JP2008257948A - Electrode material and conductive film using this material, and solar cell, and photoelectrode - Google Patents

Electrode material and conductive film using this material, and solar cell, and photoelectrode Download PDF

Info

Publication number
JP2008257948A
JP2008257948A JP2007097385A JP2007097385A JP2008257948A JP 2008257948 A JP2008257948 A JP 2008257948A JP 2007097385 A JP2007097385 A JP 2007097385A JP 2007097385 A JP2007097385 A JP 2007097385A JP 2008257948 A JP2008257948 A JP 2008257948A
Authority
JP
Japan
Prior art keywords
conductive
iodine
electrode material
conductive film
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007097385A
Other languages
Japanese (ja)
Other versions
JP5026137B2 (en
JP2008257948A5 (en
Inventor
Yoji Fujii
洋司 藤居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oike and Co Ltd
Original Assignee
Oike and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oike and Co Ltd filed Critical Oike and Co Ltd
Priority to JP2007097385A priority Critical patent/JP5026137B2/en
Publication of JP2008257948A publication Critical patent/JP2008257948A/en
Publication of JP2008257948A5 publication Critical patent/JP2008257948A5/ja
Application granted granted Critical
Publication of JP5026137B2 publication Critical patent/JP5026137B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode material or the like which is a conductive film in the case of using for a transparent electrode of a dye-sensitized solar cell, and does not easily corrodes or melts even if contacted to an electrolytic solution. <P>SOLUTION: The conductive film has a conductive film composed of a single or a plurality of conductive substances laminated one or two layers or more on a surface of a base material film consisting of a polymer resin. At least one of the conductive film formed of a conductive substance as an electrode material used as the conductive film has a conductivity as a nature to flow electricity and is a substance having an iodine resistance in which 80% or more in volume ratio of the conductive film remains without melting even if 96 hours has passed in an immersed state in an iodine solution of 80°C (a solution in which iodine, lithium iodite, tetrabutyl-ammonium iodite(TBAI), tributyl phosphate (TBP) are dissolved in acetonitrile solution). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は電極材料に関するものであり、例えば色素増感型太陽電池の透明電極に用いる透明導電性フィルムの導電性フィルムにおける電極用の材料、及び該導電性フィルムを用いてなる電極を利用した太陽電池並びに光電極に関する。   TECHNICAL FIELD The present invention relates to an electrode material, for example, a material for an electrode in a conductive film of a transparent conductive film used for a transparent electrode of a dye-sensitized solar cell, and a sun using an electrode formed using the conductive film. The present invention relates to a battery and a photoelectrode.

地球温暖化に対する関心が急速に広まっている昨今において、日常生活に必要な電力をクリーンに得る手段としての太陽光発電に注目が集まっている。この太陽光発電には太陽電池を用いるが、この太陽電池は太陽光のみがあれば作動するので燃料が不要であり、かつ無尽蔵なクリーンエネルギーとしてより一層優れたものの開発・実用化が強く望まれている。   In recent years when interest in global warming is rapidly spreading, attention has been focused on solar power generation as a means of obtaining clean electricity necessary for daily life. This solar power generation uses a solar cell. However, since this solar cell operates only with sunlight, it does not require fuel, and there is a strong demand for the development and commercialization of a more excellent inexhaustible clean energy. ing.

この太陽光発電に用いる太陽電池では、従来透明導電性ガラスが用いられている。この透明導電性ガラスは太陽光を透過しかつ電気をも通す、という性質を兼ね備えたものであるため、この性質を利用して太陽電池の透明電極として用いられているのである。   Conventionally, a transparent conductive glass is used in a solar cell used for solar power generation. Since this transparent conductive glass has the property of transmitting sunlight and passing electricity, it is used as a transparent electrode of a solar cell by utilizing this property.

この太陽電池の研究・開発が進むにつれ、より一層の普及のために取扱の容易性、薄型・軽量化を望む市場の強い意向もあり、基材として用いる透明導電性ガラスの基材を、何らかの衝撃が少し加わってしまっただけでも容易に割れてしまいやすいためその取扱には細心の注意が必要であるガラスから、簡単には破損しないことにより、はるかに取扱性に優れたものと言える透明樹脂フィルムに置き換えたもの、いわゆる透明導電性フィルムを用いることが多くなってきている。   As research and development of this solar cell progresses, there is a strong market desire to make it easier to handle, thinner and lighter for further dissemination. Transparent resin that can be said to be much easier to handle because it is not easily broken from glass, which requires careful attention to handling because it easily breaks even with a slight impact A film replaced with a so-called transparent conductive film is increasingly used.

この太陽電池に関し簡単に説明すると、太陽電池の種類は使用される半導体材料によって、現在主にシリコン系、化合物半導体系、有機半導体系、色素増感型、などに分類される。中でもシリコン系は比較的古くから開発されており現在でも主流であるが、変換効率の向上には限界がある、資源枯渇が懸念されている、という課題が存在している。また化合物半導体系太陽電池は高変換効率が大いに期待できるが、材料コストが高いという課題が存在している。そして有機半導体系太陽電池は、開発当初こそ低コスト材料として有望視されていたが、変換効率向上の目処が立たず、その開発は停滞気味である。   Briefly describing this solar cell, the types of solar cells are currently classified mainly into silicon-based, compound semiconductor-based, organic semiconductor-based, dye-sensitized types, etc., depending on the semiconductor material used. Among these, silicon systems have been developed for a relatively long time and are still mainstream, but there are problems that there is a limit to improving conversion efficiency and there is a concern about resource depletion. Moreover, although the compound semiconductor solar cell can be expected to have high conversion efficiency, there is a problem that the material cost is high. Although organic semiconductor solar cells have been regarded as promising as low-cost materials at the beginning of development, there is no prospect of improving conversion efficiency, and development is stagnant.

