JP2008259400A - Independent operation detection method, controller for detecting independent operation of distributed power supply, independent operation detection device, and distributed power supply system - Google Patents

Independent operation detection method, controller for detecting independent operation of distributed power supply, independent operation detection device, and distributed power supply system Download PDF

Info

Publication number
JP2008259400A
JP2008259400A JP2007305290A JP2007305290A JP2008259400A JP 2008259400 A JP2008259400 A JP 2008259400A JP 2007305290 A JP2007305290 A JP 2007305290A JP 2007305290 A JP2007305290 A JP 2007305290A JP 2008259400 A JP2008259400 A JP 2008259400A
Authority
JP
Japan
Prior art keywords
fluctuation
power
deviation
range
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007305290A
Other languages
Japanese (ja)
Other versions
JP4656131B2 (en
Inventor
Yasuhiro Tsubota
康弘 坪田
Masao Mabuchi
雅夫 馬渕
Kazuyoshi Imamura
和由 今村
Shinichi Hosomi
伸一 細見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP2007305290A priority Critical patent/JP4656131B2/en
Publication of JP2008259400A publication Critical patent/JP2008259400A/en
Application granted granted Critical
Publication of JP4656131B2 publication Critical patent/JP4656131B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To satisfy ΔV10 to eliminate a flicker problem, while detecting an independent operation at high speed. <P>SOLUTION: A method, which detects whether or not a distributed power supply is separated from an electric power system and is performing independent operation by causing power fluctuation to the power system, includes a step in which electric energy (power fluctuation value) which is to be injected to cause the power fluctuation to the power system is calculated based on a period deviation, which is a deviation of the current system period and the past system period. In this step, a voltage variation portion ΔVn in each fluctuating frequency fn of the power system is converted into a variation value ΔV10 of 10 Hz in a flicker visibility curve and the calculation above is carried out in such a manner that the converted fluctuation value ΔV10 satisfies a permissible amount, which is a judgment criterion for taking a countermeasure against the flicker. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、分散型電源が電力系統から切り離され単独運転しているか否かを電力系統に注入した無効電力等の各種の電力変動に基づいて検出する単独運転検出方法、分散型電源の単独運転検出用制御装置、単独運転検出装置および分散型電源システムに関する。   The present invention relates to an isolated operation detection method for detecting whether or not a distributed power source is isolated from a power system based on various power fluctuations such as reactive power injected into the power system, and an isolated operation of the distributed power source. The present invention relates to a detection control device, an isolated operation detection device, and a distributed power supply system.

従来、このような単独運転検出装置としては、分散型電源の直流電力を電力系統の交流電力に変換し、この変換した交流電力を電力系統と連系して負荷に供給するインバータ回路を備え、このインバータ回路のインバータ出力波形に、単独運転時に出力周波数に変動が生じる歪を与え、この歪で生じる周波数変動、若しくは周波数変動に起因する変動を検出して単独運転を検知するようにしたものが知られている(例えば特許文献1参照)。   Conventionally, such an isolated operation detection device includes an inverter circuit that converts DC power of a distributed power source into AC power of a power system, and supplies the converted AC power to a load in linkage with the power system. The inverter output waveform of this inverter circuit is distorted to produce fluctuations in the output frequency during single operation, and the single operation is detected by detecting the frequency fluctuation caused by this distortion or the fluctuation caused by the frequency fluctuation. It is known (see, for example, Patent Document 1).

また、特許文献1の単独運転検出装置によれば、一般的に電力系統側では系統電圧や系統周波数を一定に保つために、需要家の負荷変動に応じて電力系統側の発電所の発電量を調整するため、低周期の揺れが発生することになるが、この低周期の揺れが発生するときは小さな周波数変化(偏差量変化)が生じるため分散型電源及び電力系統間に無効電力を注入しないように不感帯レンジを設定するようにしたので、低周期の揺れ発生時による分散型電源が系統に与える影響を確実に防止することができる。   In addition, according to the isolated operation detection device of Patent Document 1, in order to keep the system voltage and system frequency constant on the power system side, the amount of power generated by the power station on the power system side according to the load fluctuation of the consumer. However, when this low-frequency fluctuation occurs, a small frequency change (deviation amount change) occurs, so reactive power is injected between the distributed power supply and the power system. Since the dead zone range is set so as not to occur, it is possible to reliably prevent the influence of the distributed power source upon the system when the low-frequency fluctuation occurs.

また、従来の単独運転検出装置によれば、単独運転発生から単独運転検出までの単独運転検出時間に0.5秒〜1.0秒を要しているが、近年では同単独運転検出時間を、例えば0.1秒以内に短縮する高速検出技術が望まれるようになっている。   Further, according to the conventional isolated operation detection device, the isolated operation detection time from the isolated operation occurrence to the isolated operation detection requires 0.5 seconds to 1.0 seconds. For example, a high-speed detection technique that shortens within 0.1 seconds is desired.

そこで、本出願人は、このような要望に応えるべく、単独運転検出時間を0.1秒以内にした、分散型電源の単独運転を高速検出する単独運転検出装置を考案している(例えば特許文献2参照)。   Therefore, in order to meet such a demand, the present applicant has devised an isolated operation detection device that detects an isolated operation of a distributed power source at a high speed with an isolated operation detection time within 0.1 seconds (for example, a patent). Reference 2).

以下、図11以降に基づいて上記出願人の発明に係る単独運転検出装置を備えた分散型電源システムについて説明する。図11は本実施の形態を示す分散型電源システム内部の概略構成を示すブロック図である。図11に示す分散型電源システム10は、直流電力を発電する、例えば太陽光発電機やガスエンジン発電機等の分散型電源12と、この分散型電源12と連系接続する電力系統14と、分散型電源12及び電力系統14間に配置され、電力変換機能を備えたパワーコンディショナ装置16と、パワーコンディショナ装置16及び電力系統14間に配置され、電力系統14停電時の分散型電源12の単独運転を検出する単独運転検出装置18とを有し、パワーコンディショナ装置16は、電力変換機能を通じて、分散型電源12にて発電した直流電力を電力系統14の交流電力に変換し、この変換した交流電力を−般家電機器等の図外の負荷に供給するものである。   Hereinafter, a distributed power supply system including an isolated operation detection device according to the applicant's invention will be described with reference to FIG. FIG. 11 is a block diagram showing a schematic configuration inside the distributed power supply system according to the present embodiment. A distributed power supply system 10 shown in FIG. 11 generates DC power, for example, a distributed power supply 12 such as a solar power generator or a gas engine generator, and a power system 14 connected to the distributed power supply 12. A power conditioner device 16 disposed between the distributed power source 12 and the power system 14 and having a power conversion function, and a power conditioner device 16 disposed between the power conditioner device 16 and the power system 14. And the power conditioner device 16 converts the DC power generated by the distributed power source 12 into the AC power of the power system 14 through the power conversion function. The converted AC power is supplied to a load outside the figure such as general home appliances.

単独運転検出装置18は、連系リレー20,22と、制御装置24と、インバータ制御部26と、インバータ28と、電流検出器30とを備える。   The isolated operation detection device 18 includes interconnection relays 20 and 22, a control device 24, an inverter control unit 26, an inverter 28, and a current detector 30.

図12を参照して制御装置24を説明する。   The control device 24 will be described with reference to FIG.

制御装置24は、電力系統ライン32から系統電圧から系統周期を計測する系統周期計測部34と、この系統周期計測部34の計測値から単独運転判定を行いその判定に従い連系リレー20,22をオンオフ制御する単独運転判定部36と、この系統周期計測部34の計測値から現在の系統周期の移動平均値と過去の系統周期の移動平均値とを算出すると共にこの算出値から系統周期の偏差である周期偏差を演算する周期偏差演算部38と、この周期偏差演算部38の周期偏差から電力系統に注入するべき無効電力量(電力変動量)を演算する無効電力量演算部40と、この演算出力に応じて出力電流制御信号をインバータ制御部26に出力する出力電流制御部42と、を備える。   The control device 24 performs a system operation determination unit 34 for measuring the system period from the system voltage from the power system line 32, and makes an independent operation determination from the measured value of the system period measurement unit 34, and connects the interconnection relays 20 and 22 according to the determination. The isolated operation determination unit 36 that performs on / off control, and the moving average value of the current system cycle and the moving average value of the past system cycle are calculated from the measured values of the system cycle measuring unit 34, and the deviation of the system cycle is calculated from the calculated values. A cyclic deviation calculating unit 38 for calculating a cyclic deviation, a reactive power calculating unit 40 for calculating a reactive power amount (power fluctuation amount) to be injected into the power system from the cyclic deviation of the cyclic deviation calculating unit 38, and An output current control unit 42 that outputs an output current control signal to the inverter control unit 26 according to the calculation output.

なお、周期偏差演算部38は現在の系統周期の移動平均値を算出する現在移動平均算出部38a、過去の系統周期の移動平均値を算出する過去移動平均算出部38bと、これら両算出値から系統周期の偏差である周期偏差を演算する周期偏差演算部38cとから構成されている。   The period deviation calculating unit 38 is a current moving average calculating unit 38a that calculates a moving average value of a current system period, a past moving average calculating unit 38b that calculates a moving average value of a past system period, and both of these calculated values. It is comprised from the period deviation calculating part 38c which calculates the period deviation which is a deviation of a system | strain period.

系統周期計測部34は、系統電圧から電力系統14の系統周期を計測周期単位、例えば5m砂単位で順次計測するものである。尚、電力系統14の系統周期を50Hz(1系統周期は20m秒)とした場合、その計測周期単位は、電力系統3の系統周期の1/3以下、例えば5m秒単位にすることが望ましい。   The system period measurement unit 34 sequentially measures the system period of the power system 14 from the system voltage in units of measurement periods, for example, 5 m sand. In addition, when the system period of the electric power system 14 is 50 Hz (one system period is 20 milliseconds), the measurement period unit is desirably 1/3 or less of the system period of the electric power system 3, for example, 5 milliseconds unit.

