JP2008259296A - Uninterruptible power supply equipment - Google Patents

Uninterruptible power supply equipment Download PDF

Info

Publication number
JP2008259296A
JP2008259296A JP2007098263A JP2007098263A JP2008259296A JP 2008259296 A JP2008259296 A JP 2008259296A JP 2007098263 A JP2007098263 A JP 2007098263A JP 2007098263 A JP2007098263 A JP 2007098263A JP 2008259296 A JP2008259296 A JP 2008259296A
Authority
JP
Japan
Prior art keywords
storage battery
deterioration
power supply
deterioration diagnosis
uninterruptible power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007098263A
Other languages
Japanese (ja)
Other versions
JP4872766B2 (en
Inventor
Takahiro Kawahara
孝弘 川原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2007098263A priority Critical patent/JP4872766B2/en
Publication of JP2008259296A publication Critical patent/JP2008259296A/en
Application granted granted Critical
Publication of JP4872766B2 publication Critical patent/JP4872766B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Stand-By Power Supply Arrangements (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide reliable uninterruptible power supply equipment by discriminating only a storage battery where the abnormality by deterioration is detected by monitoring the state of every storage battery, interlocking it with an automatic storage battery deterioration diagnosis function. <P>SOLUTION: The uninterruptible power supply equipment includes an uninterruptible power supply facility main body 1 which has a converter 2 that converts the input power from an AC power source into DC power and an inverter 3 that converts the DC power output from the converter 2 again into AC power and outputs it to a load apparatus 4, a plurality of storage batteries 5 which are connected in series to a DC power part between the converter 2 and the inverter 3 and supplies power to the load apparatus 4 even at abnormality of an AC power source, an automatic storage battery deterioration diagnosing means 8 which performs the automatic storage battery deterioration diagnosis to detect the abnormality as the whole of the plurality of storage batteries 5 by discharging the plurality of storage batteries 5 as a test, and an individual storage battery deterioration diagnosing means 31 which detects only a storage battery 5 whose voltage has dropped to a set value or under out of the plurality of storage batteries 5 at test discharge, interlocking with the automatic storage battery deterioration diagnosing means 8. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、停電によって大きな影響を受けるコンピュータ設備等のバックアップ電源を供給する無停電電源装置を備えた無停電電源設備に関するものであり、特に自動蓄電池劣化診断機能を備えた無停電電源設備に関するものである。   The present invention relates to an uninterruptible power supply facility equipped with an uninterruptible power supply device that supplies backup power for computer equipment or the like that is greatly affected by a power failure, and particularly to an uninterruptible power supply facility equipped with an automatic storage battery deterioration diagnosis function It is.

交流入力電源の停電あるいは瞬時電圧低下などの電源障害時に、装置の不要動作、誤動作あるいはシステムダウンを生じてしまうコンピュータなどの負荷機器へのバックアップ電源として、蓄電池などのエネルギー蓄積体を有する交流無停電電源装置(UPS)が、安定な交流電源を供給する目的で広く使われるようになっている。特に近年のインターネットデータセンターをはじめとした重要システムへの適用により、無停電電源装置に対する信頼性の要求は高く、停電あるいは瞬時電圧低下などでエネルギーを放出する蓄電池においても、劣化状況の早い段階での検出を行い、複数個の蓄電池が直列に接続されたエネルギー蓄積体が性能を損なう以前に、劣化が進行した蓄電池毎の交換を可能とする無停電電源設備の実現が望まれている。   AC uninterruptible power supply with an accumulator such as a storage battery as a backup power source for load devices such as computers that cause unnecessary operation, malfunction, or system down in the event of a power failure such as a power failure or instantaneous voltage drop of an AC input power supply Power supply devices (UPS) are widely used for the purpose of supplying stable AC power. In particular, due to its application to important systems such as Internet data centers in recent years, the demand for reliability for uninterruptible power supplies is high, and even storage batteries that release energy due to power outages or instantaneous voltage drops are at an early stage of deterioration. It is desired to realize an uninterruptible power supply facility that allows replacement of each storage battery that has deteriorated before the energy storage body in which a plurality of storage batteries are connected in series impairs performance.

ここで、蓄電池の劣化を検出する方法として、無停電電源装置からのテスト信号発生により蓄電池を自動的に放電させ、蓄電池異常検出回路で放電電流の有無を判別することにより蓄電池の正常または異常を判別する方法が示されている(例えば、特許文献1)。   Here, as a method of detecting the deterioration of the storage battery, the storage battery is automatically discharged by generating a test signal from the uninterruptible power supply, and the storage battery abnormality detection circuit determines the presence or absence of the discharge current to determine whether the storage battery is normal or abnormal. A method of discrimination is shown (for example, Patent Document 1).

特開平8−256439号公報JP-A-8-256439

しかしながら、特許文献1に示されたものは、複数の蓄電池を直列接続した状態での放電電流の有無を判別することにより、正常または異常を判別しており、つまり、個々の蓄電池の劣化状態により異常を検出するものではない。   However, the one disclosed in Patent Document 1 determines normality or abnormality by determining the presence or absence of a discharge current in a state where a plurality of storage batteries are connected in series, that is, depending on the deterioration state of each storage battery. It does not detect abnormalities.

この発明は、上述のような課題を解決するためになされたもので、その目的は、自動蓄電池劣化診断機能を備えた無停電電源設備において、自動蓄電池劣化診断機能と連動させて蓄電池毎の状態を監視し、劣化による異常が検出された蓄電池のみを判別し、信頼性の高い無停電電源設備を提供することである。   This invention was made in order to solve the above-mentioned problems, and the purpose thereof is an uninterruptible power supply facility equipped with an automatic storage battery deterioration diagnosis function, and the state of each storage battery in conjunction with the automatic storage battery deterioration diagnosis function. Is to determine only the storage battery in which an abnormality due to deterioration is detected, and to provide a highly reliable uninterruptible power supply facility.