このような状況にあって、最近では色素増感型太陽電池の開発に注目が集まっている。これは色素増感型太陽電池がその他の種類の太陽電池に比して、その素子構造が簡単で、かつ特段の製造設備がなくとも製造出来る可能性があるにもかかわらず、その変換効率を簡単に高めることが大いに期待されたからであり、実際すでに実用化されているアモルファスシリコン太陽電池に匹敵する程に、小面積であっても高変換効率が得られたことよりも大いに注目を集める存在となっている。   Under such circumstances, attention has recently been focused on the development of dye-sensitized solar cells. This is because the dye-sensitized solar cell has a simpler device structure than other types of solar cells and can be manufactured without special manufacturing equipment. It was because it was highly expected to be easily increased, and in fact it attracted much attention than the fact that high conversion efficiency was obtained even in a small area, comparable to amorphous silicon solar cells already in practical use. It has become.

この色素増感型太陽電池の基本的な構造と動作原理は次の通りである。まず負極として、透明導電性膜を付けた基板にチタニア粒子をペースト状にして塗布しこれを焼結しチタニア層としたものを用いる。チタニア層は多数の空孔を有するが、この空孔内面にルテニウムビピリジル錯体を担持すると、色素はチタニア表面に担持される。一方正極としては例えば基板上の透明導電性膜に白金をスパッタリングしたもの等を用いる。そして両極間に電解液を充填するが、この電解液としてはアセトニトリル系の溶媒を用い、これに溶質としてヨウ素とヨウ素イオンを溶解する。   The basic structure and operating principle of this dye-sensitized solar cell are as follows. First, as a negative electrode, a titania particle is applied in a paste form on a substrate provided with a transparent conductive film and sintered to form a titania layer. The titania layer has a large number of pores. When a ruthenium bipyridyl complex is supported on the inner surface of the pores, the dye is supported on the titania surface. On the other hand, as the positive electrode, for example, a material obtained by sputtering platinum on a transparent conductive film on a substrate is used. An electrolytic solution is filled between both electrodes, and an acetonitrile-based solvent is used as the electrolytic solution, and iodine and iodine ions are dissolved as solutes therein.

このような構成を有する色素増感型太陽電池は次のようにして動作する。即ち負極に光を照射するとチタニア層に担持された色素が光を吸収し、電子を放出することで電気が発生する。次いで放出された電子はチタニア層を介して負極を伝わり、やがて対極たる正極に至り、そこから電解液中に放出される。そして放出された電子は三ヨウ化物イオンを還元することによりこれをヨウ化物イオンとし、還元されたヨウ化物イオンは色素上で再び酸化される。この工程を繰り返すことにより電気が流れるようになる。   The dye-sensitized solar cell having such a configuration operates as follows. That is, when the negative electrode is irradiated with light, the dye supported on the titania layer absorbs light and emits electrons to generate electricity. Next, the emitted electrons travel along the negative electrode through the titania layer, eventually reach the positive electrode as a counter electrode, and are discharged from there into the electrolytic solution. The emitted electrons reduce triiodide ions to form iodide ions, and the reduced iodide ions are oxidized again on the dye. By repeating this process, electricity flows.

しかし、通常色素増感型太陽電池においては、上述したようにヨウ素を主成分とする電解液を用いるため、電解液中のヨウ素が太陽電池を構成する電極を容易に腐食する現象が多発し、その結果電極の機能が容易に弱体化してしまうため問題であった。   However, in general dye-sensitized solar cells, since an electrolyte containing iodine as a main component is used as described above, a phenomenon in which iodine in the electrolyte easily corrodes the electrodes constituting the solar cell occurs frequently. As a result, the function of the electrode is easily weakened, which is a problem.

そこでそのような問題に対処した色素増感型太陽電池に用いられる電極として、例えば特許文献1に示されるようなものが提案されている。   Therefore, for example, an electrode as shown in Patent Document 1 has been proposed as an electrode used in a dye-sensitized solar cell that addresses such a problem.

特開2006−066278号公報JP 2006-066278 A

上記した特許文献1には、色素増感型太陽電池用電極であって、要すれば基材/補助電極/半導体膜/透明導電膜というように、補助電極と透明導電膜との間に半導体膜なるものを挟み込む構成を有する電極が開示されている。ここで半導体膜は、例えば酸化チタンや酸化ニオブ等を用いることとされており、このような膜を設けることで、色素増感型太陽電池に用いられる電解液中のヨウ素などにより補助電極が腐食することを防ぐことが出来る、とされている。   The above-mentioned Patent Document 1 discloses an electrode for a dye-sensitized solar cell, and if necessary, a semiconductor between an auxiliary electrode and a transparent conductive film, such as a base material / auxiliary electrode / semiconductor film / transparent conductive film. An electrode having a configuration for sandwiching a film is disclosed. Here, for example, titanium oxide or niobium oxide is used as the semiconductor film. By providing such a film, the auxiliary electrode is corroded by iodine or the like in the electrolyte solution used in the dye-sensitized solar cell. It is said that it can be prevented.