周期偏差演算部38においては、系統周期計測部34にて順次計測した5m砂単位の系統周期に基づき、連続した所定移動平均時間分、例えば40m秒分の系統周期の移動平均値を順次算出するものである。尚、所定移動平均時間は、系統周期の一周期、例えば20m秒よりも長く、かつ所望する検出速度、例えば100m秒よりもできるだけ短い時間を条件とするため、例えば40m秒にすることが望ましい。   In the period deviation calculating part 38, based on the system period of the 5 m sand unit sequentially measured by the system period measuring part 34, the moving average value of the system period corresponding to the continuous predetermined moving average time, for example, 40 milliseconds is sequentially calculated. Is. The predetermined moving average time is preferably set to 40 ms, for example, because it is longer than one cycle of the system cycle, for example, 20 ms and as short as possible for a desired detection speed, for example, 100 ms.

図13は系統周期計測部34、周期偏差演算部38に関わる動作説明図である。図13に示すC0は系統周期計測部34で現在計測した系統周期、C1が5m秒前に計測した系統周期、Cnはn*5m秒前の系統周期の計測値を示す。従って周期偏差演算部38は、最新の移動平均値は、C0〜C7分の40m秒分の系統周期を移動平均化して5m秒単位で順次算出するものである。   FIG. 13 is an operation explanatory diagram related to the system cycle measuring unit 34 and the cycle deviation calculating unit 38. C0 shown in FIG. 13 is a system cycle currently measured by the system cycle measuring unit 34, C1 is a system cycle measured 5 ms before, and Cn is a measured value of the system cycle n * 5 ms before. Therefore, the period deviation calculating unit 38 calculates the latest moving average value in units of 5 milliseconds by moving average the system period for 40 milliseconds from C0 to C7.

過去の移動平均値は、C0〜C7の最新の移動平均値とした場合、C0から200m秒前のC40〜C47の40m秒分の系統周期を移動平均化して5m秒単位で順次算出したものである。また、現在の周期偏差は、過去の移動平均値(C40〜C47)一最新の移動平均値(C7〜C0)で算出するものである。   The past moving average value is calculated by moving average the system cycle for 40ms from C40 to C47 200msec before C0, and calculating sequentially in 5msec units when the latest moving average value of C0 to C7 is used. is there. The current period deviation is calculated by the past moving average value (C40 to C47) and the latest moving average value (C7 to C0).

無効電力量演算部40は、図14に示す無効電力量(電力変動注入量)対周期偏差との特性を使用して、周期偏差演算部38で算出した周期偏差に基づき無効電力量を算出し、この無効電力量を出力電流制御部42に通知するものである。   The reactive power amount calculation unit 40 calculates the reactive power amount based on the periodic deviation calculated by the periodic deviation calculation unit 38 using the characteristic of the reactive power amount (power fluctuation injection amount) versus the periodic deviation shown in FIG. The reactive power amount is notified to the output current control unit 42.

図14に示す無効電力量一周期偏差特性は、周期偏差が小さいときは周期偏差の変化に対する無効電力量の変化割合を小さくすなわち特性線L1の傾きを小さくして単独運転検出感度を低くするレンジである低感帯レンジR1と、周期偏差が大きいときは周期偏差の変化に対する無効電力量の変化割合を大きくすなわち特性線L1の傾きを大きくして単独運転検出感度を高くするレンジである高感帯レンジR21,R22とを設定する。   The reactive power amount one-cycle deviation characteristic shown in FIG. 14 is a range in which when the period deviation is small, the change rate of the reactive power amount with respect to the change of the periodic deviation is reduced, that is, the slope of the characteristic line L1 is reduced to lower the isolated operation detection sensitivity. The low sensitivity band range R1 is high, and when the period deviation is large, the high sensitivity is the range in which the change rate of the reactive power amount with respect to the change of the period deviation is increased, that is, the inclination of the characteristic line L1 is increased to increase the isolated operation detection sensitivity. Band ranges R21 and R22 are set.

周期偏差が高感帯レンジR21では無効電力量を減少し、高感帯レンジR22では無効電力量を増加し、低感帯レンジR1では、周期偏差に対する無効電力量の変化割合を小さく設定するものである。   The reactive power amount is decreased in the high sensitivity band range R21, the reactive power amount is increased in the high sensitivity range R22, and the change rate of the reactive power amount with respect to the periodic deviation is set small in the low sensitivity range R1. It is.

すなわち、周期偏差が小さい低感帯レンジR1でも、分散型電源12の単独運転を検出すべく、無効電力を注入することができ、さらには、無効電力量の変化割合を高感帯レンジR21,R22の場合に比較して小さくすることで、系統電圧の低速な周波数の揺れの影響を受けることなく、分散型電源が系統に与える影響を確実に防止することができる。   That is, reactive power can be injected even in the low sensitive range R1 with a small period deviation to detect the isolated operation of the distributed power source 12, and the change rate of the reactive power can be set to the high sensitive range R21, R21, By making it smaller than in the case of R22, it is possible to reliably prevent the influence of the distributed power source on the system without being affected by the slow fluctuation of the system voltage.

以上説明した分散型電源システムは図15で示すシステムでも同様である。このシステムではパワーコンディショナ16内部に単独運転検出装置を内蔵したものである。図11と対応する部分には同一の符号を付している。   The distributed power supply system described above is the same as the system shown in FIG. In this system, an independent operation detection device is built in the power conditioner 16. Portions corresponding to those in FIG. 11 are denoted by the same reference numerals.

以上説明した分散型電源システムにおける単独運転検出では、電力変動の注入方式が、無効電力変動方式であったが、これ以外の有効電力変動方式、高調波注入方式、等の各種方式(電力変動方式)でも同様に実施することができる。   In the isolated operation detection in the distributed power system described above, the power fluctuation injection method was the reactive power fluctuation method, but other methods such as the active power fluctuation method, the harmonic injection method, etc. (power fluctuation method) ) Can be implemented in the same manner.

一方、このような電力変動方式での単独運転検出においては、系統周期は、電力系統に繋がる負荷の変動、系統インピーダンスの影響等で、常時、変動している。例えば50Hzでは±0.03Hz。また、サイトによっては時々、例えば10秒間に数回、大きい系統周期変動(例えば±0.1Hz以上)がある場合がある。また、単独運転の高速検出を実現するために図14の高感帯レンジR21,R22での無効電力量の変化割合を大きく、すなわち、特性線L1の傾きを大きくしている。このため、定常時の系統周期の揺れ制御装置24が反応して無効電力を出力してしまう結果、その無効電力量と頻度によってはフリッカ(電圧の周期的変動)の許容値(以下説明するΔV10)を超えてしまうことが想定される。   On the other hand, in such an isolated operation detection by the power fluctuation method, the system cycle is constantly fluctuating due to the fluctuation of the load connected to the power system, the influence of the system impedance, and the like. For example, ± 0.03 Hz at 50 Hz. In addition, depending on the site, there may be a large system cycle fluctuation (for example, ± 0.1 Hz or more), for example, several times in 10 seconds. Further, in order to realize high-speed detection of isolated operation, the rate of change of the reactive power amount in the high sensitive range R21, R22 of FIG. 14 is increased, that is, the slope of the characteristic line L1 is increased. For this reason, as a result of the reaction of the fluctuation control device 24 of the system cycle in the steady state and outputting reactive power, depending on the reactive power amount and frequency, an allowable value of flicker (periodic fluctuation of voltage) (ΔV10 described below) ) Is assumed.

フリッカは、それら電力変動が注入されている電力系統に接続されている負荷、例えば、蛍光灯のちらつき、マイクロコンピュータの誤動作、モータの回転制御不能を発生させる原因となるおそれがある。また、フリッカは、電圧系統における電圧実効値の変動による照明のちらつき、となり、電力品質上の重要な問題となる。その管理指標の1つとして式(1)で示されるようなΔV10がある。   Flicker may cause a flicker of a load connected to the power system into which such power fluctuations are injected, for example, flickering of a fluorescent lamp, malfunction of a microcomputer, and inability to control the rotation of a motor. In addition, flicker causes flickering of illumination due to fluctuation of the effective voltage value in the voltage system, which is an important problem in power quality. As one of the management indexes, there is ΔV10 as shown by the equation (1).

Figure 2008259400
式(1)において、ΔVnは例えば図16で示すように、電圧動揺を周波数分析した結果得られる変動周波数fnの電圧変動成分の振れ(実効値)を示し、anは図17で示すちらつき視感度曲線における10Hzを1としたときの変動周波数fnに対応するちらつき視感度係数を示す。ΔV10はちらつき視感度曲線における10Hzの変動値である。このΔV10は所定の許容値と比較され、許容値以下ならば電力品質良好と判断し、許容値以上ならば不良と判断する。
特開平9−322554号公報 特願2006−225016号明細書および図面
Figure 2008259400
In equation (1), ΔVn represents the fluctuation (effective value) of the voltage fluctuation component of the fluctuation frequency fn obtained as a result of frequency analysis of the voltage fluctuation, for example, as shown in FIG. 16, and an represents the flicker visibility shown in FIG. The flicker visibility coefficient corresponding to the fluctuation frequency fn when 10 Hz in the curve is set to 1 is shown. ΔV10 is a fluctuation value of 10 Hz in the flicker visibility curve. This ΔV10 is compared with a predetermined allowable value, and if it is equal to or smaller than the allowable value, it is determined that the power quality is good, and if it is equal to or larger than the allowable value, it is determined as defective.
Japanese Patent Laid-Open No. 9-322554 Japanese Patent Application No. 2006-2225016 specification and drawings

したがって、本発明により解決すべき課題は、単独運転検出を高速で行う一方で、フリッカ問題を発生させる程度に電力変動が過大とならないよう電力変動のレベルを制御してフリッカを無くすか小さく抑制処理する一方、このフリッカ問題の解決に際してΔV10の規定を充足することである。   Therefore, the problem to be solved by the present invention is to perform processing for suppressing or eliminating flicker by controlling the level of power fluctuation so that the power fluctuation does not become excessive to the extent that flicker problems occur while performing isolated operation detection at high speed. On the other hand, ΔV10 is satisfied when the flicker problem is solved.