この発明に係る無停電電源設備は、交流電源からの入力電力を直流電力に変換するコンバータ及び前記コンバータから出力される前記直流電力を再び交流電力に変換して負荷機器へ出力するインバータを有する無停電電源装置本体と、前記コンバータ及び前記インバータの間の直流電力部に直列接続され、前記交流電源の異常時でも前記負荷機器へ電力を供給する複数の蓄電池と、前記複数の蓄電池にテスト放電させて前記複数の蓄電池全体としての異常を検出する自動蓄電池劣化診断を行う自動蓄電池劣化診断手段と、前記自動蓄電池劣化診断手段と連動し、前記テスト放電時に前記複数の蓄電池のうち設定値以下に電圧低下した蓄電池のみを異常として検出する個別蓄電池劣化診断手段とを備えたものである。   An uninterruptible power supply facility according to the present invention includes a converter that converts input power from an AC power source into DC power, and an inverter that converts the DC power output from the converter into AC power again and outputs the AC power to a load device. A plurality of storage batteries that are connected in series to a DC power unit between the power failure power supply main body and the converter and the inverter, and supply power to the load device even when the AC power supply is abnormal, and test discharge to the plurality of storage batteries Automatic storage battery deterioration diagnosis means for performing an automatic storage battery deterioration diagnosis for detecting an abnormality of the plurality of storage batteries as a whole, and the automatic storage battery deterioration diagnosis means in conjunction with the automatic storage battery deterioration diagnosis means. And an individual storage battery deterioration diagnosis means for detecting only a lowered storage battery as an abnormality.

この発明は、交流電源からの入力電力を直流電力に変換するコンバータ及び前記コンバータから出力される前記直流電力を再び交流電力に変換して負荷機器へ出力するインバータを有する無停電電源装置本体と、前記コンバータ及び前記インバータの間の直流電力部に直列接続され、前記交流電源の異常時でも前記負荷機器へ電力を供給する複数の蓄電池と、前記複数の蓄電池にテスト放電させて前記複数の蓄電池全体としての異常を検出する自動蓄電池劣化診断を行う自動蓄電池劣化診断手段と、前記自動蓄電池劣化診断手段と連動し、前記テスト放電時に前記複数の蓄電池のうち設定値以下に電圧低下した蓄電池のみを異常として検出する個別蓄電池劣化診断手段とを備える構成としたことで、自動蓄電池劣化診断機能と連動させて蓄電池毎の状態を監視し、劣化による異常が検出された蓄電池のみを判別し、信頼性の高い無停電電源設備を提供することができる。   The present invention includes an uninterruptible power supply main body having a converter that converts input power from an AC power source into DC power, and an inverter that converts the DC power output from the converter into AC power again and outputs it to a load device, A plurality of storage batteries that are connected in series to a DC power unit between the converter and the inverter and supply power to the load device even when the AC power supply is abnormal, and the plurality of storage batteries are subjected to test discharge so that the whole of the plurality of storage batteries Automatic storage battery deterioration diagnosis means for performing an automatic storage battery deterioration diagnosis for detecting an abnormality as an abnormality, and in conjunction with the automatic storage battery deterioration diagnosis means, only the storage battery whose voltage drops below a set value during the test discharge is abnormal Power storage in conjunction with the automatic storage battery deterioration diagnosis function. Monitors the state of each, determine only the storage battery abnormality due to deterioration is detected, it is possible to provide a highly reliable uninterruptible power supply system.

この発明をより詳細に説明するため、添付の図面に従ってこれを説明する。なお、各図中、同一又は相当する部分には同一の符号を付しており、その重複説明は適宜に簡略化ないし省略する。   In order to explain the present invention in more detail, it will be described with reference to the accompanying drawings. In addition, in each figure, the same code | symbol is attached | subjected to the part which is the same or it corresponds, The duplication description is simplified or abbreviate | omitted suitably.

実施の形態1.
以下、この発明の実施の形態1を図に基づいて説明する。
図1はこの発明の実施の形態1における無停電電源設備を示す概略ブロック図、図2はこの発明の実施の形態1における無停電電源設備においてテスト放電が行われた時の複数個直列接続した蓄電池全体としての電圧を示す図、図3はこの発明の実施の形態1における無停電電源設備の劣化診断(表示)基板及び劣化診断インターフェース基板の詳細を示す回路構成図である。
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic block diagram showing an uninterruptible power supply facility according to Embodiment 1 of the present invention, and FIG. 2 is a series connection of a plurality of test discharges performed in the uninterruptible power supply facility according to Embodiment 1 of the present invention. FIG. 3 is a circuit configuration diagram showing details of a deterioration diagnosis (display) board and a deterioration diagnosis interface board of the uninterruptible power supply according to Embodiment 1 of the present invention.

図1に示す無停電電源設備の回路構成は公知のものである。無停電電源装置本体1は、コンバータ2で交流電源(図示せず)からの入力電力を直流電力に変換し、インバータ3で再び交流電力に変換し、負荷機器4へ安定した電力を出力する。コンバータ2及びインバータ3の間の直流電力部に複数個直列接続されたネルギー蓄積体である蓄電池5は、交流電源の停電または瞬時電圧低下などが発生した場合でも負荷機器4へ安定した電力を供給する。なお、図1では蓄電池5は蓄電池盤6に収納されているが、無停電電源装置本体1に内蔵されていてもよい。また、無停電電源装置本体1には、自動蓄電池劣化診断機能を有し、放電電流検出器7を備えた自動蓄電池劣化診断手段8が設けられている。詳細は図示しないが、この自動蓄電池劣化診断手段8が動作した場合には、コンバータ2の入力電力量をインバータ3の出力電力量よりも低くすることで、蓄電池5からのテスト放電が実施される。このテスト放電の時間は短時間であり、放電電流検出器7で放電電流が無いことを判別し、複数の蓄電池5全体としての異常を検出した時点で、コンバータ2の入力電力量を増加させるため、無停電電源装置本体1は故障停止することはなく、安定した交流電力の供給を継続する。さらに、無停電電源装置本体1には、インバータ3などの異常時にでも交流電力を出力可能なように、バイパススイッチ9によりバイパス回路が構成され、負荷機器4への安定した交流電力の供給を万全なものとしている。   The circuit configuration of the uninterruptible power supply facility shown in FIG. 1 is known. The uninterruptible power supply main unit 1 converts input power from an AC power supply (not shown) into DC power by the converter 2, converts it again to AC power by the inverter 3, and outputs stable power to the load device 4. The storage battery 5, which is a multiple energy storage body connected in series to the DC power section between the converter 2 and the inverter 3, supplies stable power to the load device 4 even when an AC power failure or instantaneous voltage drop occurs. To do. In FIG. 1, the storage battery 5 is housed in the storage battery panel 6, but may be built in the uninterruptible power supply main body 1. Further, the uninterruptible power supply main body 1 is provided with an automatic storage battery deterioration diagnosis means 8 having an automatic storage battery deterioration diagnosis function and provided with a discharge current detector 7. Although not shown in detail, when the automatic storage battery deterioration diagnosis means 8 operates, the test discharge from the storage battery 5 is performed by making the input power amount of the converter 2 lower than the output power amount of the inverter 3. . The test discharge time is short, and it is determined that the discharge current detector 7 has no discharge current, and when the abnormality of the plurality of storage batteries 5 as a whole is detected, the input power amount of the converter 2 is increased. The uninterruptible power supply main body 1 does not stop due to failure and continues to supply stable AC power. Further, the uninterruptible power supply main body 1 is configured with a bypass circuit by a bypass switch 9 so that AC power can be output even when the inverter 3 or the like is abnormal, and a stable supply of AC power to the load device 4 is ensured. It is supposed to be.