しかしこのように構成することは、本来であれば不要である半導体膜をわざわざ設ける必要があること、その半導体膜も多孔質な透明導電膜を透過する電解液から確実に補助電極を保護するために確実にかつ必要な厚みを持って積層される必要があること、そしてそのような確実性を確保するために積層工程は慎重なものとならざるを得ないこと、またそのために半導体膜を確実に積層するための時間とコストが発生してしまうこと、といったような問題を呈することとなってしまう。   However, such a configuration requires that an unnecessary semiconductor film is originally provided, and that the semiconductor film also reliably protects the auxiliary electrode from the electrolyte that permeates the porous transparent conductive film. Must be stacked securely and with the required thickness, and the laminating process must be careful to ensure such reliability, and the semiconductor film must be secured for this purpose. This leads to problems such as the time and cost required for laminating the film.

本発明はこのような問題点に鑑みて為されたものであり、その目的は例えば色素増感型太陽電池の透明電極に用いる場合の導電性フィルムであって、電解液に接しても容易に腐食したり溶解したりしないような電極材料と、それを積層した導電性フィルムを用いた太陽電池又は光電極、を提供することである。   The present invention has been made in view of such problems, and an object thereof is, for example, a conductive film for use in a transparent electrode of a dye-sensitized solar cell, which can be easily contacted with an electrolytic solution. An electrode material that does not corrode or dissolve, and a solar cell or a photoelectrode using a conductive film on which the electrode material is laminated are provided.

上記課題を解決するため、本願発明の請求項1に記載の電極材料は、高分子樹脂よりなる基材フィルムの表面に、単数又は複数の導電性物質よりなる導電性薄膜を1層又は2層以上積層してなる導電性フィルムにおいて前記導電性薄膜として用いられる電極材料であって、前記電極材料としての前記導電性物質により形成される前記導電性薄膜のうち少なくとも1つが、電気を通す性質である導電性を有し、かつ前記導電性薄膜を80℃のヨウ素溶液(ヨウ素、ヨウ化リチウム、ヨウ化テトラブチルアンモニウム(TBAI)、リン酸トリブチル(TBP)をアセトニトリル溶液に溶解させてなる溶液)に浸漬した状態で96時間経過しても体積比で80%以上が溶解せずに残存している耐ヨウ素性をも有する物質であること、を特徴とする。   In order to solve the above-mentioned problem, the electrode material according to claim 1 of the present invention has one or two conductive thin films made of one or more conductive substances on the surface of a base film made of a polymer resin. An electrode material used as the conductive thin film in the conductive film laminated as described above, wherein at least one of the conductive thin films formed of the conductive substance as the electrode material has a property of conducting electricity. The conductive thin film having certain conductivity and an iodine solution at 80 ° C. (solution obtained by dissolving iodine, lithium iodide, tetrabutylammonium iodide (TBAI), tributyl phosphate (TBP) in an acetonitrile solution) It is characterized in that it is a substance having iodine resistance in which 80% or more by volume remains undissolved even after 96 hours have been immersed in

本願発明の請求項2に記載の電極材料は、請求項1に記載の電極材料において、前記導電性物質が、ニッケル、チタン、クロム、ニオブ、プラチナ、イリジウム、ステンレス鋼、タンタル、タングステン、又はモリブデンの何れか若しくは複数よりなる合金、またはいずれかよりなる合金の複数、であること、を特徴とする。   The electrode material according to claim 2 of the present invention is the electrode material according to claim 1, wherein the conductive substance is nickel, titanium, chromium, niobium, platinum, iridium, stainless steel, tantalum, tungsten, or molybdenum. Or an alloy composed of any one or more of the above, or a plurality of alloys composed of any of the above.

本願発明の請求項3に記載の電極材料は、請求項1に記載の電極材料において、前記導電性物質が、ニッケルに対して5.0wt%以上のチタンが混合された、ニッケル・チタン合金であること、を特徴とする。   The electrode material according to claim 3 of the present invention is a nickel-titanium alloy in which, in the electrode material according to claim 1, the conductive substance is mixed with 5.0 wt% or more of titanium with respect to nickel. It is characterized by being.

本願発明の請求項4に記載の導電性フィルムは、請求項1ないし請求項3の何れか1項に記載の電極材料を用いてなること、を特徴とする。   The conductive film according to claim 4 of the present invention is characterized by using the electrode material according to any one of claims 1 to 3.

本願発明の請求項5に記載の太陽電池は、請求項4に記載の導電性フィルムを電極として用いてなること、を特徴とする。   The solar cell according to claim 5 of the present invention is characterized by using the conductive film according to claim 4 as an electrode.

本願発明の請求項6に記載の光電極は、請求項4に記載の導電性フィルムを電極として用いてなること、を特徴とする。   A photoelectrode according to claim 6 of the present invention is characterized in that the conductive film according to claim 4 is used as an electrode.