本発明による単独運転検出方法は、分散型電源が電力系統から切り離されて単独運転しているか否かを電力系統に電力注入して電力変動を起こして検出する方法において、現在の系統周期と過去の系統周期との偏差である周期偏差に基づいて電力系統に上記電力変動を起こすために注入する電力量(電力変動量)を算出するステップを含み、このステップは、電力系統の各変動周波数fnにおける電圧変動分ΔVnをちらつき視感度曲線における10Hzの変動値ΔV10に換算すると共にこの換算した変動値ΔV10がフリッカ対策の判定基準である許容値を満足するように上記算出を行う、ことを特徴とするものである。   An isolated operation detection method according to the present invention is a method for detecting whether a distributed power source is disconnected from an electric power system and operating independently, by injecting electric power into the electric power system and detecting power fluctuations. And calculating a power amount (power fluctuation amount) to be injected to cause the power fluctuation in the power system based on a period deviation which is a deviation from the system cycle, and this step includes each fluctuation frequency fn of the power system. The voltage fluctuation amount ΔVn is converted into a fluctuation value ΔV10 of 10 Hz in the flicker visibility curve, and the above calculation is performed so that the converted fluctuation value ΔV10 satisfies an allowable value that is a criterion for countermeasures against flicker. To do.

上記において電力変動を起こすための電力の注入は周期的、不定期的、等の任意でもよい。   In the above, the injection of electric power for causing the electric power fluctuation may be arbitrary, such as periodic or irregular.

電力変動は、無効電力変動、有効電力変動、高調波電力変動、等であり、特に限定されない。   The power fluctuation includes reactive power fluctuation, active power fluctuation, harmonic power fluctuation, and the like, and is not particularly limited.

現在の系統周期と過去の系統周期との偏差は現在と過去の系統周期それぞれの複数の系統周期を移動平均した偏差に限定しない。また、過去の系統周期は現在の系統周期から所定周期分だけ過去の系統周期である。   The deviation between the current system cycle and the past system cycle is not limited to a deviation obtained by moving and averaging a plurality of system cycles of the current and past system cycles. The past system cycle is a past system cycle by a predetermined cycle from the current system cycle.

上記許容値は、新規発電機設備では0.23V(202V換算では0.46V)、連系前の電圧フリッカを考慮した場合では0.45V(202V換算では0.9V)である。   The allowable value is 0.23V (0.46V in 202V conversion) for new generator equipment, and 0.45V (0.9V in 202V conversion) when considering voltage flicker before interconnection.

本発明によると、分散型電源の単独運転を高速で検出する場合に、電力変動を電力系統に注入する場合、変動値ΔV10がフリッカ対策の判定基準である許容値を超えないようにするので、その電力変動はフリッカが問題とならない値以下に抑制されて、上記フリッカ問題を発生するおそれがなくなると同時に、ΔV10規定を充足することができる。   According to the present invention, when the single operation of the distributed power source is detected at high speed, when the power fluctuation is injected into the power system, the fluctuation value ΔV10 does not exceed the allowable value that is the criterion for countermeasures against flicker. The power fluctuation is suppressed to a value that does not cause flicker, so that there is no possibility of causing the flicker problem, and at the same time, the ΔV10 regulation can be satisfied.

好ましくは、上記変動値ΔV10がフリッカ対策の判定基準である許容値を満足しない場合は、分散型電源の系統連系を停止することである。   Preferably, when the fluctuation value ΔV10 does not satisfy an allowable value that is a criterion for countermeasures against flicker, the grid interconnection of the distributed power source is stopped.

好ましくは、上記ステップは、上記周期偏差が0を中心とした偏差レンジで周期偏差変化に対する電力変動量の変化割合が小さい低感帯レンジと、上記周期偏差が低感帯レンジ外でかつ周期偏差変化に対する電力変動量の変化割合が大きい高感帯レンジとを設定する一方、上記低感帯レンジのレンジ幅を上記変動値ΔV10がフリッカ対策の判定基準である許容値を満足するように広狭に設定することである。低感帯レンジでの周期偏差は、高感帯レンジでの周期偏差より絶対値が小さい。低感帯レンジは周期偏差が0を中心としプラスとマイナスの周期偏差を含むものであり、このレンジ幅内での電力変動量の変化幅は小さくして単独運転検出の感度を低く設定する一方、高感帯レンジは周期偏差に対する電力変動量の変化幅は大きくして単独運転検出の感度を高く設定することができる。   Preferably, the step includes a low-sensitive zone range in which the period deviation is a deviation range centered at 0 and the change rate of the power fluctuation amount with respect to the periodic deviation change is small, and the periodic deviation is outside the low-sensitive band range and the periodic deviation. While setting the high sensitivity range where the change rate of the power fluctuation amount with respect to the change is large, the range width of the low sensitivity range is widened so that the variation value ΔV10 satisfies the allowable value that is the criterion for countermeasures against flicker. Is to set. The absolute value of the period deviation in the low band is smaller than that in the high band. The low-sensitive range has a cyclic deviation centered at 0 and includes positive and negative cyclic deviations. While the range of change in the power fluctuation amount within this range is small, the sensitivity of islanding detection is set low. In the high-sensitive zone range, the variation range of the power fluctuation amount with respect to the period deviation can be increased, and the sensitivity of the isolated operation detection can be set high.

この場合、より好ましくは、上記低感帯レンジを最大に設定しても上記変動値ΔV10がフリッカ対策の判定基準である許容値を満足しない場合は、分散型電源の系統連系を停止することである。   In this case, more preferably, if the fluctuation value ΔV10 does not satisfy the allowable value that is a criterion for countermeasures against flicker even when the low range is set to the maximum, the grid interconnection of the distributed power source is stopped. It is.

また、好ましくは、上記ステップは、上記周期偏差が0を中心とした偏差レンジで周期偏差変化に対する電力変動量の変化割合が小さい低感帯レンジと、上記周期偏差が低感帯レンジ外でかつ周期偏差変化に対する電力変動量の変化割合が大きい高感帯レンジとを設定する一方、上記低感帯レンジ内で周期偏差変化に対して注入する電力変動量を、上記変動値ΔV10がフリッカ対策の判定基準である許容値を満足するように、大小に設定することである。   Preferably, the step includes a low-sensitive range where the change rate of the power fluctuation amount with respect to the periodic deviation is small in a deviation range in which the periodic deviation is centered at 0, and the periodic deviation is outside the low sensitive range. While setting a high sensitive zone range in which the change rate of the power fluctuation amount with respect to the periodic deviation change is large, the fluctuation value ΔV10 is used as a countermeasure against flicker. It is to set the size so as to satisfy the allowable value that is the criterion.

この場合、より好ましくは、上記低感帯レンジ内の電力変動量を最小にしても上記変動値ΔV10がフリッカ対策の判定基準である許容値を満足しない場合は、分散型電源の系統連系を停止することである。   In this case, more preferably, if the fluctuation value ΔV10 does not satisfy the allowable value that is the criterion for countermeasures against flicker even when the amount of power fluctuation within the low sensitivity range is minimized, the grid interconnection of the distributed power source is changed. Is to stop.

好ましくは上記ステップは、上記周期偏差が0を中心とした偏差レンジであって周期偏差変化に対する電力変動量の変化割合が小さい低感帯レンジと、上記周期偏差が低感帯レンジ外であって周期偏差変化に対する電力変動量の変化割合が大きい高感帯レンジとを設定する一方、U相系統電圧とW相系統電圧それぞれから変動値ΔV10を算出すると共に、両変動値ΔV10の大きい方を選択し、選択した変動値ΔV10がフリッカ対策の判定基準である許容値を満足するように低感帯レンジのレンジ幅を広狭に、または、上記低感帯レンジ内で周期偏差変化に対して注入する電力変動量を大小に設定する。   Preferably, the step includes a low sensitivity range where the period deviation is a deviation range centered at 0 and a small change rate of the power fluctuation amount with respect to the period deviation change, and the period deviation is outside the low sensitivity range. While setting the high-sensitive range where the rate of change of the power fluctuation amount relative to the period deviation change is large, the fluctuation value ΔV10 is calculated from each of the U-phase system voltage and the W-phase system voltage, and the larger of both fluctuation values ΔV10 is selected. In addition, the range of the low sensitivity range is widened so that the selected fluctuation value ΔV10 satisfies the allowable value that is the criterion for countermeasures against flicker, or the change in the period deviation is injected within the low sensitivity range. Set the amount of power fluctuation to large or small.

本発明によれば、単独運転検出を高速で行うことができる一方、ΔV10規定を充足してフリッカを抑制することができる。   According to the present invention, isolated operation can be detected at high speed, while flicker can be suppressed by satisfying the ΔV10 rule.

以下、添付した図面を参照して、本発明の実施の形態に係る単独運転検出方法、その制御装置、単独運転検出装置および分散型電源システムを説明する。   Hereinafter, an isolated operation detection method, its control device, an isolated operation detection device, and a distributed power supply system according to embodiments of the present invention will be described with reference to the accompanying drawings.

(実施の形態1)
実施の形態1ではシステムとしては図11の分散型電源システムと同様である。図11の構成は前述したからその説明は略する。また、単独運転検出装置18は制御装置24を除き、図12と略同様である。実施の形態1では単独運転検出装置18において図1ないし図5を参照して説明する制御装置24の構成、動作に特徴を備える。図1は実施の形態1の制御装置24の回路図である。図1において、図12と対応する部分は同一の符号を付し、その同一の符号に係る部分の説明は上述したから略する。
(Embodiment 1)
In the first embodiment, the system is the same as the distributed power supply system of FIG. Since the configuration of FIG. 11 has been described above, its description is omitted. The isolated operation detection device 18 is substantially the same as that in FIG. 12 except for the control device 24. In the first embodiment, the isolated operation detection device 18 is characterized by the configuration and operation of the control device 24 described with reference to FIGS. 1 to 5. FIG. 1 is a circuit diagram of the control device 24 of the first embodiment. In FIG. 1, parts corresponding to those in FIG. 12 are denoted by the same reference numerals, and description of the parts related to the same reference numerals is omitted because it has been described above.