次に、図2に、自動蓄電池劣化診断手段8によるテスト放電時における複数個直列接続された蓄電池5全体としての浮動充電電圧の状態変化を示す。一般に、蓄電池5の劣化が進行してくると、放電時の浮動充電電圧の低下は顕著であり、蓄電池5自身の寿命末期または故障時の代表的な例である放電電流が無い時の蓄電池異常時波形11の場合、テスト放電中に浮動充電電圧が異常判定電圧まで低下して放電電流検出器5により複数の蓄電池5全体の異常として検出して判別できる。一方、蓄電池5劣化の初期及び中期段階の代表的な例である蓄電池正常時波形12では、放電時の浮動充電電圧の低下は微小なため、テスト放電終了時でも浮動充電電圧が異常判定電圧まで低下せず、放電電流検出器5では複数の蓄電池5全体としての異常を検出して判別できない。そのため、図3に示すこの発明の無停電電源設備の回路構成により、蓄電池正常時波形12では複数の蓄電池5全体としては検出できない異常を蓄電池5毎に検出する。   Next, FIG. 2 shows a change in the state of the floating charge voltage of the plurality of series-connected storage batteries 5 as a whole at the time of test discharge by the automatic storage battery deterioration diagnosis means 8. In general, when the storage battery 5 is deteriorated, the floating charge voltage is significantly reduced during discharging, and the storage battery malfunctions when there is no discharge current, which is a typical example of the end of life or failure of the storage battery 5 itself. In the case of the time waveform 11, the floating charging voltage is reduced to the abnormality determination voltage during the test discharge, and the discharge current detector 5 can detect and determine the abnormality of the plurality of storage batteries 5 as a whole. On the other hand, in the storage battery normal waveform 12, which is a typical example of the initial and middle stages of deterioration of the storage battery 5, the decrease in the floating charge voltage at the time of discharge is very small, so that the floating charge voltage reaches the abnormality determination voltage even at the end of the test discharge. The discharge current detector 5 cannot detect and discriminate the abnormality of the plurality of storage batteries 5 as a whole. Therefore, with the circuit configuration of the uninterruptible power supply facility of the present invention shown in FIG. 3, an abnormality that cannot be detected as a whole of the plurality of storage batteries 5 in the storage battery normal waveform 12 is detected for each storage battery 5.

図3は無停電電源装置本体1と蓄電池5の接続に係わる詳細を示している。図3においては、例えば、蓄電池盤6内で複数個の蓄電池5が直列接続された状態である。ここで、21は無停電電源装置本体1に設けられる劣化診断インターフェース基板であって、その内部に駆動電源としての制御電源22、劣化診断信号リレー23、リセットボタン24を備えている。また、25は蓄電池盤6内で蓄電池5近傍に設けられる劣化診断(表示)基板であって、その内部に蓄電池5毎に接続される複数の劣化判定値設定回路26、フォトカプラ27を介して劣化判定値設定回路26毎に接続される複数の劣化表示LED28、劣化判定値設定回路駆動用リレー29、LED保持リレー30を備えている。これらによりこの発明の無停電電源設備の個別蓄電池劣化診断手段31が構成されている。以下、個別蓄電池劣化診断手段31の動作を説明する。   FIG. 3 shows details relating to the connection between the uninterruptible power supply main body 1 and the storage battery 5. In FIG. 3, for example, a plurality of storage batteries 5 are connected in series in the storage battery panel 6. Here, reference numeral 21 denotes a deterioration diagnosis interface board provided in the uninterruptible power supply main body 1, and includes a control power supply 22 as a drive power supply, a deterioration diagnosis signal relay 23, and a reset button 24 therein. Reference numeral 25 denotes a deterioration diagnosis (display) board provided in the vicinity of the storage battery 5 in the storage battery panel 6, and a plurality of deterioration determination value setting circuits 26 connected to each storage battery 5 and a photocoupler 27 therein. A plurality of deterioration display LEDs 28, a deterioration determination value setting circuit driving relay 29, and an LED holding relay 30 connected to each deterioration determination value setting circuit 26 are provided. By these, the individual storage battery deterioration diagnosis means 31 of the uninterruptible power supply equipment of this invention is comprised. Hereinafter, the operation of the individual storage battery deterioration diagnosis means 31 will be described.