以上のように、本願発明に係る導電性フィルムの電極材料であれば、そもそもの電極材料が、電気を通す性質である導電性を有すると共に、80℃のヨウ素溶液(ヨウ素、ヨウ化リチウム、ヨウ化テトラブチルアンモニウム(TBAI)、リン酸トリブチル(TBP)をアセトニトリル溶液に溶解させてなる溶液)に浸漬した状態で96時間経過しても体積比で80%以上が溶解せずに残存しているような性質を有する、即ち耐ヨウ素性をも同時に有する物質により形成されているため、これを色素増感型太陽電池の電極として用いたとしても従来のように電解液を構成する主成分たるヨウ素と接触しても腐食したりすることがなく、即ち長時間にわたり電極として作用するようになる。また、電極材料そのものに耐ヨウ素性を備えたものを用いることとしたので、従来の電極に後天的に耐ヨウ素性を付与すべく何らかの保護膜を積層するような必要もなく、即ち製造工程が簡易なものとなり、得られやすくかつ製造のためのコストもかからず経済的である、とも言える。   As described above, in the case of the electrode material of the conductive film according to the present invention, the electrode material in the first place has conductivity which is a property of conducting electricity, and an iodine solution (iodine, lithium iodide, iodine) at 80 ° C. 80% or more in volume ratio remains without being dissolved even after 96 hours in a state of being immersed in tetrabutylammonium bromide (TBAI) or tributyl phosphate (TBP) dissolved in acetonitrile solution) Since it is formed of a material having such properties, that is, having iodine resistance at the same time, even if it is used as an electrode of a dye-sensitized solar cell, iodine as a main component constituting an electrolyte solution as in the past It does not corrode even if it comes into contact with the electrode, that is, it acts as an electrode for a long time. In addition, since it is decided to use an electrode material having iodine resistance, there is no need to laminate any protective film to give iodine resistance to the conventional electrode, that is, the manufacturing process is not necessary. It can be said that it is simple, easy to obtain and economical without manufacturing costs.

以下、本願発明の実施の形態について説明する。尚、ここで示す実施の形態はあくまでも一例であって、必ずしもこの実施の形態に限定されるものではない。
(実施の形態1)
本願発明に係る導電性フィルムの電極材料につき、第1の実施の形態として説明する。
Embodiments of the present invention will be described below. In addition, embodiment shown here is an example to the last, Comprising: It is not necessarily limited to this embodiment.
(Embodiment 1)
The electrode material of the conductive film according to the present invention will be described as a first embodiment.

本実施の形態に係る導電性フィルムの電極材料は、少なくとも、高分子樹脂よりなる基材フィルムの表面に、単数又は複数の導電性物質よりなる導電性薄膜を1層又は2層以上積層してなる導電性フィルムにおいて、導電性物質として用いられる電極材料であって、前記電極材料としての前記導電性物質により形成される前記導電性薄膜のうち少なくとも1つが、電気を通す性質である導電性を有し、かつ前記導電性物質を80℃のヨウ素溶液(ヨウ素、ヨウ化リチウム、ヨウ化テトラブチルアンモニウム(TBAI)、リン酸トリブチル(TBP)をアセトニトリル溶液に溶解させてなる溶液)に浸漬した状態で96時間経過しても体積比で80%以上が溶解せずに残存している耐ヨウ素性をも有する物質であることとする。   The electrode material for the conductive film according to the present embodiment is formed by laminating one or more conductive thin films made of one or more conductive substances on at least the surface of a base film made of a polymer resin. In the conductive film, an electrode material used as a conductive substance, wherein at least one of the conductive thin films formed of the conductive substance as the electrode material has a property of conducting electricity. And having the conductive material immersed in an iodine solution (iodine, lithium iodide, tetrabutylammonium iodide (TBAI), tributyl phosphate (TBP) dissolved in an acetonitrile solution) at 80 ° C. In this case, 80% or more of the volume ratio remains undissolved even after 96 hours.

以下、本実施の形態に係る電極材料が、太陽電池の透明電極を構成する透明導電性フィルムの構成部材として用いられる場合を想定しつつ順次説明をする。   Hereinafter, it demonstrates sequentially, assuming the case where the electrode material which concerns on this Embodiment is used as a structural member of the transparent conductive film which comprises the transparent electrode of a solar cell.

このような透明導電性フィルムにおける基材について述べると、これはガラスであっても高分子樹脂フィルムであっても特に構わないが、昨今の市場要望等に鑑みてできれば全重量が増大してしまうガラスよりも、軽量化を実現できる、取扱性が容易になる、等の観点から高分子樹脂フィルムであることが好ましいとされている。そこで以下の説明において基材はフィルム素材であるものとするが、これはガラスの利用を否定するものではなく、即ちガラスであっても構わないことを予め断っておく。   As for the base material in such a transparent conductive film, it may be a glass or a polymer resin film, but the total weight will increase if possible in view of recent market demands. It is said that a polymer resin film is preferable to glass from the viewpoints of achieving weight reduction and facilitating handling. Therefore, in the following description, the base material is assumed to be a film material. However, this does not deny the use of glass, that is, it should be noted in advance that glass may be used.

またこの基材となる高分子樹脂よりなる基材フィルムは必ずしも透明である必要もないが、例えば後述するように太陽電池の透明電極として用いるのであれば、透明であることよりも、その太陽電池において必要とされる光線透過率を得られるものでなければならないことが必須であると言える。そしてそのような基材として用いるフィルムは当然透明度に優れるものであればよく、例えばポリエチレンナフタレート(PEN)、ポリエチレンテレフタレート(PET)フィルム、ポリカーボネートフィルム、ポリスチレンフィルム、ポリメチルメタアクリレートフィルム、等の樹脂フィルムを用いるとよく、本実施の形態においてはPENフィルムを用いることとする。またその厚みは、本実施の形態に係る電極材料を備えた透明導電性フィルムを用いる装置等において必要とされる透明導電性フィルムの厚みに応じた厚みであればよく、例えば太陽電池の電極として用いるのであれば、透明導電性フィルムとしての厚みは約100μm程度の厚みとなるので、その場合の透明基材フィルムの厚みは80μm以上200μm以下程度であると好ましいものとすることができる。   Further, the base film made of the polymer resin as the base material does not necessarily need to be transparent, but for example, if used as a transparent electrode of a solar battery as described later, the solar battery is more transparent than the transparent film. It can be said that it is essential that the light transmittance required in the process must be obtained. The film used as such a substrate is naturally only required to have excellent transparency, for example, a resin such as polyethylene naphthalate (PEN), polyethylene terephthalate (PET) film, polycarbonate film, polystyrene film, polymethyl methacrylate film, etc. A film may be used, and a PEN film is used in this embodiment mode. Moreover, the thickness should just be the thickness according to the thickness of the transparent conductive film required in the apparatus etc. which use the transparent conductive film provided with the electrode material which concerns on this Embodiment, For example, as an electrode of a solar cell If used, the thickness of the transparent conductive film is about 100 μm, and the thickness of the transparent substrate film in that case is preferably about 80 μm or more and 200 μm or less.