実施の形態1の単独運転検出方法は、現在の系統周期と過去の系統周期との偏差である周期偏差に基づいて電力系統に電力変動を起こすために注入する電力量(電力変動量)を算出するステップを含む。このステップは、電力系統の各変動周波数fnにおける電圧変動分ΔVnをちらつき視感度曲線における10Hzの変動値ΔV10に換算すると共にこの換算した変動値ΔV10がフリッカ対策の判定基準である許容値を満足するように上記現在の系統周期と過去の系統周期との偏差である周期偏差の算出を行うものである。   The islanding operation detection method of the first embodiment calculates the amount of power (power fluctuation amount) injected to cause power fluctuation in the power system based on the period deviation that is the deviation between the current system period and the past system period. Including the steps of: In this step, the voltage variation ΔVn at each variation frequency fn of the power system is converted into a variation value ΔV10 of 10 Hz in the flicker visibility curve, and the converted variation value ΔV10 satisfies an allowable value that is a criterion for countermeasures against flicker. Thus, the period deviation which is the deviation between the current system period and the past system period is calculated.

そして、実施の形態1では、低感帯レンジR1のレンジ幅を変動値ΔV10がフリッカ対策の判定基準である許容値を満足するように広狭に設定することを特徴とする。   The first embodiment is characterized in that the range width of the low-sensitive band range R1 is set to be wide so that the fluctuation value ΔV10 satisfies an allowable value that is a determination criterion for flicker countermeasures.

具体的には、実施の形態1では、図2で示す演算フローに従い低感帯レンジR1のレンジ幅を設定する低感帯レンジ幅設定部50と、フリッカ異常判定部51と、を備える。   Specifically, the first embodiment includes a low-sensitive band range width setting unit 50 that sets the range width of the low-sensitive band range R1 according to the calculation flow shown in FIG. 2, and a flicker abnormality determining unit 51.

低感帯レンジ幅設定部50は、系統電圧実効値計測部50a(演算フローのステップa)、ちらつき視感度曲線相当フィルタ50b(演算フローのステップb)、実効値演算部50c(演算フローのステップc)、および演算部50d(演算フローのステップd)を備えて構成されている。   The low-sensitive band range width setting unit 50 includes a system voltage effective value measurement unit 50a (calculation flow step a), a flicker visual sensitivity curve equivalent filter 50b (calculation flow step b), and an effective value calculation unit 50c (calculation flow step). c) and a calculation unit 50d (step d of the calculation flow).

系統電圧実効値計測部50aは系統電圧の動揺を周波数分析して電力系統の変動周波数fnにおける電圧変動分ΔVn(系統電圧の実効値の振れ)を計測する。   The system voltage effective value measuring unit 50a performs frequency analysis on the fluctuation of the system voltage, and measures the voltage fluctuation ΔVn (the fluctuation of the effective value of the system voltage) at the fluctuation frequency fn of the power system.

ちらつき視感度曲線相当フィルタ50bは、上記電圧変動分ΔVnを図3で示すちらつき視感度曲線により10Hzの変動値ΔV10に換算処理(フィルタ処理)する。   The flicker visual sensitivity curve equivalent filter 50b converts (filters) the voltage fluctuation ΔVn into a fluctuation value ΔV10 of 10 Hz using the flicker visual sensitivity curve shown in FIG.

図3でe1はちらつき視感度曲線、e2はフィルタ50bのフィルタ特性線を示す。このフィルタはバンドパスフィルタであり、フィルタ50bのフィルタ特性線e2を、系統連系規定(JEAC9701−2006)のちらつき視感度曲線e1よりも若干ゲインを高めにして電圧フリッカにマージンを持たせている。   In FIG. 3, e1 represents a flicker visibility curve, and e2 represents a filter characteristic line of the filter 50b. This filter is a bandpass filter, and the filter characteristic line e2 of the filter 50b is slightly higher than the flicker visibility curve e1 of the grid connection regulation (JEAC 9701-2006) so that a margin is provided for voltage flicker. .

実効値演算部50cは上記換算した変動値ΔV10の数秒間、実施の形態では5秒間の実効値を算出する。   The effective value calculation unit 50c calculates the effective value for several seconds of the converted fluctuation value ΔV10, in the embodiment, for 5 seconds.

演算部50dは上記実効変動値ΔV10がフリッカ対策の判定基準である許容値を超えないよう図4に従い低感帯レンジR1のレンジ幅を演算する。   The computing unit 50d computes the range width of the low-sensitive range R1 according to FIG. 4 so that the effective fluctuation value ΔV10 does not exceed the allowable value that is the criterion for countermeasures against flicker.

図4で横軸は、電圧偏差(ΔV10)、縦軸は低感帯レンジR1のレンジ幅である。上記許容値は、系統連系規定(JEAC9701−2006)に基づいて定めることができ、例えば新規発電機設備では0.23V(202V換算では0.46V)、連系前の電圧フリッカを考慮した場合では0.45V(202V換算では0.9V)である。   In FIG. 4, the horizontal axis represents the voltage deviation (ΔV10), and the vertical axis represents the range width of the low-sensitive range R1. The allowable value can be determined based on the grid connection regulations (JEAC 9701-2006). For example, 0.23V (0.46V in 202V conversion) for new generator equipment, and voltage flicker before connection is taken into consideration Is 0.45V (0.9V in terms of 202V).

実効値演算部50cは、図4の横軸の実効値処理を行ないその実効値処理結果を演算部50dに出力するようになっている。図4の横軸に関して、実効値演算部50cでは、5秒間の実効値演算を図4の横軸の電圧偏差(ΔV10)として求める。   The effective value calculation unit 50c performs the effective value processing on the horizontal axis in FIG. 4 and outputs the effective value processing result to the calculation unit 50d. With respect to the horizontal axis in FIG. 4, the effective value calculation unit 50 c calculates the effective value calculation for 5 seconds as the voltage deviation (ΔV10) on the horizontal axis in FIG. 4.

演算部50dにおいては、図4の一点鎖線で示すヒステリシス曲線W1では電圧偏差(ΔV10)が0.4〜0.45の間で増減しても低感帯レンジR1のレンジ幅を±0.01(±0.01は周期偏差0を中心としてレンジ幅がプラスとマイナス側に0.01あり、絶対値としてレンジ幅は0.02である。)の下限に維持し、電圧偏差(ΔV10)が0.45〜0.9の間で増減するときは低感帯レンジR1のレンジ幅を±0.001〜±0.007で増減に変動することにより、現在の低感帯レンジR1が、W1を上回るとW1にクリップさせる。   In the calculation unit 50d, even if the voltage deviation (ΔV10) increases or decreases between 0.4 and 0.45 in the hysteresis curve W1 indicated by the one-dot chain line in FIG. (± 0.01 means that the range width is 0.01 on the plus and minus sides with a period deviation of 0 as the center, and the range width is 0.02 as an absolute value), and the voltage deviation (ΔV10) is When increasing / decreasing between 0.45 and 0.9, the present low sensitive range R1 is changed to W1 by changing the range width of the low sensitive range R1 to ± 0.001 to ± 0.007. If it exceeds, W1 is clipped.

そして、電圧偏差(ΔV10)が一旦0.9になると、電圧偏差(ΔV10)が低下するときは、低感帯レンジR1のレンジ幅を±0.07に維持する。   Then, once the voltage deviation (ΔV10) becomes 0.9, when the voltage deviation (ΔV10) decreases, the range width of the low sensitivity range R1 is maintained at ± 0.07.

そして、電圧偏差(ΔV10)が0.85になると、電圧偏差(ΔV10)が増減するときは低感帯レンジR1のレンジ幅を±0.07〜±0.01で増減させる。   When the voltage deviation (ΔV10) becomes 0.85, when the voltage deviation (ΔV10) increases or decreases, the range width of the low-sensitive band range R1 is increased or decreased by ± 0.07 to ± 0.01.

すなわち、現在の低感帯レンジR1が、点線で示すヒステリシス曲線W2を下回るとW2にクリップするというヒステリシス動作で制御する。   That is, when the current low-sensitive band range R1 falls below the hysteresis curve W2 indicated by the dotted line, control is performed by a hysteresis operation in which the current low-sensitive range R1 is clipped to W2.

上記において、レンジ幅設定部50出力が無効電力量演算部40に低感帯レンジR1のレンジ幅設定信号として出力されるので、図5(a)(b)で示す周期偏差と無効電力量との関係を示す特性線L1に従い低感帯レンジR1のレンジ幅を図5(a)で示す±0.01から図5(b)で示す±0.07に設定することができる。   In the above, since the output of the range width setting unit 50 is output as the range width setting signal of the low-sensitive band range R1 to the reactive energy calculation unit 40, the periodic deviation and reactive energy shown in FIGS. In accordance with the characteristic line L1 indicating the above relationship, the range width of the low-sensitive band range R1 can be set from ± 0.01 shown in FIG. 5A to ± 0.07 shown in FIG.

図5(a)、図5(b)のいずれでも低感帯レンジR1内での周期偏差変化に対する注入無効電力量の変化幅(特性線L1の傾き)は同様である。   In both FIG. 5A and FIG. 5B, the change width (inclination of the characteristic line L1) of the injection reactive power amount with respect to the period deviation change in the low sensitivity range R1 is the same.

無効電力量演算部40は、周期偏差演算部38の演算結果で注入無効電力量を演算する場合に、レンジ幅設定部50のレンジ幅設定の結果を参照して注入無効電力量を演算する。すなわち、分散型電源の単独運転を高速で検出する場合に、無効電力を電力系統に注入する場合、変動値ΔV10がフリッカ対策の判定基準である許容値を超えないようにして、その無効電力注入量がフリッカ問題とならない量以下に抑制してΔV10規定を充足することができる。   When calculating the injection reactive power amount based on the calculation result of the period deviation calculation unit 38, the reactive power amount calculation unit 40 calculates the injection reactive power amount with reference to the range width setting result of the range width setting unit 50. That is, when the reactive power is injected into the power system when the single operation of the distributed power source is detected at high speed, the reactive power injection is performed so that the fluctuation value ΔV10 does not exceed the allowable value that is the criterion for countermeasures against flicker. It is possible to satisfy the ΔV10 regulation by suppressing the amount below an amount that does not cause a flicker problem.