自動蓄電池劣化診断手段8が自動蓄電池劣化診断を開始する状態信号からなるテスト信号を発生させると、その信号を劣化診断信号リレー23が受信して駆動し、接点23aが投入される。そして、二つの駆動部を有する劣化判定値設定回路駆動用リレー29が、駆動電源としての制御電源22から給電されて駆動し、劣化判定値設定回路26の内部にある接点29a、29bが投入されて劣化判定値設定回路26が動作可能となる。その後、この状態で、自動蓄電池劣化診断手段8が蓄電池5にテスト放電を開始させると、蓄電池5劣化の初期及び中期段階の場合には図2の蓄電池正常時波形12の通りに複数の蓄電池5全体としての電圧が低下する。このとき、各劣化判定値設定回路26が蓄電池5毎の電圧低下を検出する。即ち、複数個の蓄電池5のうち、劣化判定値設定回路26の回路定数に基づいて予め設定された異常電圧値と判定する設定値以下に電圧が低下する蓄電池5があると、これに対応したフォトカプラ27のみが動作し、劣化表示LED28を点灯させる。これにより劣化した蓄電池5の表示が行われる。また、この時、いずれかの劣化表示LED28が点灯すれば、LED保持リレー30が駆動し、接点30aが投入される。そのため、劣化表示LED28は自動蓄電池劣化診断手段8が蓄電池5のテスト放電を停止した後でも、リセットボタン24が表示リセット操作により開放されるまで制御電源22から給電されて点灯状態を維持する。即ち、以上で説明したように、個別蓄電池劣化診断手段31は、自動蓄電池劣化診断手段8と連動して、蓄電池5のテスト放電時に複数の蓄電池5のうち設定値以下に電圧低下した蓄電池5のみを異常として検出する。   When the automatic storage battery deterioration diagnosis means 8 generates a test signal consisting of a state signal for starting automatic storage battery deterioration diagnosis, the deterioration diagnosis signal relay 23 receives and drives the signal, and the contact 23a is turned on. Then, the degradation determination value setting circuit driving relay 29 having two drive units is driven by being fed with power from a control power source 22 as a drive power source, and contacts 29a and 29b in the degradation determination value setting circuit 26 are turned on. Thus, the deterioration judgment value setting circuit 26 becomes operable. Thereafter, when the automatic storage battery deterioration diagnosis means 8 starts test discharge in the storage battery 5 in this state, a plurality of storage batteries 5 as shown in the storage battery normal waveform 12 in FIG. The overall voltage is reduced. At this time, each deterioration determination value setting circuit 26 detects a voltage drop for each storage battery 5. That is, among the plurality of storage batteries 5, if there is a storage battery 5 whose voltage drops below a set value determined as an abnormal voltage value set in advance based on the circuit constant of the deterioration determination value setting circuit 26, this is handled. Only the photocoupler 27 operates and turns on the deterioration display LED 28. Thereby, display of the deteriorated storage battery 5 is performed. At this time, if any of the deterioration display LEDs 28 is lit, the LED holding relay 30 is driven and the contact 30a is turned on. Therefore, even after the automatic storage battery deterioration diagnosis means 8 stops the test discharge of the storage battery 5, the deterioration display LED 28 is supplied with power from the control power supply 22 until the reset button 24 is released by the display reset operation, and maintains the lighting state. That is, as explained above, the individual storage battery deterioration diagnosis means 31 is linked with the automatic storage battery deterioration diagnosis means 8 only in the storage battery 5 whose voltage drops below the set value among the plurality of storage batteries 5 during the test discharge of the storage battery 5. Is detected as abnormal.

従って、実施の形態1では、テスト放電において従来の自動蓄電池劣化診断手段8だけでは検出ができなかった蓄電池5毎の初期ならびに中期段階での劣化を検出するとともに、この蓄電池5のみを異常として判別、特定することが可能である。また、蓄電池5の放流電流の有無による複数の蓄電池5一括の異常検出ではなく、個別に、かつ、異常検出の設定値を劣化判定値設定回路26の回路定数に基づいて設定でき、信頼性の高い無停電源設備が実現される。さらに、異常になった蓄電池5について個別に劣化表示LED28の点灯による表示を行うため、劣化した蓄電池5の判別作業が行え、迅速な交換が可能である。従って、蓄電池5異常に伴う無停電電源設備のサービス停止時間を最短で提供できる。   Therefore, in the first embodiment, in the test discharge, the deterioration at the initial stage and the middle stage of each storage battery 5 that could not be detected only by the conventional automatic storage battery deterioration diagnosis means 8 is detected, and only this storage battery 5 is determined as abnormal. It is possible to specify. Further, instead of detecting abnormality of a plurality of storage batteries 5 at the same time due to the presence or absence of the discharge current of the storage battery 5, the set value of abnormality detection can be set individually and based on the circuit constant of the deterioration determination value setting circuit 26, and reliability can be improved. High uninterrupted power supply facilities are realized. Furthermore, since the storage battery 5 that has become abnormal is displayed individually by turning on the deterioration display LED 28, the deteriorated storage battery 5 can be discriminated and can be quickly replaced. Therefore, the service stop time of the uninterruptible power supply facility accompanying the abnormality of the storage battery 5 can be provided in the shortest time.

実施の形態2.
図4はこの発明の実施の形態2における無停電電源設備の劣化診断(表示)基板及び劣化診断インターフェース基板の詳細を示す回路構成図である。なお、実施の形態1と同一又は相当部分には同一符号を付して説明を省略する。
Embodiment 2. FIG.
FIG. 4 is a circuit configuration diagram showing details of a deterioration diagnosis (display) board and a deterioration diagnosis interface board of the uninterruptible power supply facility according to Embodiment 2 of the present invention. In addition, the same code | symbol is attached | subjected to the part which is the same as that of Embodiment 1, or an equivalent, and description is abbreviate | omitted.

実施の形態1では、蓄電池5、1個毎に1つの劣化判定値設定回路26等からなる個別蓄電池劣化診断手段31を有していた。そのため、蓄電池劣化診断の度合い設定は1つに限定されている。一方、実施の形態2では、図4に示すように、蓄電池5、1個毎に回路定数の異なる複数の劣化判定値設定回路261、262を有するとともに、これらに対応したフォトカプラ271、272を介して劣化表示LED281、282と表示機能も増やし、蓄電池劣化診断の度合い設定をきめ細かくしている。なお、劣化判定値設定回路261及び262の内部にはそれぞれ劣化判定値回路駆動用リレー29の接点291a、291b及び292a、292bが設けられている。この場合、個別蓄電池劣化診断手段31は、各蓄電池5の電圧低下レベルに応じて複数の異常電圧を段階的に検出することになる。   In the first embodiment, the storage battery 5 has the individual storage battery deterioration diagnosis means 31 including the deterioration determination value setting circuit 26 for each one. Therefore, the degree setting of the storage battery deterioration diagnosis is limited to one. On the other hand, in the second embodiment, as shown in FIG. 4, the storage battery 5 has a plurality of deterioration judgment value setting circuits 261 and 262 having different circuit constants for each one, and photocouplers 271 and 272 corresponding thereto. In addition, the deterioration display LEDs 281 and 282 and the display function are also increased, and the degree setting of the storage battery deterioration diagnosis is made fine. In addition, contacts 291a, 291b and 292a, 292b of the deterioration determination value circuit driving relay 29 are provided in the deterioration determination value setting circuits 261 and 262, respectively. In this case, the individual storage battery deterioration diagnosis means 31 detects a plurality of abnormal voltages stepwise according to the voltage drop level of each storage battery 5.

従って、実施の形態2では、早期での蓄電池5故障や劣化の検出を可能にし、より信頼性の高い無停電電源設備を提供できる。なお、図4では、劣化判定値設定回路261等及び劣化表示LED281等の数量は蓄電池5、1個につき2組で構成しているが、それ以上の数量で構成しても良い。   Therefore, in the second embodiment, it is possible to detect the failure or deterioration of the storage battery 5 at an early stage, and to provide a more reliable uninterruptible power supply facility. In FIG. 4, the number of deterioration determination value setting circuits 261 and the like and the deterioration display LED 281 and the like are configured in two sets per storage battery 5, but may be configured in a larger number.