ちなみに、ここでは太陽電池電極用ということで透明導電性フィルムとしてあるが、太陽電池以外に用いる場合で透明性が必須でないならば、基材フィルムは必ずしも透明度の高いものである必要はなく、状況等に応じて基材となるフィルムを選択すればよいが、これに関してはここではこれ以上の説明を省略すると共に、以下の説明では、本実施の形態における電極材料は最終的に色素増感型太陽電池用透明電極として用いられる透明導電性フィルムの電極として用いられることを念頭に説明を続けていく。   By the way, it is here as a transparent conductive film because it is for solar cell electrodes, but if transparency is not essential when used for other than solar cells, the substrate film does not necessarily need to be highly transparent, A film to be a base material may be selected according to the above, but further explanation is omitted here, and in the following explanation, the electrode material in the present embodiment is finally a dye-sensitized type. The description will be continued with the use as a transparent conductive film electrode used as a transparent electrode for solar cells in mind.

そして次にこの基材フィルムを導電性フィルムとする場合、当然ながらこの基材フィルムの表面に導電性物質を積層しなければならない。ここでは基材フィルムの表面に単数又は複数の導電性物質よりなる導電性薄膜を1層又は2層以上積層してなるものとするが、ここでは上述したように色相増感型太陽電池用透明電極への利用を想定していることより、少なくとも1層は、電気を通す性質である導電性を有し、かつ前記導電性物質を80℃のヨウ素溶液(ヨウ素、ヨウ化リチウム、ヨウ化テトラブチルアンモニウム(TBAI)、リン酸トリブチル(TBP)をアセトニトリル溶液に溶解させてなる溶液)に浸漬した状態で96時間経過しても体積比で80%以上が溶解せずに残存している耐ヨウ素性をも有する物質により形成されてなる、耐ヨウ素性層をも備えているものとする。   Then, when this base film is used as a conductive film, a conductive material must naturally be laminated on the surface of the base film. Here, it is assumed that one or two or more conductive thin films made of one or more conductive substances are laminated on the surface of the base film, but here, as described above, the hue-sensitized solar cell transparent Since it is assumed to be used for an electrode, at least one layer has conductivity which is a property of conducting electricity, and the conductive material is dissolved in an iodine solution (iodine, lithium iodide, tetraiodide at 80 ° C.). Iodine resistance, in which 80% or more by volume remains undissolved even after 96 hours in a state of being immersed in butylammonium (TBAI) or tributyl phosphate (TBP) in an acetonitrile solution) It is assumed that an iodine-resistant layer formed of a substance having a property is also provided.

耐ヨウ素性層を備えていることに関しさらに説明をする。
導電性フィルムとは、単純に説明をすればフィルムの表面に導電性物質が積層されることにより電気を通じる特性が付与されたフィルムを指すのであり、そのために表面に積層される物質は導電性を有することは当然である。
Further explanation will be given regarding the provision of the iodine-resistant layer.
In simple terms, a conductive film refers to a film that has been given the property of conducting electricity by laminating a conductive material on the surface of the film. It is natural to have

一方、本実施の形態において想定する色素増感型太陽電池の透明電極フィルムでは、結局のところ色素増感型太陽電池を構成するヨウ素を主成分とする電解液に曝されることとなる。しかしこの透明電極フィルムを構成する電極部分がヨウ素に曝されることによって導電性物質が容易に溶解するなどして損傷を受けてしまい、その結果導電性を失うような事態が生じれば、結局電極としての導電性を維持することが出来なくなってしまう。   On the other hand, the transparent electrode film of the dye-sensitized solar cell assumed in the present embodiment is eventually exposed to an electrolytic solution mainly composed of iodine constituting the dye-sensitized solar cell. However, if the electrode part constituting the transparent electrode film is exposed to iodine and the conductive substance is easily dissolved and damaged, and as a result, the situation where the conductivity is lost occurs, The conductivity as an electrode cannot be maintained.

従来ではその対策として導電性物質の表面に耐ヨウ素性を備えた物質をコーティングすることにより導電性物質を保護することが試みられていたが、本実施の形態ではこの電極に用いる導電性を備えた材料それ自体に、さらにヨウ素により腐食することのないよう、即ち耐ヨウ素性を備えるものを用いることで上記問題に対処可能としたのである。   Conventionally, an attempt has been made to protect the conductive material by coating the surface of the conductive material with an iodine-resistant material as a countermeasure, but in this embodiment, the conductive material used for this electrode has the conductivity. In addition, the above-mentioned problem can be addressed by using a material that does not corrode with iodine, that is, a material having iodine resistance.