なお、レンジ幅設定部50内の実効値演算部50cと、演算部50dそれぞれの演算出力をフリッカ異常判定部51に入力する。フリッカ異常判定部51においては、上記両演算部50c,50dそれぞれの演算出力から、低感帯レンジR1のレンジ幅を最大にして、上記低感帯レンジR1内で単位周期偏差当たりに注入する無効電力量を最小にしても、上記変動値ΔV10がフリッカ対策の判定基準である許容値を満足しないと判定(フリッカ異常判定)した場合は、連系リレー20,22をOFFにして分散型電源の系統連系を停止するよう制御する。   Note that the calculation outputs of the effective value calculation unit 50 c and the calculation unit 50 d in the range width setting unit 50 are input to the flicker abnormality determination unit 51. In the flicker abnormality determination unit 51, the range width of the low sensitivity band range R1 is maximized from the calculation outputs of both the calculation units 50c and 50d, and the invalidity is injected per unit period deviation within the low sensitivity band range R1. If it is determined that the fluctuation value ΔV10 does not satisfy the allowable value that is the criterion for countermeasures against flicker even when the amount of electric power is minimized (flicker abnormality determination), the interconnection relays 20 and 22 are turned off to turn off the distributed power supply. Control to stop grid connection.

以上説明した実施の形態1では、低感帯レンジR1のレンジ幅をΔV10で変化させることにより、電圧フリッカを許容値(ΔV10)以内に収めることができ、蛍光灯のちらつき等が発生しない。一方、系統電圧に変動がある場合は、低感帯レンジR1のレンジ幅を広くしても、発電電力と負荷電力との完全バランスを崩すことが可能であり、単独運転の検出時間に影響を与えることはない。また、低感帯レンジR1のレンジ幅を最大にしても、電圧フリッカを許容値(ΔV10)を超えている場合は、分散型電源の系統連系を停止する。   In the first embodiment described above, the voltage flicker can be kept within the allowable value (ΔV10) by changing the range width of the low-sensitive range R1 by ΔV10, and the flickering of the fluorescent lamp does not occur. On the other hand, if the system voltage fluctuates, it is possible to break the complete balance between the generated power and the load power even if the range of the low sensitivity range R1 is widened. Never give. In addition, even when the range width of the low-sensitive range R1 is maximized, if the voltage flicker exceeds the allowable value (ΔV10), the grid interconnection of the distributed power supply is stopped.

(実施の形態2)
実施の形態2ではシステムとしては図11の分散型電源システムと同様である。図11の構成は前述したからその説明は略する。また、単独運転検出装置18は制御装置24を除き、図12と略同様である。実施の形態2では単独運転検出装置18において図6ないし図11を参照して説明する制御装置24の構成、動作に特徴を備える。図6は実施の形態2の制御装置24の回路図である。図6において、図12と対応する部分は同一の符号を付し、その同一の符号に係る部分の説明は上述したから略する。
(Embodiment 2)
In the second embodiment, the system is the same as the distributed power supply system of FIG. Since the configuration of FIG. 11 has been described above, its description is omitted. The isolated operation detection device 18 is substantially the same as that in FIG. 12 except for the control device 24. The second embodiment is characterized by the configuration and operation of the control device 24 described with reference to FIGS. FIG. 6 is a circuit diagram of the control device 24 of the second embodiment. 6, portions corresponding to those in FIG. 12 are denoted by the same reference numerals, and description of the portions related to the same reference numerals is omitted because it has been described above.

実施の形態2では、図7で示す演算フローに従い演算する無効電力量(ゲイン)設定部60と、フリッカ異常判定部51と、を備えたことを特徴とする。   The second embodiment is characterized in that it includes a reactive power amount (gain) setting unit 60 that calculates according to the calculation flow shown in FIG. 7 and a flicker abnormality determination unit 51.

このゲイン設定部60は、系統電圧実効値計測部60a(演算フローのステップa1)、ちらつき視感度曲線相当フィルタ60b(演算フローのステップb1)、実効値演算部60c(演算フローのステップc1)、および演算部60d(演算フローのステップd1)を備えて構成されている。   The gain setting unit 60 includes a system voltage effective value measurement unit 60a (step a1 in the calculation flow), a flicker visibility curve equivalent filter 60b (step b1 in the calculation flow), an effective value calculation unit 60c (step c1 in the calculation flow), And a calculation unit 60d (step d1 of the calculation flow).

系統電圧実効値計測部60aは系統電圧の動揺を周波数分析して電力系統の変動周波数fnにおける電圧変動分ΔVn(系統電圧の実効値の振れ)を計測する。   The system voltage effective value measuring unit 60a performs frequency analysis on the fluctuation of the system voltage and measures a voltage variation ΔVn (a fluctuation in the effective value of the system voltage) at the fluctuation frequency fn of the power system.

ちらつき視感度曲線相当フィルタ60bは、上記電圧変動分ΔVnを実施の形態1で示すちらつき視感度曲線により10Hzの変動値ΔV10に換算処理(フィルタ処理)する。   The flicker visual sensitivity curve equivalent filter 60b converts (filters) the voltage fluctuation amount ΔVn into a fluctuation value ΔV10 of 10 Hz by the flicker visual sensitivity curve shown in the first embodiment.

実効値演算部60cは上記換算した変動値ΔV10の数秒間、実施の形態2では5秒間の実効値を算出する。   The effective value calculation unit 60c calculates the effective value for several seconds of the converted fluctuation value ΔV10, and for 5 seconds in the second embodiment.

演算部60dは上記実効変動値ΔV10がフリッカ対策の判定基準である許容値を超えないよう図8に従う無効電力量(ゲイン)を演算する。図8で横軸は、電圧偏差(ΔV10)、縦軸は無効電力量(ゲイン)である。   The calculation unit 60d calculates a reactive power amount (gain) according to FIG. 8 so that the effective fluctuation value ΔV10 does not exceed an allowable value that is a criterion for countermeasures against flicker. In FIG. 8, the horizontal axis represents voltage deviation (ΔV10), and the vertical axis represents reactive power (gain).

上記許容値は、実施の形態1と同様である。   The allowable value is the same as in the first embodiment.

実効値演算部60cは、図8の横軸の実効値処理を行ないその実効値処理結果を無効電力量(ゲイン)演算部60dに出力するようになっている。図8の横軸に関して、実効値演算部60cでは、5秒間の実効値演算を図8の横軸の電圧偏差(ΔV10)として求める。   The effective value calculation unit 60c performs effective value processing on the horizontal axis of FIG. 8 and outputs the effective value processing result to the reactive power (gain) calculation unit 60d. With respect to the horizontal axis in FIG. 8, the effective value calculation unit 60c calculates the effective value calculation for 5 seconds as the voltage deviation (ΔV10) on the horizontal axis in FIG.

演算部60dにおいては、図8の一点鎖線で示すヒステリシス曲線W1では電圧偏差(ΔV10)が0.4〜0.45の間で増減しても無効電力量(ゲイン)を300に維持し、電圧偏差(ΔV10)が0.45〜0.9の間で増減するときは無効電力量(ゲイン)を0〜300で増減に変動することにより、現在の無効電力量(ゲイン)が、W1を上回るとW1にクリップさせる。そして、電圧偏差(ΔV10)が一旦0.9になると、電圧偏差(ΔV10)が低下するときは、無効電力量(ゲイン)を0に維持する。そして、電圧偏差(ΔV10)が0.9になると、電圧偏差(ΔV10)が0.85〜0.9で増減するときは無効電力量(ゲイン)を0に維持し、電圧偏差(ΔV10)が0.85になると、電圧偏差(ΔV10)が0.4〜0.85で無効電力量(ゲイン)を0〜300で変化させる。   In the calculation unit 60d, the reactive power (gain) is maintained at 300 even if the voltage deviation (ΔV10) increases or decreases between 0.4 and 0.45 in the hysteresis curve W1 indicated by the one-dot chain line in FIG. When the deviation (ΔV10) increases or decreases between 0.45 and 0.9, the current reactive power (gain) exceeds W1 by changing the reactive power (gain) from 0 to 300. And clip to W1. Then, once the voltage deviation (ΔV10) reaches 0.9, the reactive energy (gain) is maintained at 0 when the voltage deviation (ΔV10) decreases. When the voltage deviation (ΔV10) becomes 0.9, the reactive energy (gain) is maintained at 0 when the voltage deviation (ΔV10) increases or decreases from 0.85 to 0.9, and the voltage deviation (ΔV10) is At 0.85, the voltage deviation (ΔV10) is 0.4 to 0.85, and the reactive power (gain) is changed from 0 to 300.

上記において、無効電力量(ゲイン)設定部60出力が無効電力量演算部40に低感帯レンジR1での無効電力量(ゲイン)の設定信号として出力されるので、図9(a)(b)で示す特性線L1に従い無効電力量(ゲイン)を図9(a)で示す無効電力量(ゲイン)から図9(b)で示す無効電力量(ゲイン)に設定することができる。いずれのゲインでもΔV10の規定を満足している。なお、低感帯レンジR1のレンジ幅を図9(a)も図9(b)の場合も同一に維持している。図9(a)と図9(b)の低感帯レンジR1のレンジ幅は同一であるが、そのレンジ幅における無効電力量(ゲイン)は図9(a)では周期偏差0から周期偏差の絶対値が大きくなるに従い大きくなるが、図9(b)では無効電力量(ゲイン)の大きさは周期偏差0から周期偏差の絶対値が大きくなっても変化しない。すなわち、図9(a)と図9(b)では特性線L1の傾きが変化する。ただし図9(a)、図9(b)のゲイン変化は一例である。   In the above description, the reactive power amount (gain) setting unit 60 output is output to the reactive power amount calculation unit 40 as a reactive power amount (gain) setting signal in the low-sensitive band range R1, so FIGS. ), The reactive power amount (gain) can be set from the reactive power amount (gain) shown in FIG. 9A to the reactive power amount (gain) shown in FIG. 9B. All gains satisfy the definition of ΔV10. Note that the range of the low-sensitive range R1 is maintained the same in both the case of FIG. 9A and FIG. 9B. 9 (a) and 9 (b) have the same range width, but the reactive power amount (gain) in the range width in FIG. 9 (a) is from cyclic deviation 0 to cyclic deviation. Although the absolute value increases as the absolute value increases, in FIG. 9B, the magnitude of the reactive power amount (gain) does not change even if the absolute value of the periodic deviation increases from zero. That is, in FIG. 9A and FIG. 9B, the slope of the characteristic line L1 changes. However, the gain change in FIGS. 9A and 9B is an example.