実施の形態3.
図5はこの発明の実施の形態3における無停電電源設備の劣化診断(表示)基板及び劣化診断インターフェース基板の詳細を示す回路構成図、図6はこの発明の実施の形態3における蓄電池の等価回路及び劣化判定値設定回路の回路定数を示す図である。なお、実施の形態2と同一又は相当部分には同一符号を付して説明を省略する。
Embodiment 3 FIG.
FIG. 5 is a circuit configuration diagram showing details of the deterioration diagnosis (display) board and deterioration diagnosis interface board of the uninterruptible power supply in Embodiment 3 of the present invention, and FIG. 6 is an equivalent circuit of the storage battery in Embodiment 3 of the present invention. It is a figure which shows the circuit constant of a deterioration determination value setting circuit. In addition, the same code | symbol is attached | subjected to FIG.

実施の形態1または2に示す無停電電源設備の構成では、蓄電池5毎の電圧の低下を異常として検出することで劣化状態を判定していた。蓄電池5の劣化診断の手法としては、このように電圧値の変化によって行う方法の他に、蓄電池5内部のインピーダンス値の上昇により劣化状況を把握することが可能である。実施の形態3に示す無停電電源設備は、図5に示すように、インピーダンス値を演算し、把握することで、蓄電池5故障や劣化の判定精度を向上させるものである。以下、実施の形態3における無停電電源設備を詳細に説明する。   In the configuration of the uninterruptible power supply facility shown in the first or second embodiment, the deterioration state is determined by detecting the voltage drop of each storage battery 5 as an abnormality. As a method for diagnosing the deterioration of the storage battery 5, it is possible to grasp the deterioration state by an increase in the impedance value inside the storage battery 5 in addition to the method that is performed by changing the voltage value. As shown in FIG. 5, the uninterruptible power supply facility shown in the third embodiment improves the determination accuracy of the storage battery 5 failure and deterioration by calculating and grasping the impedance value. Hereinafter, the uninterruptible power supply in Embodiment 3 will be described in detail.

図5に示すように、実施の形態3においては、実施の形態2の構成に加え、無停電電源装置本体1は、テスト放電時における蓄電池の放電電流を計測する放電電流計測回路41、異常として検出された蓄電池の内部インピーダンスを演算する蓄電池内部インピーダンス演算回路42及びその演算値を表示する蓄電池内部インピーダンス表示回路43を有する。さらに、劣化診断インターフェース基板21は、内部インピーダンス演算用リレー44、45を有する。ここで、実施の形態3においては、蓄電池5側の構成は実施の形態2における図4とほぼ同様であり、複数の劣化判定値設定回路261、262、劣化表示LED281、282等を有している。ただし、劣化表示LED281、282はそれぞれ別個の配線により、LED保持リレー301、302、内部インピーダンス演算用リレー44、45を介して制御電源22に接続されている。即ち、電圧低下レベルに応じて劣化表示LED281、282の双方又は一方が点灯すると、これに対応してLED保持リレー301、302の接点301a、302bの双方又は一方が投入されるとともに、内部インピーダンス演算用リレー44、45双方又は一方が駆動され、接点44a、45aの双方又は一方が投入される。そして、これらの接点44a、45aの双方又は一方が投入されたことを示す信号が蓄電池内部インピーダンス演算回路42に送信される仕組みになっている。なお、図5では、劣化判定値設定回路261等及び劣化表示LED281等の数量は蓄電池5、1個につき2組で構成しているが、それ以上の数量で構成しても良い。   As shown in FIG. 5, in the third embodiment, in addition to the configuration of the second embodiment, the uninterruptible power supply main unit 1 includes a discharge current measuring circuit 41 that measures the discharge current of the storage battery at the time of test discharge, A storage battery internal impedance calculation circuit 42 that calculates the detected internal impedance of the storage battery and a storage battery internal impedance display circuit 43 that displays the calculated value are provided. Further, the deterioration diagnosis interface board 21 has internal impedance calculation relays 44 and 45. Here, in the third embodiment, the configuration on the storage battery 5 side is substantially the same as that in FIG. 4 in the second embodiment, and has a plurality of deterioration judgment value setting circuits 261 and 262, deterioration display LEDs 281 and 282, and the like. Yes. However, the deterioration display LEDs 281 and 282 are connected to the control power source 22 via the LED holding relays 301 and 302 and the internal impedance calculation relays 44 and 45 by separate wirings. That is, when both or one of the deterioration display LEDs 281 and 282 is turned on according to the voltage drop level, both or one of the contacts 301a and 302b of the LED holding relays 301 and 302 is turned on correspondingly, and the internal impedance calculation is performed. Both or one of the relays 44 and 45 is driven, and both or one of the contacts 44a and 45a is turned on. A signal indicating that both or one of the contacts 44a and 45a is turned on is transmitted to the storage battery internal impedance calculation circuit 42. In FIG. 5, the number of deterioration determination value setting circuits 261 and the like and the deterioration display LED 281 and the like are configured in two sets for each storage battery 5, but may be configured in a larger number.