尚、ここで言う耐ヨウ素性とは、80℃のヨウ素溶液(例えば、ヨウ素、ヨウ化リチウム、ヨウ化テトラブチルアンモニウム(TBAI)、リン酸トリブチル(TBP)をアセトニトリル溶液に溶解させてなる溶液。以下この溶液を指すものとする。)に浸漬した状態で96時間経過しても体積比で80%以上が溶解せずに残存している状態を保つことを可能とした性質を指していることを断っておく。   The iodine resistance mentioned here is an iodine solution at 80 ° C. (for example, a solution obtained by dissolving iodine, lithium iodide, tetrabutylammonium iodide (TBAI), and tributyl phosphate (TBP) in an acetonitrile solution. Hereinafter, this solution shall be referred to.) It indicates the property that makes it possible to maintain a state in which 80% or more by volume remains undissolved even after 96 hours of immersion in the solution. I refuse.

そしてこのような条件を満たす物質としては、例えばニッケル、チタン、クロム、ニオブ、プラチナ、イリジウム、ステンレス鋼、タンタル、タングステン、又はモリブデンの何れか若しくは複数よりなる合金、またはいずれかよりなる合金の複数、であればよい。   Examples of the material that satisfies such conditions include, for example, nickel, titanium, chromium, niobium, platinum, iridium, stainless steel, tantalum, tungsten, or an alloy made of a plurality of alloys, or a plurality of alloys made of any of them. If it is.

さらには、ニッケルに対して5.0wt%以上のチタンが混合された、ニッケル・チタン合金であるならばより一層好適である。   Furthermore, a nickel-titanium alloy in which 5.0 wt% or more of titanium is mixed with nickel is even more preferable.

これらの物質を基材フィルムの表面に従来公知の手法等を用いて積層することにより得られた導電性フィルムであれば、導電性を付与している電極材料がヨウ素溶液に対する耐性を備えているので、これを例えば色素増感型太陽電池の透明電極として用いても、色素増感型太陽電池に用いられる電解液と接しても導電性物質たる電極材料が腐食したり溶解したりすることが殆どないため、即ち性能の劣化・低下が生じず、色素増感型太陽電池用の好適な電極材料と言えるのである。   In the case of a conductive film obtained by laminating these substances on the surface of a base film using a conventionally known method or the like, the electrode material imparting conductivity has resistance to an iodine solution. Therefore, even if this is used as, for example, a transparent electrode of a dye-sensitized solar cell or in contact with an electrolytic solution used in the dye-sensitized solar cell, the electrode material that is a conductive substance may corrode or dissolve. Since there is almost no deterioration, that is, the performance is not deteriorated, it can be said to be a suitable electrode material for a dye-sensitized solar cell.

またこのような性質を有することより、この電極材料を用いた導電性フィルムを色素増感型太陽電池用透明電極の材料として用いても、色素増感型太陽電池に必須のヨウ素を用いた電解液と接しても性能が急激に低下することがなく、またわざわざ別途余分な積層処理を施す必要がないので好適に利用可能であると言え、またその他にも、仮にこれを光電極として利用する場合であって、なおかつ必然的にヨウ素溶液と直に接してしまう可能性があるとしても、本実施の形態に係る電極材料を用いた導電性フィルムを用いれば、電極材料それ自身が耐ヨウ素性を備えているので、余分な積層を行うことなく、即ち余分なコストを生じることなく、かつ余分な厚みを増してしまうことなく、好適な電極として利用することが出来る。   In addition, because of these properties, even when a conductive film using this electrode material is used as a material for a transparent electrode for a dye-sensitized solar cell, electrolysis using iodine essential for the dye-sensitized solar cell is used. Even if it comes into contact with the liquid, the performance does not drop rapidly, and it can be said that it can be suitably used because there is no need to perform an extra layering process. In addition, this is used as a photoelectrode. Even if there is a possibility that the electrode material may be in direct contact with the iodine solution, if the conductive film using the electrode material according to the present embodiment is used, the electrode material itself is resistant to iodine. Therefore, it can be used as a suitable electrode without extra lamination, that is, without causing extra cost and without increasing extra thickness.

以下、本発明に係る電極材料につき、さらに実施例により説明する。   Hereinafter, the electrode material according to the present invention will be further described with reference to examples.

(実施例1)
第1の実施の形態に係る電極材料の耐ヨウ素性を以下の手法により測定した。
ヨウ素溶液としては、ヨウ素、ヨウ化リチウム、ヨウ化テトラブチルアンモニウム(TBAI)、リン酸トリブチル(TBP)をアセトニトリル溶液に溶解させてなる溶液を用いた。
Example 1
The iodine resistance of the electrode material according to the first embodiment was measured by the following method.
As the iodine solution, a solution obtained by dissolving iodine, lithium iodide, tetrabutylammonium iodide (TBAI), and tributyl phosphate (TBP) in an acetonitrile solution was used.

対象となる試験片は、1cm×7cmの大きさのものであり、その表面に、幅が2mmとなるグリッドを短辺方向に平行となるよう、5mm間隔でストライプ状に設けてなるものである。尚、グリッドの略側面視の高さ、即ちグリッドの厚みは50nm以上200nm以下である。グリッドの厚みに幅があるのは、グリッドに用いる素材による比抵抗値に応じた厚みとなるように設計する必要があるからである。   The target test piece has a size of 1 cm × 7 cm, and a grid having a width of 2 mm is provided on the surface thereof in stripes at intervals of 5 mm so as to be parallel to the short side direction. . Note that the height of the grid in a side view, that is, the thickness of the grid is not less than 50 nm and not more than 200 nm. The reason why the thickness of the grid is wide is that it is necessary to design the thickness so as to correspond to the specific resistance value depending on the material used for the grid.