無効電力量演算部40は、周期偏差演算部38の周期偏差の演算結果で注入無効電力量を演算する場合に、無効電力量(ゲイン)設定部60の設定を参照して注入無効電力量を演算する。すなわち、分散型電源の単独運転を高速で検出する場合に、無効電力を電力系統に注入する場合、変動値ΔV10がフリッカ対策の判定基準である許容値を超えないようにして、その注入無効電力量がフリッカ問題とならない量以下に抑制してΔV10規定を充足することができる。   The reactive power amount calculation unit 40 refers to the setting of the reactive power amount (gain) setting unit 60 and calculates the injection reactive power amount when calculating the injection reactive power amount based on the calculation result of the periodic deviation of the periodic deviation calculation unit 38. Calculate. That is, when reactive power is injected into the power system when single operation of the distributed power source is detected at high speed, the injection reactive power is set such that the fluctuation value ΔV10 does not exceed the allowable value that is the criterion for countermeasures against flicker. It is possible to satisfy the ΔV10 regulation by suppressing the amount below an amount that does not cause a flicker problem.

フリッカ異常判定部51は、無効電力量設定部60の実効値演算部60cと、演算部60dそれぞれの演算出力に基づいて、低感帯レンジR1のレンジ幅を最大にして低感帯レンジR1内で単位周期偏差当たりに注入する無効電力変動量を最小にしても、上記変動値ΔV10がフリッカ対策の判定基準である許容値を満足しないと判定(フリッカ異常判定)した場合は、連系リレー20,22をOFFにして分散型電源の系統連系を停止するよう制御する。   The flicker abnormality determination unit 51 maximizes the range width of the low-sensitive band range R1 based on the calculation values of the effective value calculating unit 60c and the calculating unit 60d of the reactive power amount setting unit 60, and within the low-sensitive band range R1. If it is determined that the fluctuation value ΔV10 does not satisfy the allowable value, which is a criterion for flicker countermeasures, even if the amount of reactive power fluctuation injected per unit cycle deviation is minimized, the interconnection relay 20 , 22 is turned off and control is performed to stop the grid interconnection of the distributed power source.

以上説明した実施の形態2では、無効電力量(ゲイン)をΔV10で変化させることにより、電圧フリッカを許容値(ΔV10)以内に収めることができ、蛍光灯のちらつき等が発生しない。一方、系統電圧に変動がある場合は、同一のレンジ幅での無効電力量(ゲイン)を小さくしても、発電電力と負荷電力との完全バランスを崩すことが可能であり、単独運転の検出時間に影響を与えることはない。また、無効電力量を最小の例えば0にしても、電圧フリッカが許容値(ΔV10)を超えている場合は、分散型電源の系統連系を停止する。   In the second embodiment described above, by changing the reactive power amount (gain) by ΔV10, the voltage flicker can be kept within the allowable value (ΔV10), and the flickering of the fluorescent lamp does not occur. On the other hand, if there is a fluctuation in the system voltage, it is possible to break the complete balance between the generated power and the load power even if the reactive power amount (gain) in the same range width is reduced. There is no impact on time. Further, even if the reactive power amount is set to a minimum, for example, 0, when the voltage flicker exceeds the allowable value (ΔV10), the grid interconnection of the distributed power supply is stopped.

(実施の形態3)
図10に実施の形態3に係る制御装置24のブロック構成を示す。この図10で示す制御装置24では、演算部70として、レンジ幅設定部50と、無効電力量(ゲイン)設定部60と、を備えたものであり、ΔV10対応レンジ幅設定部50ではU相の系統電圧実効値計測部50a、ちらつき視感度曲線相当フィルタ50b、実効値演算部50c、を備え、ΔV10対応無効電力量設定部60はW相の系統電圧実効値計測部60a、ちらつき視感度曲線相当フィルタ60b、実効値演算部60c、を備えている。また、制御装置24は、選択部70a、演算部70b、およびフリッカ異常判定部51を備える。
(Embodiment 3)
FIG. 10 shows a block configuration of the control device 24 according to the third embodiment. The control device 24 shown in FIG. 10 includes a range width setting unit 50 and a reactive power (gain) setting unit 60 as the calculation unit 70, and the ΔV10 compatible range width setting unit 50 has a U phase. System voltage effective value measuring unit 50a, flicker visual sensitivity curve equivalent filter 50b, and effective value calculating unit 50c. ΔV10 corresponding reactive energy setting unit 60 is a W-phase system voltage effective value measuring unit 60a, flicker visual sensitivity curve. An equivalent filter 60b and an effective value calculator 60c are provided. The control device 24 includes a selection unit 70a, a calculation unit 70b, and a flicker abnormality determination unit 51.

以上の構成において、レンジ幅設定部50と、無効電力量(ゲイン)設定部60それぞれでU相系統電圧とW相系統電圧それぞれから変動値ΔV10を算出し、選択部70aで両変動値ΔV10の大きい方を選択し、演算部70bで選択した変動値ΔV10がフリッカ対策の判定基準である許容値を満足するように低感帯レンジのレンジ幅を広狭に、または、上記低感帯レンジ内で周期偏差変化に対して注入する電力変動量を大小に設定する。   In the above configuration, the variation value ΔV10 is calculated from each of the U-phase system voltage and the W-phase system voltage by the range width setting unit 50 and the reactive energy (gain) setting unit 60, respectively, and the selection unit 70a calculates both the variation values ΔV10. The larger one is selected, and the range width of the low sensitivity range is widened so that the fluctuation value ΔV10 selected by the calculation unit 70b satisfies the allowable value that is a criterion for flicker countermeasures, or within the low sensitivity range. The amount of power fluctuation to be injected with respect to the period deviation change is set to a large or small value.

また、フリッカ異常判定部51においては、選択部70aと演算部70bそれぞれの出力に基づいて、低感帯レンジR1のレンジ幅を最大にして低感帯レンジR1内で単位周期偏差当たりに注入する無効電力変動量を最小にしても、上記変動値ΔV10がフリッカ対策の判定基準である許容値を満足しないと判定(フリッカ異常判定)した場合は、連系リレー20,22をOFFにして分散型電源の系統連系を停止するよう制御する。   Further, in the flicker abnormality determination unit 51, based on the outputs of the selection unit 70a and the calculation unit 70b, the range width of the low sensitive band range R1 is maximized and injected per unit period deviation within the low sensitive band range R1. Even if the reactive power fluctuation amount is minimized, if it is determined that the fluctuation value ΔV10 does not satisfy the allowable value, which is a criterion for countermeasures against flicker (flicker abnormality determination), the interconnection relays 20 and 22 are turned off and distributed. Control to stop the grid connection of the power supply.

(実施の形態4)
図18に実施の形態4に係る制御装置24のブロック構成を示す。この図18で示す制御装置24では、ΔV10演算部80として、系統電圧実効値計測部80aと、ちらつき視感度曲線相当フィルタ80b、実効値演算部80cと、を備えると共に、ΔV10演算部80出力が入力されるフリッカ異常判定部51と、を備えている。
(Embodiment 4)
FIG. 18 shows a block configuration of the control device 24 according to the fourth embodiment. The control device 24 shown in FIG. 18 includes a system voltage effective value measuring unit 80a, a flicker visibility curve equivalent filter 80b, and an effective value calculating unit 80c as the ΔV10 calculating unit 80, and an output of the ΔV10 calculating unit 80 is provided. And a flicker abnormality determination unit 51 to be input.

以上の構成において、フリッカ異常判定部51においては、ΔV10演算部80で算出した変動値ΔV10がフリッカ対策の判定基準である許容値を満足しないと判定(フリッカ異常判定)した場合は、連系リレー20,22をOFFにして分散型電源の系統連系を停止するよう制御する。   In the above configuration, the flicker abnormality determination unit 51 determines that the fluctuation value ΔV10 calculated by the ΔV10 calculation unit 80 does not satisfy the allowable value that is the determination criterion for flicker countermeasures (flicker abnormality determination). 20 and 22 are turned OFF and control is performed to stop the grid interconnection of the distributed power source.

以上によりいずれの実施の形態でも、制御装置24から電力系統に電力変動を起こすための無効電力をΔV10を満足しつつ注入して単独運転検出を高速に行うことができる。   As described above, in any of the embodiments, reactive power for causing power fluctuation from the control device 24 to the power system can be injected while satisfying ΔV10, and the isolated operation can be detected at high speed.

なお、実施の形態4として、制御装置24においては、上記変動値ΔV10を算出する機能を有し、変動値ΔV10が許容値を超えた場合に系統連系を停止するように構成してもよい。   As the fourth embodiment, the control device 24 may be configured to have a function of calculating the fluctuation value ΔV10 and to stop the grid interconnection when the fluctuation value ΔV10 exceeds an allowable value. .