次に、実施の形態3における無停電電源設備の動作を説明する。図5の回路構成において、自動蓄電池劣化診断手段8が自動蓄電池劣化診断中に蓄電池5にテスト放電させた場合に個別蓄電池劣化診断手段31により異常な蓄電池5が検出されると、蓄電池内部インピーダンス演算回路42は、内部インピーダンス演算用リレー44、45の接点44a及び45aの双方又は一方が投入されたことを示す信号と、放電電流計測回路41で計測された蓄電池5の放電電流値を受信する。この受信情報により、以下の通り、図6の等価回路に基づいて第一抵抗器46、第二抵抗器47の分圧抵抗等から(1)〜(3)式を用いて異常な蓄電池5の内部インピーダンスR1の値が演算される。また、この演算値については、蓄電池内部インピーダンス表示回路43により、確認可能な構成である。蓄電池5の内部インピーダンス値の判定基準については、蓄電池5製造者から提供されるデータがあるため、それと比較することにより蓄電池5の異常を判定する。
R1=(E1−V1)/i (1)
V1=V2(R101+R102)/R102 (2)
E1=E0/蓄電池総数量 (3)
ここに、
R1 :蓄電池内部インピーダンス
i :テスト放電時の放電電流
E0 :浮動充電時の蓄電池(総)電圧
E1 :浮動充電時の単蓄電池電圧
V1 :テスト放電時の単蓄電池電圧
V2 :単蓄電池の劣化判定値設定電圧
R101 :第一抵抗器の分圧抵抗
R102 :第二抵抗器の分圧抵抗
である。
なお、単蓄電池の劣化判定値設定電圧V2、第一抵抗器及び第二抵抗器の分圧抵抗R101、R102は、異常時の蓄電池5の電圧低下レベルに応じて劣化判定値設定回路261、262のいずれか一方の値が用いられる。
Next, the operation of the uninterruptible power supply in Embodiment 3 will be described. In the circuit configuration of FIG. 5, when the abnormal storage battery 5 is detected by the individual storage battery deterioration diagnosis means 31 when the automatic storage battery deterioration diagnosis means 8 causes the storage battery 5 to perform test discharge during the automatic storage battery deterioration diagnosis, the storage battery internal impedance calculation is performed. The circuit 42 receives a signal indicating that both or one of the contacts 44 a and 45 a of the internal impedance calculation relays 44 and 45 has been turned on, and the discharge current value of the storage battery 5 measured by the discharge current measuring circuit 41. Based on this reception information, the abnormal storage battery 5 is calculated using the equations (1) to (3) from the voltage dividing resistors of the first resistor 46 and the second resistor 47 based on the equivalent circuit of FIG. The value of the internal impedance R1 is calculated. The calculated value can be confirmed by the storage battery internal impedance display circuit 43. Regarding the determination criteria for the internal impedance value of the storage battery 5, since there is data provided by the manufacturer of the storage battery 5, the abnormality of the storage battery 5 is determined by comparing with the data.
R1 = (E1-V1) / i (1)
V1 = V2 (R101 + R102) / R102 (2)
E1 = E0 / Total number of storage batteries (3)
here,
R1: Storage battery internal impedance
i: discharge current during test discharge E0: storage battery (total) voltage during floating charge E1: single storage battery voltage during floating charge V1: single storage battery voltage during test discharge V2: deterioration determination value setting voltage of single storage battery R101: first Voltage dividing resistance of one resistor R102: Voltage dividing resistance of the second resistor.
The deterioration determination value setting voltage V2 of the single storage battery, and the voltage dividing resistors R101 and R102 of the first resistor and the second resistor are the deterioration determination value setting circuits 261 and 262 according to the voltage drop level of the storage battery 5 at the time of abnormality. One of these values is used.

従って、実施の形態3では、実施の形態2の効果に加え、蓄電池5故障や劣化の判定精度を向上させた無停電電源設備を提供できる。   Therefore, in the third embodiment, in addition to the effects of the second embodiment, it is possible to provide an uninterruptible power supply facility in which the determination accuracy of the storage battery 5 failure or deterioration is improved.

この発明の実施の形態1における無停電電源設備を示す概略ブロック図である。It is a schematic block diagram which shows the uninterruptible power supply equipment in Embodiment 1 of this invention. この発明の実施の形態1における無停電電源設備においてテスト放電が行われた時の複数個直列接続した蓄電池全体としての電圧を示す図である。It is a figure which shows the voltage as the whole storage battery connected in series when the test discharge is performed in the uninterruptible power supply equipment in Embodiment 1 of this invention. この発明の実施の形態1における無停電電源設備の劣化診断(表示)基板及び劣化診断インターフェース基板の詳細を示す回路構成図である。It is a circuit block diagram which shows the detail of the deterioration diagnosis (display) board | substrate and deterioration diagnosis interface board | substrate of an uninterruptible power supply equipment in Embodiment 1 of this invention. この発明の実施の形態2における無停電電源設備の劣化診断(表示)基板及び劣化診断インターフェース基板の詳細を示す回路構成図である。It is a circuit block diagram which shows the detail of the deterioration diagnosis (display) board | substrate and deterioration diagnosis interface board | substrate of an uninterruptible power supply equipment in Embodiment 2 of this invention. この発明の実施の形態3における無停電電源設備の劣化診断(表示)基板及び劣化診断インターフェース基板の詳細を示す回路構成図である。It is a circuit block diagram which shows the detail of the deterioration diagnosis (display) board | substrate and deterioration diagnosis interface board | substrate of an uninterruptible power supply equipment in Embodiment 3 of this invention. この発明の実施の形態3における蓄電池の等価回路及び劣化判定値設定回路の回路定数を示す図である。It is a figure which shows the circuit constant of the equivalent circuit of a storage battery in Embodiment 3 of this invention, and a deterioration determination value setting circuit.

符号の説明Explanation of symbols

1 無停電電源装置本体
2 コンバータ
3 インバータ
4 負荷機器
5 蓄電池
6 蓄電池盤
7 放電電流検出器
8 自動蓄電池劣化診断手段
9 バイパススイッチ
11 蓄電池異常時波形
12 蓄電池正常時波形
21 劣化診断インターフェース基板
22 制御電源
23 劣化診断信号リレー
23a 接点
24 リセットボタン
25 劣化診断(表示)基板
26 劣化判定値設定回路
27 フォトカプラ
28 劣化表示LED
29 劣化判定値設定回路駆動用リレー
29a、29b 接点
30 LED保持リレー
31 個別蓄電池劣化診断手段
41 放電電流計測回路
42 蓄電池内部インピーダンス演算回路
43 蓄電池内部インピーダンス表示回路
44、45 内部インピーダンス演算用リレー
44a、45a 接点
46 第一抵抗器
47 第二抵抗器
261、262 劣化判定値設定回路
271、272 フォトカプラ
281、282 劣化表示LED
291a、291b 接点
292a、292b 接点
301、302 LED保持リレー
301a、302b 接点
DESCRIPTION OF SYMBOLS 1 Uninterruptible power supply main body 2 Converter 3 Inverter 4 Load apparatus 5 Storage battery 6 Storage battery board 7 Discharge current detector 8 Automatic storage battery deterioration diagnostic means 9 Bypass switch 11 Storage battery abnormality waveform 12 Storage battery normal waveform 21 Deterioration diagnosis interface board 22 Control power supply 23 Degradation diagnosis signal relay 23a Contact 24 Reset button 25 Degradation diagnosis (display) board 26 Degradation judgment value setting circuit 27 Photocoupler 28 Degradation display LED
29 Degradation judgment value setting circuit driving relays 29a, 29b Contact 30 LED holding relay 31 Individual storage battery deterioration diagnosis means 41 Discharge current measuring circuit 42 Storage battery internal impedance calculation circuit 43 Storage battery internal impedance display circuit 44, 45 Internal impedance calculation relay 44a, 45a Contact 46 First resistor 47 Second resistor 261, 262 Degradation judgment value setting circuit 271, 272 Photocoupler 281, 282 Degradation display LED
291a, 291b contact 292a, 292b contact 301, 302 LED holding relay 301a, 302b contact