この試験片は次のようにして得た。
まず基材フィルムとして厚みが100μmであるPENフィルム(帝人株式会社製:製品名「テオネックスQ65」)を用意した。
ついでその表面に水溶性樹脂層として、前記グリッド形状に対応する箇所にマスキングをした上で、ポリビニルアルコール樹脂を従来公知のシルクスクリーン印刷法により積層した。
This test piece was obtained as follows.
First, a PEN film (manufactured by Teijin Limited: product name “Teonex Q65”) having a thickness of 100 μm was prepared as a base film.
Then, a surface corresponding to the grid shape was masked as a water-soluble resin layer on the surface, and a polyvinyl alcohol resin was laminated by a conventionally known silk screen printing method.

ついでその表面全体に対し従来公知のスパッタリング法により、試験対象となる積層物を積層した。   Then, a laminate to be tested was laminated on the entire surface by a conventionally known sputtering method.

そして得られた積層体を水洗することにより不要箇所を除去し、ITOを表面保護の為に積層して試験片を得た。
各試験片の試験結果を以下に示す。
And the unnecessary part was removed by washing the obtained laminated body with water, ITO was laminated | stacked for surface protection, and the test piece was obtained.
The test results of each test piece are shown below.

Figure 2008257948

* 上記表において
耐ヨウ素性○=(試験片の)体積比で80%以上残存した
△=(試験片の)体積比で60%以上残存した
×=(試験片の)体積比で残存量が60%未満である
薄膜比抵抗実測値(Ω・cm)=実測膜厚(cm)×実測面抵抗(Ω) である
チタン添加量=wt% である
Figure 2008257948

* In the above table, iodine resistance ○ = 80% or more remained in volume ratio (of test piece)
Δ = 60% or more remained in volume ratio (of test piece)
X = remaining amount is less than 60% by volume ratio (of test piece) thin film specific resistance measured value (Ω · cm) = measured film thickness (cm) × measured surface resistance (Ω) Titanium addition amount = wt% Is

この表から分かるとおり、Ni、Ti、Cr、Nb、Pt、Ir、SUS、Ta、W、Moであれば耐ヨウ素性も備えつつ好適な導電性を示すが、それ以外の物質、例えば通常の導電性フィルムにおける導電性物質としてよく利用されるAg、Cu、Alであれば十分な耐ヨウ素性を備えていないことが判る。さらにニッケル・チタン合金においては、ニッケルに対して5.0wt%以上のチタンを混合したものであれば好適な耐ヨウ素性及び導電性を同時に発揮するが、それ以外の場合では不十分であることが判る。   As can be seen from this table, Ni, Ti, Cr, Nb, Pt, Ir, SUS, Ta, W, and Mo show suitable conductivity while having iodine resistance, but other substances such as normal It can be seen that Ag, Cu, and Al, which are often used as conductive substances in conductive films, do not have sufficient iodine resistance. Furthermore, in nickel-titanium alloys, if iodine of 5.0 wt% or more is mixed with nickel, suitable iodine resistance and conductivity are exhibited simultaneously, but in other cases it is insufficient. I understand.

Claims (6)

高分子樹脂よりなる基材フィルムの表面に、単数又は複数の導電性物質よりなる導電性薄膜を1層又は2層以上積層してなる導電性フィルムにおいて前記導電性薄膜として用いられる電極材料であって、
前記電極材料としての前記導電性物質により形成される前記導電性薄膜のうち少なくとも1つが、電気を通す性質である導電性を有し、かつ前記導電性薄膜を80℃のヨウ素溶液(ヨウ素、ヨウ化リチウム、ヨウ化テトラブチルアンモニウム(TBAI)、リン酸トリブチル(TBP)をアセトニトリル溶液に溶解させてなる溶液)に浸漬した状態で96時間経過しても体積比で80%以上が溶解せずに残存している耐ヨウ素性をも有する物質であること、
を特徴とする、電極材料。
An electrode material used as the conductive thin film in a conductive film obtained by laminating one or more conductive thin films made of one or more conductive substances on the surface of a base film made of a polymer resin. And
At least one of the conductive thin films formed of the conductive material as the electrode material has conductivity that conducts electricity, and the conductive thin film is treated with an iodine solution (iodine, iodine, 80 ° C.). 80% or more by volume does not dissolve even after 96 hours in a state of being immersed in lithium iodide, tetrabutylammonium iodide (TBAI), tributyl phosphate (TBP) dissolved in acetonitrile solution) The substance also has iodine resistance remaining,
An electrode material.
請求項1に記載の電極材料において、
前記導電性物質が、ニッケル、チタン、クロム、ニオブ、プラチナ、イリジウム、ステンレス鋼、タンタル、タングステン、又はモリブデンの何れか若しくは複数よりなる合金、またはいずれかよりなる合金の複数、であること、
を特徴とする、電極材料。
The electrode material according to claim 1,
The conductive substance is nickel, titanium, chromium, niobium, platinum, iridium, stainless steel, tantalum, tungsten, or an alloy made of molybdenum, or an alloy made of any of these,
An electrode material.
請求項1に記載の電極材料において、
前記導電性物質が、ニッケルに対して5.0wt%以上のチタンが混合された、ニッケル・チタン合金であること、
を特徴とする、電極材料。
The electrode material according to claim 1,
The conductive material is a nickel-titanium alloy in which 5.0 wt% or more of titanium is mixed with respect to nickel;
An electrode material.
請求項1ないし請求項3の何れか1項に記載の電極材料を用いてなること、
を特徴とする、導電性フィルム。
Using the electrode material according to any one of claims 1 to 3,
A conductive film characterized by
請求項4に記載の導電性フィルムを電極として用いてなること、
を特徴とする、太陽電池。
Using the conductive film according to claim 4 as an electrode,
A solar cell characterized by.
請求項4に記載の導電性フィルムを電極として用いてなること、
を特徴とする、光電極。
Using the conductive film according to claim 4 as an electrode,
A photoelectrode characterized by.
JP2007097385A 2007-04-03 2007-04-03 Electrode material, conductive film using the material, solar cell, and photoelectrode Expired - Fee Related JP5026137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007097385A JP5026137B2 (en) 2007-04-03 2007-04-03 Electrode material, conductive film using the material, solar cell, and photoelectrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007097385A JP5026137B2 (en) 2007-04-03 2007-04-03 Electrode material, conductive film using the material, solar cell, and photoelectrode