図1は本発明の実施の形態1の単独運転検出装置における制御装置の回路図である。FIG. 1 is a circuit diagram of a control device in the isolated operation detection device of Embodiment 1 of the present invention. 図2は図1の制御装置の低感帯レンジ演算部の演算フロー図である。FIG. 2 is a calculation flowchart of the low-sensitive band range calculation unit of the control device of FIG. 図3は図1の制御装置内部のちらつき視感度曲線相当のフィルタを説明するための図である。FIG. 3 is a diagram for explaining a filter corresponding to the flickering visibility curve inside the control device of FIG. 図4は図1の制御装置の動作説明に供するもので電圧偏差(ΔV10)対低感帯レンジとの関係を示す図である。FIG. 4 is used for explaining the operation of the control device of FIG. 1 and is a diagram showing the relationship between the voltage deviation (ΔV10) and the low sensitivity range. 図5(a)は周期偏差対無効電力量との関係を示すもので低感帯レンジR1が狭い図、図5(b)は同低感帯レンジR1が広い図である。FIG. 5A shows the relationship between the period deviation and the reactive energy, and the low sensitive range R1 is narrow, and FIG. 5B is the wide sensitive range R1. 図6は本発明の実施の形態2の単独運転検出装置における制御装置の回路図である。FIG. 6 is a circuit diagram of a control device in the isolated operation detection device according to the second embodiment of the present invention. 図7は図6の制御装置の低感帯レンジ演算部の演算フロー図である。FIG. 7 is a calculation flowchart of the low-sensitive range calculation unit of the control device of FIG. 図8は図6の制御装置の動作説明に供するもので電圧偏差(ΔV10)対低感帯レンジとの関係を示す図である。FIG. 8 is used to explain the operation of the control device of FIG. 6 and is a diagram showing the relationship between the voltage deviation (ΔV10) and the low sensitivity range. 図9(a)は周期偏差対無効電力量との関係を示すもので無効電力量の変化割合が大きい図、図9(b)は同無効電力量の変化割合が小さい図である。FIG. 9A shows the relationship between the periodic deviation and the reactive power amount, and shows a large change rate of the reactive power amount, and FIG. 9B shows a small change rate of the reactive power amount. 図10は本発明の実施の形態3の単独運転検出装置における制御装置の回路図である。FIG. 10 is a circuit diagram of a control device in the isolated operation detection device according to the third embodiment of the present invention. 図11は本発明の各実施の形態に係る単独運転検出方法が適用される分散型電源と単独運転検出装置とからなる分散型電源システムの構成を示す図である。FIG. 11 is a diagram showing a configuration of a distributed power supply system including a distributed power supply and an isolated operation detection device to which the isolated operation detection method according to each embodiment of the present invention is applied. 図12は図11の単独運転検出装置内の制御装置の回路図である。FIG. 12 is a circuit diagram of a control device in the isolated operation detection device of FIG. 図13は周期偏差を演算の説明に供する図である。FIG. 13 is a diagram for explaining the calculation of the period deviation. 図14は周期偏差対無効電力量との関係を示す図である。FIG. 14 is a diagram illustrating the relationship between the period deviation and the reactive power amount. 図15は本発明の各実施の形態に係る単独運転検出方法が適用される分散型電源と単独運転検出装置とからなる他の分散型電源システムの構成を示す図である。FIG. 15 is a diagram showing a configuration of another distributed power supply system including a distributed power supply and an isolated operation detection device to which the isolated operation detection method according to each embodiment of the present invention is applied. 図16はフリッカ変動電圧の説明に供する図である。FIG. 16 is a diagram for explaining the flicker fluctuation voltage. 図17はちらつき視感度係数の説明に供する図である。FIG. 17 is a diagram for explaining the flicker visibility coefficient. 図18は本発明の実施の形態4の単独運転検出装置における制御装置の回路図である。FIG. 18 is a circuit diagram of a control device in the isolated operation detection device according to the fourth embodiment of the present invention.

符号の説明Explanation of symbols

10 分散型電源システム
12 分散型電源
14 電力系統
16 パワーコンディショナ
18 単独運転検出装置
DESCRIPTION OF SYMBOLS 10 Distributed type power supply system 12 Distributed type power supply 14 Electric power system 16 Power conditioner 18 Independent operation detection apparatus

Claims (11)

分散型電源が電力系統から切り離されて単独運転しているか否かを電力系統に電力変動を起こして検出する方法において、
現在の系統周期と過去の系統周期との偏差である周期偏差に基づいて電力系統に上記電力変動を起こすために注入する電力量(電力変動量)を算出するステップを含み、
このステップは、電力系統の各変動周波数fnにおける電圧変動分ΔVnをちらつき視感度曲線における10Hzの変動値ΔV10に換算すると共にこの換算した変動値ΔV10がフリッカ対策の判定基準である許容値を満足するように上記算出を行う、ことを特徴とする単独運転検出方法。
In the method of detecting whether the distributed power source is disconnected from the power system and operating independently, by causing a power fluctuation in the power system,
Calculating a power amount (power fluctuation amount) to be injected to cause the power fluctuation in the power system based on a period deviation which is a deviation between a current system period and a past system period,
In this step, the voltage fluctuation ΔVn at each fluctuation frequency fn of the power system is converted into a fluctuation value ΔV10 of 10 Hz in the flicker visibility curve, and this converted fluctuation value ΔV10 satisfies an allowable value that is a criterion for countermeasures against flicker. The above-mentioned calculation is performed as described above.
上記変動値ΔV10がフリッカ対策の判定基準である許容値を満足しない場合は、分散型電源の系統連系を停止する、ことを特徴とする請求項1に記載の単独運転検出方法。   2. The islanding operation detection method according to claim 1, wherein when the fluctuation value ΔV <b> 10 does not satisfy an allowable value that is a criterion for countermeasures against flicker, the grid interconnection of the distributed power source is stopped. 上記ステップは、上記周期偏差が0を中心とした偏差レンジであって周期偏差変化に対する電力変動量の変化割合が小さい低感帯レンジと、上記周期偏差が低感帯レンジ外であって周期偏差変化に対する電力変動量の変化割合が大きい高感帯レンジとを設定する一方、
上記低感帯レンジのレンジ幅を上記変動値ΔV10がフリッカ対策の判定基準である許容値を満足するように広狭に設定する、ことを特徴とする請求項1に記載の単独運転検出方法。
The step includes a low-sensitive range where the periodic deviation is a deviation range centered at 0 and the rate of change of the power fluctuation amount relative to the periodic deviation is small, and the periodic deviation is outside the low-sensitive range and the periodic deviation While setting the high-sensitive range with a large change rate of the power fluctuation amount to the change,
2. The islanding operation detection method according to claim 1, wherein the range of the low-sensitive range is set so that the fluctuation value ΔV <b> 10 satisfies an allowable value that is a criterion for countermeasures against flicker.
上記低感帯レンジのレンジ幅を最大に設定しても上記変動値ΔV10がフリッカ対策の判定基準である許容値を満足しない場合は、分散型電源の系統連系を停止する、ことを特徴とする請求項3に記載の単独運転検出方法。   If the fluctuation value ΔV10 does not satisfy the allowable value that is a criterion for flicker countermeasures even when the range of the low-sensitive range is set to the maximum, the grid interconnection of the distributed power supply is stopped. The isolated operation detection method according to claim 3. 上記ステップは、上記周期偏差が0を中心とした偏差レンジであって周期偏差変化に対する電力変動量の変化割合が小さい低感帯レンジと、上記周期偏差が低感帯レンジ外であって周期偏差変化に対する電力変動量の変化割合が大きい高感帯レンジとを設定する一方、
上記低感帯レンジ内で周期偏差変化に対して注入する電力変動量を、上記変動値ΔV10がフリッカ対策の判定基準である許容値を満足するように、大小に設定する、ことを特徴とする請求項1に記載の単独運転検出方法。
The step includes a low-sensitive range where the periodic deviation is a deviation range centered at 0 and the rate of change of the power fluctuation amount relative to the periodic deviation is small, and the periodic deviation is outside the low-sensitive range and the periodic deviation While setting the high-sensitive range with a large change rate of the power fluctuation amount to the change,
The amount of power fluctuation injected with respect to the period deviation change within the low sensitivity range is set to be large or small so that the fluctuation value ΔV10 satisfies an allowable value that is a criterion for countermeasures against flicker. The islanding operation detection method according to claim 1.
上記低感帯レンジ内で単位周期偏差当たりに注入する電力変動量を最小にしても上記変動値ΔV10がフリッカ対策の判定基準である許容値を満足しない場合は、分散型電源の系統連系を停止する、ことを特徴とする請求項5に記載の単独運転検出方法。   If the fluctuation value ΔV10 does not satisfy the allowable value, which is a criterion for countermeasures against flicker, even if the amount of power fluctuation injected per unit period deviation is minimized within the low sensitivity range, the grid connection of the distributed power source is set. The isolated operation detection method according to claim 5, wherein the operation is stopped. 上記ステップは、上記周期偏差が0を中心とした偏差レンジであって周期偏差変化に対する電力変動量の変化割合が小さい低感帯レンジと、上記周期偏差が低感帯レンジ外であって周期偏差変化に対する電力変動量の変化割合が大きい高感帯レンジとを設定する一方、
U相系統電圧とW相系統電圧それぞれから変動値ΔV10を算出すると共に、両変動値ΔV10の大きい方を選択し、選択した変動値ΔV10がフリッカ対策の判定基準である許容値を満足するように低感帯レンジのレンジ幅を広狭に、または、上記低感帯レンジ内で周期偏差変化に対して注入する電力変動量を大小に設定する、ことを特徴とする請求項1に記載の単独運転検出方法。
The step includes a low-sensitive range where the periodic deviation is a deviation range centered at 0 and the rate of change of the power fluctuation amount relative to the periodic deviation is small, and the periodic deviation is outside the low-sensitive range and the periodic deviation While setting the high-sensitive range with a large change rate of the power fluctuation amount to the change,
The fluctuation value ΔV10 is calculated from each of the U-phase system voltage and the W-phase system voltage, and the larger one of the two fluctuation values ΔV10 is selected so that the selected fluctuation value ΔV10 satisfies an allowable value that is a criterion for countermeasures against flicker. 2. The single operation according to claim 1, wherein the range width of the low sensitivity band range is set to be wide or narrow, or the amount of power fluctuation to be injected with respect to the period deviation change within the low sensitivity range is set to be large or small. Detection method.
分散型電源が電力系統から切り離されて単独運転しているか否かを検出する単独運転検出装置に対してその検出動作を制御する制御装置において、系統周期の現在と過去の系統周期の偏差(周期偏差)に基づいて電力系統に注入する電力変動ゲインを算出する手段を含み、この手段は、電力系統の各変動周波数fnにおける電圧変動分ΔVnをちらつき視感度曲線における10Hzの変動値ΔV10に換算すると共にこの換算した変動値ΔV10がフリッカ対策の判定基準である許容値を満足するように上記算出を行う、ことを特徴とする制御装置。   In the control device that controls the detection operation for the isolated operation detection device that detects whether the distributed power source is disconnected from the power system and operated independently, the deviation between the current system cycle and the past system cycle (cycle A means for calculating a power fluctuation gain to be injected into the power system based on the deviation), and this means converts a voltage fluctuation amount ΔVn at each fluctuation frequency fn of the power system to a fluctuation value ΔV10 of 10 Hz in the flicker sensitivity curve. In addition, the control device performs the calculation so that the converted fluctuation value ΔV10 satisfies an allowable value that is a criterion for countermeasures against flicker. 上記手段をソフトウエアプログラムを備えたマイクロコンピュータにより構成した、ことを特徴とする請求項8に記載の制御装置。   9. The control apparatus according to claim 8, wherein the means is constituted by a microcomputer provided with a software program. 分散型電源が電力系統から切り離されて単独運転しているか否かを検出する単独運転検出装置において、請求項8または9に記載の制御装置を備える、ことを特徴とする単独運転検出装置。   An isolated operation detection device for detecting whether or not a distributed power source is isolated from an electric power system and operated independently, comprising the control device according to claim 8 or 9, comprising an isolated operation detection device. 分散型電源と、この分散型電源が電力系統から切り離されて単独運転しているか否かを検出する単独運転検出装置とを備える分散型電源システムにおいて、この単独運転検出装置が請求項10に記載の単独運転検出装置である、ことを特徴とする分散型電源システム。   The distributed operation system comprising: a distributed power supply; and an isolated operation detection device that detects whether or not the distributed power supply is isolated from the power system and operates independently. A distributed power supply system characterized by being a single operation detection device.
JP2007305290A 2007-03-09 2007-11-27 Isolated operation detection method, distributed power supply isolated operation detection control device, isolated operation detection device, and distributed power supply system Active JP4656131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007305290A JP4656131B2 (en) 2007-03-09 2007-11-27 Isolated operation detection method, distributed power supply isolated operation detection control device, isolated operation detection device, and distributed power supply system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007059796 2007-03-09
JP2007305290A JP4656131B2 (en) 2007-03-09 2007-11-27 Isolated operation detection method, distributed power supply isolated operation detection control device, isolated operation detection device, and distributed power supply system

Publications (2)

Publication Number Publication Date
JP2008259400A true JP2008259400A (en) 2008-10-23
JP4656131B2 JP4656131B2 (en) 2011-03-23

Family

ID=39982414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007305290A Active JP4656131B2 (en) 2007-03-09 2007-11-27 Isolated operation detection method, distributed power supply isolated operation detection control device, isolated operation detection device, and distributed power supply system

Country Status (1)

Country Link
JP (1) JP4656131B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014003743A (en) * 2012-06-15 2014-01-09 Toshiba It & Control Systems Corp Islanding operation detection method and islanding operation detection device
JP2015180122A (en) * 2014-03-18 2015-10-08 オムロン株式会社 Controller, power converter, power supply system, program, and control method
JP2015180123A (en) * 2014-03-18 2015-10-08 オムロン株式会社 Controller, power converter, power supply system, program, and control method
JP2016127727A (en) * 2015-01-06 2016-07-11 田淵電機株式会社 Power factor variable control device and control method for power conditioner
JP2016131441A (en) * 2015-01-13 2016-07-21 オムロン株式会社 Isolated operation detector, controller, power conditioner, power supply system, and isolated operation detection method
JP6086271B1 (en) * 2016-01-12 2017-03-01 富士電機株式会社 Isolated operation detection device
JP2017093020A (en) * 2015-11-02 2017-05-25 オムロン株式会社 Independent operation detector, controller, power conditioner, power supply system and independent operation detection method
JP2017093025A (en) * 2015-11-02 2017-05-25 オムロン株式会社 Independent operation detector, controller, power conditioner, power supply system and independent operation detection method
JP2017143670A (en) * 2016-02-10 2017-08-17 一般財団法人電力中央研究所 Control system for distributed power supply converter
JP2017163768A (en) * 2016-03-11 2017-09-14 シャープ株式会社 Power conversion equipment and control method therefor
JP2017189041A (en) * 2016-04-06 2017-10-12 三菱電機株式会社 Power Conditioner
JP2018068014A (en) * 2016-10-18 2018-04-26 シャープ株式会社 Individual operation detection device and power conditioner
JP2020145835A (en) * 2019-03-06 2020-09-10 パナソニックIpマネジメント株式会社 Power conversion device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0870534A (en) * 1994-08-26 1996-03-12 Sanyo Electric Co Ltd Single-operation detector
JP2000358331A (en) * 1999-06-14 2000-12-26 Meidensha Corp Individual operation detector for synchronous generator
JP2001298865A (en) * 2000-04-12 2001-10-26 Nissin Electric Co Ltd Operation monitoring device for dispersed power source

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0870534A (en) * 1994-08-26 1996-03-12 Sanyo Electric Co Ltd Single-operation detector
JP2000358331A (en) * 1999-06-14 2000-12-26 Meidensha Corp Individual operation detector for synchronous generator
JP2001298865A (en) * 2000-04-12 2001-10-26 Nissin Electric Co Ltd Operation monitoring device for dispersed power source

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014003743A (en) * 2012-06-15 2014-01-09 Toshiba It & Control Systems Corp Islanding operation detection method and islanding operation detection device
JP2015180122A (en) * 2014-03-18 2015-10-08 オムロン株式会社 Controller, power converter, power supply system, program, and control method
JP2015180123A (en) * 2014-03-18 2015-10-08 オムロン株式会社 Controller, power converter, power supply system, program, and control method
JP2016127727A (en) * 2015-01-06 2016-07-11 田淵電機株式会社 Power factor variable control device and control method for power conditioner
JP2016131441A (en) * 2015-01-13 2016-07-21 オムロン株式会社 Isolated operation detector, controller, power conditioner, power supply system, and isolated operation detection method
JP2017093020A (en) * 2015-11-02 2017-05-25 オムロン株式会社 Independent operation detector, controller, power conditioner, power supply system and independent operation detection method
JP2017093025A (en) * 2015-11-02 2017-05-25 オムロン株式会社 Independent operation detector, controller, power conditioner, power supply system and independent operation detection method
JP6086271B1 (en) * 2016-01-12 2017-03-01 富士電機株式会社 Isolated operation detection device
JP2017127044A (en) * 2016-01-12 2017-07-20 富士電機株式会社 Isolated operation detector
JP2017143670A (en) * 2016-02-10 2017-08-17 一般財団法人電力中央研究所 Control system for distributed power supply converter
JP2017163768A (en) * 2016-03-11 2017-09-14 シャープ株式会社 Power conversion equipment and control method therefor
JP2017189041A (en) * 2016-04-06 2017-10-12 三菱電機株式会社 Power Conditioner
JP2018068014A (en) * 2016-10-18 2018-04-26 シャープ株式会社 Individual operation detection device and power conditioner
JP2020145835A (en) * 2019-03-06 2020-09-10 パナソニックIpマネジメント株式会社 Power conversion device
JP7190662B2 (en) 2019-03-06 2022-12-16 パナソニックIpマネジメント株式会社 power converter

Also Published As

Publication number Publication date
JP4656131B2 (en) 2011-03-23

Similar Documents

Publication Publication Date Title
JP4656131B2 (en) Isolated operation detection method, distributed power supply isolated operation detection control device, isolated operation detection device, and distributed power supply system
JP5893057B2 (en) Isolated operation detection device and isolated operation detection method
US8736220B2 (en) Inverter control device and power conversion device
US8823191B2 (en) Method and arrangement for controlling a wind turbine using oscillation detection
CN112385107A (en) Method for controlling a wind power plant to damp subsynchronous oscillations
JP4835587B2 (en) Isolated operation detection method, control device, isolated operation detection device, and distributed power supply system
JP6384336B2 (en) Isolated operation detection device, control device, power conditioner, power supply system, and isolated operation detection method
CN102255602B (en) Method and system for smoothly switching alternated current motor from frequency converter power supply to power-frequency power supply
JP4661856B2 (en) Isolated operation detection method, control device, isolated operation detection device, and distributed power supply system
JP6599804B2 (en) Power conversion apparatus and control method thereof
JP2011055678A (en) Method for detecting islanding, controller, device for detecting islanding, and distributed power system
JP2009044910A (en) Method for detecting isolated operation, contrl device, device for detecting isolated operation, and distributed power supply system
JP4735473B2 (en) Isolated operation detection device
JP7055998B2 (en) Static VAR compensator and control method of the device
CN103896145B (en) Staircase automatic speed-regulating method
JP6189372B2 (en) Isolated operation detection device, isolated operation detection method, and grid interconnection system
JP4905141B2 (en) Fault current detection circuit and fault current detection method
JP5877319B2 (en) Grid interconnection device
JP2014127081A (en) Power conditioner for photovoltaic power generation
JP5891365B2 (en) Power conversion device and power supply system
JP4835453B2 (en) Isolated operation detection method, distributed power supply isolated operation detection control device, isolated operation detection device, and distributed power supply
JP4872826B2 (en) Isolated operation detection method, control device, isolated operation detection device, and distributed power supply system
JP2000041397A (en) Vibration alleviating apparatus for air conditioner
JP6574725B2 (en) Power converter and isolated operation detection method
WO2020022194A1 (en) Power conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4656131

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250