Claims (8)

交流電源からの入力電力を直流電力に変換するコンバータ及び前記コンバータから出力される前記直流電力を再び交流電力に変換して負荷機器へ出力するインバータを有する無停電電源装置本体と、
前記コンバータ及び前記インバータの間の直流電力部に直列接続され、前記交流電源の異常時でも前記負荷機器へ電力を供給する複数の蓄電池と、
前記複数の蓄電池にテスト放電させて前記複数の蓄電池全体としての異常を検出する自動蓄電池劣化診断を行う自動蓄電池劣化診断手段と、
前記自動蓄電池劣化診断手段と連動し、前記テスト放電時に前記複数の蓄電池のうち設定値以下に電圧低下した蓄電池のみを異常として検出する個別蓄電池劣化診断手段と、
を備えたことを特徴とする無停電電源設備。
An uninterruptible power supply main body having a converter that converts input power from an AC power source into DC power, and an inverter that converts the DC power output from the converter into AC power and outputs the AC power to load equipment;
A plurality of storage batteries connected in series to a DC power unit between the converter and the inverter, and supplying power to the load device even when the AC power supply is abnormal,
Automatic storage battery deterioration diagnosis means for performing an automatic storage battery deterioration diagnosis for detecting an abnormality as the whole of the plurality of storage batteries by causing the plurality of storage batteries to perform test discharge;
In conjunction with the automatic storage battery deterioration diagnosis means, individual storage battery deterioration diagnosis means for detecting only a storage battery whose voltage has dropped below a set value among the plurality of storage batteries during the test discharge,
An uninterruptible power supply facility characterized by comprising
個別蓄電池劣化診断手段は、
蓄電池毎に接続され、テスト放電時に前記蓄電池が予め設定された設定値以下に電圧低下した場合に異常と判定するように動作する複数の劣化判定値設定回路と、
前記劣化判定値設定回路毎に接続され、前記劣化判定値設定回路により前記蓄電池が異常と判定された場合に点灯して劣化した前記蓄電池の表示を行う複数の劣化表示LEDと、
を備えたことを特徴とする請求項1記載の無停電電源設備。
Individual battery deterioration diagnosis means
A plurality of deterioration determination value setting circuits that are connected to each storage battery and operate so as to be determined to be abnormal when the voltage of the storage battery drops below a preset setting value at the time of test discharge;
A plurality of deterioration indicator LEDs connected to each of the deterioration determination value setting circuits and displaying the storage battery that has been turned on and deteriorated when the storage battery is determined to be abnormal by the deterioration determination value setting circuit;
The uninterruptible power supply equipment according to claim 1 characterized by things.
個別蓄電池劣化診断手段は、
制御電源と、
自動蓄電池劣化診断手段が自動蓄電池劣化診断を開始する状態信号を受信して接点が投入される劣化診断信号リレーと、
前記劣化診断信号リレーの接点が投入されることにより前記制御電源から給電されて駆動され、劣化判定値設定回路の内部にある接点を投入して前記劣化判定値設定回路を動作可能とする劣化判定値設定回路駆動用リレーと、
を備え、
前記自動蓄電池劣化診断手段は、前記劣化判定値設定回路が動作可能となった後に蓄電池にテスト放電させることを特徴とする請求項2に記載の無停電電源設備。
Individual battery deterioration diagnosis means
Control power,
A deterioration diagnosis signal relay in which the automatic storage battery deterioration diagnosis means receives a state signal for starting automatic storage battery deterioration diagnosis and the contact is turned on;
Degradation judgment enabling operation of the deterioration judgment value setting circuit by turning on the contact within the deterioration judgment value setting circuit driven by power supplied from the control power source when the contact of the deterioration diagnosis signal relay is turned on A relay for driving a value setting circuit;
With
The uninterruptible power supply system according to claim 2, wherein the automatic storage battery deterioration diagnosis means causes the storage battery to perform test discharge after the deterioration determination value setting circuit becomes operable.
個別蓄電池劣化診断手段は、いずれかの劣化表示LEDが点灯した場合に接点が投入され、自動蓄電池劣化診断手段がテスト放電を停止した後でも前記劣化表示LEDの点灯を維持するLED保持リレーを備えたことを特徴とする請求項2〜請求項3のいずれかに記載の無停電電源設備。   The individual storage battery deterioration diagnosis means includes an LED holding relay that is turned on when any of the deterioration display LEDs is lit, and that maintains the deterioration display LEDs even after the automatic storage battery deterioration diagnosis means stops the test discharge. The uninterruptible power supply equipment according to any one of claims 2 to 3, wherein 個別蓄電池劣化診断手段は、表示リセット操作されるまで劣化表示LEDの点灯を維持するリセットボタンを備えたことを特徴とする請求項4記載の無停電電源装置。   5. The uninterruptible power supply according to claim 4, wherein the individual battery deterioration diagnosis means includes a reset button for maintaining the deterioration display LED on until a display reset operation is performed. 劣化診断信号リレー及びリセットボタンは、無停電電源装置本体に設けられる劣化診断インターフェース基板に配置され、
劣化判定値設定回路、劣化表示LED、劣化判定値設定回路駆動用リレーは、複数の蓄電池近傍に設けられる劣化診断表示基板に配置されることを特徴とする請求項5記載の無停電電源設備。
The deterioration diagnosis signal relay and the reset button are arranged on a deterioration diagnosis interface board provided in the uninterruptible power supply main body,
6. The uninterruptible power supply system according to claim 5, wherein the deterioration determination value setting circuit, the deterioration display LED, and the deterioration determination value setting circuit driving relay are arranged on a deterioration diagnosis display board provided in the vicinity of a plurality of storage batteries.
個別蓄電池劣化診断手段は、蓄電池毎に複数接続され、各蓄電池の電圧低下レベルに応じて複数の異常電圧を段階的に検出することを特徴とする請求項1〜請求項6のいずれかに記載の無停電電源設備。   The individual storage battery deterioration diagnosis means is connected in a plurality for each storage battery, and detects a plurality of abnormal voltages stepwise according to the voltage drop level of each storage battery. Uninterruptible power supply equipment. テスト放電時における蓄電池の放電電流を計測する放電電流計測回路と、
前記放電電流計測部に計測された前記放電電流に基づいて異常として検出された蓄電池の内部インピーダンスを演算する蓄電池内部インピーダンス演算回路と、
前記蓄電池内部インピーダンス演算回路に演算された前記内部インピーダンス演算値を表示する蓄電池内部インピーダンス表示回路と、
を備えたことを特徴とする請求項1〜請求項7のいずれかに記載の無停電電源設備。
A discharge current measuring circuit for measuring the discharge current of the storage battery at the time of test discharge;
A storage battery internal impedance calculation circuit that calculates the internal impedance of the storage battery detected as abnormal based on the discharge current measured by the discharge current measurement unit;
A storage battery internal impedance display circuit for displaying the internal impedance calculation value calculated by the storage battery internal impedance calculation circuit;
The uninterruptible power supply equipment according to any one of claims 1 to 7, characterized by comprising:
JP2007098263A 2007-04-04 2007-04-04 Uninterruptible power supply Active JP4872766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007098263A JP4872766B2 (en) 2007-04-04 2007-04-04 Uninterruptible power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007098263A JP4872766B2 (en) 2007-04-04 2007-04-04 Uninterruptible power supply

Publications (2)

Publication Number Publication Date
JP2008259296A true JP2008259296A (en) 2008-10-23
JP4872766B2 JP4872766B2 (en) 2012-02-08

Family

ID=39982323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007098263A Active JP4872766B2 (en) 2007-04-04 2007-04-04 Uninterruptible power supply

Country Status (1)

Country Link
JP (1) JP4872766B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010239711A (en) * 2009-03-30 2010-10-21 Japan Research Institute Ltd Battery control device, vehicle, and method of controlling the battery
JP2012052831A (en) * 2010-08-31 2012-03-15 Furukawa Battery Co Ltd:The Battery degradation diagnosis device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101425394B1 (en) * 2012-11-27 2014-08-01 (주)에스엔디파워닉스 Power Converting System with Diagnostic or Regeneration Function for Battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54154039A (en) * 1978-05-26 1979-12-04 Matsushita Electric Ind Co Ltd Overdischarge detector
JPH07298503A (en) * 1994-04-20 1995-11-10 Fuji Electric Co Ltd Go/no-go decision device for battery of uninterruptible power supply
JPH0847102A (en) * 1994-08-03 1996-02-16 Toyota Motor Corp Storage battery device for electric motor vehicle
JPH08289477A (en) * 1995-04-12 1996-11-01 Tokai Rika Co Ltd Battery monitor and monitoring method, and electric automobile
JPH0949868A (en) * 1995-06-01 1997-02-18 Rohm Co Ltd Battery exhaustion detector, power supply circuit having the detector and portable machinery having the power supply circuit
JPH09159701A (en) * 1995-12-04 1997-06-20 Nissan Motor Co Ltd Overvoltage detection equipment of combination battery
JPH1056744A (en) * 1996-08-08 1998-02-24 Shin Kobe Electric Mach Co Ltd Power supply equipped with sealed lead-acid battery
JP2006153489A (en) * 2004-11-25 2006-06-15 Nec Lamilion Energy Ltd Deterioration determination device of battery pack and deterioration determination method of battery pack

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54154039A (en) * 1978-05-26 1979-12-04 Matsushita Electric Ind Co Ltd Overdischarge detector
JPH07298503A (en) * 1994-04-20 1995-11-10 Fuji Electric Co Ltd Go/no-go decision device for battery of uninterruptible power supply
JPH0847102A (en) * 1994-08-03 1996-02-16 Toyota Motor Corp Storage battery device for electric motor vehicle
JPH08289477A (en) * 1995-04-12 1996-11-01 Tokai Rika Co Ltd Battery monitor and monitoring method, and electric automobile
JPH0949868A (en) * 1995-06-01 1997-02-18 Rohm Co Ltd Battery exhaustion detector, power supply circuit having the detector and portable machinery having the power supply circuit
JPH09159701A (en) * 1995-12-04 1997-06-20 Nissan Motor Co Ltd Overvoltage detection equipment of combination battery
JPH1056744A (en) * 1996-08-08 1998-02-24 Shin Kobe Electric Mach Co Ltd Power supply equipped with sealed lead-acid battery
JP2006153489A (en) * 2004-11-25 2006-06-15 Nec Lamilion Energy Ltd Deterioration determination device of battery pack and deterioration determination method of battery pack

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010239711A (en) * 2009-03-30 2010-10-21 Japan Research Institute Ltd Battery control device, vehicle, and method of controlling the battery
JP2012052831A (en) * 2010-08-31 2012-03-15 Furukawa Battery Co Ltd:The Battery degradation diagnosis device

Also Published As

Publication number Publication date
JP4872766B2 (en) 2012-02-08

Similar Documents

Publication Publication Date Title
EP1837944B1 (en) Electric power supply control apparatus
JP3908077B2 (en) DC backup power supply and diagnosis method thereof
JP5443327B2 (en) Battery assembly
JP4381239B2 (en) Power supply for vehicle
JP5773609B2 (en) Battery pack management apparatus, battery pack management method, and battery pack system
JP5729394B2 (en) Charging device and conduction state determination method
KR102007666B1 (en) Battery system of ship and operation method for the same
JP2008125236A (en) Power supply device for vehicles equipped with overcharge/overdischarge detection circuit
JP5018615B2 (en) Abnormality detection device for battery pack
JP2010271267A (en) Battery monitoring device
KR100968348B1 (en) Apparatus and Method for diagnosis of cell balancing circuit using flying capacitor
JP6733783B2 (en) Power supply device and diagnostic method for diagnosing abnormality of power supply device
JP2012084809A (en) Solar cell module failure diagnostic device and method
JP5415117B2 (en) Cell number determination method, cell number determination device, power supply device, and program
JP4872766B2 (en) Uninterruptible power supply
JP2008197960A (en) Circuit with control function, and test method thereof
JP4949139B2 (en) Battery power system
JP2011038876A (en) Voltage measuring instrument for a plurality of battery packs
JP2008064520A (en) Voltage measuring instrument
JP2011155784A (en) Secondary battery system and method of managing the same
JP2005287174A (en) Uninterruptible power supply unit
JP2014009946A (en) Battery monitoring device and failure diagnosis method therefor
JP2011102727A (en) Storage battery controller and storage battery control method
JP4616100B2 (en) Storage battery diagnostic device
JP6491965B2 (en) Inspection method and inspection apparatus for battery monitoring unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4872766

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250