Publications (3)

Publication Number Publication Date
JP2008257948A true JP2008257948A (en) 2008-10-23
JP2008257948A5 JP2008257948A5 (en) 2009-01-15
JP5026137B2 JP5026137B2 (en) 2012-09-12

Family

ID=39981314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007097385A Expired - Fee Related JP5026137B2 (en) 2007-04-03 2007-04-03 Electrode material, conductive film using the material, solar cell, and photoelectrode

Country Status (1)

Country Link
JP (1) JP5026137B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2458605A1 (en) 2008-11-26 2012-05-30 Sony Corporation Functional device and method for producing the same
CN103021506A (en) * 2012-12-10 2013-04-03 滁州恒恩光电科技有限公司 Conducting slurry containing tributyl phosphate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005302499A (en) * 2004-04-09 2005-10-27 Ngk Spark Plug Co Ltd Dye-sensitized solar cell
JP2005340710A (en) * 2004-05-31 2005-12-08 Toppan Printing Co Ltd Dye-sensitized solar cell and its manufacturing method
JP2007005083A (en) * 2005-06-22 2007-01-11 Nitto Denko Corp Dye-sensitized solar cell and manufacturing method of dye-sensitized solar cell
JP2007059102A (en) * 2005-08-22 2007-03-08 Nippon Oil Corp Dye-sensitized solar cell
JP2008251420A (en) * 2007-03-30 2008-10-16 Katsumi Yoshino Seal material for dye-sensitized solar cell, and dye- sensitized solar cell using it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005302499A (en) * 2004-04-09 2005-10-27 Ngk Spark Plug Co Ltd Dye-sensitized solar cell
JP2005340710A (en) * 2004-05-31 2005-12-08 Toppan Printing Co Ltd Dye-sensitized solar cell and its manufacturing method
JP2007005083A (en) * 2005-06-22 2007-01-11 Nitto Denko Corp Dye-sensitized solar cell and manufacturing method of dye-sensitized solar cell
JP2007059102A (en) * 2005-08-22 2007-03-08 Nippon Oil Corp Dye-sensitized solar cell
JP2008251420A (en) * 2007-03-30 2008-10-16 Katsumi Yoshino Seal material for dye-sensitized solar cell, and dye- sensitized solar cell using it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2458605A1 (en) 2008-11-26 2012-05-30 Sony Corporation Functional device and method for producing the same
CN103021506A (en) * 2012-12-10 2013-04-03 滁州恒恩光电科技有限公司 Conducting slurry containing tributyl phosphate

Also Published As

Publication number Publication date
JP5026137B2 (en) 2012-09-12

Similar Documents

Publication Publication Date Title
JP4620794B1 (en) Dye-sensitized solar cell
JP5388209B2 (en) Method for producing dye-sensitized solar cell
Miettunen et al. Do counter electrodes on metal substrates work with cobalt complex based electrolyte in dye sensitized solar cells?
CN102369630A (en) Dye-sensitized solar cell
Mehmood et al. Electrochemical impedance spectroscopy and photovoltaic analyses of dye-sensitized solar cells based on carbon/TiO2 composite counter electrode
NL2001815C2 (en) Reversed dye-sensitized photovoltaic cell.
Miettunen et al. Recent progress in flexible dye solar cells
JP5227194B2 (en) Laminated electrode
JP2008053042A (en) Pigment sensitized solar cell
TW200921963A (en) Dye-sensitized solar cell
Ogomi et al. Ru dye uptake under pressurized CO2 improvement of photovoltaic performances for dye-sensitized solar cells
JP5026137B2 (en) Electrode material, conductive film using the material, solar cell, and photoelectrode
JP4788838B2 (en) Dye-sensitized solar cell
JP5344282B2 (en) Dye-sensitized solar cell
JP2012114017A (en) Photoelectrochemical cell and energy system using the same
JP2010015830A (en) Photoelectric conversion element
Ivanou et al. Embedded chromium current collectors for efficient and stable large area dye sensitized solar cells
JP2013122875A (en) Photoelectric conversion element, method for manufacturing the same, counter electrode for photoelectric conversion element, electronic device, and building
JP5187466B2 (en) Dye-sensitized solar cell
JP2005293863A (en) Solar cell
JP5593881B2 (en) Dye-sensitized solar cell
JP2013122874A (en) Photoelectric conversion element, method for manufacturing the same, electronic device, counter electrode for photoelectric conversion element, and building
JP5685708B2 (en) Method for producing dye-sensitized solar cell
JP2008277234A (en) Barrier property thin film, conductive film having the thin film laminated thereon, and solar cell, as well as photoelectrode
JP5445121B2 (en) Dye-sensitized solar cell, electrolyte layer forming liquid, and solar cell module

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5026137

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees