
かつ、前記複数相の固定子磁極が磁気的に分割されている固定子とを有する回転電機。
A rotor composed of a plurality of permanent magnets on the outer peripheral surface;
It consists of a stator pole and a stator winding,
Place multiple-phase stator poles in the circumferential direction,
Each phase is wound around a stator pole composed of a single row of stator windings as the circumferential center,
And a rotating electric machine having a stator in which the plurality of stator magnetic poles are magnetically divided.
請求項9において
前記固定子磁極は磁性粉末により構成されていることを特徴とする回転電機。
The rotary electric machine according to claim 9, wherein the stator magnetic pole is made of magnetic powder.
請求項9において、
前記複数相は単相,2相,3相,5相であることを特徴とする回転電機。
In claim 9,
The rotating electric machine according to claim 1, wherein the plurality of phases are single phase, two phase, three phase, and five phase.
JP2007103390A 2007-04-11 2007-04-11 Rotary electric machine Pending JP2008263686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007103390A JP2008263686A (en) 2007-04-11 2007-04-11 Rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007103390A JP2008263686A (en) 2007-04-11 2007-04-11 Rotary electric machine

Publications (1)

Publication Number Publication Date
JP2008263686A true JP2008263686A (en) 2008-10-30

Family

ID=39985771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007103390A Pending JP2008263686A (en) 2007-04-11 2007-04-11 Rotary electric machine

Country Status (1)

Country Link
JP (1) JP2008263686A (en)

Similar Documents

Publication Publication Date Title
JP4499764B2 (en) Electric motor
JP4983022B2 (en) motor
US7569962B2 (en) Multi-phase brushless motor with reduced number of stator poles
US10277099B2 (en) Synchronous motor
JP5478136B2 (en) Permanent magnet synchronous motor
JP2011239593A (en) Electric motor
KR101255960B1 (en) Mechanically commutated switched reluctance motor
WO2009084197A1 (en) Permanent-magnet synchronous motor
US10069365B2 (en) Three-phase electromagnetic motor with 8*n permanent magnet rotor and 6*n magnetic pole stator with 3*n windings around every other magnetic pole
US20130015742A1 (en) Synchronous motor
JP2007259541A (en) Permanent magnet type motor
JP2007274869A (en) Slot-less permanent magnet type rotary electric machine
KR20130021210A (en) Mechanically commutated switched reluctance motor
JP2004187344A (en) Permanent magnet type motor
JP2018082600A (en) Double-rotor dynamoelectric machine
JP2008263738A (en) Rotary electric machine
JP2001333555A (en) Slot-less radial gap motor
JP2010161832A (en) Permanent magnet rotating electrical machine
JP2012182942A (en) Rotary electric machine
US20230318382A1 (en) Stator and motor
JP2016129447A (en) Rotary electric machine
JP2015027175A (en) Rotating electrical machine and method of manufacturing rotating electrical machine
JP7280070B2 (en) Stator and brushless motor
JP2018148675A (en) Stator for rotary electric machine
JP2010035294A (en) Permanent magnet synchronous motor